[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5106003B2 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
JP5106003B2
JP5106003B2 JP2007221027A JP2007221027A JP5106003B2 JP 5106003 B2 JP5106003 B2 JP 5106003B2 JP 2007221027 A JP2007221027 A JP 2007221027A JP 2007221027 A JP2007221027 A JP 2007221027A JP 5106003 B2 JP5106003 B2 JP 5106003B2
Authority
JP
Japan
Prior art keywords
optical
optical scanning
scanning device
optical box
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007221027A
Other languages
Japanese (ja)
Other versions
JP2009053508A (en
JP2009053508A5 (en
Inventor
康孝 成毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007221027A priority Critical patent/JP5106003B2/en
Publication of JP2009053508A publication Critical patent/JP2009053508A/en
Publication of JP2009053508A5 publication Critical patent/JP2009053508A5/ja
Application granted granted Critical
Publication of JP5106003B2 publication Critical patent/JP5106003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明はLBPやデジタル複写機、デジタルFAX等の画像形成装置においてレーザビームを用いて光書き込みを行う光学走査装置に関するものである。   The present invention relates to an optical scanning apparatus that performs optical writing using a laser beam in an image forming apparatus such as an LBP, a digital copying machine, or a digital FAX.

従来、正弦振動を行う光偏向装置を使用した光学走査装置で、偏向走査されるレーザビームの振れ角の中心と結像光学系の中心とのズレ、すなわち、光偏向装置と結像光学系の取り付け角度ズレを調整するものが提案されている。これにより、線速度変化や収差を低減する(例えば、特許文献1参照)。   Conventionally, in an optical scanning device using an optical deflection device that performs sinusoidal vibration, a deviation between the center of the deflection angle of the laser beam deflected and scanned and the center of the imaging optical system, that is, between the optical deflection device and the imaging optical system. A device for adjusting the mounting angle deviation has been proposed. Thereby, a change in linear velocity and aberration are reduced (see, for example, Patent Document 1).

特許3445691号Japanese Patent No. 3445691

しかしながら、上記従来例では、走査平面に平行な取り付け面に直交するよう偏向面が配置される構成であったため、以下のような課題があった。   However, in the above conventional example, the deflecting surface is arranged so as to be orthogonal to the mounting surface parallel to the scanning plane, and thus there are the following problems.

従来、光偏向装置の偏向面は走査平面と平行な取り付け面に略直交し、その根元部で固定される構成であり、振動に対して光偏向装置全体が根元を支持部として片持ち梁となる配置である。すると、周波数帯によって全体が鏡面を前後に揺らすように振動する振動モードが発生する恐れがあり、その振動周期ごとに走査線高さが変化して最終的に印字時には走査ピッチむらになる恐れがある。また、偏向面の振動モードに設計上予期せぬ振動モードが乗ってくる恐れもある。   Conventionally, the deflecting surface of the optical deflecting device is configured to be substantially orthogonal to the mounting surface parallel to the scanning plane and fixed at its root portion, and the entire optical deflecting device is cantilevered with the root as a support portion against vibration. It is the arrangement which becomes. Then, there may be a vibration mode that vibrates so that the entire mirror surface fluctuates back and forth depending on the frequency band, and the scanning line height changes with each vibration cycle, and there is a risk that the scanning pitch will be uneven at the time of printing. is there. In addition, there is a possibility that an unexpected vibration mode may be put on the vibration mode of the deflection surface.

本出願に係る発明の目的は、上述の問題を解消し、偏向面の振動モードを安定させることによって画像の高画質化をはかることである。   The object of the invention according to the present application is to eliminate the above-mentioned problems and to improve the image quality by stabilizing the vibration mode of the deflection surface.

前記目的を達成するための本発明に係る代表的な構成は、レーザビームを出射する光源と、共振振動により揺動して前記光源から出射されたレーザビームを偏向走査するための偏向面が形成された可動子を備えるプレート部材と、前記可動子を揺動させるアクチュエータ部と、前記プレート部材と前記アクチュエータ部を保持する保持部材と、前記可動子の前記偏向面により偏向走査されたレーザビームが通過するレンズと、底部と該底部の周りを囲む側壁部とによって箱形状に構成される光学箱であって、前記光源と前記保持部材とを保持し前記レンズを内包する光学箱と、を有する光学走査装置において、前記保持部材は前記光学箱の外側から前記側壁部固定されており、前記保持部材には、前記プレート部材に当接する第1座面と、前記側壁部当接する第2座面とが形成され前記第2座面は前記可動子の初期静止状態における前記偏向面と平行であり、前記第1座面と前記第2座面とが同一平面内にあることを特徴とする。 In order to achieve the above object, a typical configuration according to the present invention includes a light source for emitting a laser beam and a deflection surface for deflecting and scanning the laser beam emitted from the light source by oscillating by resonance vibration. A plate member including the movable element, an actuator unit that swings the movable element, a holding member that holds the plate member and the actuator part, and a laser beam deflected and scanned by the deflection surface of the movable element. An optical box configured in a box shape by a passing lens, a bottom portion, and a side wall portion surrounding the bottom portion, the optical box holding the light source and the holding member and including the lens in the optical scanning apparatus, the holding member is fixed to the side wall portion from the outside of the optical box, the holding member includes a first seat surface abutting on said plate member, A second seating surface is formed which abuts on the serial side wall portion, and the second seating surface is Ri parallel der and the deflecting surface in the initial rest state of the movable element, said second seating surface and the first seat surface Are in the same plane .

以上の構成によれば、振動等による影響を低減しながら光偏向装置を光学箱に対して強固に組み付けることが可能になる。   According to the above configuration, the optical deflecting device can be firmly assembled to the optical box while reducing the influence of vibration or the like.

〔第1実施形態〕
図を用いて本発明の第1実施形態を説明する。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the drawings.

(画像形成装置)
まず、画像形成装置の構成及び動作の概略を説明する。図1は光学走査装置を具備した画像形成装置の構成を説明する断面図である。
(Image forming device)
First, an outline of the configuration and operation of the image forming apparatus will be described. FIG. 1 is a cross-sectional view illustrating a configuration of an image forming apparatus including an optical scanning device.

図1に示すように、画像形成動作においては、まず、画像情報に基づいて変調されたレーザビームLを光学走査装置から出射し、感光体ドラム32の上(被走査体面上)を走査する。これにより、感光体ドラム32上に潜像を形成する。この潜像は一次帯電器33によって一様に帯電している感光体ドラム32の面上に形成される。   As shown in FIG. 1, in the image forming operation, first, a laser beam L modulated based on image information is emitted from an optical scanning device, and the photosensitive drum 32 (on the surface to be scanned) is scanned. Thereby, a latent image is formed on the photosensitive drum 32. This latent image is formed on the surface of the photosensitive drum 32 that is uniformly charged by the primary charger 33.

この潜像を現像器34の現像剤(トナー)によって可視像化する。その後、感光体ドラム32の面上に形成されたトナー画像が順に転写ローラ35によって、転写ニップ部に搬送された転写材36上に転写され、転写材36上にトナー画像が形成される。転写材36上に形成された画像が定着器37によって熱定着された後、転写材36は排出ローラ38等によって装置外に出力される。   The latent image is visualized by the developer (toner) of the developing device 34. Thereafter, the toner images formed on the surface of the photosensitive drum 32 are sequentially transferred onto the transfer material 36 conveyed to the transfer nip portion by the transfer roller 35, and a toner image is formed on the transfer material 36. After the image formed on the transfer material 36 is thermally fixed by the fixing device 37, the transfer material 36 is output to the outside of the apparatus by the discharge roller 38 or the like.

(光学走査装置)
次に、光学走査装置の構成及び動作の概略を説明する。
(Optical scanning device)
Next, an outline of the configuration and operation of the optical scanning device will be described.

図2を用いて光学走査装置の構成を説明する。図2は第1実施形態における光学走査装置の概略構成を説明する斜視図である。   The configuration of the optical scanning device will be described with reference to FIG. FIG. 2 is a perspective view illustrating a schematic configuration of the optical scanning device according to the first embodiment.

図2に示すように、光学走査装置を構成する部材は、装置筐体としての光学箱31に一体的に収容・保持される。ここで、光学箱31は、底部と側壁部とによって構成される箱形状であり、fθレンズ43を内包している。また、光源装置41と、光偏向装置42と、反射ミラー44と、BD用ミラー45と、BDセンサ46と、シリンダレンズ47と、が光学箱31に組み付けられる構成である。   As shown in FIG. 2, members constituting the optical scanning device are integrally accommodated and held in an optical box 31 as a device housing. Here, the optical box 31 has a box shape constituted by a bottom portion and a side wall portion, and includes an fθ lens 43. In addition, the light source device 41, the light deflection device 42, the reflection mirror 44, the BD mirror 45, the BD sensor 46, and the cylinder lens 47 are assembled in the optical box 31.

図2に示すように、光偏向装置42は、光学箱31の外側から光学箱31の外壁面に組み付けられる。光偏向装置42が最も外側に位置する構成である。従来の光偏向装置は光学走査装置の内部に配置する構成であったため、光偏向走査の外に光学走査装置の外壁が配置され全体を覆う構成となり装置全体が大型化、ひいてはコスト増となっていた。これに対して、本構成は、光学箱31のサイズを最も小さくすることが可能である。光偏向装置42は光学箱31に対しビス(図示せず)で強固に固定されている(C部)。偏向面と平行な平面で強固に固定されているので、光偏向装置42の組み付けられた側壁部の共振周波数は高域にシフトしており、他の振動源からの振動も拾いにくく、振動に強い構成となっている。更に、後述する共振振動を用いて振動しているプレート部材1(図4、図5参照)の偏向面が余計な振動モードを拾う恐れも小さい。   As shown in FIG. 2, the light deflection device 42 is assembled to the outer wall surface of the optical box 31 from the outside of the optical box 31. In this configuration, the light deflection device 42 is located on the outermost side. Since the conventional optical deflecting device is arranged inside the optical scanning device, the outer wall of the optical scanning device is arranged outside the optical deflecting scan so as to cover the whole, so that the entire device is increased in size and cost. It was. On the other hand, this structure can make the size of the optical box 31 the smallest. The light deflection device 42 is firmly fixed to the optical box 31 with screws (not shown) (C portion). Since it is firmly fixed in a plane parallel to the deflection surface, the resonance frequency of the side wall portion to which the optical deflector 42 is assembled is shifted to a high range, and it is difficult to pick up vibrations from other vibration sources. It has a strong structure. Furthermore, there is little possibility that the deflection surface of the plate member 1 (see FIGS. 4 and 5) that vibrates using resonance vibration described later picks up an extra vibration mode.

光偏向装置42は光学箱31の側壁面に突き当てて組み付ける。組み付ける際には、位置決めピン等を用いて、容易に高精度に組み付けることが可能であり、工程上作業性もよく組み付けタクトの向上も期待できる。   The light deflecting device 42 is assembled by abutting against the side wall surface of the optical box 31. When assembling, it can be easily assembled with high accuracy using a positioning pin or the like, and the workability in the process is good and the assembly tact can be expected to be improved.

また、後述するアクチュエータ部7(図4、図5参照)の発熱は、光偏向装置42が光学箱31の外側から組み付けられ外気に面していることによって効率的に装置外へ放熱される。このため、光学走査装置内に熱がこもることによって装置全体の温度が上昇して光学箱が変形してレンズ等の位置等がずれたり、光源装置41やレンズ等の特性が熱で変化したりすることによる印字画質の劣化を効果的に防止することができる。   Also, heat generated by an actuator unit 7 (see FIGS. 4 and 5), which will be described later, is efficiently radiated to the outside of the device by the light deflection device 42 being assembled from the outside of the optical box 31 and facing the outside air. For this reason, the temperature of the entire apparatus rises due to heat trapped in the optical scanning device, the optical box is deformed, the position of the lens, etc. shifts, or the characteristics of the light source device 41, the lens, etc. change due to heat. It is possible to effectively prevent the deterioration of the print image quality due to the operation.

これら光学走査装置の組立時には、最後に上から板金または樹脂製の蓋部材(図示せず)が組み付けられ、光偏向装置42と共に、光学走査装置を略密閉する。   When these optical scanning devices are assembled, a sheet metal or resin lid member (not shown) is finally assembled from above, and the optical scanning device is substantially sealed together with the optical deflection device 42.

図3を用いて、光学走査装置の動作を説明する。図3は光学走査装置の動作を説明する斜視図である。   The operation of the optical scanning device will be described with reference to FIG. FIG. 3 is a perspective view for explaining the operation of the optical scanning device.

図3に示すように、光源装置41より出射されたコリメート光は、光偏向装置42により偏向走査され、順にfθレンズ43を通過し、反射ミラー44によって反射され最終的に被走査体である感光体ドラム32表面に到達する(一点鎖線)。   As shown in FIG. 3, the collimated light emitted from the light source device 41 is deflected and scanned by the light deflecting device 42, sequentially passes through the fθ lens 43, is reflected by the reflecting mirror 44, and is finally a photosensitive member that is a scanned object. It reaches the surface of the body drum 32 (dashed line).

また、コリメート光は、感光体ドラム32の幅内で最適に絞り込んだビームとして走査されるように、fθレンズ43により成形される。これと共に、走査ビームの一部はBD用ミラー45により反射されてBDセンサ46により光検知することで、BDセンサ46からの出力信号を基準にBD基板48が走査回毎の書き込み信号を同期させる。これにより、走査回毎のビームの書き込み位置ズレを防止する。   The collimated light is shaped by the fθ lens 43 so as to be scanned as a beam that is optimally narrowed within the width of the photosensitive drum 32. At the same time, a part of the scanning beam is reflected by the BD mirror 45 and is detected by the BD sensor 46, so that the BD substrate 48 synchronizes the writing signal for each scanning time based on the output signal from the BD sensor 46. . This prevents a beam writing position shift every scanning.

また、光偏向装置の偏向面の倒れ誤差による感光体ドラム32上の副走査方向におけるビーム位置ずれを防止するためにシリンダレンズ47を用いて、光源装置41から出射されたビームを偏向面上では副走査方向に圧縮して結像した線像とする。これと共に、偏向面と感光体ドラム32面上は副走査方向では共役関係とする構成が取られている。尚、副走査方向とは、光軸及びビームの走査方向と直角をなす方向で、転写材の送り方向である。   In addition, the cylinder lens 47 is used to prevent the beam position deviation in the sub-scanning direction on the photosensitive drum 32 due to the tilting error of the deflecting surface of the optical deflecting device, and the beam emitted from the light source device 41 on the deflecting surface. A line image is formed by compression in the sub-scanning direction. At the same time, the deflecting surface and the surface of the photosensitive drum 32 have a conjugate relationship in the sub-scanning direction. The sub-scanning direction is a direction perpendicular to the optical axis and the beam scanning direction, and is a transfer material feeding direction.

(光偏向装置)
図4乃至図7を用いて、本実施形態の光偏向装置42の構成を詳細に説明する。図4は第1実施形態の光偏向装置の構成を示す斜視図である。図5は第1実施形態の光偏向装置の構成を示す分解斜視図である。図6は第1実施形態の光偏向装置に用いるアクチュエータ部の分解斜視図である。図7は第1実施形態の光偏向装置に用いるプレート部材の斜視図である。尚、これらの斜視図は、光偏向装置42を光学箱31側から見た斜視図である。
(Light deflection device)
The configuration of the optical deflecting device 42 of the present embodiment will be described in detail with reference to FIGS. FIG. 4 is a perspective view showing the configuration of the optical deflection apparatus of the first embodiment. FIG. 5 is an exploded perspective view showing the configuration of the optical deflection apparatus of the first embodiment. FIG. 6 is an exploded perspective view of an actuator unit used in the optical deflection apparatus of the first embodiment. FIG. 7 is a perspective view of a plate member used in the light deflection apparatus of the first embodiment. These perspective views are perspective views of the light deflection device 42 as viewed from the optical box 31 side.

図4及び図5に示すように、光偏向装置42は、プレート部材1と、アクチュエータ部7と、ホルダ8(支持部材)と、回路基板9とを有する。プレート部材1はホルダ8に一体に固定されている。ホルダ8の、プレート部材1の固定面側の方向には、プレート部材1の可動子2及び可動子3を駆動するアクチュエータ部7や、アクチュエータ部7に電力を供給するための回路基板9等が配置され保持固定される。回路基板9には画像形成装置に具備された制御回路(図示せず)と電気的に接続するためのコネクタ10が備えられる。ここで、回路基板9はホルダ8に対してビス11(図5で図示)等を用いて固定されている。また、回路基板9は光学箱31と蓋部材とによって囲まれた空間の外にある。   As shown in FIGS. 4 and 5, the light deflection device 42 includes a plate member 1, an actuator portion 7, a holder 8 (support member), and a circuit board 9. The plate member 1 is integrally fixed to the holder 8. In the direction of the holder 8 on the fixed surface side of the plate member 1, there are an actuator part 7 for driving the movable element 2 and the movable element 3 of the plate member 1, a circuit board 9 for supplying electric power to the actuator part 7, and the like. Arranged and held fixed. The circuit board 9 is provided with a connector 10 for electrically connecting to a control circuit (not shown) provided in the image forming apparatus. Here, the circuit board 9 is fixed to the holder 8 using screws 11 (shown in FIG. 5) or the like. The circuit board 9 is outside the space surrounded by the optical box 31 and the lid member.

図5に示すように、アクチュエータ部7はホルダ8に矢印B方向に挿入され、ホルダ8に設けられた穴部(図示せず)に圧入等の方法で固定される。アクチュエータ部7をホルダ8に固定した後に、その上からプレート部材1をホルダ8に一体的に固定する。このような構成にすることにより、アクチュエータ部7とプレート部材1をホルダ8という1つの部材で一体的に保持し、強い振動等に対しても強い構成となる。また、1部品で位置決めされるので組付精度も良好である。   As shown in FIG. 5, the actuator unit 7 is inserted into the holder 8 in the direction of arrow B, and is fixed to a hole (not shown) provided in the holder 8 by a method such as press fitting. After the actuator unit 7 is fixed to the holder 8, the plate member 1 is integrally fixed to the holder 8 from above. By adopting such a configuration, the actuator unit 7 and the plate member 1 are integrally held by a single member called the holder 8, and the configuration is strong against strong vibrations. Moreover, since it is positioned by one component, the assembling accuracy is also good.

次にアクチュエータ部7の構成を詳細に説明する。図6に示すように、アクチュエータ部7は、コア(鉄心)12は樹脂部材にて構成されるボビン13と一体に形成されており、その周囲にコイル(巻線)14が巻かれている。コア12とコイル14間に樹脂のボビン13が介在することで、確実に電気的に絶縁している。   Next, the configuration of the actuator unit 7 will be described in detail. As shown in FIG. 6, in the actuator portion 7, a core (iron core) 12 is formed integrally with a bobbin 13 made of a resin member, and a coil (winding) 14 is wound around the core. The resin bobbin 13 is interposed between the core 12 and the coil 14 to ensure electrical insulation.

ボビン13には、2本のピン15が圧入されており、コイル14の両端はこれらピン15に絡げられ、ハンダ付けされている。2本のピン15は端子ピンであり、コイル14の両端部から確実に光偏向装置42外に電気的な結線を取り出す役目を担っている。ボビン13が樹脂であることで、これら2本のピン15を確実に絶縁しながら、光偏向装置42外へ所定の位置精度で電気的な結線を取り出すことが可能になる。ピン15はL字型に折り曲げられて、その先端がホルダ8の穴部を通してホルダ8の外へ突出している。回路基板9に設けられた穴9a(図5参照)に挿通され、ハンダ付け等により回路基板9と電気的に結線される。これらの構成により、コネクタ接続で容易に結線が可能となっている。   Two pins 15 are press-fitted into the bobbin 13, and both ends of the coil 14 are entangled with these pins 15 and soldered. The two pins 15 are terminal pins and have a role of reliably taking out an electrical connection from both ends of the coil 14 to the outside of the optical deflecting device 42. Since the bobbin 13 is made of resin, it is possible to take out an electrical connection to the outside of the optical deflecting device 42 with a predetermined positional accuracy while reliably insulating these two pins 15. The pin 15 is bent into an L shape, and its tip protrudes out of the holder 8 through the hole of the holder 8. It is inserted into a hole 9a (see FIG. 5) provided in the circuit board 9, and is electrically connected to the circuit board 9 by soldering or the like. With these configurations, connection can be easily made by connector connection.

次にプレート部材1について図7を用いて説明する。プレート部材(素子)1は、Si単結晶のウェハをエッチング加工して製作されている。プレート部材1は、少なくとも2つの可動子2、3を備える。これら可動子2、3は、ねじりバネ4、5によってそれぞれ支持される。   Next, the plate member 1 will be described with reference to FIG. The plate member (element) 1 is manufactured by etching a Si single crystal wafer. The plate member 1 includes at least two movers 2 and 3. These movers 2 and 3 are supported by torsion springs 4 and 5, respectively.

一方の可動子(駆動子)3には、棒状の永久磁石であるマグネット6が一体に固定される。他方の可動子(偏向子)2の表面(可動子3の磁石実装面とは反対側)は、アルミ等が蒸着されている。このアルミ等が蒸着された表面は、レーザビームを反射するのに好適な反射膜となっている。このように可動子は、共振振動により揺動して光源装置41から出射したレーザビームを偏向走査する偏向面を有する。   A magnet 6, which is a rod-like permanent magnet, is integrally fixed to one mover (drive element) 3. Aluminum or the like is deposited on the surface of the other mover (deflector) 2 (on the side opposite to the magnet mounting surface of the mover 3). The surface on which aluminum or the like is deposited is a reflective film suitable for reflecting a laser beam. Thus, the mover has a deflection surface that deflects and scans the laser beam that is oscillated by the resonance vibration and emitted from the light source device 41.

このように、本実施形態の光偏向装置42では、プレート部材1にマグネット(磁石)6を備え、コア12とコイル14等からなるアクチュエータ部7と所定の間隙で配置される(図6参照)。これにより、磁気回路を形成しており、コイル14に所定の電流を印加することにより、可動子2、3が揺動するように駆動される。   As described above, in the light deflecting device 42 of the present embodiment, the plate member 1 includes the magnet 6 and is disposed at a predetermined gap from the actuator portion 7 including the core 12 and the coil 14 (see FIG. 6). . As a result, a magnetic circuit is formed, and when a predetermined current is applied to the coil 14, the movers 2 and 3 are driven to swing.

図7に示すように、レーザビームは矢印Aで示すように可動子2の表面(偏向面)にて偏向される。これら少なくとも2つの可動子2、3は、複数の固有振動モードを有し、例えば、走査周期に応じた基本周波数と基本周波数の2倍の周波数の振動モードを有する。   As shown in FIG. 7, the laser beam is deflected by the surface (deflection surface) of the mover 2 as indicated by an arrow A. These at least two movers 2 and 3 have a plurality of natural vibration modes, for example, a fundamental frequency corresponding to the scanning period and a vibration mode having a frequency twice the fundamental frequency.

光偏向装置42は、プレート部材1の複数の固有振動数(少なくとも基本と2倍)を重ね合わせて駆動される。これについて図8を用いて説明する。図8は第1実施形態における光偏向装置の振幅の時間変化を示すグラフである。   The light deflecting device 42 is driven by superposing a plurality of natural frequencies (at least twice the basic frequency) of the plate member 1. This will be described with reference to FIG. FIG. 8 is a graph showing the time change of the amplitude of the optical deflecting device in the first embodiment.

図8に示すように、レーザビームの偏向に用いられる可動子(偏向子)2の振幅角度をθ、時間をtとすると、下記の数式1で表される挙動を示す。   As shown in FIG. 8, when the amplitude angle of the movable element (deflector) 2 used for the deflection of the laser beam is θ and the time is t, the behavior expressed by the following formula 1 is shown.

θ(t)=A1sin(ωt)+A2sin(2ωt+φ)+A3 [数式1]
尚、数式1において、A1:基本周波数(基本波)における振幅、A2:基本周波数の2倍(倍波)における振幅、ω:基本周波数、φ:基本波と倍波の位相差、A3:静的な角度誤差、例えば偏向子が振動していない時の姿勢の角度誤差、である。図8においては、φ=0、A3=0。
θ (t) = A 1 sin (ωt) + A 2 sin (2ωt + φ) + A 3 [Formula 1]
In Equation 1, A 1 : amplitude at the fundamental frequency (fundamental wave), A 2 : amplitude at twice the fundamental frequency (harmonic wave), ω: fundamental frequency, φ: phase difference between fundamental wave and harmonic wave, A 3 : Static angle error, for example, the angle error of the posture when the deflector is not vibrating. In FIG. 8, φ = 0 and A 3 = 0.

ここで各パラメータを適切に設定することにより、1周期内のある特定の範囲において次の数式2のように近似することが可能である。   Here, by appropriately setting each parameter, it is possible to approximate the following equation 2 within a certain range within one period.

θ(t)≒kt+α [数式2]
尚、数式2において、k,α:いずれも定数である。
θ (t) ≒ kt + α [Formula 2]
In Equation 2, k and α are both constants.

この範囲では略等角速度で可動子(偏向子)2が振動することになり、可動子(偏向子)2に入射するレーザビームは略等角速度で偏向走査される。   In this range, the movable element (deflector) 2 vibrates at a substantially constant angular velocity, and the laser beam incident on the movable element (deflector) 2 is deflected and scanned at a substantially uniform angular speed.

(光偏向装置の光学箱における配置)
次に、光偏向装置42の光学箱31に対する配置について図9を用いて説明する。図9は第1実施形態における光学箱から光偏向装置のみを分解したときの光学走査装置の構成を説明する分解斜視図である。
(Arrangement of optical deflection device in optical box)
Next, the arrangement of the light deflection device 42 with respect to the optical box 31 will be described with reference to FIG. FIG. 9 is an exploded perspective view illustrating the configuration of the optical scanning device when only the optical deflecting device is disassembled from the optical box in the first embodiment.

図9に示すように、光偏向装置42は、光学箱31の外壁面の一部である座面Eに当接する構成となっている。座面Eにはビス穴が設けられている。座面Eで囲まれた部分の中央には穴部Dを有し、ここからレーザビームが光偏向装置42に入射して偏向走査される。   As shown in FIG. 9, the light deflection device 42 is configured to abut against a seating surface E that is a part of the outer wall surface of the optical box 31. The seat surface E is provided with a screw hole. A hole D is provided at the center of the portion surrounded by the seating surface E, from which a laser beam is incident on the optical deflector 42 and deflected and scanned.

図9上では、4つの座面Eで構成される平面は、走査平面に対して直交しており、光偏向装置42のプレート部材1と平行な平面となっている。具体的には、可動子2の初期静止状態における前記偏向面と平行な平面となっている。この直角度、平行度等の幾何公差は、光学箱31の成形精度で保証される。   In FIG. 9, the plane formed by the four seating surfaces E is orthogonal to the scanning plane, and is a plane parallel to the plate member 1 of the light deflection device 42. Specifically, it is a plane parallel to the deflection surface in the initial stationary state of the mover 2. The geometrical tolerances such as the squareness and the parallelism are guaranteed by the molding accuracy of the optical box 31.

穴部Dは光偏向装置42を組み付けることで略密閉されるので、穴部Dから塵埃等が流入し光学部品を汚す心配もない。座面Eは光学箱31から若干突出させた構成としているが、必ずしも突出させる必要はない。突出させない方が光偏向装置42と光学箱31間の隙間が狭くなり、密閉性が向上する。   Since the hole D is substantially sealed by assembling the light deflecting device 42, there is no fear that dust or the like flows from the hole D and contaminates the optical component. The seating surface E is slightly protruded from the optical box 31, but it is not always necessary to protrude. When not projecting, the gap between the light deflecting device 42 and the optical box 31 is narrowed, and the sealing performance is improved.

光偏向装置42の電気的結線は、回路基板9のコネクタ10を通じてなされるが、回路基板9が光学走査装置の最も外側の位置に配置されている。従来のように光偏向装置を光学走査装置の内部に配置する構成であれば、光偏向装置の駆動に必要な電源束線を光学走査装置の外へ取り出すための束線経路を、光学箱に穴を空けて確保しなければならなかった。その穴部を通じて塵埃等が装置内部に流入し光学系に付着することによって光量低下を引き起こし、印刷画質が低下する恐れもあった。これに対して、本構成は、結線が容易である。光学走査装置を組み立てた後にコネクタ10に結線すればよい。また、結線された束線(図示せず)を這いまわす配線部を、特に光学走査装置に設ける必要もない。   The electrical connection of the light deflecting device 42 is made through the connector 10 of the circuit board 9, and the circuit board 9 is disposed at the outermost position of the optical scanning device. If the optical deflecting device is arranged inside the optical scanning device as in the prior art, the bundle path for taking out the power bundle necessary for driving the optical deflecting device out of the optical scanning device is provided in the optical box. I had to make a hole. When dust or the like flows into the inside of the apparatus through the hole and adheres to the optical system, the amount of light is reduced, and the print image quality may be reduced. On the other hand, this configuration is easy to connect. What is necessary is just to connect to the connector 10 after assembling an optical scanning device. In addition, it is not necessary to provide a wiring portion for winding the bundled wires (not shown) connected to the optical scanning device.

図9に示す光学箱31の座面Eに対して、光偏向装置42のホルダ8の4つの座面F(図5参照)が当接しており、4つの座面Fは同一平面内にある。座面E、Fに設けられた穴部を通してビス(図示せず)が挿入され、光偏向装置42が光学箱31に強固に組付られる。   The four seating surfaces F (see FIG. 5) of the holder 8 of the light deflector 42 are in contact with the seating surface E of the optical box 31 shown in FIG. 9, and the four seating surfaces F are in the same plane. . Screws (not shown) are inserted through holes provided in the seating surfaces E and F, and the light deflecting device 42 is firmly attached to the optical box 31.

また、光偏向装置42の座面G(図5参照)は、プレート部材1が組み付けられる面であって、光偏向装置42の4つの座面Fと同一平面となる。ホルダ8は樹脂等による成形品であって、座面Fと座面Gが同一平面になるよう成形型を構成することは容易であるため、平面度も容易且つ高精度に保証することができる。座面Fと座面Gが別平面であると2つの座面の平行度誤差が生じてしまう。しかしながら、本実施形態では、同一平面であるので、座面Fと座面Gと間の平行度誤差を生じさせないことができる。   Further, the seating surface G (see FIG. 5) of the light deflecting device 42 is a surface on which the plate member 1 is assembled, and is flush with the four seating surfaces F of the light deflecting device 42. The holder 8 is a molded product made of resin or the like, and since it is easy to configure the mold so that the seating surface F and the seating surface G are in the same plane, the flatness can be easily and highly accurately guaranteed. . If the seating surface F and the seating surface G are different planes, a parallelism error between the two seating surfaces occurs. However, in this embodiment, since it is the same plane, the parallelism error between the seating surface F and the seating surface G can be prevented.

尚、ホルダ8の4つの座面Fも光学箱31の4つの座面Eも、必ずしも4つでなくてよい。少なくとも座面が3つあれば1つの平面が定まるし、2つ以下でも十分な面積があれば、十分姿勢の保証が可能である。   Note that the four seating surfaces F of the holder 8 and the four seating surfaces E of the optical box 31 are not necessarily four. If there are at least three seating surfaces, one plane is determined. If there are two or less seating areas, a sufficient posture can be guaranteed.

また座面が4つ以上であると、少なくとも1つ以上の座面が補助的な座面となるので、あくまでも補助座面として若干下げておくとよい。本実施形態の構成であれば、ビス穴の無い座面を0.05〜0.1程度低めにする。残りの座面3つで平面は保証されるので、高さを下げること自体に問題はない。下げる座面は光学箱31側でも光偏向装置42のホルダ8側でもどちらでもよい。   Further, if there are four or more seating surfaces, at least one or more seating surfaces become auxiliary seating surfaces. If it is the structure of this embodiment, the seat surface without a screw hole will be made low about 0.05-0.1. Since the plane is guaranteed with the remaining three bearing surfaces, there is no problem in reducing the height itself. The seating surface to be lowered may be either on the optical box 31 side or on the holder 8 side of the light deflection device 42.

従来、素子を取り付ける部材が樹脂の場合には、組付ビス穴の方向に型抜き方向を持ってくると素子取り付け面に成形時の抜き勾配が生じ、大きな回転軸倒れが発生する恐れがあった。また、素子取り付け面に直角な抜き方向にすると今度はビス穴部をスライドで型抜きしなければならず、成形型が複雑な構成となって型投資が大幅にコストアップしてしまうという課題があった。これに対して、本構成は、ホルダ8は座面F、座面Gのなす平面をパーティングラインとして構成されており、アクチュエータ部7やプレート部材1など各部材の組付方向、すなわち、矢印B方向(図5参照)に型を抜く構成である。このため、スライド等の高価な手段を使わなくてもよい。このように型構造的にもホルダ8は安価に製作できる形状となっている。これは図示の通り、矢印B方向に直交する方向には穴部等を具備しない構成とすることが可能であることによる。   Conventionally, when the member to which the element is attached is a resin, if the die-cutting direction is brought in the direction of the assembly screw hole, a draft angle at the time of molding occurs on the element mounting surface, which may cause a large rotation axis collapse. It was. In addition, when the direction perpendicular to the element mounting surface is set, the screw hole portion must be slid out of the mold, and there is a problem that the cost of the dies is greatly increased due to the complicated structure of the mold. there were. On the other hand, in this configuration, the holder 8 is configured with a plane formed by the seating surface F and the seating surface G as a parting line, and the assembly direction of each member such as the actuator unit 7 and the plate member 1, that is, an arrow In this configuration, the mold is pulled out in the B direction (see FIG. 5). For this reason, it is not necessary to use expensive means such as a slide. Thus, the holder 8 has a shape that can be manufactured at low cost in terms of mold structure. This is because, as shown in the drawing, it is possible to adopt a configuration in which a hole or the like is not provided in a direction orthogonal to the arrow B direction.

部品配置等の都合によっては、座面F、座面Gは同一平面には必ずしも配置できないかもしれないし、4つの座面F間で高さに差をつけなければならないかもしれない。この際には精度的に、また、コスト的には若干劣るが、プレート部材1と座面F、Gが平行となる構成であれば、他の効果は同様に期待できる。   Depending on the convenience of component arrangement, the seating surface F and the seating surface G may not necessarily be arranged on the same plane, and the height between the four seating surfaces F may have to be different. In this case, although the accuracy and cost are slightly inferior, other effects can be similarly expected as long as the plate member 1 and the seating surfaces F and G are parallel to each other.

以上のように、本実施形態においては、光偏向装置42が最も外側に配置され、光学箱31の外側壁に組み付けられる構成のため、サイズ的には最小に抑えることができ、光偏向装置42を組み付ける際には外側壁面から容易に組み付けることが可能である。また、光学箱31の高精度な側壁に位置決めピン等を用いて組み付けるので、精度の良い組み付けが可能である。   As described above, in the present embodiment, since the light deflection device 42 is disposed on the outermost side and is assembled to the outer wall of the optical box 31, the size can be minimized and the light deflection device 42 can be minimized. Can be easily assembled from the outer wall surface. Further, since the optical box 31 is assembled to the highly accurate side wall using a positioning pin or the like, the assembly can be performed with high accuracy.

光偏向装置42は光学箱31の側壁に強固に組み付けられているので、上述の通り振動に強い構成であって、可動子2がいわゆる前後におじぎするような振動モードも拾いにくくなっている。このため、偏向面の余計な振動に起因した画像形成時の走査ピッチむら等も低減することが可能である。   Since the light deflecting device 42 is firmly assembled to the side wall of the optical box 31, it has a structure resistant to vibration as described above, and it is difficult to pick up a vibration mode in which the movable element 2 bows back and forth. For this reason, it is possible to reduce unevenness in scanning pitch during image formation due to extra vibration on the deflection surface.

さらにプレート部材1のホルダ8に対する取付面は光偏向装置42が固定される光学箱31の側壁部の平面と同一平面となっているため、平行度公差をキャンセルし、回転軸が倒れる方向のいわゆる軸倒れ精度を向上させることが可能となる。   Further, since the mounting surface of the plate member 1 with respect to the holder 8 is the same plane as the plane of the side wall portion of the optical box 31 to which the light deflection device 42 is fixed, the parallelism tolerance is canceled and the so-called direction in which the rotation axis is tilted. It is possible to improve the accuracy of axis collapse.

また、光偏向装置42が光学箱31の外壁面に組み付けられていることにより、光偏向装置42を駆動するために必要な電源は、装置外に面したコネクタから容易に供給することができる。このため、束線を光学箱31内部で這いまわす必要がなく、構成としても組立工程としても簡便なものとすることができる。   Further, since the light deflecting device 42 is assembled to the outer wall surface of the optical box 31, the power necessary for driving the light deflecting device 42 can be easily supplied from the connector facing the outside of the device. For this reason, it is not necessary to twist the bundled wires inside the optical box 31, and the structure and the assembly process can be simplified.

また、束線取り出し口からの塵埃流入などの懸念も無い。これらによって光偏向装置42は高精度に且つ簡便に組み付けできる構成なので、工程のタクト短縮、ひいてはコストダウンの効果も見込める。また、振動の低減や安定した振動モードによって画像の高画質化の効果も期待できる。   In addition, there is no concern about dust inflow from the bundled wire outlet. As a result, the optical deflecting device 42 can be assembled with high accuracy and simply, so that it is possible to reduce the tact time of the process and to reduce the cost. In addition, an effect of improving the image quality of the image can be expected by reducing vibration and a stable vibration mode.

参考例
図を用いて本発明の参考例を説明する。前述した実施形態と同様の構成については同符号を付し、説明を省略する。図10は参考例における光学走査装置の概略構成を説明する斜視図である。
[ Reference example ]
A reference example of the present invention will be described with reference to the drawings. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. FIG. 10 is a perspective view illustrating a schematic configuration of an optical scanning device according to a reference example .

図10に示すように、本参考例では光学箱31の側壁が二重の構成となっている。例えば、反射ミラー44近傍では内側の壁部Hと外側の壁部Iが平行に配置され、それらが光学箱31の周囲を覆うように構成されている。内と外の壁の間は剛性を上げるためのリブRが無数に配置されている。本参考例の構成では、周囲の側壁が二重となっていることで構造上剛性が増しており、振動に対してはより強い構造になっている。 As shown in FIG. 10, in this reference example , the side wall of the optical box 31 has a double structure. For example, in the vicinity of the reflection mirror 44, the inner wall portion H and the outer wall portion I are arranged in parallel, and are configured to cover the periphery of the optical box 31. An infinite number of ribs R are disposed between the inner and outer walls to increase rigidity. In the configuration of this reference example , the surrounding sidewalls are doubled, which increases the structural rigidity and is stronger against vibration.

光偏向装置42の配置としては、必ずしも光学走査装置の最外部に位置する構成でなく、周囲をもう一枚の壁部で覆われる構成となっているが、前述の実施形態と同様の効果を得ることができる。   The arrangement of the light deflecting device 42 is not necessarily the configuration positioned at the outermost part of the optical scanning device, but the configuration is such that the periphery is covered with another wall portion, but the same effect as in the above-described embodiment is achieved. Obtainable.

参考例に特有の効果は、光学箱31の側壁を二重としていることで、光学走査装置全体の剛性が向上しており、変形等に強くなっていることである。また、側面をもう一枚の壁部で完全に覆うことで密閉性を向上させ、外部から熱を受けにくいという効果がある。光偏向装置42の発熱よりも外部からもらう熱の方が大きい場合には特に有効である。 The effect peculiar to this reference example is that the side wall of the optical box 31 is made double, so that the rigidity of the entire optical scanning device is improved and it is strong against deformation and the like. In addition, by completely covering the side surface with another wall portion, there is an effect that the hermeticity is improved and it is difficult to receive heat from the outside. This is particularly effective when the heat received from the outside is greater than the heat generated by the light deflector 42.

〔第実施形態〕
図を用いて本発明の第実施形態を説明する。前述した実施形態と同様の構成については同符号を付し、説明を省略する。図11は第実施形態における光学走査装置近傍の光学箱の断面図である。例えば、図1の図において走査平面に直交する方向に、プレート部材1の可動子(偏向子)2の回転軸を含む断面で切ったような形である。
[ Second Embodiment]
A second embodiment of the present invention will be described with reference to the drawings. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. FIG. 11 is a cross-sectional view of an optical box near the optical scanning device according to the second embodiment. For example, in the drawing of FIG. 1, the plate member 1 is cut in a cross section including the rotation axis of the movable element (deflector) 2 in the direction perpendicular to the scanning plane.

図11に示すように、プレート部材1に対し、レーザビームはJ方向から入射して矢印K方向に反射していく。プレート部材1に直角な方向は二点鎖線Nで示される方向となる。プレート部材1に具備された可動子(偏向子)2で偏向走査された、矢印Kが示すレーザビームは紙面に直交する方向に線状に走査されている。   As shown in FIG. 11, the laser beam is incident on the plate member 1 from the J direction and reflected in the arrow K direction. A direction perpendicular to the plate member 1 is a direction indicated by a two-dot chain line N. A laser beam indicated by an arrow K, which is deflected and scanned by a movable element (deflector) 2 provided in the plate member 1, is scanned linearly in a direction perpendicular to the paper surface.

前述の実施形態では、入射ビームと出射ビームとが同一平面内となる構成(いわゆる、走査平面内入射)であったが、本構成では偏向面に直角な方向とある角度をなしてビームが入射する構成となっている。即ち、入射ビームと出射ビームとは同一平面内にはない構成(いわゆる、斜め入射)である。   In the above-described embodiment, the incident beam and the outgoing beam are configured to be in the same plane (so-called scanning plane incidence), but in this configuration, the beam is incident at an angle with a direction perpendicular to the deflection surface. It is the composition to do. That is, the incident beam and the outgoing beam are not in the same plane (so-called oblique incidence).

本実施形態に特有の効果は、例えば以上の構成で、略上方から光学走査装置を見た時に、光偏向装置42の共振中心方向から(共振していない時で言えば正面から)ビームを入射させても、ビームを反射偏向走査することができる。これは上記のように副走査方向(走査方向と光軸方向に直交する方向)に斜め入射していることで、走査平面が入射系を避ける構成とすることができるためである。これによって最大走査角において入射ビームに対する出射ビームのなす角を最小限に抑えることができ、可動子(偏向子)2の横幅を最小限に抑えることができるなどの副次的効果を持つ。また、本実施形態の構成で、第1実施形態と同様な効果が得られる。   The effect peculiar to the present embodiment is that, for example, in the above configuration, when the optical scanning device is viewed from substantially above, the beam is incident from the resonance center direction of the light deflection device 42 (from the front when it is not resonating). Even if it makes it, it can carry out reflection deflection scanning of a beam. This is because the scanning plane can be configured to avoid the incident system by being obliquely incident in the sub-scanning direction (direction orthogonal to the scanning direction and the optical axis direction) as described above. As a result, the angle formed by the outgoing beam with respect to the incident beam at the maximum scanning angle can be minimized, and the lateral width of the movable element (deflector) 2 can be minimized. In addition, with the configuration of the present embodiment, the same effects as those of the first embodiment can be obtained.

光学走査装置を具備した画像形成装置の構成を説明する断面図。1 is a cross-sectional view illustrating a configuration of an image forming apparatus including an optical scanning device. 第1実施形態における光学走査装置の概略構成を説明する斜視図。FIG. 3 is a perspective view illustrating a schematic configuration of the optical scanning device according to the first embodiment. 第1実施形態における光学走査装置の動作を説明する斜視図。The perspective view explaining operation | movement of the optical scanning device in 1st Embodiment. 第1実施形態における光偏向装置の構成を示す斜視図。The perspective view which shows the structure of the optical deflection apparatus in 1st Embodiment. 第1実施形態における光偏向装置の構成を示す分解斜視図。The disassembled perspective view which shows the structure of the optical deflection apparatus in 1st Embodiment. 第1実施形態における光偏向装置に用いるアクチュエータ部の分解斜視図。The disassembled perspective view of the actuator part used for the optical deflection apparatus in a 1st embodiment. 第1実施形態における光偏向装置に用いるプレート部材の斜視図。The perspective view of the plate member used for the optical deflection apparatus in a 1st embodiment. 第1実施形態における光偏向装置の振幅の時間変化を示すグラフ。The graph which shows the time change of the amplitude of the optical deflection apparatus in a 1st embodiment. 第1実施形態における光学箱から光偏向装置のみを分解したときの光学走査装置の構成を説明する分解斜視図。The exploded perspective view explaining the composition of the optical scanning device when only the optical deflection device is disassembled from the optical box in the first embodiment. 参考例における光学走査装置の概略構成を説明する斜視図。 The perspective view explaining schematic structure of the optical scanning device in a reference example . 実施形態における光学走査装置近傍の光学箱の断面図。Sectional drawing of the optical box of the optical scanning device vicinity in 2nd Embodiment.

1…プレート部材、2…可動子(偏向子)、3…可動子(駆動子)、7…アクチュエータ部、8…ホルダ(支持部材)、9…回路基板、31…光学箱41…光源装置、42…光偏向装置、43…fθレンズ   DESCRIPTION OF SYMBOLS 1 ... Plate member, 2 ... Movable element (deflector), 3 ... Movable element (driving element), 7 ... Actuator part, 8 ... Holder (support member), 9 ... Circuit board, 31 ... Optical box 41 ... Light source device, 42: Optical deflecting device, 43: fθ lens

Claims (4)

レーザビームを出射する光源と、
共振振動により揺動して前記光源から出射されたレーザビームを偏向走査するための偏向面が形成された可動子を備えるプレート部材と、
前記可動子を揺動させるアクチュエータ部と
前記プレート部材と前記アクチュエータ部を保持する保持部材と、
前記可動子の前記偏向面により偏向走査されたレーザビームが通過するレンズと、
底部と該底部の周りを囲む側壁部とによって箱形状に構成される光学箱であって、前記光源と前記保持部材とを保持し前記レンズを内包する光学箱と、
を有する光学走査装置において、
前記保持部材は前記光学箱の外側から前記側壁部固定されており、
前記保持部材には、前記プレート部材に当接する第1座面と、前記側壁部当接する第2座面とが形成され前記第2座面は前記可動子の初期静止状態における前記偏向面と平行であり、前記第1座面と前記第2座面とが同一平面内にあることを特徴とする光学走査装置。
A light source that emits a laser beam;
A plate member provided with a movable element formed with a deflection surface for deflecting and scanning a laser beam emitted from the light source by oscillating by resonance vibration ;
An actuator for swinging the mover ;
A holding member for holding the plate member and the actuator unit ;
A lens through which a laser beam deflected and scanned by the deflection surface of the mover passes;
An optical box configured in a box shape by a bottom part and a side wall part surrounding the bottom part, the optical box holding the light source and the holding member and enclosing the lens;
In an optical scanning device having
The holding member is fixed to the side wall portion from the outside of the optical box,
The holding member is formed with a first seat surface that contacts the plate member and a second seat surface that contacts the side wall portion , and the second seat surface is the deflection surface in an initial stationary state of the mover. parallel der and is, the optical scanning device in which the first seating surface and the second seating surface, characterized in that the in the same plane.
前記アクチュエータ部は、鉄心と、前記鉄心の周囲に巻かれた巻線と、前記鉄心と前記巻線とを絶縁する樹脂部材と、前記巻線の両端が絡げられた2つのピンと、を備えることを特徴とする請求項に記載の光学走査装置。 Said actuator unit includes a core, a winding wound around the core, and a resin member for insulating the said winding and the iron core, and two pins at both ends has been tied in the winding, the the optical scanning apparatus according to claim 1, characterized in that it comprises. 前記光学箱を覆う蓋部材を有し、
前記保持部材は前記アクチュエータ部と電気的に結線された回路基板を保持し、前記回路基板は、前記光学箱と前記蓋部材とによって囲まれた空間の外にあることを特徴とする請求項1又は2に記載の光学走査装置。
A lid member covering the optical box;
The said holding member hold | maintains the circuit board electrically connected with the said actuator part, and the said circuit board is outside the space enclosed by the said optical box and the said cover member. Or the optical scanning device of 2.
前記保持部材は樹脂成形されていることを特徴とする請求項1乃至3に記載の光学走査装置 The optical scanning device according to claim 1, wherein the holding member is resin-molded .
JP2007221027A 2007-08-28 2007-08-28 Optical scanning device Expired - Fee Related JP5106003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221027A JP5106003B2 (en) 2007-08-28 2007-08-28 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221027A JP5106003B2 (en) 2007-08-28 2007-08-28 Optical scanning device

Publications (3)

Publication Number Publication Date
JP2009053508A JP2009053508A (en) 2009-03-12
JP2009053508A5 JP2009053508A5 (en) 2010-08-05
JP5106003B2 true JP5106003B2 (en) 2012-12-26

Family

ID=40504638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221027A Expired - Fee Related JP5106003B2 (en) 2007-08-28 2007-08-28 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5106003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334555B2 (en) 2005-04-20 2016-05-10 Nipon Steel & Sumitomo Metal Corporation Hot dip galvannealed steel sheet and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404342B2 (en) * 2009-01-06 2014-01-29 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250891A (en) * 2001-02-22 2002-09-06 Canon Inc Oscillating body device, optical deflector and optical apparatus using optical deflector
JP4970865B2 (en) * 2005-07-28 2012-07-11 株式会社リコー Deflection device, optical scanning device, and image forming apparatus
JP2007178944A (en) * 2005-12-28 2007-07-12 Brother Ind Ltd Optical device and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334555B2 (en) 2005-04-20 2016-05-10 Nipon Steel & Sumitomo Metal Corporation Hot dip galvannealed steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2009053508A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4965284B2 (en) Optical scanning device and image forming device
JP4416117B2 (en) Deflection mirror, optical scanning device, and image forming apparatus
US9128291B2 (en) Optical scanning apparatus, image forming apparatus, and support member for an optical scanning apparatus
JPH10161507A (en) Image forming device
JP5041835B2 (en) Optical scanning apparatus and image forming apparatus
JP5106003B2 (en) Optical scanning device
JP2009175611A (en) Optical scanner, method of manufacturing optical scanner, oscillation mirror and image forming apparatus
JP4390596B2 (en) Vibration mirror module
JP2009053508A5 (en)
JP2008009073A (en) Optical scanner and image forming apparatus
JP2010237432A (en) Optical scanner and image forming apparatus using the same
JP6062896B2 (en) Optical scanning device
JP4968932B2 (en) Optical deflection apparatus and optical scanning apparatus
JP2008020540A (en) Optical scanner and image forming apparatus
JP4164501B2 (en) Scanning optical device
JP2010224036A (en) Light deflector, light scanner equipped with the same, and image forming apparatus
JP2007078722A (en) Optical scanner
JP2000035548A (en) Fixing structure of optical scanner
JP2002107650A (en) Optical beam scanner
JP2005300778A (en) Optical scanner and image forming apparatus
JP2006091453A (en) Scanning optical apparatus
JPH1152270A (en) Deflecting scanner
JP2006201519A (en) Optical scanner and image forming apparatus
JP4839165B2 (en) Mirror reinforcing structure, optical scanning device, image reading device, and image forming device
JP2004205786A (en) Scanning optical device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R151 Written notification of patent or utility model registration

Ref document number: 5106003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees