[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5193957B2 - Organic EL device and manufacturing method thereof - Google Patents

Organic EL device and manufacturing method thereof Download PDF

Info

Publication number
JP5193957B2
JP5193957B2 JP2009143395A JP2009143395A JP5193957B2 JP 5193957 B2 JP5193957 B2 JP 5193957B2 JP 2009143395 A JP2009143395 A JP 2009143395A JP 2009143395 A JP2009143395 A JP 2009143395A JP 5193957 B2 JP5193957 B2 JP 5193957B2
Authority
JP
Japan
Prior art keywords
electrode
organic
organic layer
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009143395A
Other languages
Japanese (ja)
Other versions
JP2011003592A (en
Inventor
浩一 森
秀幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2009143395A priority Critical patent/JP5193957B2/en
Publication of JP2011003592A publication Critical patent/JP2011003592A/en
Application granted granted Critical
Publication of JP5193957B2 publication Critical patent/JP5193957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機層が一対の電極に挟まれ、電極の一辺から給電が行われる有機EL素子及びその製造方法に関する。     The present invention relates to an organic EL element in which an organic layer is sandwiched between a pair of electrodes and power is supplied from one side of the electrode, and a method for manufacturing the same.

一般に、有機EL(エレクトロルミネッセンス)素子は、基板上に形成された陽極電極上に、有機発光層、陰極電極が積層される。有機発光層で発生した光を取り出すために、電極の一方は、透明な材料で構成される。また、電極に接続される配線が発光領域を遮らないようにし、外部駆動回路との接続を容易にするために、特許文献1や2に示されるように、端子部(給電部)を電極の一辺に設けた構成が提案されている。   In general, in an organic EL (electroluminescence) element, an organic light emitting layer and a cathode electrode are laminated on an anode electrode formed on a substrate. In order to extract the light generated in the organic light emitting layer, one of the electrodes is made of a transparent material. Further, in order to prevent the wiring connected to the electrode from blocking the light emitting region and to facilitate the connection with the external drive circuit, as shown in Patent Documents 1 and 2, the terminal part (feeding part) is connected to the electrode. A configuration provided on one side has been proposed.

ところで、有機発光層を基準にして少なくとも一方の電極側から光を取り出す必要がある。したがって、光取り出し側に設けられる電極は、他方の電極と比較して、体積抵抗率の高い物質で構成されている。このため、端子部を電極の一辺に形成すると、体積抵抗率の高い物質で構成された電極から有機発光層を介し他方の電極に至る電流経路は、体積抵抗率の高い物質で構成された電極の端子に近いか、遠いかで抵抗値が大きく異なることになる。   By the way, it is necessary to extract light from at least one of the electrodes with reference to the organic light emitting layer. Therefore, the electrode provided on the light extraction side is made of a material having a higher volume resistivity than the other electrode. For this reason, when the terminal portion is formed on one side of the electrode, the current path from the electrode made of a material having a high volume resistivity to the other electrode through the organic light emitting layer is an electrode made of a material having a high volume resistivity. The resistance value varies greatly depending on whether it is near or far from the terminal.

例えば、有機EL素子の陽極側を光取り出し面とした場合、陽極の端子に近い箇所から有機発光層を介して陰極へ流れる電流経路は抵抗値が小さくなる。一方、陽極の端子とは遠い箇所から有機発光層を介して陰極へ流れる電流経路は抵抗値が大きくなる。このため、駆動電力がある値以上になると、陽極の端子近傍付近は明るく、陽極の端子から遠い場所では暗くなり、輝度むらが生じる。   For example, when the anode side of the organic EL element is the light extraction surface, the resistance value of the current path flowing from the portion close to the anode terminal to the cathode through the organic light emitting layer is small. On the other hand, the resistance value of a current path that flows from a location far from the terminal of the anode to the cathode via the organic light emitting layer increases. For this reason, when the driving power exceeds a certain value, the vicinity of the anode terminal is bright, and the area near the anode terminal is dark, resulting in uneven brightness.

この結果、発光領域全面を高輝度で発光させることができない。また、不均一な輝度分布となるので、発光素子として使用できない場合があった。また、電流が多く流れる箇所と少し流れる箇所とでは寿命が異なり、素子の発光領域内で寿命差が発生する。電流の多い箇所は寿命が短くなるので、電流が均一に流れる素子と比べると、陽極の端子近傍の有機発光層に負荷が多くかかることにより、陽極の端子近傍の劣化が他の部分より早く進行する等の問題があった。   As a result, the entire light emitting region cannot emit light with high brightness. In addition, since the luminance distribution is not uniform, it may not be used as a light emitting element. In addition, the lifetime differs between a location where a large amount of current flows and a location where a small amount of current flows, and a lifetime difference occurs in the light emitting region of the element. Because the life is shortened in the part where the current is large, the organic light-emitting layer near the anode terminal is heavily loaded compared to the element in which the current flows uniformly, so the deterioration near the anode terminal progresses faster than the other parts. There was a problem such as.

以上のような問題を解決するために、特許文献3に示されるように、体積抵抗率の高い物質で構成された陽極の端子部近傍の有機EL層の膜厚を厚くし、陽極の端子部から遠い中央部になるほど有機EL層の膜厚を薄くし、凹面形状に形成した有機EL素子が提案されている。陽極端子部近傍の有機EL層の膜厚を中央部よりも厚くし、陽極端子部近傍の有機EL層の抵抗を高くして、発光領域の輝度が均一になるようにしている。   In order to solve the above problems, as shown in Patent Document 3, the thickness of the organic EL layer in the vicinity of the terminal portion of the anode made of a material having a high volume resistivity is increased, and the terminal portion of the anode There has been proposed an organic EL element in which the thickness of the organic EL layer is made thinner toward the center farther from the substrate and formed into a concave shape. The film thickness of the organic EL layer in the vicinity of the anode terminal portion is made thicker than that in the central portion, and the resistance of the organic EL layer in the vicinity of the anode terminal portion is increased so that the luminance of the light emitting region becomes uniform.

特開2005−100904号公報Japanese Patent Laid-Open No. 2005-100904 特開2005−100916号公報JP-A-2005-100916 特開平11−40362号公報Japanese Patent Laid-Open No. 11-40362

しかしながら、有機EL層の膜厚を変化させて高抵抗化させる場合は、陽極端子部側に近づくにつれて、膜厚を相当厚くしないと、各電流経路での抵抗値が均一にならない。また、有機EL層が凹面状に形成され、その曲率が大きくなると、有機EL層上に積層される電極の断線が発生しやすくなる。   However, when the resistance is increased by changing the film thickness of the organic EL layer, the resistance value in each current path is not uniform unless the film thickness is considerably increased as it approaches the anode terminal portion side. Further, when the organic EL layer is formed in a concave shape and the curvature thereof is increased, disconnection of the electrode laminated on the organic EL layer is likely to occur.

有機EL層の膜厚を中央部と陽極端子部近傍とで変化させると、有機EL層が発光したときに光の干渉により、中央部と陽極端子部近傍とで発光色が大きく異なる可能性がある。このために、光の干渉が行われない構造を付加しなければならず、高度な素子設計が必要となるという問題があった。   If the film thickness of the organic EL layer is changed between the central portion and the vicinity of the anode terminal portion, the emission color may be greatly different between the central portion and the vicinity of the anode terminal portion due to light interference when the organic EL layer emits light. is there. For this reason, there has been a problem that a structure that does not interfere with light has to be added, and an advanced element design is required.

また、有機EL層の膜厚を陽極端子部側に近づくほどに、厚く形成するためには、例えば、特許文献3に示されるような複雑なマスクを用意し、必要とする膜厚の程度や傾斜に応じてマスクの各部の寸法を設計し直す必要があり、手間がかかり、コストも高くついていた。   Moreover, in order to form the organic EL layer thicker as it approaches the anode terminal side, for example, a complicated mask as shown in Patent Document 3 is prepared, It was necessary to redesign the dimensions of each part of the mask according to the inclination, which was troublesome and costly.

本発明は、上述した課題を解決するために創案されたものであり、有機EL素子の発光領域の輝度むらや電極の給電部近傍の有機層の劣化を防ぎ、電極の断線や発光の干渉を防ぐとともに、複雑なマスクを用いずとも形成することができる有機EL素子及びその製造方法を提供することを目的としている。   The present invention was devised to solve the above-described problems, and prevents luminance unevenness in the light emitting region of the organic EL element and deterioration of the organic layer in the vicinity of the power feeding portion of the electrode, thereby preventing electrode disconnection and light emission interference. An object of the present invention is to provide an organic EL element that can be formed without using a complicated mask and a method for manufacturing the same.

上記目的を達成するために、本発明の有機EL素子は、第1の電極と、前記第1の電極よりも体積抵抗率の高い第2の電極と、前記第1の電極と第2の電極に挟まれた有機層と、前記第2の電極の一辺に電力を供給するために設けられた給電部とを備え、前記有機層に紫外光照射を行うことにより、前記給電部近傍の有機層領域の抵抗値を、該有機層領域よりも遠くに位置する有機層の抵抗値よりも高くしたことを主要な特徴とする。   In order to achieve the above object, an organic EL device of the present invention includes a first electrode, a second electrode having a volume resistivity higher than that of the first electrode, the first electrode, and the second electrode. And an organic layer in the vicinity of the power supply unit by irradiating the organic layer with ultraviolet light, and an organic layer sandwiched between the organic layer and a power supply unit provided to supply power to one side of the second electrode. The main feature is that the resistance value of the region is higher than the resistance value of the organic layer located farther than the organic layer region.

また、本発明の有機EL素子の製造方法は、第1の電極と、前記第1の電極よりも体積抵抗率が高く光取り出し側となる第2の電極と、前記第1の電極と第2の電極に挟まれた有機層と、第2の電極の一辺に電力を供給するために設けられた給電部とを備え、前記第2の電極の裏面から見た場合、前記第2の電極の給電部近傍の有機層領域が隠れないように前記第2の電極の裏面を紫外光を遮る遮光マスクで覆う第1工程と、前記第1工程後に前記遮光マスクの後方から前記遮光マスク及び第2の電極の方向に向けて紫外光を照射する第2工程を備えていることを主要な特徴とする。   Moreover, the manufacturing method of the organic EL element of the present invention includes a first electrode, a second electrode having a volume resistivity higher than that of the first electrode and on the light extraction side, the first electrode, and the second electrode. An organic layer sandwiched between the electrodes of the second electrode and a power supply unit provided to supply power to one side of the second electrode, and when viewed from the back surface of the second electrode, A first step of covering the back surface of the second electrode with a light shielding mask that blocks ultraviolet light so that the organic layer region in the vicinity of the power feeding portion is not hidden, and the light shielding mask and the second from the rear of the light shielding mask after the first step. The main feature is that it includes a second step of irradiating ultraviolet light toward the electrode.

本発明の有機EL素子は、第1の電極と、前記第1の電極よりも体積抵抗率の高い第2の電極と、前記第1の電極と第2の電極に挟まれた有機層と、第2の電極の一辺に電力を供給するために設けられた給電部とを備えており、前記有機層に紫外光照射を行うことにより、前記給電部に近い有機層の抵抗値を、これより遠い有機層の抵抗値よりも高く構成している。このように、紫外光を用いることで、有機層の膜厚を変化させずに、抵抗値を変化させることができるので、電極の断線や発光の干渉を防ぐことができるとともに、複雑なマスクを用いずとも高抵抗化領域を形成することができる。   The organic EL element of the present invention includes a first electrode, a second electrode having a higher volume resistivity than the first electrode, an organic layer sandwiched between the first electrode and the second electrode, A power supply unit provided to supply power to one side of the second electrode, and by irradiating the organic layer with ultraviolet light, the resistance value of the organic layer close to the power supply unit is It is configured to be higher than the resistance value of the distant organic layer. In this way, by using ultraviolet light, the resistance value can be changed without changing the film thickness of the organic layer, so that disconnection of electrodes and interference of light emission can be prevented and a complicated mask can be formed. A high resistance region can be formed without using it.

また、有機EL素子を完成させた後や、この有機EL素子をパッケージ化して有機EL装置として完成させた後でも、紫外光照射により、簡単な工程で有機層の領域毎に抵抗値を変化させることができるので、非常に生産効率が上がる。   In addition, even after the organic EL element is completed or after the organic EL element is packaged and completed as an organic EL device, the resistance value is changed for each region of the organic layer by ultraviolet light irradiation by a simple process. Can increase production efficiency.

本発明の有機EL素子の構成例を示す平面図である。It is a top view which shows the structural example of the organic EL element of this invention. 図1のA−A断面、B−B断面を示す図である。It is a figure which shows the AA cross section of FIG. 1, and a BB cross section. 本発明の有機EL素子を用いた有機EL装置の概観を示す図である。It is a figure which shows the general view of the organic electroluminescent apparatus using the organic electroluminescent element of this invention. 図3のC−C断面を示す図である。It is a figure which shows CC cross section of FIG. 本発明の有機EL素子の他の構成例を示す平面図と断面図である。It is the top view and sectional drawing which show the other structural example of the organic EL element of this invention. 有機EL装置を用いて紫外光照射による高抵抗化処理を行う工程図である。It is process drawing which performs the resistance increase process by ultraviolet light irradiation using an organic EL apparatus. 遮光マスクと発光領域との関係を示す図である。It is a figure which shows the relationship between a light shielding mask and a light emission area | region. 遮光マスクの構成例を示す図である。It is a figure which shows the structural example of a light shielding mask. 遮光マスクの端の位置と紫外光照射量と発光領域の輝度分布との関係を示す図である。It is a figure which shows the relationship between the edge position of a light shielding mask, ultraviolet light irradiation amount, and the luminance distribution of a light emission area | region.

以下、図面を参照して本発明の一実施形態を説明する。図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The drawings are schematic and different from the actual ones. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.

まず、本発明の有機EL素子10の一例として、陽極と有機層と陰極で構成された素子の断面図を図2(a)、(b)に示す。一方、図1は、本発明の有機EL素子10を上面から見た平面図であり、図1のA−A断面が図2(a)を、図1のB−B断面が図2(b)を示す。   First, as an example of the organic EL element 10 of the present invention, cross-sectional views of an element composed of an anode, an organic layer, and a cathode are shown in FIGS. On the other hand, FIG. 1 is a plan view of the organic EL element 10 of the present invention as viewed from above, and the AA cross section of FIG. 1 is FIG. 2A, and the BB cross section of FIG. ).

陽極1の上に有機層2が積層されており、有機層2上には陰極3が形成されている。陽極1と陰極3とで有機層2を挟んだ構造となっている。陽極1は、陽極の一辺に設けられた給電部1aと電極領域1bとで構成されている。給電部1aは、外部から有機層2に電力を供給するための接続端子に相当するものであり、電極領域1bは有機層2に接した領域であり、発光領域に相当する。陰極3は、陰極の一辺に設けられた給電部3aと電極領域3bとで構成されている。給電部3aは、外部から有機層2に電力を供給するための接続端子に相当するものであり、電極領域3bは有機層2に接した領域であり、発光領域に相当する。   An organic layer 2 is laminated on the anode 1, and a cathode 3 is formed on the organic layer 2. The organic layer 2 is sandwiched between the anode 1 and the cathode 3. The anode 1 includes a power feeding portion 1a and an electrode region 1b provided on one side of the anode. The power feeding unit 1a corresponds to a connection terminal for supplying power to the organic layer 2 from the outside, and the electrode region 1b is a region in contact with the organic layer 2 and corresponds to a light emitting region. The cathode 3 includes a power feeding portion 3a and an electrode region 3b provided on one side of the cathode. The power feeding unit 3a corresponds to a connection terminal for supplying power to the organic layer 2 from the outside, and the electrode region 3b is a region in contact with the organic layer 2 and corresponds to a light emitting region.

ここで、陽極1は有機層2に正孔を注入する電極であり、本実施例では、陽極1側に光を取り出すようにしている。陽極1は可視光及び紫外光を含む光に対して透明になるように、ITO、IZO、酸化スズ、酸化亜鉛、窒化チタン等の金属酸化物や金属窒化物等が用いられる。他方、陰極3側に光を取り出すようにする場合には、陽極1には、光を反射する材料が用いられ、AlやNi、Ti等の金属やこれらの合金などが用いられる。   Here, the anode 1 is an electrode for injecting holes into the organic layer 2. In this embodiment, light is extracted to the anode 1 side. The anode 1 is made of a metal oxide such as ITO, IZO, tin oxide, zinc oxide, or titanium nitride, or a metal nitride so as to be transparent to light including visible light and ultraviolet light. On the other hand, when light is extracted to the cathode 3 side, a material that reflects light is used for the anode 1, and metals such as Al, Ni, Ti, and alloys thereof are used.

一方、陰極3は、有機層2に電子を注入する電極であり、また、光を反射させて光取り出し側の陽極に導くために、Al、Li、Mg、Ag等の金属が用いられる。また、陰極3側に光を取り出す場合には、Mg−銀等の薄膜合金に透明な導電性酸化物を積層した電極等が用いられる。   On the other hand, the cathode 3 is an electrode for injecting electrons into the organic layer 2, and a metal such as Al, Li, Mg, or Ag is used to reflect light and guide it to the anode on the light extraction side. Moreover, when taking out light to the cathode 3 side, the electrode etc. which laminated | stacked the transparent conductive oxide on thin film alloys, such as Mg-silver, are used.

有機層2は、通常、有機発光層を含む有機層の積層体で構成される。陽極1の体積抵抗率が陰極3よりも非常に大きいために、図2(a)の破線の矢印で示されるように、給電部1aから供給された電流は、電極領域1b内を進むにしたがって、電流量が減少していく。このため、従来では陽極の給電部に近い有機層では、大きな電流が流れ、給電部から遠い箇所、すなわち有機層の中央部では小さな電流が流れていた。   The organic layer 2 is usually composed of a laminate of organic layers including an organic light emitting layer. Since the volume resistivity of the anode 1 is much larger than that of the cathode 3, the current supplied from the power feeding portion 1 a progresses in the electrode region 1 b as shown by the broken arrow in FIG. The amount of current decreases. For this reason, conventionally, a large current flows in the organic layer close to the power feeding portion of the anode, and a small current flows in a portion far from the power feeding portion, that is, the central portion of the organic layer.

本発明では、有機層2において、体積抵抗率の高い陽極1の給電部1aの端に最も近いP2領域(図の斜線部分)の抵抗値を最も高く形成し、有機層2の中央部P1領域(図の斜線部分)の抵抗を最も低く形成した。また、P1とP2との間の領域は、有機層2の抵抗値に傾斜をつけるようした。以上のように構成することにより、P1領域の有機層からP2領域の有機層に進むにしたがって、順に抵抗値が高くなり、電流が流れにくくなる。このため、電極領域1b内の中央部分(P1の位置に相当)に到達する電流量を増やし、かつ陽極1から有機層2の各領域を介して陰極3に流れる電流を、ほぼ等しくすることができる。   In the present invention, in the organic layer 2, the resistance value of the P2 region (shaded portion in the drawing) closest to the end of the power feeding portion 1a of the anode 1 having a high volume resistivity is formed highest, and the central portion P1 region of the organic layer 2 is formed. The resistance in the shaded area in the figure was formed to be the lowest. Further, the resistance value of the organic layer 2 is inclined in the region between P1 and P2. By configuring as described above, the resistance value increases in order as the organic layer in the P1 region progresses to the organic layer in the P2 region, and current hardly flows. For this reason, the amount of current reaching the central portion (corresponding to the position of P1) in the electrode region 1b is increased, and the current flowing from the anode 1 to the cathode 3 through each region of the organic layer 2 can be made substantially equal. it can.

本発明では、有機層2の膜厚や材料を変更せずに、有機層2の各部の抵抗値を変化させるために、紫外光照射(UV照射)を用いた。紫外光を有機層2に照射すると、特に有機層2の上層が変質し、抵抗値が上がる。また、紫外光の照射量が多いほど、高抵抗化する。   In the present invention, ultraviolet light irradiation (UV irradiation) is used to change the resistance value of each part of the organic layer 2 without changing the film thickness or material of the organic layer 2. When the organic layer 2 is irradiated with ultraviolet light, the upper layer of the organic layer 2 is particularly altered and the resistance value is increased. Further, the higher the ultraviolet light irradiation amount, the higher the resistance.

この作用を用いて、以下のように、有機EL素子を作製した。まず、有機EL素子をパッケージ化して有機ELデバイスの最終的な製品形態にまで形成しておく。例えば、図3に示すように、有機EL素子を収める筐体として、矩形状の基板21と中空の封し缶22を用いた有機EL装置とすることができる。   Using this action, an organic EL element was produced as follows. First, the organic EL element is packaged and formed into a final product form of the organic EL device. For example, as shown in FIG. 3, an organic EL device using a rectangular substrate 21 and a hollow sealed can 22 can be used as a housing that houses an organic EL element.

図3のC−C断面を図4に示す。基板21上に、矩形状の有機EL素子10が配置されており、有機EL素子10を完全に内包するように、封し缶22が被せられている。封し缶22の内側には、湿気等を吸収するように乾燥剤23が設けられている。基板21は、有機EL素子10で発光した光を取り出すために、紫外光を含む光を透過させる材料で構成されており、例えば、ガラスやプラスチック等で構成される。また、封し缶22には、ガラスや金属等を用いることができる。   A CC cross section of FIG. 3 is shown in FIG. A rectangular organic EL element 10 is disposed on the substrate 21, and a sealing can 22 is covered so as to completely enclose the organic EL element 10. A desiccant 23 is provided inside the sealed can 22 so as to absorb moisture and the like. The substrate 21 is made of a material that transmits light including ultraviolet light in order to extract light emitted from the organic EL element 10, and is made of, for example, glass or plastic. Moreover, glass, metal, etc. can be used for the sealing can 22.

有機EL素子10は、上述した図1、2の構成を備えている。具体的には、陽極1にはITOを、陰極3にはAlを用いた。また、有機層2の積層体の構成は、陽極1上に青色発光積層体と赤色発光積層体を順に2ユニット積層し、白色素子とした。まず青色発光積層体は、正孔輸送層として膜厚50nmのα−NPD層を、発光層として膜厚30nmでDPVBiにBCzVBiを10Wt%ドープした層を、電子輸送層として膜厚40nmのアルミニウム錯体(Alq)層を、電子注入層として膜厚1nmのリチウム錯体(Liq)層を順に積層したものを用いた。次に中間電極として膜厚1nmのAlを積層し、赤色発光積層体を積層した。   The organic EL element 10 has the configuration shown in FIGS. Specifically, ITO was used for the anode 1 and Al was used for the cathode 3. In addition, the laminate of the organic layer 2 was formed by stacking two units of a blue light emitting laminate and a red light emitting laminate in order on the anode 1 to obtain a white element. First, the blue light-emitting laminate includes an α-NPD layer having a thickness of 50 nm as a hole transport layer, a layer having a thickness of 30 nm as a light-emitting layer and a DPVBi doped with 10 Wt% BCzVBi, and an aluminum complex having a thickness of 40 nm as an electron transport layer. As the (Alq) layer, a layer in which a lithium complex (Liq) layer having a thickness of 1 nm was sequentially stacked as an electron injection layer was used. Next, Al having a thickness of 1 nm was laminated as an intermediate electrode, and a red light emitting laminate was laminated.

中間電極の膜厚を上記のように薄く作製することにより、赤色発光積層体で発光した赤色光を陽極1側に透過させることができる。赤色発光積層体は、正孔輸送層として膜厚50nmのα−NPD層を、発光層として膜厚30nmでAlqにDCMを5Wt%ドープした層を、電子輸送層として膜厚40nmのAlq層を、電子注入層として膜厚1nmのLiq層を積層したものを用いた。最後に陰極3として膜厚100nmのAlを積層した。   By making the thickness of the intermediate electrode thin as described above, the red light emitted from the red light emitting laminate can be transmitted to the anode 1 side. The red light-emitting laminate has a 50 nm-thick α-NPD layer as a hole transport layer, a 30 nm-thick Alq layer doped with 5 Wt% DCM as a light-emitting layer, and a 40 nm-thick Alq layer as an electron transport layer. A layer in which a Liq layer having a thickness of 1 nm is stacked is used as the electron injection layer. Finally, 100 nm-thick Al was laminated as the cathode 3.

図1の有機EL素子10全体の大きさ又は陽極1の大きさは、約150mm×150mmとなるように形成し、電極領域1b、3bに相当する発光領域の大きさは、約130mm×130mmとなるように形成した。   The total size of the organic EL element 10 in FIG. 1 or the size of the anode 1 is formed to be about 150 mm × 150 mm, and the size of the light emitting region corresponding to the electrode regions 1b and 3b is about 130 mm × 130 mm. It formed so that it might become.

なお、有機EL素子10は、例えば、図5のように構成することもできる。図1、2では陽極1の給電部1aが、矩形状の陽極1の両端に設けられていたが、図5の実施例では、一方だけに設けるようにした。他方、陰極3についても、給電部3aを一方だけに設けるようにした。給電部1aと給電部3aは有機EL素子の両端に形成されており、対向している。   The organic EL element 10 can also be configured as shown in FIG. 5, for example. 1 and 2, the power feeding portion 1 a of the anode 1 is provided at both ends of the rectangular anode 1, but in the embodiment of FIG. 5, it is provided only at one side. On the other hand, the cathode 3 is provided with the power feeding part 3a only on one side. The power feeding unit 1a and the power feeding unit 3a are formed at both ends of the organic EL element and face each other.

ここで、体積抵抗率の高い陽極1の給電部1aの端に最も近い有機層領域の抵抗値が最も高く形成され、陰極3の給電部3aの端に最も近い有機層領域の抵抗値が最も低く形成され、これらの領域の間は、有機層2の抵抗値に傾斜をつけるよう構成されている。このため、図5(b)の破線の矢印で示されるように、給電部1aから供給された電流は、電極領域1b内を進むにしたがって電流量が減少していくが、電極領域1b内の端部に到達する電流量を増やし、かつ陽極1から有機層2の各領域を介して陰極3に流れる電流を、ほぼ等しくすることができる。   Here, the resistance value of the organic layer region closest to the end of the power feeding portion 1a of the anode 1 having a high volume resistivity is formed highest, and the resistance value of the organic layer region closest to the end of the power feeding portion 3a of the cathode 3 is the highest. It is formed low, and the resistance value of the organic layer 2 is inclined between these regions. For this reason, as indicated by the broken-line arrow in FIG. 5B, the amount of current supplied from the power feeding unit 1a decreases as it travels through the electrode region 1b. The amount of current reaching the end portion can be increased, and the current flowing from the anode 1 to the cathode 3 through each region of the organic layer 2 can be made substantially equal.

図6は、図4のように構成されたデバイスに、遮光マスクを配置した構成を示す。図6に示されるように、遮光マスク30は、基板21の裏面に配置される。遮光マスク30は、少なくとも紫外光を透過させない材料で構成され、例えばSUS製のマスクが用いられる。図6における有機EL素子10、陽極1、遮光マスク30等の配置関係について、遮光マスク30側から見た平面図を示すのが、図7である。わかりやすように、遮光マスク30と陽極1と有機EL素子10の関係のみを示すようにしている。   FIG. 6 shows a configuration in which a light shielding mask is arranged on the device configured as shown in FIG. As shown in FIG. 6, the light shielding mask 30 is disposed on the back surface of the substrate 21. The light shielding mask 30 is made of a material that does not transmit at least ultraviolet light, and for example, a SUS mask is used. FIG. 7 shows a plan view of the arrangement relationship of the organic EL element 10, the anode 1, the light shielding mask 30, and the like in FIG. 6 viewed from the light shielding mask 30 side. For the sake of clarity, only the relationship among the light shielding mask 30, the anode 1, and the organic EL element 10 is shown.

図7で、網掛をした領域が遮光マスク30が配置されている領域である。この図からわかるように、遮光マスク30は、陽極1の裏面を覆っており、陽極1の給電部1a間の長さよりも短い幅のマスクで構成される。また、遮光マスク30の中央と給電部1a間の中央とを一致させて配置されている。遮光マスク30の給電部1aに沿った方向の長さ(図7では縦方向)は、少なくとも発光領域をすべて覆う長さ、すなわち電極領域1bの縦方向の長さ分だけ必要である。図7では、発光領域よりも長く形成されている。   In FIG. 7, the shaded area is an area where the light shielding mask 30 is arranged. As can be seen from this figure, the light shielding mask 30 covers the back surface of the anode 1 and is composed of a mask having a width shorter than the length between the power feeding portions 1 a of the anode 1. The center of the light shielding mask 30 and the center of the power feeding unit 1a are arranged to coincide with each other. The length of the light shielding mask 30 in the direction along the power feeding portion 1a (vertical direction in FIG. 7) is required to be at least the length covering the entire light emitting region, that is, the length in the vertical direction of the electrode region 1b. In FIG. 7, it is formed longer than the light emitting region.

上記のように、遮光マスク30を配置すると、有機EL素子10の有機層2において、遮光マスク30で覆われない領域が発生する。この領域を10aとすると、給電部1a近傍の有機層領域に相当する。図6のように遮光マスク30の後方から紫外光を遮光マスク30側に照射した場合、10aの領域は紫外光が遮られずに、そのまま照射されて高抵抗化する。有機層2における10aの領域を高抵抗化領域と呼ぶことにする。ここで、高抵抗化領域10aは、紫外光の照射光量(J/cm)が多いほど、高抵抗となる。そこで、大きさを変えた遮光マスク30をいくつか用意し、これを順次大きいものから小さいものへと交換しながら、その都度紫外光を一定量照射すれば、有機層2の抵抗値に傾斜がつくことになる。 As described above, when the light shielding mask 30 is disposed, a region that is not covered with the light shielding mask 30 is generated in the organic layer 2 of the organic EL element 10. When this region is 10a, it corresponds to an organic layer region in the vicinity of the power feeding portion 1a. As shown in FIG. 6, when the ultraviolet light is irradiated from the rear side of the light shielding mask 30 to the light shielding mask 30 side, the region 10a is irradiated as it is without being blocked by the ultraviolet light, and the resistance is increased. The region 10a in the organic layer 2 is referred to as a high resistance region. Here, the higher resistance region 10a has higher resistance as the amount of ultraviolet light irradiation (J / cm 2 ) is larger. Therefore, by preparing several shading masks 30 of different sizes and sequentially changing them from a larger one to a smaller one and irradiating a certain amount of ultraviolet light each time, the resistance value of the organic layer 2 is inclined. I will make it.

例えば、図8に示されるような、遮光マスク30を用意する。これは、遮光マスク30の横方向の幅、すなわち陽極1の給電部1a間の長さ方向だけが異なるマスクを何種類か例示したものである。横幅がL1、L2、L3、L4の4種類のマスクが例示されている。陽極1の給電部1a間の長さをLとすると、L>L1>L2>L3>L4となるように形成される。   For example, a light shielding mask 30 as shown in FIG. 8 is prepared. This illustrates several types of masks that differ only in the width of the light shielding mask 30, that is, in the length direction between the feeding portions 1 a of the anode 1. Four types of masks having a lateral width of L1, L2, L3, and L4 are illustrated. When the length between the power feeding portions 1a of the anode 1 is L, L> L1> L2> L3> L4 are formed.

まず、L1の横幅の遮光マスク30を図6、7のように配置して紫外光を照射し、次に、L1の横幅の遮光マスクを取り除き、L2の横幅の遮光マスクに替えて配置し紫外光を照射する。その後、L3の横幅のマスク30に取り替えて紫外光を照射し、最後にL4の横幅の遮光マスク30に取り替えて紫外光を照射する。   First, a light shielding mask 30 having a lateral width of L1 is arranged as shown in FIGS. 6 and 7, and then irradiated with ultraviolet light. Next, the light shielding mask having a lateral width of L1 is removed, and is replaced with a light shielding mask having a lateral width of L2. Irradiate light. Thereafter, the mask is replaced with the L3 width mask 30 and irradiated with ultraviolet light, and finally the light mask 30 is replaced with the L4 width mask and irradiated with ultraviolet light.

このようにすれば、L1の横幅の遮光マスク30を用いたときに、遮光マスク30からはみだしていた有機層2の領域10aは、積算すれば最も多くの紫外光量が照射されたことになり、最も高抵抗化する。次に、L1の横幅のマスクとL2の横幅のマスクとの差の領域10bが2番目に抵抗が高いことになる。同様に、抵抗の高い順に領域10c、10dとなる。以上をまとめると、各領域の抵抗値の大小は、10a>10b>10c>10dとなる。このように、有機層2の領域によって抵抗値を変化させて傾斜をつけることができる。   In this way, when the light shielding mask 30 having the lateral width of L1 is used, the region 10a of the organic layer 2 that protrudes from the light shielding mask 30 is irradiated with the most ultraviolet light when integrated. Highest resistance. Next, the region 10b having the difference between the L1 width mask and the L2 width mask has the second highest resistance. Similarly, the regions 10c and 10d are arranged in descending order of resistance. In summary, the magnitude of the resistance value in each region is 10a> 10b> 10c> 10d. In this manner, the resistance value can be changed depending on the region of the organic layer 2 to be inclined.

なお、上記の例では、横幅の異なる4種類のマスクを用いたが、横幅の異なる5種類以上のマスクを用いて、より細かく有機層2の抵抗値に傾斜を設けるようにしても良い。   In the above example, four types of masks having different widths are used. However, the resistance value of the organic layer 2 may be more finely inclined by using five or more types of masks having different widths.

また、図4のように、パッケージ化して有機EL装置とした後に、図6のような高抵抗化処理を行わずに、有機EL素子10が完成した段階で高抵抗化処理を行うようにしても良い。この場合、遮光マスク30は基板21の裏面上に配置されるのではなく、有機EL素子10の陽極1の裏面上に配置される。その後の、遮光マスク30の用い方と紫外光の照射方法は、上記の説明と同様である。   Further, as shown in FIG. 4, after packaging into an organic EL device, the high resistance process is performed when the organic EL element 10 is completed without performing the high resistance process as shown in FIG. Also good. In this case, the light shielding mask 30 is not disposed on the back surface of the substrate 21 but is disposed on the back surface of the anode 1 of the organic EL element 10. The subsequent usage of the light shielding mask 30 and the ultraviolet light irradiation method are the same as described above.

以上の方法で高抵抗化領域を作製すると、有機EL素子10が完成するまで、又は図4の有機EL装置のような最終のデバイスの形態に組み立てるまでは、有機層の高抵抗化処理を行う必要がない。このように、素子完成後又はデバイス完成後に、別工程で簡単に有機層の高抵抗化処理が行えるので、生産性は大幅に向上する。   When the high-resistance region is produced by the above method, the organic layer is subjected to high-resistance treatment until the organic EL element 10 is completed or until it is assembled into a final device form such as the organic EL device of FIG. There is no need. As described above, after the element is completed or after the device is completed, the organic layer can be easily subjected to a high resistance process in a separate process, so that the productivity is greatly improved.

上記のようにして、4種類の遮光マスクを用いて有機層2の領域毎に段階的に高抵抗領域を作製し、発光の評価を行ったのが図9である。図9の縦軸は、遮光マスク30の横幅の短い方の中央と陽極1との中央とを合わせたときに、遮光マスク30で有機層2が覆われない領域ができる。このとき、陽極1の給電部1aの端とマスク30の端との隙間の幅を陽極からの距離と呼び縦軸に示す。陽極1の給電部1a間の長さをLとし、図7のL1〜L4を用いて、陽極からの距離を表わすと、(L−L1)/2、(L−L2)/2、(L−L3)/2、(L−L4)/2となる。   As described above, FIG. 9 shows the evaluation of light emission by producing a high resistance region step by step for each region of the organic layer 2 using four kinds of light shielding masks. The vertical axis in FIG. 9 is a region where the organic layer 2 is not covered by the light shielding mask 30 when the center of the light shielding mask 30 with the shorter width and the center of the anode 1 are combined. At this time, the width of the gap between the end of the power feeding portion 1a of the anode 1 and the end of the mask 30 is called a distance from the anode and is shown on the vertical axis. When the length between the feeding parts 1a of the anode 1 is L and the distance from the anode is expressed using L1 to L4 in FIG. 7, (L-L1) / 2, (L-L2) / 2, (L -L3) / 2 and (L-L4) / 2.

発光領域の面積が130mm×130mmの素子を使用しているので、L=130mmとなり、上記の計算式からわかるように、陽極からの距離が1mmの場合は、遮光マスクの横幅は128mmとなる。また、陽極からの距離が5mmの場合は、遮光マスクの横幅は120mmである。次に、陽極からの距離が10mmの場合は、遮光マスクの横幅は110mmであり、陽極からの距離が20mmの場合は、遮光マスクの横幅は90mmである。   Since an element having a light emitting region area of 130 mm × 130 mm is used, L = 130 mm. As can be seen from the above calculation formula, when the distance from the anode is 1 mm, the width of the light shielding mask is 128 mm. When the distance from the anode is 5 mm, the width of the light shielding mask is 120 mm. Next, when the distance from the anode is 10 mm, the horizontal width of the light shielding mask is 110 mm, and when the distance from the anode is 20 mm, the horizontal width of the light shielding mask is 90 mm.

上記のような、4種類のマスクを用いて、横幅の最も大きいマスク(図9の陽極からの距離1mm)から順次使用して紫外光を照射していく。横軸は紫外光照射量を示し、単位はJ/cmである。紫外光照射量は、4種類の遮光マスクを順次取り替えて使用する過程では一定である。紫外光照射量への依存性を調べるために、照射量を0、1、3、6、12(J/cm)と変化させて高抵抗化領域を作製し、作製後の素子の発光状態を輝度計で測定した。 Using the four types of masks as described above, the UV light is irradiated sequentially using the mask having the largest width (distance 1 mm from the anode in FIG. 9). The horizontal axis indicates the ultraviolet light irradiation amount, and the unit is J / cm 2 . The amount of ultraviolet light irradiation is constant in the process of sequentially replacing the four types of light shielding masks. In order to investigate the dependency on the ultraviolet light irradiation amount, the irradiation amount was changed to 0, 1, 3, 6, 12 (J / cm 2 ) to produce a high resistance region, and the light emitting state of the device after the production Was measured with a luminance meter.

まず、有機層2の発光領域中心箇所(1箇所)と、矩形状の発光領域の4辺の各中点から発光領域内側に10mm入った箇所(4箇所)の輝度を測定した。このとき測定された5箇所の輝度の平均を算出し、この輝度平均に対し上記5箇所の輝度による標準偏差を算出して評価とした。前記の測定と評価は、陽極からの距離が1mm〜20mmまでの4種類の各遮光マスクを使用する毎に行った。図9の×は、輝度分布において標準偏差が16%以上発生したことを示す。△は、同様に、輝度分布の標準偏差が11%以上、かつ15%以下であることを示す。○は、同様に、輝度分布の標準偏差が10%以下であることを示す。   First, the luminance of the central portion (one location) of the light emitting region of the organic layer 2 and the portion (four locations) that entered 10 mm inside the light emitting region from the middle points of the four sides of the rectangular light emitting region were measured. The average of the brightness | luminance of 5 places measured at this time was computed, and the standard deviation by the brightness | luminance of the said 5 places was computed with respect to this brightness | luminance average, and it was set as evaluation. The measurement and evaluation described above were performed each time four types of light shielding masks having a distance from the anode of 1 mm to 20 mm were used. X in FIG. 9 indicates that a standard deviation of 16% or more occurs in the luminance distribution. Δ similarly indicates that the standard deviation of the luminance distribution is 11% or more and 15% or less. ○ similarly indicates that the standard deviation of the luminance distribution is 10% or less.

例えば、陽極からの距離が5mmのマスクを使用し、紫外光を3(J/cm)照射して、有機EL素子に10(mA/cm)の電流密度を流した場合、発光領域の中心箇所の輝度は1900(cd/m)、他の端の4箇所の輝度は、2360、2350、2260、2270(cd/m)であった。輝度平均は、2228(cd/m)となり、輝度の標準偏差は8%となった。これに対して、同様の構造で、紫外光処理を行わない(高抵抗化処理を行わない)従来の素子について、上記のように5箇所の輝度を測定した。発光領域の中心箇所の輝度は1320(cd/m)で、その他の端の4箇所の輝度は、2470、2650、2530、2580(cd/m)となった。輝度平均は、2310(cd/m)となり、輝度の標準偏差は22%となった。この結果からも、本発明の効果が良くわかる。 For example, when a mask having a distance of 5 mm from the anode is used, ultraviolet light is irradiated at 3 (J / cm 2 ), and a current density of 10 (mA / cm 2 ) is applied to the organic EL element, the emission region The luminance at the central location was 1900 (cd / m 2 ), and the luminance at the other four locations was 2360, 2350, 2260, 2270 (cd / m 2 ). The average luminance was 2228 (cd / m 2 ), and the standard deviation of luminance was 8%. On the other hand, the brightness | luminance of five places was measured as mentioned above about the conventional element which does not perform ultraviolet light processing (it does not perform high resistance processing) with the same structure. The luminance at the center of the light emitting region was 1320 (cd / m 2 ), and the luminance at the other four locations was 2470, 2650, 2530, 2580 (cd / m 2 ). The average luminance was 2310 (cd / m 2 ), and the standard deviation of luminance was 22%. Also from this result, the effect of the present invention is well understood.

紫外光照射量が0の場合(マスクによる処理を行わない場合)は、陽極からの距離が1mm〜20mmまでの4種類のいずれの遮光マスクを用いた場合でも、輝度の標準偏差が16%以上発生する。紫外光照射量が1の場合は、4種類のいずれの遮光マスクを用いた場合でも輝度の標準偏差が15%以下に収まる。紫外光照射量が3の場合は、輝度の標準偏差が11%以上、かつ15%以下の項目が1箇所あるものの、他の項目では輝度の標準偏差が10%以下に収まっている。紫外光照射量が6の場合は、輝度の標準偏差が16%以上の項目が1箇所、輝度の標準偏差が11%以上、かつ15%以下の項目が1箇所あり、その他の項目は輝度の標準偏差が10%以下に収まっている。照射量が12の場合は、輝度の標準偏差が16%以上の項目が3箇所となって、均一性が極めて悪い。   When the ultraviolet light irradiation amount is 0 (when no mask processing is performed), the standard deviation of the brightness is 16% or more when any of the four types of light shielding masks with a distance from the anode of 1 mm to 20 mm is used. Occur. When the ultraviolet light irradiation amount is 1, the standard deviation of the brightness is 15% or less when any of the four types of light shielding masks is used. When the amount of ultraviolet light irradiation is 3, there is one item where the standard deviation of luminance is 11% or more and 15% or less, but the standard deviation of luminance is less than 10% in other items. When the ultraviolet light irradiation amount is 6, there is one item with a standard deviation of luminance of 16% or more, one item with a standard deviation of luminance of 11% or more and 15% or less, and the other items are luminance. The standard deviation is less than 10%. When the dose is 12, there are three items with a standard deviation of luminance of 16% or more, and the uniformity is extremely poor.

図9からは、紫外光照射量が1又は3(J/cm)であれば、陽極からの距離が1mm〜20mmまでの4種類のすべての遮光マスクを用いないでも、例えば、4種類のうち1種類使用したとしても、輝度分布の均一性があるものとして許容できる範囲であると言える。また、紫外光照射量が6(J/cm)であれば、陽極からの距離が1mm〜10mmまでの3種類のマスクのすべてを用いても良いし、1種類だけ用いても良いことがわかる。 From FIG. 9, if the ultraviolet light irradiation amount is 1 or 3 (J / cm 2 ), for example, four types of light shielding masks with distances from the anode of 1 mm to 20 mm are not used. Even if one of them is used, it can be said that it is an allowable range as having uniform luminance distribution. If the ultraviolet light irradiation amount is 6 (J / cm 2 ), all three types of masks with a distance from the anode of 1 mm to 10 mm may be used, or only one type may be used. Recognize.

以上のように、紫外光を照射して、有機層2の領域を光取り出し側の電極の給電部に近い側から遠くに行くにしたがい、抵抗値を高い方から低い方に段階的に形成することで、各領域に流れる電流の値を均一に近づけることができ、輝度分布の偏りや有機層の領域によって寿命が異なることなどを防止することができる。   As described above, ultraviolet light is irradiated, and the resistance value is formed stepwise from higher to lower as the region of the organic layer 2 moves away from the side closer to the power supply portion of the light extraction side electrode. As a result, the values of the currents flowing through the respective regions can be made close to each other, and it is possible to prevent a difference in luminance distribution and the lifetime depending on the region of the organic layer.

なお、有機層2は、上記のように構成するのではなく、青色の単色、緑色の単色、赤色の単色になるように構成しても良い。青色の単色に構成するには、有機層2を、陽極側から、正孔輸送層/発光層/電子輸送層/電子注入層の順に、例えば、α−NPD層(膜厚50nm)/AlqにTBpeを10Wt%ドープした層(膜厚30nm)/Alq層(膜厚40nm)/Liq層(膜厚1nm)を順に積層した積層体とすることができる。   The organic layer 2 may not be configured as described above, but may be configured to be a blue single color, a green single color, or a red single color. In order to configure a single blue color, the organic layer 2 is, for example, α-NPD layer (film thickness 50 nm) / Alq in the order of hole transport layer / light emitting layer / electron transport layer / electron injection layer from the anode side. It can be set as the laminated body which laminated | stacked the layer (film thickness of 30 nm) / Alq layer (film thickness of 40 nm) / Liq layer (film thickness of 1 nm) which doped TBpe 10Wt% in order.

緑色の単色に構成するには、上記青色の単色に係る積層体のうち、AlqにTBpeを10Wt%ドープした層をAlqにクマリン6を10Wt%ドープした層(膜厚30nm)に変更すれば良い。緑色の単色に構成するには、上記青色の単色に係る積層体のうち、AlqにTBpeを10Wt%ドープした層をAlqにDCMを5Wt%ドープした層(膜厚30nm)に変更すれば良い。上記、青色の単色、緑色の単色、赤色の単色のいずれの場合も、陽極1はITO、陰極3はAl(膜厚100nm)で構成することができる。   In order to configure a green single color, a layer in which Alq is doped with 10 wt% TBpe is changed to a layer (film thickness: 30 nm) in which Alq is doped with 10 wt% of coumarin 6 in the blue-colored laminate. . In order to form a green single color, a layer in which Alq is doped with 10 wt% TBpe may be changed to a layer in which Alq is doped with 5 wt% DCM (thickness: 30 nm). In any of the above-described blue single color, green single color, and red single color, the anode 1 can be made of ITO and the cathode 3 can be made of Al (film thickness: 100 nm).

また、有機層2を青色、緑色、赤色を3ユニット積層化した構造としても良い。例えば、陽極をITOとし、α−NPD層(膜厚50nm)/AlqにTBpeを10Wt%ドープした層(膜厚30nm)/Alq層(膜厚40nm)/Liq層(膜厚1nm)/Al層(膜厚1nm)/α−NPD層(膜厚50nm)/Alqにクマリン6を10Wt%ドープした層(膜厚30nm) /Alq(膜厚40nm)/Liq層(膜厚1nm)/Al層(膜厚1nm)/α−NPD層(膜厚50nm)/AlqにDCMを5Wt%ドープした層(膜厚30nm)/Alq層(膜厚40nm)/Liq層(膜厚1nm) の積層構造とすることができる。なお、陰極はAl層(膜厚100nm)で構成される。   The organic layer 2 may have a structure in which three units of blue, green, and red are laminated. For example, the anode is ITO, α-NPD layer (film thickness 50 nm) / Alq layer doped with TBpe 10 wt% (film thickness 30 nm) / Alq layer (film thickness 40 nm) / Liq layer (film thickness 1 nm) / Al layer (Thickness 1 nm) / α-NPD layer (thickness 50 nm) / Alq doped layer 10% by weight of coumarin 6 (thickness 30 nm) / Alq (thickness 40 nm) / Liq layer (thickness 1 nm) / Al layer ( 1 nm thick) / α-NPD layer (50 nm thick film) / Alq layer doped with 5 wt% of DCM (film thickness 30 nm) / Alq layer (film thickness 40 nm) / Liq layer (film thickness 1 nm) be able to. The cathode is composed of an Al layer (film thickness 100 nm).

また、有機層2を青色と赤色を同じ発光層に入れた構造としても良い。例えば、陽極をITOとし、α−NPD(膜厚50nm)/AlqにTBpeを10W%ドープ層(膜厚15nm)/AlqにDCMを5W%ドープした層(膜厚15nm)/Alq(膜厚40nm)/Liq(膜厚1nm)の積層構造とすることができる。なお、陰極はAl層(膜厚100nm)で構成される。   Further, the organic layer 2 may have a structure in which blue and red are put in the same light emitting layer. For example, the anode is ITO, α-NPD (film thickness 50 nm) / Alq is a 10 W% doped layer of TBpe (film thickness 15 nm) / Alq is doped with 5 W% DCM (film thickness 15 nm) / Alq (film thickness 40 nm) ) / Liq (film thickness: 1 nm). The cathode is composed of an Al layer (film thickness 100 nm).

以上のように実施例では、本発明の有機EL素子を代表的な材料構成で説明したが、これらに限定されるものではなく、他のあらゆる有機EL素子に適用できる。なお、本発明はここでは記載していない様々な実施例等も含まれる。   As described above, in the examples, the organic EL element of the present invention has been described with typical material configurations, but the present invention is not limited to these and can be applied to any other organic EL element. The present invention includes various embodiments not described herein.

本発明の有機EL素子の構成は、発光デバイス、照明装置等など、幅広く光デバイスに適用することができる。   The configuration of the organic EL element of the present invention can be widely applied to optical devices such as light emitting devices and lighting devices.

1 陽極
1a 給電部
1b 電極領域
2 有機層
3 陰極
3a 給電部
3b 電極領域
4 絶縁膜
10 有機EL素子
10a 高抵抗化領域
21 基板
22 封し缶
23 乾燥剤
30 遮光マスク
DESCRIPTION OF SYMBOLS 1 Anode 1a Feed part 1b Electrode area 2 Organic layer 3 Cathode 3a Feed part 3b Electrode area 4 Insulating film 10 Organic EL element 10a High resistance area 21 Substrate 22 Sealing can 23 Desiccant 30 Light shielding mask

Claims (5)

第1の電極と、
前記第1の電極よりも体積抵抗率の高い第2の電極と、
前記第1の電極と第2の電極に挟まれた有機層と、
前記第2の電極の一辺に電力を供給するために設けられた給電部とを備え、
前記有機層に紫外光照射を行うことにより、前記給電部近傍の有機層領域の抵抗値を、該有機層領域よりも遠くに位置する有機層の抵抗値よりも高くしたことを特徴とする有機EL素子。
A first electrode;
A second electrode having a higher volume resistivity than the first electrode;
An organic layer sandwiched between the first electrode and the second electrode;
A power supply unit provided to supply power to one side of the second electrode,
The organic layer is irradiated with ultraviolet light so that the resistance value of the organic layer region in the vicinity of the power feeding unit is higher than the resistance value of the organic layer located farther than the organic layer region. EL element.
前記給電部は前記第2の電極の対向する2辺に各々設けられており、前記給電部近傍の有機層から前記対向する2辺の中間に位置する有機層にかけて有機層の抵抗値が段階的に小さくなるように構成されていることを特徴とする請求項1記載の有機EL素子。   The power feeding portion is provided on each of two opposing sides of the second electrode, and the resistance value of the organic layer is stepped from the organic layer in the vicinity of the power feeding portion to the organic layer located in the middle of the two opposing sides. The organic EL device according to claim 1, wherein the organic EL device is configured to be small. 第1の電極と、前記第1の電極よりも体積抵抗率が高く光取り出し側となる第2の電極と、前記第1の電極と第2の電極に挟まれた有機層と、第2の電極の一辺に電力を供給するために設けられた給電部とを備え、
前記第2の電極の裏面から見た場合、前記第2の電極の給電部近傍の有機層領域が隠れないように前記第2の電極の裏面を紫外光を遮る遮光マスクで覆う第1工程と、前記第1工程後に前記遮光マスクの後方から前記遮光マスク及び第2の電極の方向に向けて紫外光を照射する第2工程を備えていることを特徴とする有機EL素子の製造方法。
A first electrode; a second electrode having a higher volume resistivity than the first electrode; and a light extraction side; an organic layer sandwiched between the first electrode and the second electrode; A power supply unit provided to supply power to one side of the electrode,
A first step of covering the back surface of the second electrode with a light shielding mask that blocks ultraviolet light so that the organic layer region in the vicinity of the power feeding portion of the second electrode is not hidden when viewed from the back surface of the second electrode; A method for producing an organic EL element, comprising: a second step of irradiating ultraviolet light from the rear of the light shielding mask toward the light shielding mask and the second electrode after the first step.
前記第1工程は、前記有機EL素子を筐体に組み込み有機EL装置として構成された後に行うことを特徴とする請求項3記載の有機EL素子の製造方法。   4. The method of manufacturing an organic EL element according to claim 3, wherein the first step is performed after the organic EL element is incorporated in a housing and configured as an organic EL device. 大きさの異なる複数の前記遮光マスクが用意されており、大きさの異なる遮光マスク毎に、前記第1工程と第2工程とを繰り返すことを特徴とする請求項3又は請求項4のいずれか1項に記載の有機EL素子の製造方法。   The plurality of light shielding masks having different sizes are prepared, and the first step and the second step are repeated for each of the light shielding masks having different sizes. 2. A method for producing an organic EL device according to item 1.
JP2009143395A 2009-06-16 2009-06-16 Organic EL device and manufacturing method thereof Expired - Fee Related JP5193957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143395A JP5193957B2 (en) 2009-06-16 2009-06-16 Organic EL device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143395A JP5193957B2 (en) 2009-06-16 2009-06-16 Organic EL device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011003592A JP2011003592A (en) 2011-01-06
JP5193957B2 true JP5193957B2 (en) 2013-05-08

Family

ID=43561356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143395A Expired - Fee Related JP5193957B2 (en) 2009-06-16 2009-06-16 Organic EL device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5193957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404636B2 (en) * 2014-08-19 2018-10-10 株式会社ジャパンディスプレイ Display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491146B1 (en) * 2002-11-04 2005-05-24 삼성에스디아이 주식회사 AMOLED and method for fabricating the same
JP2006222392A (en) * 2005-02-14 2006-08-24 Fuji Photo Film Co Ltd Organic el element, method for manufacturing the same and liquid crystal panel
JP2007220392A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Method of manufacturing electro-optical device, and electro-optical device
JP2009088320A (en) * 2007-10-01 2009-04-23 Canon Inc Organic light-emitting device and method of manufacturing the same
US8618529B2 (en) * 2007-10-23 2013-12-31 Koninklijke Philips N.V. Device, method and system for lighting

Also Published As

Publication number Publication date
JP2011003592A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
KR100752973B1 (en) Electroluminescence element
KR101477929B1 (en) Organic light emitting device and method for manufacturing the same
US10290687B2 (en) Lighting apparatus using organic light emitting diode and method of fabricating the same
KR101582719B1 (en) Organic light emitting device and method for preparing the same
US20160240820A1 (en) Organic Light-Emitting Diode Device and Method for Producing Same
JP6157866B2 (en) Organic electroluminescence device, lighting device and lighting system
CN106463645B (en) Organic light emitting device and method for manufacturing the same
KR102113606B1 (en) Organic light emitting display and method of fabricating the same
KR20130006937A (en) Organic light emitting element
JP2016115717A (en) Organic el element and method of manufacturing organic el element
KR102652261B1 (en) Lighting apparatus using organic light emitting diode
JP2016115718A (en) Organic el element and method of manufacturing organic el element
KR100692091B1 (en) OLED for Top?emittion and Method thereof
EP3333894B1 (en) Light apparatus using organic light-emitting diode and method of fabricating the same
KR101686718B1 (en) Organic light emitting device and display device
KR20150146290A (en) White organic light emitting device
JP6561281B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
KR101262816B1 (en) Light-Emitting Component
JP5193957B2 (en) Organic EL device and manufacturing method thereof
KR101572710B1 (en) Orgenic radiation-emitting component and method for producing an organic radiation-emitting component
JP2018133242A (en) Organic el display panel, and method for manufacturing the same
KR20160133505A (en) Organic light-emitting component
KR100761111B1 (en) Top?emittion OLED and Method of Manufacturing for the same
US11133484B2 (en) OLED lighting apparatus
US10505011B2 (en) Apparatus and method of fabricating lighting apparatus using organic light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees