[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5105183B2 - Heat exchange unit and heat exchanger using the same - Google Patents

Heat exchange unit and heat exchanger using the same Download PDF

Info

Publication number
JP5105183B2
JP5105183B2 JP2008138709A JP2008138709A JP5105183B2 JP 5105183 B2 JP5105183 B2 JP 5105183B2 JP 2008138709 A JP2008138709 A JP 2008138709A JP 2008138709 A JP2008138709 A JP 2008138709A JP 5105183 B2 JP5105183 B2 JP 5105183B2
Authority
JP
Japan
Prior art keywords
heat exchange
ring
heat
heat exchanger
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138709A
Other languages
Japanese (ja)
Other versions
JP2009264727A (en
Inventor
信彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Original Assignee
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd filed Critical Taiyo Kogyo Co Ltd
Priority to JP2008138709A priority Critical patent/JP5105183B2/en
Publication of JP2009264727A publication Critical patent/JP2009264727A/en
Application granted granted Critical
Publication of JP5105183B2 publication Critical patent/JP5105183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、小型で効率の良い熱交換ユニット及びそれを用いた熱交換器に関する。  The present invention relates to a small and efficient heat exchange unit and a heat exchanger using the same.

熱交換器としてはプレート式熱交換器が最も一般的に知られている。これは、伝熱プレートの複数枚を、枠状ガスケットを介して積層一体化したものであり、伝熱プレートを挟んで第1及び第2の熱交換媒体を流通させることにより、伝熱プレートを通して熱交換を行う装置である。しかし、熱媒体の流路が鋭角に仕切られているため、この部分にスラリーが溜まりやすい。また、小型化が難しいという問題もある。  A plate heat exchanger is most commonly known as a heat exchanger. This is a structure in which a plurality of heat transfer plates are laminated and integrated via a frame-shaped gasket, and the first and second heat exchange media are circulated through the heat transfer plates, thereby passing through the heat transfer plates. It is a device that performs heat exchange. However, since the flow path of the heat medium is partitioned at an acute angle, the slurry tends to accumulate in this portion. There is also a problem that miniaturization is difficult.

このような問題点を解決するため、例えば特許文献1では、外枠を設けた四角形のプレートの中心部に送液孔を穿孔し、この送液孔の位置から末広がりの渦巻き状の壁を形成し、再外周を渦巻き状枠体とした液側伝熱板と、蒸気側伝熱板を交互に重設したプレート式熱交換装置が提案されている。しかし、この装置においては、渦巻き状枠体はあくまで熱交換媒体の流通路を長くするための仕切りであり、熱交換は伝熱プレートを通して隣接する「蒸気側伝熱」室との間で行うものである。従って、小型にした際に伝熱面積が小さくなってしまい、効率が低下する。  In order to solve such problems, for example, in Patent Document 1, a liquid feeding hole is drilled in the center of a rectangular plate provided with an outer frame, and a spiral wall that spreads from the position of the liquid feeding hole is formed. A plate-type heat exchange device has been proposed in which a liquid-side heat transfer plate having a recirculating outer periphery and a steam-side heat transfer plate are alternately stacked. However, in this apparatus, the spiral frame is a partition for elongating the flow path of the heat exchange medium, and the heat exchange is performed between the adjacent “steam side heat transfer” chamber through the heat transfer plate. It is. Therefore, when the size is reduced, the heat transfer area is reduced, and the efficiency is lowered.

また、特許文献2には、伝熱面上にガスケットを配設し、重ね合わされた伝熱プレートの複数枚を組み合わせ単位として積層してなり、2枚の伝熱プレート間に形成される熱交換媒体の流路を、上記伝熱プレートの本体中央部と角隅部とに穿設された通液孔との間を連通させる渦巻き状流路となしたプレート式熱交換器が開示されている。この技術は構造的には上記の特許文献1と異なるが、基本的な仕組みはほぼ同じである。すなわち、第1と第2の熱交換媒体はそれぞれ伝熱板を挟んで隣接する流路を通過するのであって、渦巻き状の流路壁は熱交換に寄与しない。従って、熱交換に寄与する伝熱面積は伝熱板の大きさで限定されてしまい、小型にすると熱交換効率が著しく低下してしまう。  Patent Document 2 discloses a heat exchange formed between two heat transfer plates, in which a gasket is provided on the heat transfer surface and a plurality of stacked heat transfer plates are stacked as a combination unit. A plate-type heat exchanger is disclosed in which the flow path of the medium is a spiral flow path that communicates between the liquid passage holes formed in the central part and the corner part of the main body of the heat transfer plate. . Although this technique is structurally different from Patent Document 1, the basic mechanism is almost the same. That is, each of the first and second heat exchange media passes through adjacent channels with the heat transfer plate interposed therebetween, and the spiral channel wall does not contribute to heat exchange. Therefore, the heat transfer area contributing to the heat exchange is limited by the size of the heat transfer plate, and if the size is reduced, the heat exchange efficiency is significantly reduced.

さらに、特許文献3には別のタイプのスクロール型積層熱交換器が示されている。これは、多孔金属板よりなる伝熱板とスペーサとを交互に積層して複数個の流体流路を形成し、前記伝熱板の平面内熱移動によって角流体通路を流通する複数流体間の熱交換を行わせる積層熱交換器において、前記スペーサを半径方向に複数個の渦巻き形状の穴を設けた平板で形成し、同一形状のスペーサを伝熱板を介し積層して複数個の渦巻き形状流体流路を形成したことを特徴とする。この熱交換器ではスペーサに複数個の渦巻き形状の穴を設けるため加工が困難であり、体積効率が悪くなる。また、伝熱はこの渦巻き状のスペーサではなくスペーサに隣接配置された平板状の多孔金属板であるため、伝熱面積が限定されてしまう。  Furthermore, Patent Document 3 shows another type of scroll-type laminated heat exchanger. This is because a plurality of fluid flow paths are formed by alternately laminating heat transfer plates made of porous metal plates and spacers, and between the plurality of fluids flowing through the angular fluid passages by in-plane heat transfer of the heat transfer plates. In a laminated heat exchanger that performs heat exchange, the spacer is formed of a flat plate having a plurality of spiral holes in the radial direction, and the same shape of the spacers is stacked via a heat transfer plate to form a plurality of spiral shapes. A fluid flow path is formed. In this heat exchanger, since a plurality of spiral holes are provided in the spacer, the processing is difficult and the volume efficiency is deteriorated. Further, since the heat transfer is not a spiral spacer but a flat porous metal plate disposed adjacent to the spacer, the heat transfer area is limited.

一方、金属製無端ベルトの製造方法としては、既存の多くの方法が提案されている。例えば、特許文献4の従来技術の項目に記載されているように、帯状のステンレスシートを素材とし、これを曲げて両端を突き合わせ電子ビーム溶接し、溶接部分を研磨し、最後にメッキして製造する方法が開示されている。  On the other hand, many existing methods have been proposed as a method for producing a metal endless belt. For example, as described in the prior art item of Patent Document 4, a belt-shaped stainless steel sheet is used as a raw material, this is bent, both ends are butted together, electron beam welding is performed, the welded portion is polished, and finally plated. A method is disclosed.

特公昭43−298号公報Japanese Patent Publication No.43-298 特許第3054648号公報Japanese Patent No. 3054648 特公昭62−17157号公報Japanese Examined Patent Publication No. 62-17157 特公平7−84894号公報Japanese Patent Publication No. 7-84894

本発明は、上記の問題点に鑑みてなされたものであり、小型で製造が容易であり、熱交換効率の高い熱交換ユニット及びこれを用いた熱交換器を提供することを課題とする。  The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat exchange unit that is small and easy to manufacture and has high heat exchange efficiency, and a heat exchanger using the heat exchange unit.

上記課題を解決するため本発明による熱交換ユニットは、良熱伝導性素材からなる無端ベルト状リングを渦巻き状に成形し、該リングの上下面をそれぞれガスケットにより密着保持することにより、該リングを隔壁として該リング内外に第1及び第2の熱交換媒体の流通経路を隣接確保したことを特徴とする。  In order to solve the above-mentioned problems, the heat exchange unit according to the present invention forms an endless belt-like ring made of a highly heat-conductive material in a spiral shape, and holds the rings in close contact with each other by gaskets. As a partition, the flow paths of the first and second heat exchange media are adjacently secured inside and outside the ring.

前記ガスケット面に渦巻き状の凹部を設け、前記リングを該凹部内に配することも好適である。  It is also preferable that a spiral recess is provided on the gasket surface and the ring is disposed in the recess.

また、前記リングと前記ガスケットとの接触部に弾性緩衝部材を配することもできる。  In addition, an elastic buffer member can be disposed at a contact portion between the ring and the gasket.

上記熱交換ユニットを使用した熱交換器としては、渦巻き状に成形した前記リング内側の流通経路両端部近傍、並びに前記リング外側の流通経路にそれぞれ、流体の流入口及び流出口を設けたことを特徴とする。  As a heat exchanger using the heat exchange unit, a fluid inlet and an outlet are provided in the vicinity of both ends of the circulation path inside the ring formed in a spiral shape and in the circulation path outside the ring, respectively. Features.

上記の熱交換ユニットを複数積層し、各ユニット間を連結する流体流入口及び流出口を設けることにより積層型熱交換器とすることも好適である。  It is also preferable to form a stacked heat exchanger by stacking a plurality of the above heat exchange units and providing a fluid inlet and outlet for connecting the units.

熱交換媒体の種類又は交換熱量の程度に応じて、前記各熱交換ユニットを流体の流れに関して並列或いは直列に接続することができる。  Depending on the type of heat exchange medium or the amount of exchange heat, the heat exchange units can be connected in parallel or in series with respect to the fluid flow.

また、熱交換媒体の要件により、前記渦巻き状リング外側の流体流入口または流出口のいずれかを、前記ガスケットの側面に開口させることも好適である。  Also, depending on the requirements of the heat exchange medium, it is also preferable to open either the fluid inlet or the outlet outside the spiral ring on the side surface of the gasket.

本発明による熱交換ユニットでは、良熱伝導性の無端ベルト状リングを渦巻き状に形成して熱伝導隔壁として使用するため、小さな熱交換器体積内において熱伝導面積を極めて大きくすることが可能となり、また無端ベルト状リングを使用するので熱交換媒体同士が混合する恐れがない。従って、製造が容易で小型かつ熱効率の高い熱交換器を提供することができる。  In the heat exchange unit according to the present invention, an endless belt-like ring having good heat conductivity is formed in a spiral shape and used as a heat conduction partition, so that the heat conduction area can be extremely increased in a small heat exchanger volume. Moreover, since an endless belt-like ring is used, there is no fear that the heat exchange media are mixed. Therefore, it is possible to provide a heat exchanger that is easy to manufacture, is small, and has high thermal efficiency.

また、本発明によれば、熱交換ユニットを所望の数だけ積層することが可能となり、また、各ユニット同士の接続も熱交換媒体の流路に関して並列にも直列にもすることができるので、熱交換媒体の種類や交換熱量の程度によって様々な展開が可能となる。  In addition, according to the present invention, it becomes possible to stack a desired number of heat exchange units, and the connections between the units can be made in parallel or in series with respect to the flow path of the heat exchange medium, Various developments are possible depending on the type of heat exchange medium and the amount of exchange heat.

以下、図面に従って本発明の好適な実施例について説明する。図1は、本発明の熱交換ユニットに使用する良熱伝導性の無端ベルト状リングを渦巻き状に形成した状態を示す斜視図である。図9に加工前のリングを示す。このような円環状リングの2箇所を保持してどちらかの保持部を他方に対して回転させることにより、図1に示す渦巻き状リングを得ることができる。このリングは伝熱隔壁となるため、材質としては熱伝導性が高いことが必要であり、また渦巻き状に加工するため可とう性があることも求められる。従って、ステンレス等の金属が特に好適であるが、熱伝導性が高ければ特に材質が限定されるものではない。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a state in which an endless belt-like ring having good heat conductivity used in the heat exchange unit of the present invention is formed in a spiral shape. FIG. 9 shows the ring before processing. The spiral ring shown in FIG. 1 can be obtained by holding two places of such an annular ring and rotating one of the holding portions with respect to the other. Since this ring serves as a heat transfer partition, the material needs to have high thermal conductivity, and is also required to be flexible because it is processed into a spiral shape. Accordingly, metals such as stainless steel are particularly suitable, but the material is not particularly limited as long as the thermal conductivity is high.

図11には、渦巻き状リングの別の実施例を示す。図の右側が拡大図であり、リング自体に凹凸を形成して表面積を増大してある。これにより、伝熱面積をさらに増やすことができる。  FIG. 11 shows another embodiment of a spiral ring. The right side of the figure is an enlarged view, and the surface area is increased by forming irregularities on the ring itself. Thereby, a heat transfer area can be increased further.

図3に、本発明による積層型熱交換器の第1の実施例斜視図を示した。この実施例では、基本熱交換ユニット11を3段と底部ユニット31を1段積層して4段構成とし、一番上部に蓋ユニット21を配置してボルト24により全ユニットを結合密着して熱交換器としている。蓋ユニット21上には第1の熱交換媒体流入口22及び第1の熱交換媒体流出口23が設けてある。  FIG. 3 shows a perspective view of a first embodiment of the laminated heat exchanger according to the present invention. In this embodiment, the basic heat exchange unit 11 has three stages and the bottom unit 31 is laminated to form a four-stage structure. The lid unit 21 is arranged at the top, and all the units are joined and adhered by bolts 24 to heat. It is an exchange. A first heat exchange medium inlet 22 and a first heat exchange medium outlet 23 are provided on the lid unit 21.

図2は、図3に示した積層型熱交換器実施例の蓋ユニット21を取り除いた状態を示す。図の一番上に見えているのが基本熱交換ユニットであり、円形皿状のガスケット2内に図1に示した無端ベルト状リング隔壁1を収納し、このリング1の内外にそれぞれ第1及び第2の熱交換媒体の流通経路3、4を確保している。また、ガスケット2の周縁部には、複数のボルト穴12を設け、ボルト等により積層した各ユニットを結合締め付けすることによりリング隔壁1とガスケット2とを密着して、熱交換媒体の混合を防止している。  FIG. 2 shows a state in which the lid unit 21 of the laminated heat exchanger embodiment shown in FIG. 3 is removed. 1 is a basic heat exchange unit. The endless belt-shaped ring partition wall 1 shown in FIG. 1 is accommodated in a circular dish-shaped gasket 2, and the first and the second are respectively inside and outside the ring 1. The distribution paths 3 and 4 of the second heat exchange medium are secured. In addition, a plurality of bolt holes 12 are provided in the peripheral portion of the gasket 2, and the units separated by bolts are joined and tightened to bring the ring partition wall 1 and the gasket 2 into close contact with each other, thereby preventing the heat exchange medium from being mixed. is doing.

図には示してないが、ガスケット2表面に渦巻き状の凹部を設け、リング1をこの凹部内に配することにより、リング隔壁1とガスケット2との密着性を向上することができる。また、リング1とガスケット2との接触部に弾性緩衝部材を配することにより、密閉性をさらに確実にすることもできる。また、図11に示したように、リング隔壁1自体に凹凸を設けることにより表面積を拡大して、熱交換効率を向上することも可能である。  Although not shown in the drawing, the adhesiveness between the ring partition wall 1 and the gasket 2 can be improved by providing a spiral recess on the surface of the gasket 2 and arranging the ring 1 in the recess. Further, by providing an elastic buffer member at the contact portion between the ring 1 and the gasket 2, the sealing performance can be further ensured. In addition, as shown in FIG. 11, it is possible to increase the surface area by providing irregularities on the ring partition wall 1 itself to improve the heat exchange efficiency.

図2及び図3に示した本発明による積層型熱交換器のA−A’面での断面図を図5に示す。熱交換器内部は、水平方向にはリング隔壁1により仕切られた第1の熱交換媒体流通路(リング内側経路)7(白色空間)と第2の熱交換媒体流通路(リング外側経路)8(灰色空間)が交互に並んでおり、上下方向に見るとガスケット底面を挟んで基本熱交換ユニット11と底部熱交換ユニット31が合わせて4段積層された構成となっている。この実施例においては各熱交換ユニットを並列に接続した構成となっており、各流通経路の流入口部分には隣のユニットとの連絡口5A、6A、また各流出経路の流出口部分にも隣のユニットとの連絡口5B、6Bがそれぞれ設けてある。  FIG. 5 shows a cross-sectional view of the laminated heat exchanger according to the present invention shown in FIGS. In the heat exchanger, the first heat exchange medium flow path (ring inner path) 7 (white space) and the second heat exchange medium flow path (ring outer path) 8 partitioned by the ring partition wall 1 in the horizontal direction. (Gray spaces) are arranged alternately, and when viewed in the vertical direction, the basic heat exchange unit 11 and the bottom heat exchange unit 31 are stacked in four layers across the gasket bottom surface. In this embodiment, each heat exchanging unit is connected in parallel, and at the inlet portion of each distribution path, the communication ports 5A and 6A with the adjacent unit are also provided, and at the outlet portion of each outlet path. Connection ports 5B and 6B with adjacent units are provided.

図5から明らかなように、底部熱交換ユニット31は基本熱交換ユニットとほぼ同じ構造であるが、底面に熱交換媒体の流入口32及び流出口33が突出している点が異なる。図4に、底部熱交換ユニットの外観を示す。従って、第1の実施例では熱交換ユニット4段構成の例を示したが、最も基本的な構成としては、蓋ユニット21と底部熱交換ユニット31のみで熱交換器として機能できる。熱交換能力に応じて基本熱交換ユニット11の段数を調整できることが本発明の1つの特徴である。  As is clear from FIG. 5, the bottom heat exchange unit 31 has substantially the same structure as the basic heat exchange unit, except that a heat exchange medium inlet 32 and an outlet 33 protrude from the bottom. FIG. 4 shows the appearance of the bottom heat exchange unit. Therefore, in the first embodiment, an example of a four-stage heat exchange unit configuration is shown. However, as the most basic configuration, only the lid unit 21 and the bottom heat exchange unit 31 can function as a heat exchanger. One feature of the present invention is that the number of stages of the basic heat exchange unit 11 can be adjusted according to the heat exchange capability.

図7には、本発明による第2の熱交換器実施例を示す。この実施例の構成としては、基本的に第1の実施例と同じであるが、各熱交換ユニットのガスケット側面に第2の熱交換媒体の流出開口部を設けた点が異なる。図6に蓋ユニット21を取り除いた状態を示すが、各熱交換ユニットに熱交換媒体流出口35を設けたことにより、熱交換した媒体を異なった方向へ分配することが可能となる。図8には、この実施例の底面側外観を示すが、ガスケット側面に熱交換媒体流出口35を設けたことにより、底面には流入口32のみが設けてある。  FIG. 7 shows a second heat exchanger embodiment according to the present invention. The configuration of this embodiment is basically the same as that of the first embodiment, except that a second heat exchange medium outflow opening is provided on the gasket side surface of each heat exchange unit. FIG. 6 shows a state where the lid unit 21 is removed. By providing the heat exchange medium outlet 35 in each heat exchange unit, the heat exchanged medium can be distributed in different directions. FIG. 8 shows the bottom side appearance of this embodiment. By providing the heat exchange medium outlet 35 on the side of the gasket, only the inlet 32 is provided on the bottom.

図10には、第3の熱交換器実施例として、熱交換ユニット3段を直列に接続した構成を示した。この例では、各熱交換媒体は各ユニットの渦巻き状流通経路を通った後で次のユニットに流出するので、各熱交換媒体の連絡口5、6は各ユニットに1つずつとなる。  FIG. 10 shows a configuration in which three stages of heat exchange units are connected in series as a third heat exchanger embodiment. In this example, since each heat exchange medium flows out to the next unit after passing through the spiral flow path of each unit, there is one communication port 5, 6 for each heat exchange medium.

次に、本発明による熱交換器の熱交換メカニズムについて説明する。まず、図5に示した第1の熱交換器実施例についてであるが、第1の熱交換媒体は蓋ユニット21の流入口22より最初の熱交換ユニットに入り、渦巻き状流通経路を経て流出口23より外部に排出される。また、流入口22の反対側には連絡口5Aが形成されており、第2、第3及び底部の熱交換ユニットに順次接続されている。このため、流入した熱交換媒体は各熱交換ユニットに分配され、各渦巻き状流通経路を経た上で最外部に到達する。この最外部には流出用の連絡口5Bにより各ユニットが連絡されているため、この連絡口5Bに沿って最終的に流体流出口23に導かれる。第2の熱交換媒体についても、反対側から流入、流出する点以外は、上記第1の熱交換媒体と同様の経路を経る。この実施例では、各熱交換ユニットが並列に接続されるため、ユニットの段数を増やせば熱交換媒体の量を増加させることができる。ただし、その場合は、流入口、連絡口及び流出口のサイズを考慮する必要がある。また、図5から明らかなように、この実施例においては、各熱交換媒体の流入公と流出口は同じ側となる。  Next, the heat exchange mechanism of the heat exchanger according to the present invention will be described. First, as for the first heat exchanger embodiment shown in FIG. 5, the first heat exchange medium enters the first heat exchange unit from the inlet 22 of the lid unit 21 and flows through the spiral flow path. It is discharged from the outlet 23 to the outside. Further, a communication port 5A is formed on the opposite side of the inflow port 22, and is sequentially connected to the second, third and bottom heat exchange units. For this reason, the inflow heat exchange medium is distributed to each heat exchange unit and reaches the outermost part through each spiral flow path. Since each unit is connected to the outermost part through the communication port 5B for outflow, the unit is finally guided to the fluid outlet 23 along the communication port 5B. The second heat exchange medium also goes through the same path as the first heat exchange medium except that it flows in and out from the opposite side. In this embodiment, since the heat exchange units are connected in parallel, the amount of the heat exchange medium can be increased by increasing the number of units. However, in that case, it is necessary to consider the size of the inlet, the communication port, and the outlet. Further, as is apparent from FIG. 5, in this embodiment, the inlet and outlet of each heat exchange medium are on the same side.

次に、図10に示した第3の熱交換器実施例について熱交換メカニズムを説明する。この実施例の場合、第1の熱交換媒体は流入口22から導入され、全量が渦巻き状流通経路7を通して最外部に導かれ、連絡口5により次のユニットに流入する。この経過を繰り返して、最終的に流出口23から流出する。第2の熱交換媒体については、流通方向が逆になるだけで、原理は同じである。この実施例においては、各ユニットが直列に接続されるため、流量は制限されるがそれぞれの熱交換媒体同士の接触面積または接触時間が多くなるため、温度差が大きい媒体の熱交換に適している。また、この実施例では、熱交換媒体の流入と流出がそれぞれ反対方向となる。  Next, a heat exchange mechanism will be described for the third heat exchanger embodiment shown in FIG. In the case of this embodiment, the first heat exchange medium is introduced from the inflow port 22, the entire amount is guided to the outermost part through the spiral flow path 7, and flows into the next unit through the connection port 5. This process is repeated and finally flows out from the outlet 23. For the second heat exchange medium, the principle is the same, only the flow direction is reversed. In this embodiment, since each unit is connected in series, the flow rate is limited, but the contact area or contact time between the respective heat exchange media is increased, so that it is suitable for heat exchange of a medium having a large temperature difference. Yes. In this embodiment, the inflow and outflow of the heat exchange medium are in opposite directions.

本発明の無端ベルト状リングに用いる材料としては、熱伝導性を考慮すると金属が最も好ましいが、これに限定されるものではない。耐久性や使用する熱交換媒体の種類に応じて、適宜材料を選定することができる。また、本発明においては、熱交換は基本的に隔壁リング1により行うため、ガスケット2自体の熱伝導性は問題にならない。従って、隔壁リング1との密着性を考慮して材料を選定することが可能である。また、先に述べたように隔壁リング1とガスケット2との接触部に緩衝材を用いれば、ガスケット2も金属で構成することもでき、これにより熱交換効率がさらに向上できる。  The material used for the endless belt-like ring of the present invention is most preferably metal in consideration of thermal conductivity, but is not limited thereto. A material can be appropriately selected according to durability and the type of heat exchange medium to be used. In the present invention, heat exchange is basically performed by the partition ring 1, so that the thermal conductivity of the gasket 2 itself does not matter. Therefore, it is possible to select the material in consideration of the adhesion with the partition wall ring 1. Moreover, if a buffer material is used for the contact portion between the partition wall ring 1 and the gasket 2 as described above, the gasket 2 can also be made of metal, thereby further improving the heat exchange efficiency.

本発明による熱交換ユニットでは、良熱伝導性の無端ベルト状リングを渦巻き状に形成して熱伝導隔壁として使用するため、小さな熱交換器体積内において熱伝導面積を極めて大きくすることが可能となり、また無端ベルト状リングを使用するので熱交換媒体同士が混合する恐れがない。従って、製造が容易で小型かつ熱効率の高い熱交換器を提供することができ、小型熱交換器の性能向上に大いに寄与できる。  In the heat exchange unit according to the present invention, an endless belt-like ring having good heat conductivity is formed in a spiral shape and used as a heat conduction partition, so that the heat conduction area can be extremely increased in a small heat exchanger volume. Moreover, since an endless belt-like ring is used, there is no fear that the heat exchange media are mixed. Therefore, it is possible to provide a heat exchanger that is easy to manufacture, is small, and has high thermal efficiency, and can greatly contribute to improving the performance of the small heat exchanger.

本発明による無端ベルト状リングを渦巻き状に形成した熱交換用隔壁を示す斜視図である。It is a perspective view which shows the partition for heat exchange which formed the endless belt-shaped ring by this invention in the shape of a spiral. 本発明による無端ベルト状リング隔壁を使用した熱交換器第1の実施例の構造を示す斜視図である。It is a perspective view which shows the structure of the 1st Example of the heat exchanger using the endless belt-shaped ring partition wall by this invention. 図2に示した第1の実施例に蓋ユニットを載せた完成品の外観を示す斜視図である。It is a perspective view which shows the external appearance of the finished product which mounted the cover unit on the 1st Example shown in FIG. 図2に示した第1の実施例を裏側から見た斜視図である。It is the perspective view which looked at the 1st Example shown in FIG. 2 from the back side. 図2に示した第1の実施例に蓋ユニットを載せた完成品について、A−A’での断面を示す説明図である。It is explanatory drawing which shows the cross section in A-A 'about the finished product which mounted the lid unit in the 1st Example shown in FIG. 本発明による無端ベルト状リング隔壁を使用した熱交換器第2の実施例の構造を示す斜視図である。It is a perspective view which shows the structure of the 2nd Example of the heat exchanger using the endless belt-shaped ring partition wall by this invention. 図6に示した第2の実施例に蓋ユニットを載せた完成品の外観を示す斜視図である。It is a perspective view which shows the external appearance of the finished product which mounted the lid unit on the 2nd Example shown in FIG. 図6に示した第2の実施例を裏側から見た斜視図である。It is the perspective view which looked at the 2nd example shown in Drawing 6 from the back side. 本発明による無端ベルト状リング隔壁の加工前の形状を示す図である。It is a figure which shows the shape before the process of the endless belt-shaped ring partition wall by this invention. 本発明による無端ベルト状リング隔壁を使用した熱交換器第3の実施例の構造を示す断面図である。It is sectional drawing which shows the structure of the 3rd Example of the heat exchanger using the endless belt-shaped ring partition wall by this invention. 本発明による無端ベルト状リング隔壁の別の実施例を示す図である。It is a figure which shows another Example of the endless belt-shaped ring partition by this invention.

符号の説明Explanation of symbols

1 無端ベルト状リング隔壁
2 ガスケット
3 リング内側経路
4 リング外側経路
5 内側経路連絡口
5A 内側流入経路連絡口
5B 内側流出経路連絡口
6 外側経路連絡口
6A 外側流入経路連絡口
6B 外側流出経路連絡口
7 内側経路
8 外側経路
9 凹凸
11 基本熱交換ユニット
12 ネジ穴
21 蓋ユニット
22 流体流入口
23 流体流出口
24 ボルト
31 底部熱交換ユニット
32 流体流入口
33 流体流出口
34 ボルト穴
35 側面流体流出開口部
DESCRIPTION OF SYMBOLS 1 Endless belt-shaped ring partition wall 2 Gasket 3 Ring inner side path 4 Ring outer side path 5 Inner path connecting port 5A Inner inflow path connecting port 5B Inner outflow path connecting port 6 Outer path connecting port 6A Outer inflow path connecting port 6B Outer outflow path connecting port 7 Inner path 8 Outer path 9 Concavity and convexity 11 Basic heat exchange unit 12 Screw hole 21 Lid unit 22 Fluid inlet 23 Fluid outlet 24 Bolt 31 Bottom heat exchange unit 32 Fluid inlet 33 Fluid outlet 34 Bolt hole 35 Side fluid outlet opening Part

Claims (8)

良熱伝導性素材からなる無端ベルト状リングを渦巻き状に成形し、該リングの上下面をそれぞれガスケットにより密着保持することにより、該リングを隔壁として該リング内外に第1及び第2の熱交換媒体の流通経路を隣接確保したことを特徴とする熱交換器用熱交換ユニット。An endless belt-shaped ring made of a material with good heat conductivity is formed into a spiral shape, and the upper and lower surfaces of the ring are held in close contact with gaskets, whereby the first and second heat exchanges are performed inside and outside the ring with the ring as a partition. A heat exchanging unit for a heat exchanger characterized in that a distribution path of a medium is secured adjacently. 前記ガスケット面に渦巻き状の凹部を設け、前記リングを該凹部内に配したことを特徴とする請求項1記載の熱交換器用熱交換ユニット。The heat exchange unit for a heat exchanger according to claim 1, wherein a spiral recess is provided on the gasket surface, and the ring is disposed in the recess. 前記リングと前記ガスケットとの接触部に弾性緩衝部材を配したことを特徴とする請求項1または2記載の熱交換器用熱交換ユニット。The heat exchange unit for a heat exchanger according to claim 1 or 2, wherein an elastic buffer member is disposed at a contact portion between the ring and the gasket. 請求項1乃至3のいずれかに記載の熱交換ユニットを使用し、渦巻き状に成形した前記リング内側の流通経路両端部近傍、並びに前記リング外側の流通経路にそれぞれ、流体の流入口及び流出口を設けたことを特徴とする熱交換器。A fluid inlet and outlet of the fluid inside the ring inside the ring and in the vicinity of both ends of the ring, which are formed in a spiral shape using the heat exchange unit according to any one of claims 1 to 3, respectively. The heat exchanger characterized by providing. 請求項1乃至3のいずれかに記載の熱交換ユニットを複数積層し、各ユニット間を連結する流体流入口及び流出口を設けたことを特徴とする請求項4記載の熱交換器。A heat exchanger according to claim 4, wherein a plurality of heat exchange units according to any one of claims 1 to 3 are stacked, and a fluid inflow port and an outflow port for connecting the units are provided. 前記各熱交換ユニットが流体の流れに関して並列接続されていることを特徴とする請求項5記載の熱交換器。6. The heat exchanger according to claim 5, wherein the heat exchange units are connected in parallel with respect to a fluid flow. 前記各熱交換ユニットが流体の流れに関して直列接続されていることを特徴とする請求項5記載の熱交換器。6. The heat exchanger according to claim 5, wherein each of the heat exchange units is connected in series with respect to a fluid flow. 前記渦巻き状リング外側の流体流入口または流出口のいずれかが、前記ガスケットの側面に開口していることを特徴とする請求項4乃至7のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 4 to 7, wherein either the fluid inlet or the outlet outside the spiral ring is open to a side surface of the gasket.
JP2008138709A 2008-04-25 2008-04-25 Heat exchange unit and heat exchanger using the same Active JP5105183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138709A JP5105183B2 (en) 2008-04-25 2008-04-25 Heat exchange unit and heat exchanger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138709A JP5105183B2 (en) 2008-04-25 2008-04-25 Heat exchange unit and heat exchanger using the same

Publications (2)

Publication Number Publication Date
JP2009264727A JP2009264727A (en) 2009-11-12
JP5105183B2 true JP5105183B2 (en) 2012-12-19

Family

ID=41390786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138709A Active JP5105183B2 (en) 2008-04-25 2008-04-25 Heat exchange unit and heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP5105183B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201607329YA (en) * 2014-03-05 2016-10-28 Chugoku Electric Power Heat exchanger and method for manufacturing heat exchanger
CN106979710B (en) * 2017-05-12 2022-08-02 安徽工业大学 Heat exchanger of modularly assembled rolling plate heat exchange body and heat exchange method
CN107131778A (en) * 2017-06-28 2017-09-05 石家庄吉瑞节能技术有限公司 Stacked spiral shell disk heat exchanger
CN113959236B (en) * 2021-11-22 2024-01-26 江苏科技大学 Annular steam condenser suitable for deep sea high pressure and working method thereof
CN115307467B (en) * 2022-10-12 2023-01-20 中国核动力研究设计院 Heat exchange piece and heat exchange device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626792B2 (en) * 1973-04-12 1981-06-20
JPS53128046A (en) * 1977-04-14 1978-11-08 Hisaka Works Ltd Spiral type heat exchanger
JPS5682384A (en) * 1979-12-11 1981-07-06 Toshiba Corp Countercurrent type heat exchanger
JP2001038198A (en) * 1999-08-03 2001-02-13 Akio Takaku Fluid flow separation device

Also Published As

Publication number Publication date
JP2009264727A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4127859B2 (en) Plate heat exchanger for three heat exchange fluids
US10724806B2 (en) Disk bundle type heat-exchanger
US8794303B2 (en) Plate laminate type heat exchanger
KR100232436B1 (en) Plate heat exchanger
JP6126358B2 (en) Multi-plate oil cooler
JP5882179B2 (en) Internal heat exchanger with external manifold
JP5105183B2 (en) Heat exchange unit and heat exchanger using the same
KR20100102613A (en) Heat exchanger
WO2009080564A2 (en) Heat exchanger
JP6121550B2 (en) Plate heat exchanger plate and plate heat exchanger
JP2012512382A (en) Plates and gaskets for plate heat exchangers
KR20150006013A (en) Plate heat exchanger
EP2594884A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
JP2007532852A (en) Plate heat exchanger
JP2006010130A (en) Multi-fluid heat exchanger
KR20110083751A (en) Heat exchanger
US20070235174A1 (en) Heat exchanger
US20070151717A1 (en) Heat exchange plate
JP5393606B2 (en) Heat exchanger
JP2010060168A (en) Oil cooler
CA2861234C (en) Plate heat exchanger with improved strength in port area
JP4519437B2 (en) Joined plate heat exchanger
JP4874365B2 (en) Plate heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP4317983B2 (en) Plate type heat exchanger
CN203744779U (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5105183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250