JP5107172B2 - Ni-base alloy welding material - Google Patents
Ni-base alloy welding material Download PDFInfo
- Publication number
- JP5107172B2 JP5107172B2 JP2008202620A JP2008202620A JP5107172B2 JP 5107172 B2 JP5107172 B2 JP 5107172B2 JP 2008202620 A JP2008202620 A JP 2008202620A JP 2008202620 A JP2008202620 A JP 2008202620A JP 5107172 B2 JP5107172 B2 JP 5107172B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- weld
- content
- welding material
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 68
- 239000000463 material Substances 0.000 title claims description 52
- 229910045601 alloy Inorganic materials 0.000 title claims description 46
- 239000000956 alloy Substances 0.000 title claims description 46
- 239000012535 impurity Substances 0.000 claims description 28
- 229910052717 sulfur Inorganic materials 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 229910052698 phosphorus Inorganic materials 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 14
- 229910052758 niobium Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910052749 magnesium Inorganic materials 0.000 claims description 12
- 229910052715 tantalum Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 4
- 241001016380 Reseda luteola Species 0.000 description 48
- 230000000694 effects Effects 0.000 description 27
- 238000005336 cracking Methods 0.000 description 23
- 239000011651 chromium Substances 0.000 description 20
- 238000005452 bending Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 14
- 238000002844 melting Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- 229910001098 inconels 690 Inorganic materials 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229910001055 inconels 600 Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Description
この発明は、インコネル600合金、インコネル690合金などの高クロムNi基合金からなる構造物および機械部品をアーク溶接するために使用するNi基合金溶接材料に関するものであり、特にティグ溶接またはミグ溶接するために使用するNi基合金溶接材料に関するものである。 The present invention relates to a Ni-base alloy welding material used for arc welding of structures and machine parts made of high chromium Ni-base alloys such as Inconel 600 alloy and Inconel 690 alloy, and particularly TIG welding or MIG welding. The present invention relates to a Ni-base alloy welding material used for the purpose.
加圧水型原子力プラント、例えば、加圧水型原子力プラントの蒸気発生器などは、高温高圧水中での耐応力腐食割れ性に優れたインコネル600合金が構造材料として用いられていたが、現在ではインコネル600合金よりも更に高温高圧水中での耐応力腐食割れ性に優れたインコネル690合金に置き換えが進められている。これら加圧水型原子力プラントの蒸気発生器などは多くの個所がアーク溶接により接合されており、アーク溶接の中でも特にティグ溶接またはミグ溶接により接合されている。このインコネル690合金(成分組成:C:0.15%以下、Si:0.5%以下、Mn:1.0%以下、S:0.015%以下、Cr:27.0〜31.0%、Cu:0.3%以下、Fe:7.0〜11.0%を含有し、残部がNiおよび不可避不純物)からなる構造材料を溶接するための溶接材料としてアメリカ機会学会(ASME)のASMEボイラおよび圧力容器規格(ASME CODE2142)により規定されているNi基合金溶接材料が一般に使用されている。 Inconel 600 alloy having excellent stress corrosion cracking resistance in high-temperature and high-pressure water has been used as a structural material in a pressurized water nuclear plant, for example, a steam generator of a pressurized water nuclear plant. Furthermore, replacement with Inconel 690 alloy, which is excellent in resistance to stress corrosion cracking in high-temperature and high-pressure water, is being promoted. The steam generators and the like of these pressurized water nuclear power plants are joined at many places by arc welding, and among arc welding, they are joined by TIG welding or MIG welding. This Inconel 690 alloy (component composition: C: 0.15% or less, Si: 0.5% or less, Mn: 1.0% or less, S: 0.015% or less, Cr: 27.0-31.0% , Cu: 0.3% or less, Fe: 7.0 to 11.0%, the balance being Ni and inevitable impurities), the ASME of the American Opportunities Association (ASME) as a welding material for welding structural materials Ni-based alloy welding materials defined by boiler and pressure vessel standards (ASME CODE 2142) are generally used.
このASME CODE2142により規定されているNi基合金溶接材料は、質量%で(以下、%は質量%を示す)C:0.04%以下、Si:0.05%以下、Mn:1.00%以下、P:0.02%以下、S:0.015%以下、Cr:28.0〜31.5%、Mo:0.50%以下、Cu:0.3%以下、Nb:0.10%以下、Al:1.10%以下、Ti:1.00%以下、Al+Ti:1.5%以下、Fe:7.0〜11.0%を含有し、残部がNiおよび不可避不純物からなる成分組成を有している。この成分組成を有するNi基合金溶接材料を用いてティグ溶接またはミグ溶接を行うことにより得られた溶接部は室温における機械的強度および耐溶接割れ性などが優れている。しかし、現在ではなお一層耐溶接割れ性に優れた溶接部を得ることのできるNi基合金溶接材料が求められており、その一例としてC:0.04%以下、Si:0.01〜0.13%、Mn:5%以下、Cr:28.0〜31.5%、Nb:1.8%以下、Al:0.5〜1.1%、Ti:0.5〜1%、Al+Ti:1.6%以下、Fe:7.0〜11.0%、V:0.5%以下を含有し、さらに必要に応じてTa:0.01〜3%を含有し、残部がNiおよび不可避不純物からなる成分組成を有し、前記不可避不純物として含まれるP、S、OおよびNをそれぞれP:0.02%以下、S:0.015%以下、O:0.01%以下、N:0.002〜0.03%に規制したNi基合金溶接材料(特許文献1参照)、さらにC:0.04%以下、Si:0.01〜0.5%、Mn:7%以下、Cr:28.0〜31.5%、Nb:0.5%以下、Ta:0.005〜3.0%、Fe:7.0〜11.0%、Al:0.01〜0.4%、Ti:0.01〜0.45%、V:0.5%以下を含有し、残部がNiおよび不可避不純物からなる成分組成を有し、前記不可避不純物として含まれるP、S、OおよびNをそれぞれP:0.02%以下、S:0.015%以下、O:0.01%以下、N:0.002〜0.1%に規定したNi基合金溶接材料(特許文献2参照)などが提案されている。
これら従来のNi基合金溶接材料は確かに耐溶接割れ感受性は高いが、しかし、前記従来のNi基合金溶接材料を用いて厚さ:10mm以上の高クロムNi基合金厚板を突合せ溶接すると溶接割れが発生することがあり、また前記従来のNi基合金溶接材料を用いて厚板を突合せ溶接することにより得られた溶接部は、厚板を曲げ加工する際に溶接部に割れが発生することがあり、さらに溶接部の強度低下などに対する十分な解決がなされていないのが現状であった。 These conventional Ni-base alloy welding materials have a high resistance to weld cracking, but they are welded when butt-welding a high chromium Ni-base alloy thick plate having a thickness of 10 mm or more using the conventional Ni-base alloy welding material. Cracks may occur, and welds obtained by butt-welding thick plates using the conventional Ni-based alloy welding materials cause cracks in the welds when bending thick plates In addition, the current situation is that a sufficient solution to a decrease in the strength of the welded part has not been made.
そこで、本発明者等はこれら課題を解決すべく研究を行った。その結果、
(イ)Ni基合金溶接材料に含まれる低融点化合物形成元素は溶接部に低融点化合物を偏析させ、溶接割れおよび溶接部を曲げる際に発生する割れの原因となることから、Ni基合金溶接材料に含まれるB、Caなどの低融点化合物形成元素の含有量を少なく規定することが好ましいこと、
(ロ)これら溶接割れおよび溶接部の曲げ割れを防止するには、Ni基合金溶接材料に含まれるMg、N、Mnを調節して特定の範囲で組み合わせて添加すると、低融点化合物の偏析を抑制することができ、溶接部を曲げても割れが発生しにくくすることができること、
(ハ)微量のCu、Moを添加することよって溶接部の強度を母材並に保つことが可能となること、などの研究結果が得られ、これら研究結果に基づいて微量添加元素の添加量を調整して得られたCr:28〜31.5%、Fe:8〜10.5%、Al:0.01〜0.45%、Ti:0.01〜0.5%未満、Mo:0.001〜0.2%、W:0.001〜0.1%、Cu:0.0001〜0.01%、Nb:0.01〜0.1%、Ta:0.0001〜0.01%、Mn:0.05〜0.50%、Mg:0.0001〜0.005%、N:0.001〜0.04%、Ca:0.0001〜0.01%、B:0.0001〜0.04%、Si:0.01〜0.5%を含有し、さらに必要に応じてZr:0.005〜0.5%およびV:0.001〜0.1%の内の1種又は2種を含有し、残りがNiと不可避不純物からなり、前記不可避不純物として含まれるCo、O、P、SおよびCを、Co:0.1%以下、O:0.01%以下、P:0.005%以下、S:0.005%以下、C:0.04%以下になるように規定した成分組成を有するNi基合金溶接材料を用い、高クロムNi基合金厚板をミグ溶接またはティグ溶接などのアーク溶接により突合せ溶接したところ、厚板を曲げ加工しても溶接部に割れが発生したり、溶接部の強度が低下することはないこと、という研究結果が得られたのである。
Therefore, the present inventors conducted research to solve these problems. as a result,
(B) The low melting point compound forming element contained in the Ni base alloy welding material causes the low melting point compound to segregate at the weld and causes weld cracking and cracking when bending the weld. It is preferable to specify a low content of low melting point compound forming elements such as B and Ca contained in the material,
(B) In order to prevent these weld cracks and bending cracks in the welded part, the Mg, N, and Mn contained in the Ni-base alloy welding material are adjusted and added in a specific range to add segregation of low melting point compounds. It can be suppressed, and even if the weld is bent, it can be made difficult to crack,
(C) Research results such as the ability to maintain the strength of the weld at the same level as the base metal by adding a trace amount of Cu and Mo are obtained, and the amount of trace element addition based on these research results Cr: 28 to 31.5%, Fe: 8 to 10.5%, Al: 0.01 to 0.45%, Ti: 0.01 to less than 0.5%, Mo: 0.001-0.2%, W: 0.001-0.1%, Cu: 0.0001-0.01%, Nb: 0.01-0.1%, Ta: 0.0001-0. 01%, Mn: 0.05 to 0.50%, Mg: 0.0001 to 0.005%, N: 0.001 to 0.04%, Ca: 0.0001 to 0.01%, B: 0 0.0001 to 0.04%, Si: 0.01 to 0.5%, and if necessary, Zr: 0.005 to 0.5% and V: 0 Co, O, P, S and C, which contain one or two of 001 to 0.1%, the remainder is made of Ni and inevitable impurities, and are included as the inevitable impurities, Co: 0.1% Hereinafter, a Ni-based alloy welding material having a composition defined so that O: 0.01% or less, P: 0.005% or less, S: 0.005% or less, and C: 0.04% or less is used. When a high chromium Ni-base alloy thick plate is butt welded by arc welding such as MIG welding or TIG welding, cracking occurs in the welded part even if the thick plate is bent, and the strength of the welded part decreases. The result was that there was no such thing.
この発明は、かかる研究結果に基づいて成されたものであって、
(1)Cr:28〜31.5%、Fe:8〜10.5%、Al:0.01〜0.45%、Ti:0.01〜0.5%未満、Mo:0.001〜0.2%、W:0.001〜0.1%、Cu:0.0001〜0.01%、Nb:0.01〜0.1%、Ta:0.0001〜0.01%、Mn:0.05〜0.50%、Mg:0.0001〜0.005%、N:0.001〜0.04%、Ca:0.0001〜0.01%、B:0.0001〜0.04%、Si:0.01〜0.5%を含有し、残りがNiと不可避不純物からなり、前記不可避不純物として含まれるCo、O、P、SおよびCを、Co:0.1%以下、O:0.01%以下、P:0.005%以下、S:0.005%以下、C:0.04%以下になるように規定した成分組成を有するNi基合金溶接材料、
(2)Cr:28〜31.5%、Fe:8〜10.5%、Al:0.01〜0.45%、Ti:0.01〜0.5%未満、Mo:0.001〜0.2%、W:0.001〜0.1%、Cu:0.0001〜0.01%、Nb:0.01〜0.1%、Ta:0.0001〜0.01%、Mn:0.05〜0.50%、Mg:0.0001〜0.005%、N:0.001〜0.04%、Ca:0.0001〜0.01%、B:0.0001〜0.04%、Si:0.01〜0.5%を含有し、さらにZr:0.005〜0.5%を含有し、残りがNiと不可避不純物からなり、前記不可避不純物として含まれるCo、O、P、SおよびCを、Co:0.1%以下、O:0.01%以下、P:0.005%以下、S:0.005%以下、C:0.04%以下になるように規定した成分組成を有するNi基合金溶接材料、
(3)Cr:28〜31.5%、Fe:8〜10.5%、Al:0.01〜0.45%、Ti:0.01〜0.5%未満、Mo:0.001〜0.2%、W:0.001〜0.1%、Cu:0.0001〜0.01%、Nb:0.01〜0.1%、Ta:0.0001〜0.01%、Mn:0.05〜0.50%、Mg:0.0001〜0.005%、N:0.001〜0.04%、Ca:0.0001〜0.01%、B:0.0001〜0.04%、Si:0.01〜0.5%を含有し、さらにV:0.001〜0.1%を含有し、残りがNiと不可避不純物からなり、前記不可避不純物として含まれるCo、O、P、SおよびCを、Co:0.1%以下、O:0.01%以下、P:0.005%以下、S:0.005%以下、C:0.04%以下になるように規定した成分組成を有するNi基合金溶接材料、
(4)Cr:28〜31.5%、Fe:8〜10.5%、Al:0.01〜0.45%、Ti:0.01〜0.5%未満、Mo:0.001〜0.2%、W:0.001〜0.1%、Cu:0.0001〜0.01%、Nb:0.01〜0.1%、Ta:0.0001〜0.01%、Mn:0.05〜0.50%、Mg:0.0001〜0.005%、N:0.001〜0.04%、Ca:0.0001〜0.01%、B:0.0001〜0.04%、Si:0.01〜0.5%を含有し、さらにZr:0.005〜0.5%、V:0.001〜0.1%を含有し、残りがNiと不可避不純物からなり、前記不可避不純物として含まれるCo、O、P、SおよびCを、Co:0.1%以下、O:0.01%以下、P:0.005%以下、S:0.005%以下、C:0.04%以下になるように規定した成分組成を有するNi基合金溶接材料、に特徴を有するものである。
The present invention has been made based on such research results,
(1) Cr: 28 to 31.5%, Fe: 8 to 10.5%, Al: 0.01 to 0.45%, Ti: 0.01 to less than 0.5%, Mo: 0.001 to 0.2%, W: 0.001-0.1%, Cu: 0.0001-0.01%, Nb: 0.01-0.1%, Ta: 0.0001-0.01%, Mn : 0.05-0.50%, Mg: 0.0001-0.005%, N: 0.001-0.04%, Ca: 0.0001-0.01%, B: 0.0001-0 0.04%, Si: 0.01 to 0.5%, the remainder is made of Ni and inevitable impurities, and Co, O, P, S and C contained as the inevitable impurities are Co: 0.1% In the following, the component composition is defined so that O: 0.01% or less, P: 0.005% or less, S: 0.005% or less, and C: 0.04% or less. Ni base alloy welding material that,
(2) Cr: 28 to 31.5%, Fe: 8 to 10.5%, Al: 0.01 to 0.45%, Ti: 0.01 to less than 0.5%, Mo: 0.001 to 0.2%, W: 0.001-0.1%, Cu: 0.0001-0.01%, Nb: 0.01-0.1%, Ta: 0.0001-0.01%, Mn : 0.05-0.50%, Mg: 0.0001-0.005%, N: 0.001-0.04%, Ca: 0.0001-0.01%, B: 0.0001-0 0.04%, Si: 0.01 to 0.5%, and further Zr: 0.005 to 0.5%, the remainder comprising Ni and inevitable impurities, Co included as the inevitable impurities, O, P, S, and C are: Co: 0.1% or less, O: 0.01% or less, P: 0.005% or less, S: 0.005% or less, C: 0.0. Ni base alloy welding material having a specified ingredients composition to be 4% or less,
(3) Cr: 28 to 31.5%, Fe: 8 to 10.5%, Al: 0.01 to 0.45%, Ti: 0.01 to less than 0.5%, Mo: 0.001 to 0.2%, W: 0.001-0.1%, Cu: 0.0001-0.01%, Nb: 0.01-0.1%, Ta: 0.0001-0.01%, Mn : 0.05-0.50%, Mg: 0.0001-0.005%, N: 0.001-0.04%, Ca: 0.0001-0.01%, B: 0.0001-0 0.04%, Si: 0.01 to 0.5%, further containing V: 0.001 to 0.1%, the remainder consisting of Ni and inevitable impurities, Co included as the inevitable impurities, O, P, S and C are: Co: 0.1% or less, O: 0.01% or less, P: 0.005% or less, S: 0.005% or less, C: 0.0 % Ni base alloy welding material having a specified ingredients composition to be less than,
(4) Cr: 28 to 31.5%, Fe: 8 to 10.5%, Al: 0.01 to 0.45%, Ti: 0.01 to less than 0.5%, Mo: 0.001 to 0.2%, W: 0.001-0.1%, Cu: 0.0001-0.01%, Nb: 0.01-0.1%, Ta: 0.0001-0.01%, Mn : 0.05-0.50%, Mg: 0.0001-0.005%, N: 0.001-0.04%, Ca: 0.0001-0.01%, B: 0.0001-0 0.04%, Si: 0.01 to 0.5%, Zr: 0.005 to 0.5%, V: 0.001 to 0.1%, the remainder being Ni and inevitable impurities Co, O, P, S and C contained as the inevitable impurities are Co: 0.1% or less, O: 0.01% or less, P: 0.005% or less, S: .005% or less, C: Ni base alloy welding material having a specified ingredients composition to be 0.04% or less, and it has the characteristics to.
この発明のNi基合金溶接材料は、通常の高周波溶解炉を用いて溶解し鋳造してインゴットを作製し、このインゴットを均質化熱処理し、1000〜1230℃の範囲内に保持しながら熱間鍛造し、最終的に直径:10mmの丸棒とし、水焼入れによる固溶化処理を施した後ホットロールにより伸線加工することにより作製することができる。 The Ni-base alloy welding material of the present invention is melted and cast using an ordinary high-frequency melting furnace to produce an ingot, and this ingot is subjected to homogenization heat treatment and hot forging while being held within a range of 1000 to 1230 ° C. Finally, a round bar having a diameter of 10 mm can be prepared, and after being subjected to a solution treatment by water quenching, the wire can be drawn by a hot roll.
次に、この発明のNi基合金溶接材料の成分組成を上記の通りに限定した理由を説明する。 Next, the reason why the component composition of the Ni-based alloy welding material of the present invention is limited as described above will be described.
Cr:
Crは、高温高圧水中での耐応力腐食割れ性を向上させる主要元素であると同時に溶接部における強度を向上させる元素でもある。しかし、その効果を十分に発揮させるためにはCr含有量を28%以上に維持する必要があるが、一方、31.5%を超えて含有すると製造時の加工が困難となるため、その含有量を28〜31.5%と定めた。一層好まし範囲は29〜31%である。
Cr:
Cr is a main element that improves the resistance to stress corrosion cracking in high-temperature and high-pressure water, and at the same time, an element that improves the strength of the weld. However, it is necessary to maintain the Cr content at 28% or more in order to fully exhibit the effect, but on the other hand, if it exceeds 31.5%, it becomes difficult to process at the time of manufacture, The amount was set at 28-31.5%. A more preferred range is 29-31%.
Fe:
Feは、溶接凝固割れを抑制する効果があるため添加するが、8%未満含有しても所望の効果が得られず、一方、10.5%を超えて含有すると耐応力腐食割れ性が劣化するために好ましくない。したがって、Feの含有量を8〜10.5%に定めた。一層好ましい範囲は8.5〜10.2%である。
Fe:
Fe is added because it has the effect of suppressing weld solidification cracking, but if it is contained in an amount of less than 8%, the desired effect cannot be obtained. On the other hand, if it exceeds 10.5%, the stress corrosion cracking resistance deteriorates. This is not preferable. Therefore, the content of Fe is set to 8 to 10.5%. A more preferable range is 8.5 to 10.2%.
N、MnおよびMg:
N、MnおよびMgを共存させることにより、相安定性を向上させることができる効果がある。すなわち、N、MnおよびMgは母相であるNi−fcc相を安定化させ、P、S、Siなどの低融点化合物形成元素の固溶化を促進し、それにより溶接凝固部における低融点化合物の生成を抑制する効果がある。
しかし、Nの含有量が0.001%未満では、相安定化の効果は無く、したがって溶接凝固部における低融点化合物の生成を抑制する効果が無くなるので好ましくなく、一方、0.04%を超えて含有すると窒化物を形成し、高温加工性が劣化するため、溶接材料製造が困難になるので、その含有量を0.001〜0.04%に定めた。N含有量の一層好ましい範囲は0.005〜0.03%である。
同様に、Mnの含有量が0.05%未満では、相安定化の効果は無く、したがって溶接凝固部における低融点化合物の生成を抑制する効果が無くなるので好ましくなく、一方、Mnを0.5%を超えて含有すると、逆に、溶接凝固部の溶接割れが発生しやすくなるので好ましくない。したがって、Mnの含有量を0.05〜0.5%に定めた。Mn含有量の一層好ましい範囲は0.06〜0.3%である。
同様に、Mgの含有量が0.0001%未満では、相安定化の効果は無く、したがって溶接凝固部における低融点化合物の生成を抑制する効果が無くなるので好ましくなく、一方、0.005%を超えて含有すると、相安定性を損ね、溶接凝固部の溶接割れが発生しやすくなるために好ましくない。したがって、Mgの含有量を0.0001〜0.005%に定めた。Mgの一層好ましい範囲は0.0002〜0.003%である。
なお、これら3元素の効果はそれぞれ等価ではなく、3元素が同時に所定の範囲で含有しないと効果が無いことを見いだしている。
N, Mn and Mg:
The coexistence of N, Mn and Mg has an effect of improving the phase stability. That is, N, Mn, and Mg stabilize the Ni-fcc phase as a parent phase and promote the solid solution of low melting point compound forming elements such as P, S, Si, etc. There is an effect of suppressing generation.
However, if the N content is less than 0.001%, there is no effect of phase stabilization, and therefore, the effect of suppressing the formation of a low melting point compound in the weld solidified portion is lost, which is not preferable, while it exceeds 0.04%. If it is contained, nitrides are formed and high-temperature workability deteriorates, so that it becomes difficult to produce a welding material. Therefore, its content is set to 0.001 to 0.04%. A more preferable range of the N content is 0.005 to 0.03%.
Similarly, if the content of Mn is less than 0.05%, there is no effect of phase stabilization, and therefore, the effect of suppressing the formation of a low melting point compound in the weld solidified portion is lost. On the other hand, if the content exceeds 50%, a weld crack in the weld solidified portion is likely to occur, which is not preferable. Therefore, the Mn content is set to 0.05 to 0.5%. A more preferable range of the Mn content is 0.06 to 0.3%.
Similarly, if the Mg content is less than 0.0001%, there is no phase stabilization effect, and therefore, the effect of suppressing the formation of a low melting point compound in the weld solidified portion is lost, which is not preferable. If it is contained in excess, the phase stability is impaired, and weld cracks in the weld solidified portion are liable to occur, such being undesirable. Therefore, the content of Mg is set to 0.0001 to 0.005%. A more preferable range of Mg is 0.0002 to 0.003%.
The effects of these three elements are not equivalent to each other, and it has been found that there is no effect unless the three elements are contained in a predetermined range at the same time.
Si、AlおよびTi
Si、AlおよびTiは、いずれも脱酸剤として添加することにより、合金内の清浄度を高め、結果的に溶接部の曲げ割れの原因の1つとなる酸化物系の不純物を抑制し溶接部の曲げ加工性を向上させる成分である。
しかし、Siは0.01%以上含有することで、その効果を示すが、0.5%を超えて含有すると、逆に溶接部の曲げ割れを誘発させるので好ましくない。したがって、Siの含有量を0.01〜0.5%に定めた。Si含有量の一層好ましい範囲は0.05〜0.3%である。
同様に、Alを0.01%以上含有することで、合金内の清浄効果を示すが、0.45%を超えて含有すると、逆に溶接曲げ割れを誘発させるため、Alの含有量を0.01〜0.45%と定めた。Al含有量の一層好ましい範囲は0.1〜0.3%である。
同様に、Tiを0.01%以上含有することで、合金内の清浄効果を示すが、0.5%以上含有すると、逆に溶接曲げ割れを誘発させるために好ましくない。したがって、Tiの含有量を0.01〜0. 5%未満に定めた。Ti含有量の一層好ましい範囲は0.1〜0.4%である。
Si, Al and Ti
Si, Al, and Ti are all added as a deoxidizer, thereby improving the cleanliness in the alloy and consequently suppressing oxide-based impurities that cause one of the bending cracks in the weld. It is a component that improves the bending workability.
However, when Si is contained in an amount of 0.01% or more, the effect is exhibited. However, if Si is contained in an amount exceeding 0.5%, it is not preferable because bending cracks in the weld are induced. Therefore, the content of Si is set to 0.01 to 0.5%. A more preferable range of the Si content is 0.05 to 0.3%.
Similarly, when Al is contained in an amount of 0.01% or more, a cleaning effect in the alloy is shown. However, if it exceeds 0.45%, weld bending cracks are induced, so the Al content is reduced to 0. .01 to 0.45%. A more preferable range of the Al content is 0.1 to 0.3%.
Similarly, when Ti is contained in an amount of 0.01% or more, a cleaning effect in the alloy is exhibited. However, if it is contained in an amount of 0.5% or more, weld bending cracks are induced, which is not preferable. Therefore, the Ti content is 0.01 to 0. Set to less than 5%. A more preferable range of the Ti content is 0.1 to 0.4%.
MoおよびW:
MoおよびWは、いずれも溶接部における強度を向上させるために添加する成分である。しかし、Moは0.001%以上含有することで効果を示すが、0.2%を超えて含有すると溶接凝固部で偏析し耐応力腐食割れ性低下をもたらす傾向にあるため、Moの含有量を0.001〜0.2%とした。Mo含有量の一層好ましい範囲は0.002〜0.1%である。
同様に、Wを0.001%以上含有することで、合金内の清浄効果を示すが、0.1%を超えて含有すると、溶接凝固部で偏析し耐応力腐食割れ性低下をもたらす傾向にあるため、Wの含有量を0.001%〜0.1%に定めた。W含有量の一層好ましい範囲は0.002〜0.01%である。
Mo and W:
Both Mo and W are components added to improve the strength at the weld. However, Mo is effective when contained in an amount of 0.001% or more. However, if it exceeds 0.2%, Mo tends to segregate in the weld solidified portion and cause a decrease in stress corrosion cracking resistance. Was 0.001 to 0.2%. A more preferable range of the Mo content is 0.002 to 0.1%.
Similarly, when 0.001% or more of W is contained, the cleaning effect in the alloy is shown. However, if it exceeds 0.1%, it tends to segregate at the weld solidified portion and cause a decrease in stress corrosion cracking resistance. For this reason, the W content is set to 0.001% to 0.1%. A more preferable range of the W content is 0.002 to 0.01%.
NbおよびTa:
NbおよびTaは、共に合金中のCと結合してNbCまたはTaC等の安定な炭化物を優先的に形成することにより耐応力腐食割れ性を向上させ、またCrがCr23C6などの炭化物を形成して局部的にCr希薄領域を形成することによって耐応力腐食割れ性が劣化するのを抑制するとともに、形成したNbCまたはTaC等の炭化物が溶接部の強度向上に寄与する効果がある。
しかし、Nbを0.01%以上含有することでその効果を示すが、0.1%を超えて含有すると溶接割れ感受性が高まる傾向にあるため、Nbの含有量を0.01〜0.1%に定めた。Nb含有量の一層好ましい範囲は0.02〜0.08%である。
同様にTaを0.0001%以上含有することで、上記効果を示すが、0.01%を超えて含有すると曲げによる溶接部の割れ感受性が高まる傾向にあるため、Taの含有量を0.0001〜0.01%に定めた。Ta含有量の一層好ましい範囲は0.0001〜0.005%未満である。
Nb and Ta:
Nb and Ta both combine with C in the alloy to preferentially form a stable carbide such as NbC or TaC, thereby improving the stress corrosion cracking resistance, and Cr is also a carbide such as Cr 23 C 6. By forming and locally forming a Cr diluted region, it is possible to suppress the deterioration of the stress corrosion cracking resistance, and the formed carbides such as NbC or TaC contribute to improving the strength of the weld.
However, when Nb is contained in an amount of 0.01% or more, the effect is exhibited. However, if the content exceeds 0.1%, the weld crack sensitivity tends to increase. %. A more preferable range of the Nb content is 0.02 to 0.08%.
Similarly, when Ta is contained in an amount of 0.0001% or more, the above effect is exhibited. However, if the content exceeds 0.01%, the cracking susceptibility of the welded portion due to bending tends to increase. It was set to 0001 to 0.01%. A more preferable range of the Ta content is 0.0001 to less than 0.005%.
BおよびCa
B及びCaは溶接材料としての溶接材料を製造する際の熱間加工性を向上させる効果があるため添加される。
しかし、Bは0.0001%以上含有することが必要であるが、0.04%を超えて含有すると低融点化合物を形成し溶接割れが発生し易くなるために、Bの含有量を0.0001〜0.04%に定めた。B含有量の一層好ましい範囲は0.0002〜0.008%である。
同様にCaは、0.0001%以上含有することが必要であるが、0.01%を超えて含有すると低融点化合物を形成し溶接割れが発生し易くなるために、Caの含有量を0.0001〜0.01%に定めた。Ca含有量の一層好ましい範囲は0.0002〜0.008%である。
B and Ca
B and Ca are added because they have the effect of improving the hot workability when producing a welding material as a welding material.
However, B must be contained in an amount of 0.0001% or more. However, if the content exceeds 0.04%, a low melting point compound is formed and weld cracking is likely to occur. It was set to 0001 to 0.04%. A more preferable range of the B content is 0.0002 to 0.008%.
Similarly, Ca needs to be contained in an amount of 0.0001% or more. However, if it exceeds 0.01%, a low melting point compound is formed and weld cracking is likely to occur. It was set to 0.0001 to 0.01%. A more preferable range of the Ca content is 0.0002 to 0.008%.
Cu:
Cuは、溶接凝固部の相安定性を高め微量元素の凝固偏析を抑制することにより、特に溶接部曲げ加工時の割れを防止する効果があるため添加されるが、0.0001%未満含有しても所望の効果が得られず、一方、0.01%を超えて含有すると低融点化合物を形成し溶接割れが発生し易くなるために、Cuの含有量を0.0001〜0.01%に定めた。Cu含有量の一層好ましい範囲は0.0002〜0.008%である。
Cu:
Cu is added because it has the effect of preventing cracking during bending of the welded part by increasing the phase stability of the welded solidified part and suppressing the segregation and segregation of trace elements, but it contains less than 0.0001%. However, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.01%, a low melting point compound is formed and weld cracking is likely to occur. Therefore, the Cu content is 0.0001 to 0.01%. Determined. A more preferable range of the Cu content is 0.0002 to 0.008%.
Zr:
Zrは、溶接凝固組織を微細化させることにより向上させる効果があるため、必要に応じて添加されるが、その含有量が0.005%未満では所望の効果が得られず、一方、0.1%を超えて含有すると自らが凝固時に偏析し酸化物を形成するなどにより溶接部曲げ加工時に割れ易くなるために好ましくない。したがって、Zrの含有量を0.005〜0.1%に定めた。Zr含有量の一層好ましい範囲は0.006〜0.05%である。
Zr:
Zr has an effect of improving by refining the weld solidification structure, and is added as necessary. However, if its content is less than 0.005%, the desired effect cannot be obtained. If the content exceeds 1%, it segregates during solidification and forms an oxide, which makes it easy to crack during bending of the welded portion, which is not preferable. Therefore, the Zr content is determined to be 0.005 to 0.1%. A more preferable range of the Zr content is 0.006 to 0.05%.
V:
Vは、マトリックスに固溶して一層溶接部の強度を高める作用を有するので必要に応じて添加されるが、その含有量が0.001%未満では所望の効果が得られず、一方、0.1%を超えて含有すると延性が低下して棒状に加工できなくなるので好ましくない。したがって、Vの含有量を0.001〜0.1%に定めた。Zr含有量の一層好ましい範囲は0.006〜0.05%である。
V:
V is added as needed because it has the effect of increasing the strength of the welded portion by solid solution in the matrix. However, if its content is less than 0.001%, the desired effect cannot be obtained. If the content exceeds 1%, the ductility is lowered and the rod cannot be processed. Therefore, the content of V is set to 0.001 to 0.1%. A more preferable range of the Zr content is 0.006 to 0.05%.
不可避不純物:
不可避不純物として含まれるCoはその含有量は少ないほど好ましい。したがって、Coの量を0.1%以下、一層好ましくは0.05%以下に規制した。
Oは活性な元素と優先的に酸化物を形成し、形成された酸化物は凝固組織におけるデンドライト界面等に濃縮し、溶接部の曲げ加工時に割れの起点となることから不可避不純物として含まれるOの含有量を0.01%以下、一層好ましくは0.007%以下に規制した。
Cは溶接凝固組織でCrと炭化物を形成することで局所的にCrを希薄化し、高温高圧水下での耐応力腐食割れ性を低下させることから不可避不純物として含まれるC含有量を0.04%以下、一層好ましくは0.02%以下に規制した。
SやPは溶接凝固組織における偏析し濃縮することにより低融点化合物を形成しやすくなることにより溶接割れ感受性を高めてしまうので、いずれも0.005%以下に規制した。
Inevitable impurities:
The smaller the content of Co contained as an inevitable impurity, the better. Therefore, the amount of Co is regulated to 0.1% or less, more preferably 0.05% or less.
O preferentially forms an oxide with an active element, and the formed oxide is concentrated at the dendritic interface in the solidified structure and becomes a starting point of cracking during bending of the welded portion, so that O is included as an inevitable impurity. Is regulated to 0.01% or less, more preferably 0.007% or less.
C forms Cr and carbide in the welded solidified structure to locally dilute Cr and lower the stress corrosion cracking resistance under high-temperature and high-pressure water. Therefore, the C content contained as an inevitable impurity is 0.04. % Or less, more preferably 0.02% or less.
S and P segregate and concentrate in the welded solidified structure, thereby easily forming a low melting point compound, thereby increasing the weld cracking susceptibility. Therefore, both are regulated to 0.005% or less.
本発明Ni基合金溶接材料は、特にインコネル690合金で知られるNi−Cr−Fe系合金を溶接するための溶接材料として使用することにより、曲げ加工をしても割れが発生しない溶接部を含む構造物を構築することを可能とし、構造物のより一層の信頼性を高めることに寄与する。特に、原子力発電プラントを構成する材料としてインコネル690合金が注目されており、このインコネル690合金からなる原子力発電プラントの溶接部に対する信頼性を高める溶接材料として利用することにより、産業上優れた効果をもたらすものである。 The Ni-base alloy welding material of the present invention includes a welded portion that is not cracked even when it is bent by using it as a welding material for welding a Ni—Cr—Fe alloy known as Inconel 690 alloy. This makes it possible to construct a structure and contributes to increasing the reliability of the structure. In particular, Inconel 690 alloy has attracted attention as a material constituting the nuclear power plant, and by using it as a welding material that increases the reliability of the welded portion of the nuclear power plant made of this Inconel 690 alloy, an excellent industrial effect can be obtained. Is what it brings.
つぎに、この発明のNi基合金溶接材料を実施例により具体的に説明する。
通常の高周波溶解炉を用いて溶解し、表1〜9に示される成分組成を有し、直径:40mmで約5kgのインゴットを作製した。このインゴットを1230℃で10時間均質化熱処理を施し、温度:1000〜1230℃の範囲内に保持しながら熱間鍛造を行い、最終的に直径:10mmの丸棒をとし、これを1150℃で30分間保持し、その後、水焼き入れすることにより固溶化処理を施した。この丸棒をホットロールによる伸線工程を行い、最終的に直径:2.4mmの溶接材料を作製し、表面をエメリー紙#400で研磨することにより、本発明OLE_LINK4Ni合金OLE_LINK4溶接材料1〜40、比較Ni合金溶接材料1〜30を作製し用意した。なお、前記伸線工程では、途中、固溶化熱処理・酸洗を繰り返し加工性を確保した。
また、従来溶接材料1〜2とした市販のASTM CODE 2142と同一規格品を用意した。
Next, the Ni-base alloy welding material of the present invention will be described in detail with reference to examples.
It melt | dissolved using the normal high frequency melting furnace, it had the component composition shown by Tables 1-9, and produced the ingot of about 5 kg with a diameter: 40mm. This ingot was subjected to a homogenization heat treatment at 1230 ° C. for 10 hours, and hot forging was performed while maintaining the temperature in the range of 1000 to 1230 ° C., and finally a round bar having a diameter of 10 mm was obtained. The solution was held for 30 minutes and then subjected to a solution treatment by quenching with water. This round bar is subjected to a hot roll drawing process to finally produce a welding material having a diameter of 2.4 mm, and the surface is polished with emery paper # 400, whereby the OLE_LINK4Ni alloy OLE_LINK4 welding material 1 to 40 of the present invention is obtained. Comparative Ni alloy welding materials 1 to 30 were prepared and prepared. In the wire drawing step, solidification heat treatment and pickling were repeated during the process to ensure workability.
Moreover, the same standard product as the commercially available ASTM CODE 2142 which was conventionally used as the welding materials 1 and 2 was prepared.
次に、市販品である690合金(UNS N06690)の縦:200mm×横:100mm×厚さ:20mmの寸法を有する板2枚の横の突合せ面に70°のV字開先加工を施し、それぞれ開先面を突き合わせ、表1〜9に示される本発明Ni合金溶接材料1〜40、比較Ni合金溶接材料1〜30および従来溶接材料1〜2をそれぞれ用いて板の横方向に溶接することにより、縦:400mm×横:100mm×厚さ:20mmの寸法を有する溶接線入り板を作製した。この際、溶接条件はいずれもティグ溶接にて行った。アルゴンガス流量は、トーチ側で14〜15リットル/分とし、Arガスバックシールドとしての流量は5リットル/分とした。溶接電流は100Ampである。パス数は10層10パス行った。層間温度は150℃以下になるように注意した。このとき、溶接割れの有無を確認し、溶接割れの無い突き合わせ溶接した板については次の曲げ試験に進んだ。
突き合わせ溶接した板をグラインダーおよび研磨機を用いて、ビード余盛りを削除して溶接部を母材と同じ厚さに調整し、このビード余盛りを削除した板から、側曲げ試験をするために、断面が表裏となるようにかつ溶接線を短辺と平行に中央に含むようにして幅:20mm×長さ:380mm×厚さ:9.5mmの寸法を有する溶接試験片を切り出し、これら溶接試験片の表面を研磨し最終的に耐水エメリー紙#400仕上げとした。この溶接試験片の中央部が曲げの中心となるように180°曲げ試験を行った。曲げ半径は19mmとした。試験後、試験片の曲げ部となった溶接部側を観察し、実態顕微鏡により割れの有無を観察し、その結果を表10〜12に示した。
同様に溶接部を含む幅:50mm×長さ:380mm×厚さ:20mmの寸法を有する溶接試験片を素材とし、溶接継ぎ手部が中央になるように引張試験片を加工し、この引張試験片について室温で引張試験を行い、破断部が溶接部か母材部であるかを確認し、その結果を表10〜12に示した。溶接部が破断することは、母材よりも強度が小さいということとなり好ましくないからである。
同様に溶接部を含む幅:50mm×長さ:380mm×厚さ:20mmの寸法を有する試験片を素材に溶接継ぎ手部が中央になるようにUベント試験片(幅:10mm×長さ:100mm×厚さ:3mmの寸法を有する厚板をU字状に保持したもの)を作製し、これをオートクレーブ内の300℃に保持した500ppmCl−イオンを含有する水中で1000時間保持し、その後、割れの有無を観察し、その結果を表10〜12に示した。
Next, a commercially available 690 alloy (UNS N06690) was subjected to 70 ° V-groove processing on the horizontal butt surfaces of two plates having dimensions of 200 mm × width: 100 mm × thickness: 20 mm. Each groove face is abutted and welded in the lateral direction of the plate using Ni alloy welding materials 1 to 40 of the present invention, comparative Ni alloy welding materials 1 to 30 and conventional welding materials 1 and 2 shown in Tables 1 to 9, respectively. As a result, a plate with a weld line having dimensions of length: 400 mm × width: 100 mm × thickness: 20 mm was produced. At this time, the welding conditions were all TIG welding. The argon gas flow rate was 14 to 15 liters / minute on the torch side, and the flow rate as the Ar gas back shield was 5 liters / minute. The welding current is 100 Amp. The number of passes was 10 layers and 10 passes. Care was taken that the interlayer temperature was 150 ° C. or lower. At this time, the presence or absence of weld cracks was confirmed, and the butt-welded plate without weld cracks proceeded to the next bending test.
To remove the bead surplus from the butt welded plate using a grinder and grinder, adjust the weld to the same thickness as the base metal, and perform a side bend test from the plate without this bead surplus Cut out the weld test pieces having the dimensions of width: 20 mm × length: 380 mm × thickness: 9.5 mm so that the cross-section is front and back and the weld line is included in the center parallel to the short side. The surface was finally polished to a water-resistant emery paper # 400 finish. A 180 ° bending test was performed so that the center of the welded test piece was the center of bending. The bending radius was 19 mm. After the test, the side of the welded part that became the bent part of the test piece was observed, and the presence or absence of cracks was observed with an actual microscope, and the results are shown in Tables 10-12.
Similarly, using a welded test piece having a width: 50 mm × length: 380 mm × thickness: 20 mm including the welded portion as a raw material, the tensile test piece is processed so that the weld joint is in the center, and this tensile test piece A tensile test was performed at room temperature to confirm whether the fracture portion was a welded portion or a base material portion, and the results are shown in Tables 10 to 12. It is because it is not preferable that the welded portion breaks because the strength is lower than that of the base material.
Similarly, a U vent test piece (width: 10 mm × length: 100 mm) with a weld joint portion at the center of a test piece having dimensions of width: 50 mm × length: 380 mm × thickness: 20 mm including the welded portion. × Thickness: A thick plate having a dimension of 3 mm was held in a U-shape), and this was held in water containing 500 ppm Cl − ions held at 300 ° C. in an autoclave for 1000 hours and then cracked The results are shown in Tables 10-12.
表1〜12に示された結果から、本発明Ni合金溶接材料1〜40を用いて溶接した溶接試験片の溶接部は、従来溶接材料1〜2を用いて溶接した溶接試験片の溶接部に比べ、溶接直後には割れも認められず、曲げ試験後も割れが観察されず、引張試験の破断部もすべて母材であって十分な強度を有しており、さらに高温高圧水中でも応力腐食割れが発生しなかったことが確認された。
また、この発明から外れた比較Ni合金溶接材料1〜30を用いて作製した溶接試験片の溶接部は、溶接直後には割れも認められたり、曲げ試験後も割れが観察されたり、引張試験により溶接部で破断してしまうか、応力腐食割れが発生したことがわかる。また、この発明から外れた比較Ni合金溶接材料1〜30の中には溶接材料を製造する工程中で割れたものもあることおよび従来溶接材料1〜2については溶接時には割れが発生することが分かる。
From the results shown in Tables 1 to 12, the welds of the weld specimens welded using the Ni alloy welding materials 1 to 40 of the present invention are welded parts of the weld specimens welded using the conventional welding materials 1 and 2. Compared to the above, no cracks were observed immediately after welding, no cracks were observed after the bending test, and all fractured parts of the tensile test were the base metal and had sufficient strength. It was confirmed that no corrosion cracking occurred.
Further, the welded part of the weld specimen prepared using the comparative Ni alloy welding materials 1 to 30 deviating from the present invention, cracks are observed immediately after welding, cracks are observed after the bending test, or tensile tests. It can be seen that the fracture occurred at the weld or stress corrosion cracking occurred. In addition, some of the comparative Ni alloy welding materials 1 to 30 that deviate from the present invention were cracked during the process of manufacturing the welding material, and the conventional welding materials 1 and 2 may be cracked during welding. I understand.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008202620A JP5107172B2 (en) | 2008-08-06 | 2008-08-06 | Ni-base alloy welding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008202620A JP5107172B2 (en) | 2008-08-06 | 2008-08-06 | Ni-base alloy welding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010036223A JP2010036223A (en) | 2010-02-18 |
JP5107172B2 true JP5107172B2 (en) | 2012-12-26 |
Family
ID=42009303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008202620A Active JP5107172B2 (en) | 2008-08-06 | 2008-08-06 | Ni-base alloy welding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5107172B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105215572A (en) * | 2015-09-22 | 2016-01-06 | 机械科学研究院哈尔滨焊接研究所 | A kind of nuclear island primary device anti-crack defect nickel-based welding wire and preparation method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5441870B2 (en) | 2010-11-12 | 2014-03-12 | 株式会社神戸製鋼所 | Ni-base alloy solid wire for welding |
JP5270043B2 (en) * | 2011-02-01 | 2013-08-21 | 三菱重工業株式会社 | Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal |
JP5977998B2 (en) * | 2012-05-15 | 2016-08-24 | 株式会社神戸製鋼所 | Ni-base alloy weld metal, strip electrode, and welding method |
CN105312793B (en) * | 2014-07-29 | 2017-05-03 | 中国科学院金属研究所 | Fe-Ni based high-temperature alloy welding wire for high-temperature component for 700 DEG C ultra-supercritical thermal power and application of Fe-Ni based high-temperature alloy welding wire |
US20160144461A1 (en) * | 2014-11-21 | 2016-05-26 | Huntington Alloys Corporation | Ni-Cr-Mo-Ta-Nb Welding Filler Metals, Welding Filler Metal Consumables, Weld Deposits, Methods of Making Weld Deposits, and Weldments Thereof |
CN104674144B (en) * | 2015-02-28 | 2016-10-05 | 钢铁研究总院 | Nuclear power heap large scale high-strength thin-crystal nickel-based high-temperature alloy forge piece heat treatment method |
CN107553001B (en) * | 2017-09-01 | 2021-03-26 | 武汉铁锚焊接材料股份有限公司 | Submerged arc welding wire for nuclear power component electric arc additive manufacturing |
CN108517443A (en) * | 2018-04-12 | 2018-09-11 | 江阴市诚信合金材料有限公司 | Nichrome wire and its production line |
CN112045331A (en) * | 2020-08-12 | 2020-12-08 | 钢铁研究总院 | Welding material for high-toughness, corrosion-resistant and fire-resistant low-alloy high-strength steel |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2858037B2 (en) * | 1990-09-25 | 1999-02-17 | アイシン高丘株式会社 | Welding wire used for welding spheroidal graphite cast iron to stainless steel |
JPH0663789A (en) * | 1992-08-19 | 1994-03-08 | Daido Steel Co Ltd | Ni or ni alloy welding wire for gas shielded arc welding |
JP2001107196A (en) * | 1999-10-07 | 2001-04-17 | Sumitomo Metal Ind Ltd | Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material |
WO2005070612A1 (en) * | 2004-01-21 | 2005-08-04 | Mitsubishi Heavy Industries, Ltd. | Ni BASE HIGH Cr ALLOY FILLER MATERIAL AND WELDING ROD FOR SHIELDED METAL ARC WELDING |
-
2008
- 2008-08-06 JP JP2008202620A patent/JP5107172B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105215572A (en) * | 2015-09-22 | 2016-01-06 | 机械科学研究院哈尔滨焊接研究所 | A kind of nuclear island primary device anti-crack defect nickel-based welding wire and preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP2010036223A (en) | 2010-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5107172B2 (en) | Ni-base alloy welding material | |
JP5270043B2 (en) | Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal | |
KR101256268B1 (en) | Austenitic stainless steel | |
JP5389000B2 (en) | Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod | |
KR101544260B1 (en) | Ni-BASE ALLOY WELD METAL, STRIP ELECTRODE, AND WELDING METHOD | |
JP5441870B2 (en) | Ni-base alloy solid wire for welding | |
JP4188124B2 (en) | Welded joints of tempered martensitic heat-resistant steel | |
JP6398277B2 (en) | Manufacturing method of Ni-base heat-resistant alloy welded joint | |
JP6519007B2 (en) | Method of manufacturing Ni-based heat resistant alloy welded joint | |
JPWO2009044796A1 (en) | Austenitic stainless steel | |
KR101897381B1 (en) | Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same | |
JP2013104109A (en) | Seamless austenite heat-resistant alloy tube | |
JP5381677B2 (en) | Manufacturing method of welding wire | |
WO2017002524A1 (en) | Austenitic heat-resistant alloy and welded structure | |
WO2019070000A1 (en) | Austenitic stainless steel weld metal and welded structure | |
JP6513495B2 (en) | Duplex stainless steel and duplex stainless steel pipe | |
JP3850764B2 (en) | Welding wire for high Cr ferritic heat resistant steel | |
JP6642282B2 (en) | Manufacturing method of austenitic stainless steel welded joint | |
JP6235402B2 (en) | Weld metal with excellent strength, toughness and SR cracking resistance | |
JPH11277292A (en) | Welding metal and welding joint for high temp. high strength steel | |
JP6439579B2 (en) | Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same | |
JP6795038B2 (en) | Austenitic heat-resistant alloy and welded joints using it | |
JP2017202493A (en) | Weld material for austenitic heat-resistant steel | |
JPH11138262A (en) | Tig welding method and tig welding consumables | |
JP7564696B2 (en) | Austenitic stainless steel welding filler metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5107172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151012 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |