[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5107134B2 - Cleaning method - Google Patents

Cleaning method Download PDF

Info

Publication number
JP5107134B2
JP5107134B2 JP2008133953A JP2008133953A JP5107134B2 JP 5107134 B2 JP5107134 B2 JP 5107134B2 JP 2008133953 A JP2008133953 A JP 2008133953A JP 2008133953 A JP2008133953 A JP 2008133953A JP 5107134 B2 JP5107134 B2 JP 5107134B2
Authority
JP
Japan
Prior art keywords
fluorine
plasma
cleaning
substrate
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008133953A
Other languages
Japanese (ja)
Other versions
JP2009283652A (en
Inventor
秀一 岡本
英夫 生津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
NTT Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, NTT Advanced Technology Corp filed Critical Asahi Glass Co Ltd
Priority to JP2008133953A priority Critical patent/JP5107134B2/en
Priority to KR1020107025316A priority patent/KR20110020768A/en
Priority to PCT/JP2009/059388 priority patent/WO2009142281A1/en
Priority to TW098117080A priority patent/TW201006573A/en
Publication of JP2009283652A publication Critical patent/JP2009283652A/en
Priority to US12/951,241 priority patent/US20110067733A1/en
Application granted granted Critical
Publication of JP5107134B2 publication Critical patent/JP5107134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、マイクロエレクトロメカニカルシステム(MEMS)や大規模集積回路(LSI)等の各種基板の製造工程において好適に用いられる洗浄方法に関する。   The present invention relates to a cleaning method suitably used in the manufacturing process of various substrates such as a micro electro mechanical system (MEMS) and a large scale integrated circuit (LSI).

LSIやMEMSを製作するためには微細パターンが必要となる。このような微細パターンは、露光、現像、リンスを経て形成されるレジストパターンをマスクとして、エッチングを行い、その後洗浄を行って形成されるエッチングパターンである。エッチングには主としてフッ素系ガスを用いたプラズマエッチングが使用される。プラズマエッチングにおいてパターン寸法精度を向上させるには、プラズマ重合膜をパターン側壁に堆積させながら、エッチングを施すことが必要である。これにより、エッチングの際に生じるサイドエッチングを防止することができる。サイドエッチングとは、ガスプラズマで生じた反応種(例えばフッ素ラジカル)が横方向に拡散してパターン寸法を大きくする現象である。
例えば、シリコン酸化膜エッチングではCFガスプラズマ中に添加したハイドロトリフルオロカーボンCHFによりCFフラグメントが生じて(CFからなる構造を有するプラズマ重合膜が生じる。シリコンエッチングでは六フッ化イオウSFと、(CF源になるCのプラズマを交互に生じさせることにより、エッチングとプラズマ重合膜堆積を繰り返してサイドエッチングを防止できる。
In order to manufacture LSI and MEMS, a fine pattern is required. Such a fine pattern is an etching pattern formed by performing etching using a resist pattern formed through exposure, development, and rinsing as a mask, and then cleaning. For the etching, plasma etching using a fluorine-based gas is mainly used. In order to improve pattern dimensional accuracy in plasma etching, it is necessary to perform etching while depositing a plasma polymerization film on the pattern side wall. Thereby, the side etching which arises in the case of an etching can be prevented. Side etching is a phenomenon in which reactive species (for example, fluorine radicals) generated by gas plasma diffuse laterally to increase the pattern dimension.
For example, in silicon oxide film etching, CF 2 fragments are generated by hydrotrifluorocarbon CHF 3 added to CF 4 gas plasma, and a plasma polymerized film having a structure composed of (CF 2 ) n is generated. In silicon etching, by alternately generating sulfur hexafluoride SF 6 and C 3 F 8 plasma serving as a (CF 2 ) n source, side etching can be prevented by repeating etching and plasma polymerization film deposition.

以上のように、プラズマエッチングではプラズマ重合膜の堆積が不可欠であるが、エッチング終了後には該プラズマ重合膜を除去することが必要である。すなわち、エッチングが終了したときには、例えば図3(a)に示すように、パターン53の側面にプラズマ重合膜54が堆積しているため、それを除去して図3(b)の状態とすることが不可欠である。図中符号51は基板、52は下地膜を示す。
プラズマ重合膜が残存していると、欠陥、汚染、パーティクルの原因となり、製造歩留まりの低下を引き起こすが、プラズマ重合膜の除去は容易ではない。またプラズマ重合膜は、詳細には上記(CFからなる重合体だけで構成されるわけではなく、シリコン等のエッチング反応物や被エッチング膜の下地膜成分(例えばタングステン等の金属)が包含されており、これらのエッチング残渣成分の存在がプラズマ重合膜の除去を一層難しくしている。
As described above, deposition of a plasma polymerized film is indispensable in plasma etching, but it is necessary to remove the plasma polymerized film after the etching is completed. That is, when the etching is completed, as shown in FIG. 3A, for example, the plasma polymerization film 54 is deposited on the side surface of the pattern 53, so that it is removed and the state shown in FIG. Is essential. In the figure, reference numeral 51 denotes a substrate and 52 denotes a base film.
If the plasma polymerized film remains, it causes defects, contamination, and particles, and causes a reduction in manufacturing yield, but removal of the plasma polymerized film is not easy. Further, the plasma polymerized film is not specifically composed of only the polymer composed of (CF 2 ) n , but an etching reaction product such as silicon or a base film component (for example, a metal such as tungsten) of the film to be etched. The presence of these etching residue components makes the removal of the plasma polymerized film more difficult.

また、かかるプラズマ重合膜は、プラズマエッチングを行う装置の内壁にも付着する。従来、装置内壁上のプラズマ重合膜の洗浄は、洗浄液に浸けてブラシ等で擦り落とす方法で行われていた。   Further, such a plasma polymerized film also adheres to the inner wall of an apparatus that performs plasma etching. Conventionally, the plasma polymerized film on the inner wall of the apparatus has been cleaned by a method of immersing it in a cleaning solution and scraping it off with a brush or the like.

フッ素系溶剤を用いた洗浄方法としては、これまでクロロフルオロカーボン(CFC)を用いて油脂類等を洗浄除去する方法がよく知られているが、最近では、フッ素含量が多く、表面張力の小さいハイドロフルオロエーテル(HFE)やハイドロフルオロカーボン(HFC)を用いて、基板の洗浄が行われている。その洗浄プロセスとしては、例えば図4(a)に示すように、フッ素系溶剤61の中に常温で基板62を浸すととともに、超音波振動子からなる超音波発信器63でフッ素系溶剤61および基板62を振動させる。この後、図4(b)に示すように、ヒーター65でフッ素系溶剤を加熱することによって該溶剤を気化させ、これによって生じたフッ素系溶剤蒸気66を基板62にあてて基板62の表面をリンスした後に乾燥させる。   As a cleaning method using a fluorinated solvent, a method of cleaning and removing oils and fats using chlorofluorocarbon (CFC) has been well known, but recently, a hydrofluoric solvent having a high fluorine content and a low surface tension. Substrates are cleaned using fluoroether (HFE) or hydrofluorocarbon (HFC). As the cleaning process, for example, as shown in FIG. 4 (a), the substrate 62 is immersed in the fluorine-based solvent 61 at room temperature, and at the same time, the fluorine-based solvent 61 and The substrate 62 is vibrated. Thereafter, as shown in FIG. 4B, the solvent is vaporized by heating the fluorine-based solvent with a heater 65, and the fluorine-based solvent vapor 66 generated thereby is applied to the substrate 62 so as to cover the surface of the substrate 62. Rinse and dry.

下記特許文献1は、デバイス基板に付着しているレジストを含フッ素溶剤で洗浄する方法に関するもので、常温または30℃の含フッ素溶剤にデバイス基板を浸漬させる方法、予め超臨界状態とした含フッ素溶剤にデバイス基板を接触させる方法、常温または30℃の含フッ素溶剤にデバイス基板を浸漬させた後、該含フッ素溶剤を超臨界状態とする方法が記載されている。
国際公開第2007/114448号パンフレット
The following Patent Document 1 relates to a method of cleaning a resist adhering to a device substrate with a fluorine-containing solvent. A method of immersing a device substrate in a fluorine-containing solvent at room temperature or 30 ° C. A method of bringing a device substrate into contact with a solvent and a method of bringing the device substrate into a supercritical state after immersing the device substrate in a fluorine-containing solvent at room temperature or 30 ° C. are described.
International Publication No. 2007/114448 Pamphlet

しかしながら、フッ素系溶剤を用いた一般的な従来の洗浄方法では、プラズマ重合膜を良好に除去できる程度の、高度な洗浄効果は得られない。
本発明は、上記のような問題点を解決するためになされたものであり、フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、良好に除去できる洗浄方法を提供することを目的とする。
However, a general cleaning method using a fluorine-based solvent cannot obtain a high cleaning effect to such an extent that the plasma polymerized film can be satisfactorily removed.
The present invention has been made to solve the above-described problems, and provides a cleaning method that can satisfactorily remove an object to be cleaned having a plasma polymer generated in a plasma etching process using a fluorine-containing gas. The purpose is to provide.

前記課題を解決するために本発明の洗浄方法は、フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、含フッ素化合物を含有する洗浄液に浸す浸漬工程を有する洗浄方法であって、前記含フッ素化合物が、炭素数以上の直鎖または分岐構造のパーフルオロアルキル基を有することを特徴とする。
前記含フッ素化合物が、ハイドロフルオロエーテルおよびハイドロフルオロカーボンからなる群から選ばれる1種以上であることが好ましい。
前記含フッ素化合物が、パーフルオロアルキル基とアルキル基がエーテル結合を介して結合されているハイドロフルオロエーテルであることが好ましい。
または、フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、含フッ素化合物を含有する洗浄液に浸す浸漬工程を有する洗浄方法であって、前記含フッ素化合物が、Cn+m2n+12m+1(ただし、nは5〜9の整数であり、mは0〜2の整数である。)で表わされるハイドロフルオロカーボンであることを特徴とする洗浄方法である。
In order to solve the above-described problems, the cleaning method of the present invention includes a cleaning process including an immersion process in which an object to be cleaned having a plasma polymer generated in a plasma etching process using a fluorine-containing gas is immersed in a cleaning liquid containing a fluorine-containing compound. In the method, the fluorine-containing compound has a linear or branched perfluoroalkyl group having 6 or more carbon atoms.
The fluorine-containing compound is preferably one or more selected from the group consisting of hydrofluoroethers and hydrofluorocarbons.
The fluorine-containing compound is preferably a hydrofluoroether in which a perfluoroalkyl group and an alkyl group are bonded through an ether bond.
Alternatively, the cleaning method includes an immersing step in which an object to be cleaned having a plasma polymer generated in a plasma etching step using a fluorine-containing gas is immersed in a cleaning liquid containing a fluorine-containing compound , wherein the fluorine-containing compound is C The cleaning method is characterized by being a hydrofluorocarbon represented by n + m F 2n + 1 H 2m + 1 (where n is an integer of 5 to 9, and m is an integer of 0 to 2) .

本発明の洗浄方法によれば、フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、良好に除去できる。   According to the cleaning method of the present invention, an object to be cleaned having a plasma polymer generated in a plasma etching process using a fluorine-containing gas can be removed satisfactorily.

<含フッ素化合物を含有する洗浄液>
[含フッ素化合物]
含フッ素化合物を含有する洗浄液(以下、フッ素系溶剤ということもある)に用いられる含フッ素化合物は、パーフルオロアルキル基を有する。
含フッ素化合物におけるパーフルオロアルキル基(以下、Rf基ということもある。)は、C2n+1(nは整数)で表される鎖状または分岐状のアルキル基の炭素原子に結合している全ての水素原子がフッ素原子によって置換されている基(C2n+1(nは整数))である。本発明において、該Rf基の炭素数(n)は5以上であり、6以上がより好ましい。該Rf基の炭素数(n)が5以上であると、プラズマ重合物の除去効果が高い。
含フッ素化合物が一分子内にRf基を2個以上有する場合、少なくとも1個が炭素数(n)5以上、より好ましくは6以上であればよい。より好ましくは、全てのRf基が炭素数(n)5以上、好ましくは6以上である。
また、炭素数(n)が6個以上の炭素−炭素結合連鎖を有するRf基は、エーテル結合性の酸素原子を含んでいてもよい。すなわちRf基は、C2p+1−O−C2q−(p、qはそれぞれ独立に1以上の整数であり、pまたはqの少なくとも一方は5以上である。)で表される基であってもよい。この場合のRf基の炭素数はpとqの合計(p+q)であり、6以上となる。上記p、qのうち、少なくともpは5以上であることが好ましい。
該Rf基の炭素数の上限は、洗浄後の乾燥性の問題や、液体としてハンドリングするための融点や粘性などの点からは10以下が好ましく、9以下がより好ましく、8以下がさらに好ましい。
パーフルオロアルキル基を有する含フッ素化合物は、パーフルオロカーボン、ハイドロフルオロエーテル、およびハイドロフルオロカーボンからなる群から選ばれる1種以上が好ましい。これらのうちでもハイドロフルオロエーテルおよびハイドロフルオロカーボンから選ばれる1種以上が、地球温暖化係数が小さく、環境負荷が小さい点で好ましい。
含フッ素化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<Cleaning liquid containing fluorine-containing compound>
[Fluorine-containing compounds]
The fluorine-containing compound used in a cleaning liquid containing a fluorine-containing compound (hereinafter sometimes referred to as a fluorine-based solvent) has a perfluoroalkyl group.
A perfluoroalkyl group (hereinafter sometimes referred to as Rf group) in the fluorine-containing compound is bonded to a carbon atom of a chain-like or branched alkyl group represented by C n H 2n + 1 (n is an integer). It is a group (C n F 2n + 1 (n is an integer)) in which all hydrogen atoms are substituted by fluorine atoms. In the present invention, the carbon number (n) of the Rf group is 5 or more, and more preferably 6 or more. When the carbon number (n) of the Rf group is 5 or more, the removal effect of the plasma polymer is high.
When the fluorine-containing compound has two or more Rf groups in one molecule, at least one has only to have 5 or more carbon atoms (n), more preferably 6 or more. More preferably, all Rf groups have 5 or more carbon atoms (n), preferably 6 or more.
The Rf group having a carbon-carbon bond chain having 6 or more carbon atoms (n) may contain an etheric oxygen atom. That Rf group, C p F 2p + 1 -O -C q F 2q - (. P, q are each independently an integer of 1 or more, p or at least one is 5 or more q) a group represented by It may be. In this case, the number of carbon atoms in the Rf group is the sum of p and q (p + q), which is 6 or more. Of the p and q, at least p is preferably 5 or more.
The upper limit of the carbon number of the Rf group is preferably 10 or less, more preferably 9 or less, and still more preferably 8 or less, from the viewpoint of drying properties after washing and the melting point and viscosity for handling as a liquid.
The fluorine-containing compound having a perfluoroalkyl group is preferably at least one selected from the group consisting of perfluorocarbons, hydrofluoroethers, and hydrofluorocarbons. Among these, at least one selected from hydrofluoroethers and hydrofluorocarbons is preferable in that the global warming potential is small and the environmental load is small.
A fluorine-containing compound may be used individually by 1 type, and 2 or more types may be mixed and used for it.

ハイドロフルオロエーテルは、パーフルオロアルキル基とアルキル基がエーテル結合を介して結合されているものが好ましい。
炭素数5以上のRf基を有するハイドロフルオロエーテルの具体例としては、メチルパーフルオロペンチルエーテル(C11OCH)、エチルパーフルオロペンチルエーテル(C11OCHCH)、メチルパーフルオロヘキシルエーテル(C13OCH)、エチルパーフルオロヘキシルエーテル(C13OCHCH)、メチルパーフルオロヘプチルエーテル(C15OCH)、エチルパーフルオロへプチルエーテル(C15OCHCH)、メチルパーフルオロオクチルエーテル(C17OCH)、エチルパーフルオロオクチルエーテル(C17OCHCH)、メチルパーフルオロノニルエール(C19OCH)、エチルパーフルオロノニルエーテル(C19OCHCH)、メチルパーフルオロデシルエーテル(C1021OCH)、エチルパーフルオロデシルエーテル(C1021OCHCH)等が挙げられる。
The hydrofluoroether preferably has a perfluoroalkyl group and an alkyl group bonded via an ether bond.
Specific examples of the hydrofluoroether having an Rf group having 5 or more carbon atoms include methyl perfluoropentyl ether (C 5 F 11 OCH 3 ), ethyl perfluoropentyl ether (C 5 F 11 OCH 2 CH 3 ), and methyl perfluoro ether. Fluorohexyl ether (C 6 F 13 OCH 3 ), ethyl perfluorohexyl ether (C 6 F 13 OCH 2 CH 3 ), methyl perfluoroheptyl ether (C 7 F 15 OCH 3 ), ethyl perfluoroheptyl ether (C 7 F 15 OCH 2 CH 3 ), methyl perfluorooctyl ether (C 8 F 17 OCH 3 ), ethyl perfluorooctyl ether (C 8 F 17 OCH 2 CH 3 ), methyl perfluorononyl ale (C 9 F 19 OCH) 3), Echirupafu Oro nonyl ether (C 9 F 19 OCH 2 CH 3), methyl perfluoro decyl ether (C 10 F 21 OCH 3) , ethyl perfluoro decyl ether (C 10 F 21 OCH 2 CH 3) , and the like.

これらの中で、洗浄剤としての使いやすさ(洗浄後の乾燥性、室温で低粘性の液体として扱うことができる等)の観点から、メチルパーフルオロペンチルエーテル(C11OCH)、エチルパーフルオロペンチルエーテル(C11OCHCH)、メチルパーフルオロヘキシルエーテル(C13OCH)、エチルパーフルオロヘキシルエーテル(C13OCHCH)、メチルパーフルオロヘプチルエーテル(C15OCH)、エチルパーフルオロへプチルエーテル(C15OCHCH)、メチルパーフルオロオクチルエーテル(C17OCH)、エチルパーフルオロオクチルエーテル(C17OCHCH)が好ましい。 Among these, methyl perfluoropentyl ether (C 5 F 11 OCH 3 ), from the viewpoint of ease of use as a cleaning agent (dryness after cleaning, can be handled as a low-viscosity liquid at room temperature, etc.), Ethyl perfluoropentyl ether (C 5 F 11 OCH 2 CH 3 ), methyl perfluorohexyl ether (C 6 F 13 OCH 3 ), ethyl perfluorohexyl ether (C 6 F 13 OCH 2 CH 3 ), methyl perfluoroheptyl Ether (C 7 F 15 OCH 3 ), ethyl perfluoroheptyl ether (C 7 F 15 OCH 2 CH 3 ), methyl perfluorooctyl ether (C 8 F 17 OCH 3 ), ethyl perfluorooctyl ether (C 8 F) 17 OCH 2 CH 3 ) is preferred.

ハイドロフルオロカーボンは、Cn+m2n+12m+1(ただし、nは5〜9の整数であり、mは0〜2の整数である。)で表わされるものが好ましい。
炭素数5以上のRf基を有するハイドロフルオロカーボンの具体例としては、
1H−モノデカフルオロペンタン(C11H)、3H−モノデカフルオロペンタン(C11H)、1H−トリデカフルオロヘキサン(C13H)、1H−ペンタデカフルオロヘプタン(C15H)、3H−ペンタデカフルオロヘプタン(C15H)、1H−ヘプタデカフルオロオクタン(C17H)、1H−ノナデカフルオロノナン(C19H)、1H−パーフルオロデカン(C1021H)、1,1,1,2,2,3,3,4,4,5,5,6,6−トリデカフルオロオクタン(C13CHCH)、1,1,1,2,2,3,3,4,4,5,5,6,6、7,7,8,8−ヘプタデカフルオロデカン(C17CHCH)等が挙げられる。
The hydrofluorocarbon is preferably represented by C n + m F 2n + 1 H 2m + 1 (where n is an integer of 5 to 9, and m is an integer of 0 to 2).
Specific examples of hydrofluorocarbons having an Rf group having 5 or more carbon atoms include
1H-mono decafluoropentane (C 5 F 11 H), 3H- mono decafluoropentane (C 5 F 11 H), 1H- tridecafluoro hexane (C 6 F 13 H), 1H- pentadecafluorooctyl heptane (C 7 F 15 H), 3H- pentadecafluorooctyl heptane (C 7 F 15 H), 1H- heptadecafluorooctanesulfonic (C 8 F 17 H), 1H- nonadecamethylene fluoro nonane (C 9 F 19 H), 1H- Perfluorodecane (C 10 F 21 H), 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorooctane (C 6 F 13 CH 2 CH 3 ), 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8- heptadecafluoro decane (C 8 F 17 CH 2 CH 3) Etc.

これらの中で、洗浄剤としての使いやすさ(洗浄後の乾燥性、室温で低粘性の液体として扱うことができる等)の観点から、1H−モノデカフルオロペンタン(C11H)、3H−モノデカフルオロペンタン(C11H)、1H−トリデカフルオロヘキサン(C13H)、1H−ペンタデカフルオロヘプタン(C15H)、3H−ペンタデカフルオロヘプタン(C15H)、1H−ヘプタデカフルオロオクタン(C17H)、1,1,1,2,2,3,3,4,4,5,5,6,6−トリデカフルオロオクタン(C13CHCH)が好ましい。 Among these, 1H-monodecafluoropentane (C 5 F 11 H), from the viewpoint of ease of use as a cleaning agent (dryness after cleaning, can be handled as a low-viscosity liquid at room temperature, etc.), 3H- mono decafluoropentane (C 5 F 11 H), 1H- tridecafluoro hexane (C 6 F 13 H), 1H- pentadecafluorooctyl heptane (C 7 F 15 H), 3H- pentadecafluorooctyl heptane (C 7 F 15 H), 1H-heptadecafluorooctane (C 8 F 17 H), 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorooctane (C 6 F 13 CH 2 CH 3) are preferred.

パーフルオロカーボンとしては、鎖状または分岐状の炭化水素の全ての水素原子をフッ素原子に置換した化合物(全フッ素化炭化水素);鎖状または分岐状のアルキルアミンのアルキル基の全ての水素原子をフッ素原子に置換した化合物(全フッ素化アルキルアミン);
鎖状または分岐状のアルキルエーテルの全ての水素原子をフッ素原子に置換した化合物(全フッ素化アルキルエーテル)等が挙げられる。
該炭化水素、アルキルアミンのアルキル基、およびアルキルエーテルにおける好ましい炭素数は、上記Rf基の好ましい炭素数と同じである。
洗浄液における、含フッ素化合物の含有量は、50質量%超が好ましく、80質量%超がより好ましい。
Perfluorocarbons include compounds in which all hydrogen atoms of chain or branched hydrocarbons are substituted with fluorine atoms (fully fluorinated hydrocarbons); all hydrogen atoms of alkyl groups of chain or branched alkylamines. Compounds substituted with fluorine atoms (perfluorinated alkylamines);
Examples include compounds in which all hydrogen atoms of a chain or branched alkyl ether are substituted with fluorine atoms (fully fluorinated alkyl ethers).
The preferable carbon number in the hydrocarbon, the alkyl group of the alkylamine, and the alkyl ether is the same as the preferable carbon number of the Rf group.
The content of the fluorine-containing compound in the cleaning liquid is preferably more than 50% by mass, more preferably more than 80% by mass.

[他の含フッ素化合物]
上記炭素数5以上の直鎖または分岐構造のパーフルオロアルキル基を有する含フッ素化合物を用いるとともに、これに含まれない他の含フッ素化合物を併用してもよい。
他の含フッ素化合物としては、ハイドロクロロフルオロカーボン類(例えば、ジクロロペンタフルオロプロパン、ジクロロフルオロエタン等);含フッ素ケトン類;含フッ素エステル類、含フッ素不飽和化合物;含フッ素芳香族化合物等が挙げられる。
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
浸漬工程における温度および圧力条件において液体または超臨界流体であるものを選択して用いることが好ましい。
洗浄液(フッ素系溶剤)中における、これらの他の含フッ素化合物の含有量は、50質量%以下が好ましく、20質量%以下がより好ましい。
[Other fluorine-containing compounds]
While using the said fluorine-containing compound which has a C5 or more linear or branched perfluoroalkyl group, you may use together the other fluorine-containing compound which is not contained in this.
Other fluorine-containing compounds include hydrochlorofluorocarbons (for example, dichloropentafluoropropane, dichlorofluoroethane, etc.); fluorine-containing ketones; fluorine-containing esters, fluorine-containing unsaturated compounds; fluorine-containing aromatic compounds, and the like. It is done.
These may be used alone or in combination of two or more.
It is preferable to select and use a liquid or supercritical fluid under the temperature and pressure conditions in the dipping process.
The content of these other fluorine-containing compounds in the cleaning liquid (fluorinated solvent) is preferably 50% by mass or less, and more preferably 20% by mass or less.

[含フッ素アルコール]
本発明における洗浄液(フッ素系溶剤)は、含フッ素アルコールを含有してもよい。含フッ素アルコールとはフッ素原子およびヒドロキシ基を有する化合物を意味する。含フッ素アルコールは公知の化合物の中から、浸漬工程における温度および圧力条件において液体または超臨界流体であるものを選択して用いることが好ましい。また洗浄液に含まれる含フッ素化合物と共沸混合物を構成することがより好ましい。
含フッ素アルコールの具体例としては2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロプロパノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,3,4,4,4−ヘキサフルオロブタノール、2,2,2−トリフルオロ−1−(トリフルオロメチル)エタノール、2,2,3,3,4,4,5,5−オクタフルオロペンタノール、1,1,1,3,3,3−ヘキサフルオロイソプロパノール等が挙げられる。
洗浄液(フッ素系溶剤)中における、含フッ素アルコールの含有量は、後述する有機溶剤との合計量が5〜20質量%程度となる範囲が好ましい。
[Fluorine-containing alcohol]
The cleaning liquid (fluorinated solvent) in the present invention may contain a fluorinated alcohol. The fluorine-containing alcohol means a compound having a fluorine atom and a hydroxy group. The fluorine-containing alcohol is preferably selected from known compounds that are liquid or supercritical fluid under the temperature and pressure conditions in the dipping process. It is more preferable to form an azeotropic mixture with the fluorine-containing compound contained in the cleaning liquid.
Specific examples of the fluorinated alcohol include 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol, 2,2,3, 4,4,4-hexafluorobutanol, 2,2,2-trifluoro-1- (trifluoromethyl) ethanol, 2,2,3,3,4,4,5,5-octafluoropentanol, 1 1,1,3,3,3-hexafluoroisopropanol and the like.
The content of the fluorinated alcohol in the cleaning liquid (fluorinated solvent) is preferably in the range where the total amount with the organic solvent described later is about 5 to 20% by mass.

[フッ素原子を有しない有機溶剤]
本発明における洗浄液(フッ素系溶剤)は、さらにフッ素原子を有しない有機溶剤を含有してもよい。有機溶剤は公知のものから、浸漬工程における温度および圧力条件において液状であるものを選択して用いることが好ましい。また洗浄液に含まれる含フッ素化合物と共沸混合物を構成することがより好ましい。
有機溶剤の具体例としては、エタノール、2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテルアセテート等の酢酸塩類;ジメチルエタノールアミン、アリルアミン、アミノベンジルアミン等のアミン類等が挙げられる。
これらの有機溶剤はpH調整剤として用いることもでき、これらの添加によって、パーティクル再付着を防ぐために必要なゼータ電位を調整できる。
[Organic solvent not containing fluorine atoms]
The cleaning liquid (fluorinated solvent) in the present invention may further contain an organic solvent having no fluorine atom. The organic solvent is preferably selected from known ones that are liquid under the temperature and pressure conditions in the dipping process. It is more preferable to form an azeotropic mixture with the fluorine-containing compound contained in the cleaning liquid.
Specific examples of the organic solvent include alcohols such as ethanol and 2-propanol; acetates such as propylene glycol monomethyl ether acetate; amines such as dimethylethanolamine, allylamine and aminobenzylamine.
These organic solvents can also be used as a pH adjuster, and by adding them, the zeta potential necessary to prevent reattachment of particles can be adjusted.

[他の成分]
本発明における洗浄液(フッ素系溶剤)は、上記含フッ素化合物、他の含フッ素化合物、含フッ素アルコール、および有機溶剤の他に、必要に応じて、フッ素原子を有しない他の成分を含有することができる。
例えば、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン脂肪酸アミド、アルキルモノグリセリルエーテル等のノニオン界面活性剤;アルキルジメチルアミンオキシド等の両性界面活性剤;モノアルキル硫酸塩等のアニオン界面活性剤;アルキルトリメチルアンモニウム塩等のカチオン界面活性剤等の界面活性剤を、単独でもしくは2種類以上組み合わせて添加してもよい。
界面活性剤を添加する場合、その添加量は洗浄液(フッ素系溶剤)中0.01〜5質量%が好ましい。
[Other ingredients]
The cleaning liquid (fluorinated solvent) in the present invention contains, in addition to the above-mentioned fluorine-containing compound, other fluorine-containing compound, fluorine-containing alcohol, and organic solvent, other components having no fluorine atom as necessary. Can do.
For example, nonionic surfactants such as sorbitan fatty acid ester, polyoxyethylene alkylamine fatty acid amide, alkyl monoglyceryl ether; amphoteric surfactants such as alkyldimethylamine oxide; anionic surfactants such as monoalkyl sulfates; alkyltrimethylammonium Surfactants such as cationic surfactants such as salts may be added alone or in combination of two or more.
When the surfactant is added, the addition amount is preferably 0.01 to 5% by mass in the cleaning liquid (fluorinated solvent).

洗浄液(フッ素系溶剤)の調製方法は、特に限定されず、上記含フッ素化合物および必要に応じて添加される成分を均一に混合することにより得られる。   The method for preparing the cleaning liquid (fluorinated solvent) is not particularly limited, and can be obtained by uniformly mixing the above-mentioned fluorine-containing compound and components added as necessary.

<被洗浄物>
本発明の洗浄方法において、洗浄の対象である被洗浄物はプラズマ重合物を含む。
本発明におけるプラズマ重合物は、フッ素含有ガスを用いたプラズマエッチング工程で発生する堆積物であり、フッ素含有ガスに、(CF源になるCFフラグメントを形成し得る化合物(例えばC、CHF)が含まれている場合に多く形成される。また、レジストパターンがプラズマエッチング中に分解されて生成するCHフラグメント等もプラズマ重合膜の形成に関与する場合もある。プラズマ重合物は、エッチング残渣成分を含有するものも含む。
プラズマ重合物は、フッ素系溶剤を用いた従来の洗浄方法では良好な洗浄が難しかったが、本発明の洗浄方法を用いることにより、良好に除去することができる。
<To be cleaned>
In the cleaning method of the present invention, the object to be cleaned, which is the object of cleaning, includes a plasma polymer.
The plasma polymer in the present invention is a deposit generated in a plasma etching process using a fluorine-containing gas, and is a compound (for example, C 3 ) that can form a CF 2 fragment serving as a (CF 2 ) n source in the fluorine-containing gas. Many are formed when F 8 , CHF 3 ) are contained. Further, CH 2 fragments and the like generated by decomposition of the resist pattern during plasma etching may be involved in the formation of the plasma polymerized film. The plasma polymer includes those containing an etching residue component.
The plasma polymer was difficult to clean well by the conventional cleaning method using a fluorine-based solvent, but can be removed well by using the cleaning method of the present invention.

例えば、マイクロエレクトロメカニカルシステム(MEMS)や大規模集積回路(LSI)を初めとする各種基板の製造工程において、基板上に堆積したプラズマ重合膜や、プラズマエッチングを行う装置の内壁に付着したプラズマ重合膜の除去に適用することが好ましい。   For example, in the manufacturing process of various substrates such as micro electro mechanical system (MEMS) and large scale integrated circuit (LSI), plasma polymerization film deposited on the substrate and plasma polymerization adhered to the inner wall of the apparatus for performing plasma etching It is preferable to apply to the removal of the film.

<洗浄方法>
本発明の洗浄方法について説明する。被洗浄物として基板上のプラズマ重合膜を例に挙げて説明する。
[浸漬工程]
開放系または密閉系の容器中、基板をフッ素系溶剤(洗浄液)に浸す(浸漬工程)。このとき、以下の(a)または(b)のいずれかの条件で浸漬を行うことが好ましい。
(a)フッ素系溶剤の温度を80℃以上の温度に上げる。フッ素系溶剤は液体状態または超臨界状態とする。液体状態が好ましい。フッ素系溶剤の温度を、これに含まれる含フッ素化合物の沸点以上とする場合は、密閉系で加圧下に浸漬工程を行うことが好ましい。フッ素系溶剤の温度を、これに含まれる含フッ素化合物の沸点未満とする場合は、開放系で浸漬工程を実施してもよいが、密閉系または還流部を設けた装置で実施することが好ましい。
浸漬工程におけるフッ素系溶剤の温度の上限は特に限定されないが、200℃以下で充分な洗浄効果が得られる。該温度を必要以上に高くするとコスト的に不利になる。
(b)フッ素系溶剤の温度を室温(25℃)以上80℃未満とし、超音波を印加してフッ素系溶剤および基板を振動させる。
特に、プラズマ重合物を良好に除去できる点で(a)の条件がより好ましい。
(a)または(b)の条件で浸漬工程を行う方法は、プラズマ重合膜以外の被洗浄物をフッ素系溶剤で洗浄する方法として公知の方法を適宜用いて行うことができる。
<Washing method>
The cleaning method of the present invention will be described. A plasma polymerized film on a substrate will be described as an example of the object to be cleaned.
[Immersion process]
The substrate is immersed in a fluorine-based solvent (cleaning liquid) in an open or closed container (immersion process). At this time, it is preferable to perform immersion under the following conditions (a) or (b).
(A) The temperature of the fluorinated solvent is raised to a temperature of 80 ° C. or higher. The fluorinated solvent is in a liquid state or a supercritical state. A liquid state is preferred. When making the temperature of a fluorine-type solvent more than the boiling point of the fluorine-containing compound contained in this, it is preferable to perform an immersion process under pressure with a closed system. When the temperature of the fluorinated solvent is lower than the boiling point of the fluorinated compound contained therein, the immersion step may be carried out in an open system, but is preferably carried out in a closed system or an apparatus provided with a reflux part. .
The upper limit of the temperature of the fluorinated solvent in the dipping process is not particularly limited, but a sufficient cleaning effect can be obtained at 200 ° C. or lower. If the temperature is increased more than necessary, the cost becomes disadvantageous.
(B) The temperature of the fluorinated solvent is set to room temperature (25 ° C.) or more and less than 80 ° C., and ultrasonic waves are applied to vibrate the fluorinated solvent and the substrate.
In particular, the condition (a) is more preferable in that the plasma polymer can be removed satisfactorily.
The method of performing the dipping step under the conditions (a) or (b) can be performed by appropriately using a known method as a method of cleaning an object to be cleaned other than the plasma polymerization film with a fluorine-based solvent.

浸漬工程において、フッ素系溶剤に基板を浸漬させる時間(浸漬時間)は、短すぎると洗浄効果が不充分となり、長すぎると洗浄効率がおちるため、これらの不都合が生じない範囲に設定すればよい。例えば浸漬時間は1〜120分が好ましく、10〜60分がより好ましい。
また必要であれば、浸漬工程中にフッ素系溶剤を1回以上交換してもよい。フッ素系溶剤を交換する場合、フッ素系溶剤の種類、フッ素系溶剤の温度(t)、および/または雰囲気圧力を変えてもよい。
浸漬工程は、バッチ式でなく、フッ素系溶剤を適宜の流量で流し続ける連続式で行ってもよい。
In the dipping process, the time for dipping the substrate in the fluorinated solvent (dipping time) is too short if the cleaning effect is insufficient, and if it is too long, the cleaning efficiency is lowered. . For example, the immersion time is preferably 1 to 120 minutes, more preferably 10 to 60 minutes.
If necessary, the fluorinated solvent may be exchanged one or more times during the dipping process. When exchanging the fluorinated solvent, the type of the fluorinated solvent, the temperature (t) of the fluorinated solvent, and / or the atmospheric pressure may be changed.
The dipping step may be performed not continuously but in a continuous manner in which a fluorine-based solvent is allowed to flow at an appropriate flow rate.

[超臨界工程]
本方法において、浸漬工程で液体状態のフッ素系溶剤中に基板を所定の浸漬時間だけ浸漬させた(浸漬工程)後、該フッ素系溶剤の温度を臨界温度以上とし、かつ雰囲気圧力を臨界圧力以上とすることにより、基板が浸漬されているフッ素系溶剤を超臨界流体とする工程(超臨界工程)を行ってもよい。
超臨界状態にすることにより拡散速度が上がるため、超臨界流体となったフッ素系溶剤が微細領域にまで浸透して、細部にわたっての洗浄が可能となる。これにより洗浄効果をより向上させることができる。また、超臨界流体となった状態で乾燥させると、超臨界状態では表面張力が作用しないために不要な応力がかからず、基板上に形成されたパターン等の構造体を壊すことなく乾燥させることができる。
[Supercritical process]
In this method, after immersing the substrate in a fluorinated solvent in a liquid state for a predetermined immersing time in the immersing step (immersion step), the temperature of the fluorinated solvent is set to a critical temperature or higher and the atmospheric pressure is set to a critical pressure or higher. By doing so, you may perform the process (supercritical process) which uses the fluorine-type solvent in which the board | substrate is immersed as a supercritical fluid.
Since the diffusion rate is increased by setting the supercritical state, the fluorinated solvent that has become a supercritical fluid penetrates into a fine region and can be cleaned in detail. Thereby, the cleaning effect can be further improved. Also, when dried in a supercritical fluid state, the surface tension does not act in the supercritical state, so unnecessary stress is not applied, and the structure such as the pattern formed on the substrate is dried without breaking. be able to.

超臨界工程において、超臨界状態のフッ素系溶剤に基板を接触させる時間(接触時間)は、短すぎると洗浄効果が充分に向上せず、長すぎると効率が落ちるため、これらの不都合が生じない範囲に設定すればよい。例えば接触時間は1〜120分が好ましく、10〜60分がより好ましい。   In the supercritical process, if the time for contacting the substrate with the fluorine-based solvent in the supercritical state (contact time) is too short, the cleaning effect is not sufficiently improved. The range may be set. For example, the contact time is preferably 1 to 120 minutes, more preferably 10 to 60 minutes.

所定の浸漬時間が終了したら、あるいは超臨界工程を行った場合は所定の接触時間が終了したら、熱せられたフッ素系溶剤を排出する。さらに密閉系で行った場合は、密閉容器を開放して大気圧とする。そして、最後に基板を取り出す。その後、必要に応じて乾燥させる。
特に密閉容器中でフッ素系溶剤が標準沸点以上に熱せられた状態、または超臨界状態となっている場合は、密閉容器を開放させることによって、基板表面に付着していたフッ素系溶剤は瞬時に乾燥して、基板は乾燥状態になる。したがって、特定の乾燥手段を必要としない。
こうして、フッ素系溶剤で洗浄された基板が得られる。
When the predetermined immersion time is completed, or when the supercritical process is performed, when the predetermined contact time is completed, the heated fluorine-based solvent is discharged. Further, when the process is performed in a closed system, the sealed container is opened to atmospheric pressure. Finally, the substrate is taken out. Then, it is made to dry as needed.
In particular, when the fluorinated solvent is heated above the normal boiling point or in a supercritical state in a sealed container, the fluorinated solvent adhering to the substrate surface is instantly released by opening the sealed container. After drying, the substrate becomes dry. Therefore, no specific drying means is required.
In this way, a substrate cleaned with a fluorinated solvent is obtained.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<プラズマ重合膜除去の試験例>
表1は、プラズマ重合膜を各種の含フッ素化合物からなるフッ素系溶剤を用いて洗浄したときの洗浄効果を示したものである。フッ素系溶剤(洗浄液)は表に示す含フッ素化合物の100質量%からなる。被洗浄物としては、Cガスプラズマを用いてシリコン基板上に堆積させた厚さ800〜900nmのプラズマ重合膜(パターニングされていないベタ膜)を用いた。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
<Example of plasma polymerization film removal test>
Table 1 shows the cleaning effect when the plasma polymerized film is cleaned using a fluorine-based solvent composed of various fluorine-containing compounds. The fluorine-based solvent (cleaning liquid) is composed of 100% by mass of the fluorine-containing compound shown in the table. As the object to be cleaned, a plasma polymerized film (non-patterned solid film) having a thickness of 800 to 900 nm deposited on a silicon substrate using C 3 F 8 gas plasma was used.

[洗浄条件]
(1)30℃・超音波:大気圧中、30℃に温度調整したフッ素系溶剤に浸漬させ、超音波発信器でフッ素系溶剤および基板を振動させる方法で10分間洗浄した後、120℃のオーブンで1時間加熱乾燥した。
(2)100℃:密閉された空間中にフッ素系溶剤を導入し、100℃に加熱し、この状態のフッ素系溶剤に基板を1時間浸漬して取り出した。
[Cleaning conditions]
(1) 30 ° C./ultrasonic wave: immersed in a fluorine-based solvent whose temperature is adjusted to 30 ° C. in an atmospheric pressure, washed with a method of vibrating the fluorine-based solvent and the substrate with an ultrasonic transmitter, and then washed at 120 ° C. It was dried by heating in an oven for 1 hour.
(2) 100 ° C .: A fluorinated solvent was introduced into the sealed space, heated to 100 ° C., and the substrate was immersed in the fluorinated solvent in this state for 1 hour and taken out.

[評価]
各条件で洗浄した基板を目視で観察し、プラズマ重合膜が全面にわたって残留しているものは×、プラズマ重合膜の一部は除去できたが完全には除去できなかったものは△、完全に除去できたものは○とした。
[Evaluation]
The substrate cleaned under each condition was visually observed. If the plasma polymerized film remained over the entire surface, x, part of the plasma polymerized film could be removed but not completely removed, and Those that could be removed were marked with ○.

Figure 0005107134
Figure 0005107134

表1の結果より、30℃で超音波条件で洗浄を行った場合も、100℃加熱条件下で洗浄を行った場合も炭素数5以上の直鎖または分岐構造のパーフルオロアルキル基を有する含フッ素化合物で洗浄を行った場合(試験例6〜10)には、プラズマ重合膜が完全に除去されることが確認できた。これはプラズマ重合膜は、その主成分と考えられる(CFからなる構造を有しており、フッ素系溶剤中のRf基(C2n+1)の炭素鎖がより長い(nがより大きい)方がプラズマ重合膜が膨潤しやすく、この結果溶解しやすくなるためと考えられる。 From the results shown in Table 1, it was found that both the straight chain or branched perfluoroalkyl group having 5 or more carbon atoms was contained in both the case of washing at 30 ° C. under ultrasonic conditions and the case of washing at 100 ° C. under heating conditions. In the case of cleaning with a fluorine compound (Test Examples 6 to 10), it was confirmed that the plasma polymerization film was completely removed. This is because the plasma polymerized film has a structure composed of (CF 2 ) n which is considered to be the main component, and the carbon chain of the Rf group (C n F 2n + 1 ) in the fluorine-based solvent is longer (n is longer). This is probably because the plasma polymerization film tends to swell and dissolve as a result.

図1、2は、SFガスプラズマとCガスプラズマの交互処理によりエッチングしたシリコンパターン(図1は幅100μm、図2は幅20μm、深さは両者とも40μm)の側面を、C13CHCH(試験例7)で洗浄したときの、洗浄の程度を調べたオージェ分光分析結果を示すグラフである。
洗浄は、80℃に加熱したC13CHCH(試験例7)に、密閉状態でパターンを30分間浸漬して取り出した。
この図の結果より、パターン幅やパターン深さに依存せずに、洗浄後は検出限界以下までフッ素濃度が低下している、すなわちプラズマ重合膜が完全に除去されていることがわかる。
FIGS. 1 and 2 show the side surface of a silicon pattern etched by alternating treatment of SF 6 gas plasma and C 3 F 8 gas plasma (FIG. 1 is 100 μm wide, FIG. 2 is 20 μm wide, and both are 40 μm deep). of 6 F 13 CH 2 CH 3 when washed with (test example 7) is a graph showing Auger spectroscopy results of examining the degree of cleaning.
Cleaning was performed by immersing the pattern in C 6 F 13 CH 2 CH 3 (Test Example 7) heated to 80 ° C. in a sealed state for 30 minutes.
From the results in this figure, it can be seen that the fluorine concentration is lowered to the detection limit or less after cleaning, that is, the plasma polymerized film is completely removed without depending on the pattern width and pattern depth.

このように、本発明の洗浄方法によれば、フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合膜を有する被洗浄物を、良好に洗浄して該プラズマ重合膜を除去できる。
したがって、例えばフッ素含有ガスを用いたプラズマエッチング工程に用いられたエッチング装置の内壁カバーに付着したプラズマ重合物や、該エッチング工程で加工されたパターン内壁のプラズマ重合膜を効率良く除去することができる。かかるプラズマ重合膜はプラズマ重合物のほかにエッチング残渣成分を含む場合が多いが、その場合でも良好にプラズマ重合膜を除去することができる。
As described above, according to the cleaning method of the present invention, an object to be cleaned having a plasma polymerization film generated in a plasma etching process using a fluorine-containing gas can be satisfactorily cleaned to remove the plasma polymerization film.
Therefore, for example, the plasma polymer adhered to the inner wall cover of the etching apparatus used in the plasma etching process using fluorine-containing gas and the plasma polymer film on the pattern inner wall processed in the etching process can be efficiently removed. . Such a plasma polymerized film often contains an etching residue component in addition to the plasma polymer, but even in that case, the plasma polymerized film can be removed satisfactorily.

[実施例1]
シリコン基板上に公知のフォトリソグラフィを用いて50〜300nm幅のレジストパターンを形成した。このシリコン基板をSFガスプラズマとCガスプラズマの交互処理でエッチング加工して、シリコンからなるパターンを形成した。
この後、基板を密閉可能な容器に移載し、容器内にC13CHCH(試験例7)からなるフッ素系溶剤を導入し、基板を該フッ素系溶剤中に浸漬させた。
容器を密閉し、容器内およびフッ素系溶剤の温度を90℃に昇温した。30分後、密閉容器内の温度を一定に保持したままフッ素系溶剤を密閉容器外部へ排出し、容器から基板を取り出した。乾燥は不要であった。得られた基板は、パターン側壁に付着していたプラズマ重合膜が溶解・除去されていた。
[Example 1]
A resist pattern having a width of 50 to 300 nm was formed on the silicon substrate by using known photolithography. This silicon substrate was etched by alternating processing of SF 6 gas plasma and C 3 F 8 gas plasma to form a pattern made of silicon.
Thereafter, the substrate was transferred to a sealable container, a fluorine-based solvent composed of C 6 F 13 CH 2 CH 3 (Test Example 7) was introduced into the container, and the substrate was immersed in the fluorine-based solvent. .
The container was sealed, and the temperature of the inside of the container and the fluorinated solvent was increased to 90 ° C. After 30 minutes, the fluorine-based solvent was discharged outside the sealed container while keeping the temperature in the sealed container constant, and the substrate was taken out of the container. Drying was not necessary. In the obtained substrate, the plasma polymerization film adhering to the pattern side wall was dissolved and removed.

[実施例2]
実施例1と同様に作成した基板を、C13CHCH(試験例7)からなるフッ素系溶剤を50℃に加温した洗浄槽に浸漬し、20〜100kHzのウルトラソニックで超音波加震による洗浄を10分間実施した後、C13CHCH(試験例7)からなるフッ素系溶剤を沸点まで加熱した蒸気リンス槽に移送し、C13CHCH蒸気によるリンスを5分間実施した。この後、基板を蒸気リンス槽から取り出してそのまま乾燥させた。得られた基板は、パターン側壁に付着していたプラズマ重合膜が溶解・除去されていた。
[Example 2]
The substrate prepared in the same manner as in Example 1 was immersed in a cleaning tank heated to 50 ° C. with a fluorine-based solvent composed of C 6 F 13 CH 2 CH 3 (Test Example 7), and ultrasonic at 20 to 100 kHz. After washing by sonic vibration for 10 minutes, the fluorine-based solvent composed of C 6 F 13 CH 2 CH 3 (Test Example 7) was transferred to a steam rinse bath heated to the boiling point, and C 6 F 13 CH 2 CH 3 Steam rinsing was performed for 5 minutes. Thereafter, the substrate was taken out of the steam rinse bath and dried as it was. In the obtained substrate, the plasma polymerization film adhering to the pattern side wall was dissolved and removed.

[実施例3]
ガスプラズマ、またはCHFガスプラズマが使用されたエッチング装置の内壁カバーを密閉可能な容器に移載し、容器内にC13CHCH(試験例7)からなるフッ素系溶剤を導入し、該内壁カバーを該フッ素系溶剤中に浸漬させた。
この状態で、容器内およびフッ素系溶剤の温度を100℃に昇温した。30分後、密閉容器内の温度を一定に保持したままフッ素系溶剤を密閉容器外部へ排出し、容器から内壁カバーを取り出した。乾燥は不要であった。得られた内壁カバーは、付着していたプラズマ重合膜が溶解・除去されていた。
[Example 3]
An inner wall cover of an etching apparatus using C 3 F 8 gas plasma or CHF 3 gas plasma is transferred to a sealable container, and fluorine containing C 6 F 13 CH 2 CH 3 (Test Example 7) is placed in the container. A system solvent was introduced, and the inner wall cover was immersed in the fluorinated solvent.
In this state, the temperature of the inside of the container and the fluorinated solvent was raised to 100 ° C. After 30 minutes, the fluorine-based solvent was discharged outside the sealed container while keeping the temperature in the sealed container constant, and the inner wall cover was taken out from the container. Drying was not necessary. In the obtained inner wall cover, the plasma polymerized film adhering thereto was dissolved and removed.

[実施例4]
銅配線が形成され、その上にメチルシルセスキオキサンからなる絶縁膜が形成された基板上に公知のフォトリソグラフィを用いて30〜100nm幅のレジストパターンを形成した。絶縁膜をCHF/CF/Ar混合ガスプラズマによりエッチング加工して絶縁膜パターンを形成した。この後、基板を、温度を100℃にした密閉可能な容器に移載して、密閉状態とした。容器内にC13CHCH(試験例7)からなるフッ素系溶剤を導入し、基板を該フッ素系溶剤中に浸漬させた。フッ素系溶剤を毎分100cc/minで流し続けながらパターン側壁に付着しているプラズマ重合膜を溶解・除去した。10分後、密閉容器内の温度を一定に保持したままフッ素系溶剤を密閉容器外部へ排出し、容器から基板を取り出した。乾燥は不要であった。得られた基板は、パターン側壁に付着していたプラズマ重合膜が溶解・除去されていた。
[Example 4]
A resist pattern with a width of 30 to 100 nm was formed on a substrate on which a copper wiring was formed and an insulating film made of methylsilsesquioxane was formed using known photolithography. The insulating film was etched by CHF 3 / CF 4 / Ar mixed gas plasma to form an insulating film pattern. After that, the substrate was transferred to a sealable container having a temperature of 100 ° C. to make it sealed. A fluorine-based solvent composed of C 6 F 13 CH 2 CH 3 (Test Example 7) was introduced into the container, and the substrate was immersed in the fluorine-based solvent. The plasma polymerization film adhering to the pattern side wall was dissolved and removed while the fluorine-based solvent was allowed to flow at 100 cc / min per minute. After 10 minutes, the fluorine-based solvent was discharged outside the sealed container while keeping the temperature in the sealed container constant, and the substrate was taken out of the container. Drying was not necessary. In the obtained substrate, the plasma polymerization film adhering to the pattern side wall was dissolved and removed.

[実施例5]
実施例1において、フッ素系溶剤を、C13H(試験例9)90質量%とジメチルエタノールアミン10質量%とを混合してアルカリ性とした混合液に変更し、容器内の温度を100℃とし、容器内の圧力が0.8MPaになるように背圧弁で調整した。その他は実施例1と同様にして基板をフッ素系溶剤中に30分間浸漬させた。この後、密閉容器内の温度を一定に保持したままフッ素系溶剤を密閉容器外部へ排出し、容器から基板を取り出した。乾燥は不要であった。得られた基板は、パターン側壁に付着していたプラズマ重合膜が溶解・除去されていた。
[Example 5]
In Example 1, the fluorine-based solvent was changed to a mixed solution in which 90% by mass of C 6 F 13 H (Test Example 9) and 10% by mass of dimethylethanolamine were mixed to make the solution alkaline, and the temperature in the container was set to 100. The back pressure valve was adjusted so that the pressure in the container was 0.8 MPa. Others were the same as in Example 1, and the substrate was immersed in a fluorinated solvent for 30 minutes. Thereafter, the fluorinated solvent was discharged outside the sealed container while keeping the temperature in the sealed container constant, and the substrate was taken out of the container. Drying was not necessary. In the obtained substrate, the plasma polymerization film adhering to the pattern side wall was dissolved and removed.

[実施例6]
本例では、Cガスプラズマを用いる誘導結合プラズマエッチング装置の内部にセットされる、セラミック製の装置部品を洗浄した。
まずセラミック製装置部品を密閉可能な容器に移載し、容器内にC13CHCH(試験例7)からなるフッ素系溶剤を満たした。
容器を密閉し、容器内およびフッ素系溶剤の温度を100℃に昇温した。30分後、密閉容器内の温度を一定に保持したままフッ素系溶剤を密閉容器外部へ排出し、容器からセラミック製装置部品を取り出した。乾燥は不要であった。
得られたセラミック製装置部品は、付着していたプラズマ重合膜が溶解・除去されていた。
[Example 6]
In this example, the ceramic apparatus parts set inside the inductively coupled plasma etching apparatus using C 3 F 8 gas plasma were cleaned.
First, the ceramic device parts were transferred to a sealable container, and the container was filled with a fluorine-based solvent composed of C 6 F 13 CH 2 CH 3 (Test Example 7).
The container was sealed, and the temperature of the inside of the container and the fluorinated solvent was raised to 100 ° C. After 30 minutes, the fluorine-based solvent was discharged outside the sealed container while keeping the temperature in the sealed container constant, and the ceramic device parts were taken out of the container. Drying was not necessary.
In the obtained ceramic device part, the plasma polymerized film adhering thereto was dissolved and removed.

本発明の洗浄方法によるプラズマ重合膜の洗浄効果を示す図である。It is a figure which shows the cleaning effect of the plasma polymerization film | membrane by the cleaning method of this invention. 本発明の洗浄方法によるプラズマ重合膜の洗浄効果を示す図である。It is a figure which shows the cleaning effect of the plasma polymerization film | membrane by the cleaning method of this invention. プラズマ重合膜の除去工程を説明するための図である。It is a figure for demonstrating the removal process of a plasma polymerization film | membrane. 従来の基板の洗浄方法を説明するための図である。It is a figure for demonstrating the washing | cleaning method of the conventional board | substrate.

符号の説明Explanation of symbols

51 基板、
52 下地膜、
53 パターン、
54 プラズマ重合膜。
51 substrates,
52 Undercoat film,
53 patterns,
54 Plasma polymerized film.

Claims (4)

フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、含フッ素化合物を含有する洗浄液に浸す浸漬工程を有する洗浄方法であって、
前記含フッ素化合物が、炭素数以上の直鎖または分岐構造のパーフルオロアルキル基を有することを特徴とする洗浄方法。
A cleaning method having a dipping step of immersing an object to be cleaned having a plasma polymer generated in a plasma etching step using a fluorine-containing gas in a cleaning liquid containing a fluorine-containing compound,
The cleaning method, wherein the fluorine-containing compound has a linear or branched perfluoroalkyl group having 6 or more carbon atoms.
前記含フッ素化合物が、ハイドロフルオロエーテルおよびハイドロフルオロカーボンからなる群から選ばれる1種以上である、請求項1記載の洗浄方法。   The cleaning method according to claim 1, wherein the fluorine-containing compound is at least one selected from the group consisting of hydrofluoroethers and hydrofluorocarbons. 前記含フッ素化合物が、パーフルオロアルキル基とアルキル基がエーテル結合を介して結合されているハイドロフルオロエーテルである、請求項2に記載の洗浄方法。   The cleaning method according to claim 2, wherein the fluorine-containing compound is a hydrofluoroether in which a perfluoroalkyl group and an alkyl group are bonded via an ether bond. フッ素含有ガスを用いたプラズマエッチング工程で発生するプラズマ重合物を有する被洗浄物を、含フッ素化合物を含有する洗浄液に浸す浸漬工程を有する洗浄方法であって、
前記含フッ素化合物が、Cn+m2n+12m+1(ただし、nは5〜9の整数であり、mは0〜2の整数である。)で表わされるハイドロフルオロカーボンであることを特徴とする洗浄方法。
A cleaning method having a dipping step of immersing an object to be cleaned having a plasma polymer generated in a plasma etching step using a fluorine-containing gas in a cleaning liquid containing a fluorine-containing compound,
Cleaning method wherein the fluorine-containing compound is, C n + m F 2n + 1 H 2m + 1 ( where, n is an integer of 5 to 9, m is the integers from 0 to 2.) Characterized in that it is a hydrofluorocarbon represented by .
JP2008133953A 2008-05-22 2008-05-22 Cleaning method Active JP5107134B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008133953A JP5107134B2 (en) 2008-05-22 2008-05-22 Cleaning method
KR1020107025316A KR20110020768A (en) 2008-05-22 2009-05-21 Method for cleaning with fluorine compound
PCT/JP2009/059388 WO2009142281A1 (en) 2008-05-22 2009-05-21 Method for cleaning with fluorine compound
TW098117080A TW201006573A (en) 2008-05-22 2009-05-22 Method for cleaning with fluorine compound
US12/951,241 US20110067733A1 (en) 2008-05-22 2010-11-22 Method for cleaning with fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133953A JP5107134B2 (en) 2008-05-22 2008-05-22 Cleaning method

Publications (2)

Publication Number Publication Date
JP2009283652A JP2009283652A (en) 2009-12-03
JP5107134B2 true JP5107134B2 (en) 2012-12-26

Family

ID=41453809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133953A Active JP5107134B2 (en) 2008-05-22 2008-05-22 Cleaning method

Country Status (1)

Country Link
JP (1) JP5107134B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061527B2 (en) * 2012-07-13 2017-01-18 東京応化工業株式会社 Non-aqueous cleaning agent and method for etching silicon substrate
JP6168128B2 (en) * 2015-11-11 2017-08-02 セントラル硝子株式会社 Substrate processing method and solvent used in the method
JP6899252B2 (en) * 2017-05-10 2021-07-07 株式会社ディスコ Processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083308A (en) * 2004-09-16 2006-03-30 Nippon Zeon Co Ltd Detergent composition

Also Published As

Publication number Publication date
JP2009283652A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
WO2009142281A1 (en) Method for cleaning with fluorine compound
JP6266983B2 (en) Azeotropic and azeotrope-like compositions of methyl perfluoroheptene ether and trans-1,2-dichloroethylene and uses thereof
TWI299360B (en) Processing of substrates with dense fluids comprising acetylenic diols and/or alcohols
JP5124447B2 (en) Device substrate cleaning method
TWI450052B (en) Stripper solutions effective for back-end-of-line operations
JP2005252234A (en) Method and equipment for processing article
JP2007526653A (en) Enhanced removal of silicon-containing particulate matter using supercritical fluid-based compositions
TW200400258A (en) Process and composition for removing residues from the microstructure of an object
JP2002237481A (en) Method of cleaning microscopic structure
US20060081273A1 (en) Dense fluid compositions and processes using same for article treatment and residue removal
JP2015233108A (en) Semiconductor pattern drying displacement liquid and semiconductor pattern drying method
JP2006505139A (en) Removal of particulate contaminants on patterned silicon / silicon dioxide using supercritical carbon dioxide / chemical formulations
JP5107134B2 (en) Cleaning method
TW201209934A (en) Chemical solution for forming water-repellent protective film
JP2007535697A (en) Non-fluoride-containing supercritical fluid composition for removing ion-implanted photoresist
TWI261290B (en) Removal of contaminants using supercritical processing
JP5048587B2 (en) Cleaning method with fluorine compounds
WO2005001015A1 (en) Cleaning/rinsing method
JP2009518857A (en) Composition for generating fluoride ions in situ and use thereof
EP1505146A1 (en) Processing of substrates with dense fluids comprising acetylenic diols and/or alcohols
TW496789B (en) Cleaning processes using hydrofluorocarbons and/or hydrochlorofluorocarbon compounds
JP2023121003A (en) Rinse solution, substrate processing method and method for manufacturing semiconductor element
JP2001276756A (en) Cleaning method
JP4413544B2 (en) Cleaning method
JP2004238442A (en) Cleanser composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Ref document number: 5107134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250