[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5189953B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP5189953B2
JP5189953B2 JP2008272084A JP2008272084A JP5189953B2 JP 5189953 B2 JP5189953 B2 JP 5189953B2 JP 2008272084 A JP2008272084 A JP 2008272084A JP 2008272084 A JP2008272084 A JP 2008272084A JP 5189953 B2 JP5189953 B2 JP 5189953B2
Authority
JP
Japan
Prior art keywords
layer
dimensional shaped
powder
shaped object
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008272084A
Other languages
Japanese (ja)
Other versions
JP2010100883A (en
Inventor
諭 阿部
徳雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008272084A priority Critical patent/JP5189953B2/en
Publication of JP2010100883A publication Critical patent/JP2010100883A/en
Application granted granted Critical
Publication of JP5189953B2 publication Critical patent/JP5189953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、三次元形状造形物の製造方法および製造装置に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造する方法およびそのための装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a three-dimensional shaped object. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam. The present invention relates to a method and an apparatus therefor.

従来より、粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、「(i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成し、(ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する」といったことを繰り返して三次元形状造形物を製造している(特許文献1または特許文献2参照)。粉末材料として金属粉末を用いた場合では、得られた三次元形状造形物を金型などとして用いることができ、粉末材料として樹脂粉末を用いた場合では、得られた三次元形状造形物をプラスチックモデルとして用いることができる。このような製造技術によれば、複雑な三次元形状造形物を短時間で製造することが可能である。   Conventionally, a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as “powder sintering lamination method”) is known. In such a method, “(i) by irradiating a predetermined portion of the powder layer with a light beam, the powder at the predetermined portion is sintered or melt-solidified to form a solidified layer, and (ii) of the obtained solidified layer A three-dimensional shaped article is manufactured by repeating the process of “laying a new powder layer on the top and irradiating the same with a light beam to form a solidified layer” (see Patent Document 1 or Patent Document 2). When a metal powder is used as the powder material, the obtained three-dimensional shaped object can be used as a mold or the like. When a resin powder is used as the powder material, the obtained three-dimensional shaped object is a plastic. It can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.

粉末焼結積層法では、酸化防止等の観点から不活性雰囲気下に保たれたチャンバー内で三次元形状造形物が製造される。具体的には、三次元形状造形物は、チャンバー内の“造形テーブル”又は“造形テーブル上に配される造形プレート”の上で製造される。図1に示すように、造形テーブル20に配された造形プレート21上で三次元形状造形物を製造する場合を例にとると、まず、所定の厚みt1の粉末層22を造形プレート21上に形成した後(図1(a)参照)、光ビームを粉末層22の所定箇所に照射して、造形プレート21上において固化層24を形成する。そして、形成された固化層24の上に新たな粉末層22を敷いて再度光ビームを照射して新たな固化層を形成する。このように固化層を繰り返し形成すると、複数の固化層24が積層一体化した三次元形状造形物を得ることができる(図1(b)参照)。最下層に相当する固化層は造形プレート面に接着した状態で形成され得るので、「三次元形状造形物の底面」と「三次元形状造形物が設けられている造形プレート面」とは、一般的には相互に接合された状態となる。   In the powder sintering lamination method, a three-dimensional shaped object is manufactured in a chamber maintained in an inert atmosphere from the viewpoint of oxidation prevention and the like. Specifically, the three-dimensional shaped object is manufactured on a “modeling table” in the chamber or a “modeling plate arranged on the modeling table”. As shown in FIG. 1, when a three-dimensional modeled object is manufactured on a modeling plate 21 arranged on the modeling table 20, first, a powder layer 22 having a predetermined thickness t <b> 1 is first formed on the modeling plate 21. After the formation (see FIG. 1A), the solidified layer 24 is formed on the modeling plate 21 by irradiating a predetermined portion of the powder layer 22 with a light beam. Then, a new powder layer 22 is laid on the formed solidified layer 24 and irradiated again with a light beam to form a new solidified layer. When the solidified layer is repeatedly formed in this way, a three-dimensional shaped object in which a plurality of solidified layers 24 are laminated and integrated can be obtained (see FIG. 1B). Since the solidified layer corresponding to the lowest layer can be formed in a state of being adhered to the modeling plate surface, the “bottom surface of the three-dimensional modeled object” and “the modeling plate surface on which the three-dimensional modeled object is provided” In other words, they are joined together.

ここで、三次元形状造形物は、光ビームの照射を通じて製造されるため、光ビームによる熱の影響を少なからず受けてしまう。具体的には、粉末層の照射箇所が一旦溶けて溶融状態となり、その後固化することで固化層は形成されるが、その固化する際に収縮現象が生じ得る。特定の理論に拘束されるわけではないが、溶融した粉末が冷却され固化する際に収縮現象が生じる(図2(a)参照)。一方、固化層(即ち、三次元形状造形物)を支える造形プレートは、鋼材などから成る剛体であり、光ビームの照射位置から離れているため光ビームによる熱の影響を実質的に受けにくい。その結果、造形プレート上の三次元形状造形物24には、反り上がる力(モーメント)が生じることになり、それがある限度を超えると、図2(b)に示すように製造過程において三次元形状造形物が造形プレート21から剥離する現象が生じてしまう。三次元形状造形物が造形プレート21から剥離すると、所望の三次元形状造形物を製造できなくなる点で望ましくない。つまり、三次元形状造形物(即ち、固化層)が反り上がって剥離すると、得られる三次元形状造形物の形状精度が出なくなるだけでなく、固化層が反り上がること起因して、その固化層上に新たな粉末層を所定厚みで敷くことができなくなる(例えば、次に敷く粉末層の厚さよりも大きく固化層が反り上がると、均一に粉末層を敷けなくなる)。
特表平1−502890号公報 特開2000−73108号公報
Here, since the three-dimensional shaped object is manufactured through the irradiation of the light beam, the three-dimensional shaped object is affected by heat from the light beam. Specifically, the irradiated portion of the powder layer is once melted to be in a molten state and then solidified to form a solidified layer. However, a shrinkage phenomenon may occur when the solidified layer is solidified. Although not bound by a specific theory, a shrinkage phenomenon occurs when the molten powder is cooled and solidified (see FIG. 2 (a)). On the other hand, the modeling plate that supports the solidified layer (that is, the three-dimensional modeled object) is a rigid body made of steel or the like, and is hardly affected by the heat of the light beam because it is away from the irradiation position of the light beam. As a result, a warping force (moment) is generated in the three-dimensional shaped object 24 on the modeling plate, and if it exceeds a certain limit, as shown in FIG. A phenomenon in which the shaped object is peeled off from the modeling plate 21 occurs. When the three-dimensional shaped object is peeled from the modeling plate 21, it is not desirable in that the desired three-dimensional shaped object cannot be manufactured. In other words, when the three-dimensional shaped object (ie, solidified layer) is warped and peeled, not only the shape accuracy of the obtained three-dimensional shaped object is lost, but also the solidified layer is caused by the solidified layer warping. A new powder layer cannot be laid on top with a predetermined thickness (for example, if the solidified layer warps larger than the thickness of the next powder layer, the powder layer cannot be laid uniformly).
JP-T-1-502890 JP 2000-73108 A

本発明は、かかる事情に鑑みて為されたものである。即ち、本発明の課題は、固化層(即ち、三次元形状造形物)の剥離現象をできるだけ抑えた「三次元形状造形物の製造方法」および「三次元形状造形物の製造装置」を提供することである。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a “three-dimensional shaped article manufacturing method” and a “three-dimensional shaped article manufacturing apparatus” that suppress the peeling phenomenon of the solidified layer (that is, the three-dimensional shaped article) as much as possible. That is.

上記課題を解決するために、本発明では、
(i)粉末層の所定箇所に光ビーム(例えばレーザ光のような指向性エネルギービーム)を照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、前記新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
をチャンバー内において繰り返して行う三次元形状造形物の製造方法であって、
粉末層または固化層が設けられる造形テーブルまたは造形プレートの主面に凹部が少なくとも1つ設けられており、三次元形状造形物の底面(または“三次元形状造形物の底部分”もしくは“前記凹部内に形成される三次元形状造形物の固化部”)と前記凹部とが相互に接することを特徴とする、三次元形状造形物の製造方法が提供される。
In order to solve the above problems, in the present invention,
(I) irradiating a predetermined portion of the powder layer with a light beam (eg, a directional energy beam such as a laser beam) to sinter or melt and solidify the powder at the predetermined portion to form a solidified layer; and (ii) ) A three-dimensional shape in which a new powder layer is formed on the obtained solidified layer, and a step of forming a further solidified layer by irradiating a predetermined portion of the new powder layer with a light beam is repeated in the chamber. A manufacturing method of a model,
At least one recess is provided on the main surface of the modeling table or modeling plate on which the powder layer or the solidified layer is provided, and the bottom surface of the three-dimensional modeled object (or “bottom part of the three-dimensional modeled object” or “the concave part” There is provided a method for producing a three-dimensional shaped object, characterized in that a solidified portion ") of the three-dimensional shaped object formed inside" and the concave part are in contact with each other.

本発明の製造方法は、三次元形状造形物の底面の少なくとも一部の領域と接することになるように、造形テーブルまたは造形プレートの主面に凹部が少なくとも1つ設けられている点において特徴を有している。より具体的には、本発明では、凹部内部に形成される固化部が凹部と接する(嵌合/接合する)ことによって、三次元形状造形物と造形プレートとの接合力を補っている。換言するならば、本発明においては、製造過程において反り上がろうとする三次元形状造形物の底面を局所的に凹部で引っかけることによって又は三次元形状造形物の底面と凹部とを局所的に嵌合させることによって、三次元形状造形物の剥離を防止している(以下、このような凹部によって供される効果を「引っかけ効果」または「アンカー効果」とも称する)。   The manufacturing method of the present invention is characterized in that at least one recess is provided on the main surface of the modeling table or modeling plate so as to be in contact with at least a part of the bottom surface of the three-dimensional modeled object. Have. More specifically, in the present invention, the solidified portion formed inside the concave portion is in contact (fitting / joining) with the concave portion, thereby supplementing the bonding force between the three-dimensional shaped object and the modeling plate. In other words, in the present invention, the bottom surface of the three-dimensional shaped object that is going to be warped in the manufacturing process is locally hooked by the concave portion, or the bottom surface and the concave portion of the three-dimensional shaped structure are locally fitted. By combining them, peeling of the three-dimensional shaped object is prevented (hereinafter, the effect provided by such a recess is also referred to as “hooking effect” or “anchor effect”).

本明細書にいう「主面」とは、造形テーブルまたは造形プレートに含まれる面のうち、三次元形状造形物(または粉末層もしくは固化層)が供される面を実質的に意味している。   The “main surface” in the present specification substantially means a surface on which a three-dimensional shaped object (or a powder layer or a solidified layer) is provided among the surfaces included in the modeling table or the modeling plate. .

また、本明細書にいう「三次元形状造形物の底面」とは、造形テーブルまたは造形プレートと接する面のことを実質的に意味しており、平らな面のみならず、上述の凹部に対応して形成され得る凸形状の底面部分も含んだ面も意図している。   In addition, the “bottom surface of the three-dimensional shaped object” in the present specification substantially means a surface in contact with the modeling table or the modeling plate, and corresponds to the above-described recess as well as a flat surface. A surface including a convex bottom surface portion that can be formed in this manner is also contemplated.

更に、本発明における「凹部」は、三次元形状造形物の底面を引っかけるために又は三次元形状造形物の底面と嵌合させるために意図的に造形テーブルまたは造形プレートの主面に対して設けたものであり、造形テーブルまたは造形プレートの製造に際して不可避的または偶発的に形成されたキズなどを意味していないことに留意されたい。   Further, the “concave portion” in the present invention is intentionally provided on the main surface of the modeling table or the modeling plate in order to hook the bottom surface of the three-dimensional modeled object or to fit the bottom surface of the three-dimensional modeled object. It should be noted that it does not mean scratches that are inevitably or accidentally formed during the production of the shaping table or the shaping plate.

ある好適な態様では、製造過程において三次元形状造形物の周縁部分の底面と凹部とが接する。つまり、製造される三次元形状造形物の周縁部分の底面と接するように、凹部が造形テーブルまたは造形プレートに設けられている。別の見方をすれば、三次元形状造形物の周縁部分が凹部に位置することになるように固化層を形成していく。これにより、三次元形状造形物の周縁部分からの反り上がり/剥離を効果的に防止することができる。   In a preferable aspect, the bottom surface of the peripheral portion of the three-dimensional shaped object and the recess are in contact with each other during the manufacturing process. That is, the concave portion is provided on the modeling table or the modeling plate so as to be in contact with the bottom surface of the peripheral portion of the manufactured three-dimensional modeled article. From another viewpoint, the solidified layer is formed so that the peripheral portion of the three-dimensional shaped object is positioned in the recess. Thereby, the curvature up / peeling from the peripheral part of a three-dimensional shaped molded article can be prevented effectively.

本発明では、上述した製造方法を実施するための「三次元形状造形物の製造装置」も提供される。このような三次元形状造形物の製造装置は、
粉末層を形成するための粉末層形成手段、
粉末層および/または固化層が形成されることになる“造形テーブル”または“造形テーブル上に配される造形プレート”、ならびに
固化層が形成されるように粉末層に光ビームを照射するための光ビーム照射手段
を有して成り、
造形テーブルまたは造形プレートの主面の造形物形成領域には凹部が少なくとも1つ設けられていることを特徴とする。
In this invention, the "manufacturing apparatus of a three-dimensional shape molded article" for implementing the manufacturing method mentioned above is also provided. A manufacturing apparatus for such a three-dimensional shaped object is:
Powder layer forming means for forming a powder layer,
"Forming table" or "Modeling plate arranged on the forming table" on which the powder layer and / or solidified layer will be formed, and for irradiating the powder layer with a light beam so that the solidified layer is formed Comprising light beam irradiation means,
At least one recessed part is provided in the modeling object formation area of the main surface of a modeling table or a modeling plate, It is characterized by the above-mentioned.

ある好適な態様では、凹部が下方に向かって広がるテーパ形状を有している。換言すれば、凹部の垂直方向断面は、垂直方向(鉛直方向)の上向きから下向きに向かって徐々に広がる形状を有している。このようなテーパ形状によって、三次元形状造形物の底面をより効果的に“引っかける”ことができ、三次元形状造形物の反り上がり/剥離をより確実に防止できる。   In a preferred aspect, the recess has a tapered shape that expands downward. In other words, the vertical cross section of the concave portion has a shape that gradually widens from the upward direction to the downward direction in the vertical direction (vertical direction). With such a tapered shape, the bottom surface of the three-dimensional shaped object can be more effectively “hooked”, and warping / peeling of the three-dimensional shaped object can be more reliably prevented.

造形テーブルまたは造形プレートの凹部は溝形状を有していてもよい。この場合、溝形状の凹部が三次元形状造形物の底面の周縁(エッジ)に沿うような形態を有していることが好ましい。かかる場合、三次元形状造形物の底面の周縁部全体に対して「引っかけ効果」を供すことができ、三次元形状造形物の周縁部からの反り上がり/剥離をより確実に防止できる。尚、このような溝形状の凹部は、その加工自体が容易であるといった点でも好ましい。   The concave portion of the modeling table or the modeling plate may have a groove shape. In this case, it is preferable that the groove-shaped recess has a form along the peripheral edge (edge) of the bottom surface of the three-dimensional shaped object. In such a case, a “hooking effect” can be provided to the entire peripheral edge of the bottom surface of the three-dimensional shaped object, and warping / peeling from the peripheral part of the three-dimensional shaped object can be more reliably prevented. Such a groove-shaped recess is also preferable in that the processing itself is easy.

本発明では、製造過程において三次元形状造形物の内部に生じ得る応力(特に三次元形状造形物が全体的に収縮する際に生じ得る応力)を造形テーブルまたは造形プレートの凹部で受けることができる。つまり、三次元形状造形物の底面の少なくとも一部の領域を凹部に引っかける(又はそれらを相互に嵌合させる)ことによって、三次元形状造形物の反り上がりを防止することができる。これにより、三次元形状造形物(即ち、固化層)が、造形テーブル面または造形プレート面から剥離する現象を防止できるので、固化層上に新たな粉末層を所定厚みで敷くことが可能となるだけでなく、最終的に得られる三次元形状造形物の形状精度も向上することになる。   In the present invention, stress that can occur in the interior of the three-dimensional modeled object during manufacturing (particularly stress that can be generated when the three-dimensional modeled object shrinks as a whole) can be received by the concave portion of the modeling table or the modeling plate. . That is, it is possible to prevent the three-dimensional shaped object from warping by hooking at least a part of the bottom surface of the three-dimensional shaped object into the recess (or fitting them together). As a result, the three-dimensional shaped object (that is, the solidified layer) can be prevented from peeling from the modeling table surface or the modeling plate surface, so that a new powder layer can be laid on the solidified layer with a predetermined thickness. In addition, the shape accuracy of the finally obtained three-dimensional shaped object is also improved.

即ち、本発明では、三次元形状造形物(即ち、最下層の固化層)と造形テーブルまたは造形プレートとの接合に加えて、凹部の引っかけ効果を付加的に供することができるので、「三次元形状造形物」と「造形テーブル面または造形プレート面」との接合状態をより強固にすることができ、“造形物の剥離現象”を効果的に防止できる。   That is, in the present invention, in addition to joining the three-dimensional shaped object (that is, the lowermost solidified layer) and the shaping table or the shaping plate, a hooking effect of the recess can be additionally provided. The joining state between the “shaped object” and the “modeling table surface or modeling plate surface” can be further strengthened, and the “debonding phenomenon of the object” can be effectively prevented.

また、従来技術において三次元形状造形物の形状精度を出すには、“反り上がり”や“剥離”などの現象を予め想定した上で設計しておかなければならなかったものの、本発明では造形物を支える部材に単に凹部を設けるだけで形状精度を実質的に出すことができる。つまり、本発明は、そのような具体的に予測困難な現象を視野に入れた設計を簡易な手段によって省くことができるといった点においても非常に有益である。   In addition, in order to obtain the shape accuracy of a three-dimensional shaped object in the prior art, it was necessary to design in advance assuming phenomena such as “warping” and “peeling”, but in the present invention, modeling is performed. The shape accuracy can be substantially increased by simply providing the recess in the member that supports the object. In other words, the present invention is very useful in that it is possible to omit such a design taking into account such a phenomenon that is difficult to predict by simple means.

以下では、図面を参照して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

[粉末焼結積層法]
まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。図1,図3および図4には、粉末焼結積層法を実施できる光造形複合加工機1の機能および構成が示されている。光造形複合加工機1は、「金属粉末および樹脂粉末などの粉末を所定の厚みで敷くことによって粉末層を形成する粉末層形成手段2」と「外周が壁27で囲まれた造形タンク29内においてシリンダー駆動で上下に昇降する造形テーブル20」と「造形テーブル20上に配され造形物の土台となる造形プレート21」と「光ビームLを任意の位置に照射する光ビーム照射手段3」と「造形物の周囲を削る切削手段4」とを主として備えている。粉末層形成手段2は、図1に示すように、「外周が壁26で囲まれた粉末材料タンク28内においてシリンダー駆動で上下に昇降する粉末テーブル25」と「造形プレート上に粉末層22を形成するためのスキージング用ブレード23」とを主として有して成る。光ビーム照射手段3は、図3および図4に示すように、「光ビームLを発する光ビーム発振器30」と「光ビームLを粉末層22の上にスキャニング(走査)するガルバノミラー31(スキャン光学系)」とを主として有して成る。必要に応じて、光ビーム照射手段3には、光ビームスポットの形状を補正するビーム形状補正手段(例えば一対のシリンドリカルレンズと、かかるレンズを光ビームの軸線回りに回転させる回転駆動機構とを有して成る手段)やfθレンズが具備されている。切削手段4は、「造形物の周囲を削るミーリングヘッド40」と「ミーリングヘッド40を切削箇所へと移動させるXY駆動機構41」とを主として有して成る(図4参照)。
[Powder sintering lamination method]
First, the powder sintering lamination method as a premise of the production method of the present invention will be described. 1, 3, and 4 show the function and configuration of an optical modeling composite processing machine 1 that can perform the powder sintering lamination method. The optical modeling composite processing machine 1 includes “a powder layer forming means 2 for forming a powder layer by spreading a powder such as a metal powder and a resin powder with a predetermined thickness” and “in a modeling tank 29 whose outer periphery is surrounded by a wall 27. In FIG. 2, a modeling table 20 that moves up and down by cylinder drive ”,“ a modeling plate 21 that is arranged on the modeling table 20 and serves as a foundation of the modeling object ”, and“ light beam irradiation means 3 that irradiates the light beam L to an arbitrary position ” "The cutting means 4 which cuts the circumference | surroundings of a molded article" is mainly provided. As shown in FIG. 1, the powder layer forming means 2 includes “a powder table 25 that moves up and down by a cylinder drive in a powder material tank 28 whose outer periphery is surrounded by a wall 26” and “a powder layer 22 on a modeling plate. And a squeezing blade 23 "for forming. As shown in FIGS. 3 and 4, the light beam irradiation means 3 includes a “light beam oscillator 30 that emits a light beam L” and a “galvanomirror 31 that scans (scans) the light beam L onto the powder layer 22 (scanning). Optical system) ”. If necessary, the light beam irradiation means 3 has beam shape correction means (for example, a pair of cylindrical lenses and a rotation drive mechanism for rotating the lenses around the axis of the light beam) for correcting the shape of the light beam spot. And an fθ lens. The cutting means 4 mainly includes “a milling head 40 that cuts the periphery of the modeled object” and “an XY drive mechanism 41 that moves the milling head 40 to a cutting position” (see FIG. 4).

光造形複合加工機1の動作を図1及び図5を参照して詳述する。図5は、光造形複合加工機の動作フローを示している。   The operation of the optical modeling complex machine 1 will be described in detail with reference to FIGS. 1 and 5. FIG. 5 shows an operation flow of the stereolithography combined processing machine.

光造形複合加工機の動作は、粉末層22を形成する粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して固化層24を形成する固化層形成ステップ(S2)と、造形物の表面を切削する切削ステップ(S3)とから主に構成されている。粉末層形成ステップ(S1)では、最初に造形テーブル20をΔt1下げる(S11)。次いで、粉末テーブル25をΔt1上げた後、図1(a)に示すように、スキージング用ブレード23を、矢印A方向に移動させ、粉末テーブル25に配されていた粉末(例えば「平均粒径5μm〜100μm程度の鉄粉」または「平均粒径30μm〜100μm程度のナイロン、ポリプロピレン、ABS等の粉末」)を造形プレート21上へと移送させつつ(S12)、所定厚みΔt1にならして粉末層22を形成する(S13)。次に、固化層形成ステップ(S2)に移行し、光ビーム発振器30から光ビームL(例えば炭酸ガスレーザーまたは紫外線)を発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングし(S22)、粉末を溶融させ、固化させて造形プレート21と一体化した固化層24を形成する(S23)。   The operation of the optical modeling composite processing machine includes a powder layer forming step (S1) for forming the powder layer 22, a solidified layer forming step (S2) for forming the solidified layer 24 by irradiating the powder layer 22 with the light beam L, It is mainly composed of a cutting step (S3) for cutting the surface of the modeled object. In the powder layer forming step (S1), the modeling table 20 is first lowered by Δt1 (S11). Next, after raising the powder table 25 by Δt1, as shown in FIG. 1A, the squeezing blade 23 is moved in the direction of arrow A, and the powder (for example, “average particle size”) While “iron powder of about 5 μm to 100 μm” or “powder of nylon, polypropylene, ABS or the like having an average particle size of about 30 μm to 100 μm” is transferred onto the modeling plate 21 (S12), the powder is adjusted to a predetermined thickness Δt1. The layer 22 is formed (S13). Next, the process proceeds to a solidified layer forming step (S2), where a light beam L (for example, a carbon dioxide laser or an ultraviolet ray) is emitted from the light beam oscillator 30 (S21). (S22), the powder is melted and solidified to form a solidified layer 24 integrated with the modeling plate 21 (S23).

固化層24の厚みがミーリングヘッド40の工具長さ等から求めた所定厚みになるまで粉末層形成ステップ(S1)と固化層形成ステップ(S2)とを繰り返し、固化層24を積層する(図1(b)参照)。尚、新たに積層される固化層は、焼結又は溶融固化に際して、既に形成された下層を成す固化層と一体化することになる。   The powder layer forming step (S1) and the solidified layer forming step (S2) are repeated until the thickness of the solidified layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the solidified layer 24 is laminated (FIG. 1). (See (b)). In addition, the solidified layer newly laminated | stacked will be integrated with the solidified layer which comprises the already formed lower layer in the case of sintering or melt-solidification.

積層した固化層24の厚みが所定の厚みになると、切削ステップ(S3)へと移行し、ミーリングヘッド40を駆動させる(S31)。例えば、ミーリングヘッド40の工具(ボールエンドミル)が直径1mm、有効刃長さ3mmである場合、深さ3mmの切削加工ができるので、Δt1が0.05mmであれば、60層の固化層を形成した時点でミーリングヘッド40を駆動させる。XY駆動機構41によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、積層した固化層24から成る造形物の表面を切削加工する(S32)。そして、三次元形状造形物の製造が依然終了していない場合では、粉末層形成ステップ(S1)へ戻ることになる。以後、S1乃至S3を繰り返して更なる固化層24を積層することによって、三次元形状造形物の製造を行う。   When the thickness of the laminated solidified layer 24 reaches a predetermined thickness, the process proceeds to the cutting step (S3), and the milling head 40 is driven (S31). For example, when the tool (ball end mill) of the milling head 40 has a diameter of 1 mm and an effective blade length of 3 mm, a cutting process with a depth of 3 mm can be performed. Therefore, if Δt1 is 0.05 mm, 60 solidified layers are formed. At that time, the milling head 40 is driven. The milling head 40 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 41, and the surface of the modeled object composed of the laminated solidified layer 24 is cut (S32). And when manufacture of a three-dimensional shape molded article has not ended yet, it will return to a powder layer formation step (S1). Thereafter, the solidified layer 24 is further laminated by repeating S1 to S3, thereby manufacturing a three-dimensional shaped object.

固化層形成ステップ(S2)における光ビームLの照射経路と、切削ステップ(S3)における切削加工経路とは、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。例えば、固化層形成ステップ(S2)では、三次元CADモデルから生成したSTLデータを等ピッチ(例えばΔt1を0.05mmとした場合では0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。   The irradiation path of the light beam L in the solidified layer forming step (S2) and the cutting path in the cutting step (S3) are previously created from three-dimensional CAD data. At this time, a machining path is determined by applying contour line machining. For example, in the solidified layer forming step (S2), contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (for example, 0.05 mm pitch when Δt1 is 0.05 mm) is used. .

[本発明の製造方法]
本発明の製造方法は、上述した粉末焼結積層法につき、“三次元形状造形物に生じ得る内部応力の緩和”に特に着目したものである。即ち、本発明は、図2(b)に示すように内部応力に起因して三次元形状造形物が反り上がって造形プレートまたは造形テーブルから剥離する現象を、造形プレート面または造形テーブル面に設けた凹部で抑制する点において特徴を有している(図6参照)。
[Production method of the present invention]
The manufacturing method of the present invention pays particular attention to “relaxation of internal stress that can occur in a three-dimensional shaped object” for the above-described powder sintering lamination method. That is, according to the present invention, as shown in FIG. 2B, a phenomenon in which a three-dimensional shaped object is warped and peeled off from a modeling plate or a modeling table due to internal stress is provided on the modeling plate surface or the modeling table surface. It has a feature in that it is suppressed by a concave portion (see FIG. 6).

図7(a)に示すように造形プレート21上で三次元形状造形物24を製造する場合を想定すると、本発明にいう「凹部」は、かかる造形プレート21の主面に形成された凹部を実質的に意味している。その一方、図7(b)に示すように、造形テーブル20上に直接的に三次元形状造形物24を製造する場合を想定すると、「凹部」は、かかる造形テーブル20の主面に形成された凹部を実質的に意味している。   Assuming that the three-dimensional shaped object 24 is manufactured on the modeling plate 21 as shown in FIG. 7A, the “concave portion” referred to in the present invention is a concave portion formed on the main surface of the modeling plate 21. Which means practically. On the other hand, as shown in FIG. 7B, assuming that the three-dimensional shaped object 24 is directly manufactured on the modeling table 20, the “concave portion” is formed on the main surface of the modeling table 20. A substantially concave portion is meant.

以下の説明では、粉末として「金属粉末」を用い(即ち、粉末層として金属粉末層を用い)、固化層が焼結層となる条件下において、造形プレート上で三次元形状造形物を製造する態様を例にとって説明する。   In the following description, “metal powder” is used as a powder (that is, a metal powder layer is used as a powder layer), and a three-dimensional shaped object is manufactured on a modeling plate under the condition that the solidified layer is a sintered layer. An embodiment will be described as an example.

本発明の製造方法で用いる造形プレートの主面(即ち、三次元形状造形物の底面が接する面)には、凹部が少なくとも1つ設けられている。具体的には、造形プレート21の主面のうち、図8に示すように造形物が形成される領域21aには凹部60が設けられている。凹部60の形状は、特に限定されるわけではないが、図9に示すように、円柱形状(図9(a))、多角柱形状(例えば四角柱形状(図9(b))、円錐形状(図9(c))、円錐台形状(図9(d)および図9(e))などであってよい。加工が簡易となる観点でいえば、図9(a)に示すような円柱形状が好ましい。凹部の個数は、その個々のサイズ、造形物の底面サイズまたは造形プレートの主面サイズなどに依存し得るものの、例えば、図8に示すような造形物エリア21a(横幅La:100mm、横幅Lb:100mm)および凹部の個数(4〜100個程度)を仮に想定した場合、図9(a)に示す円柱形状の凹部の幅Waは0.5〜20mm程度であり、深さDaは0.5〜10mm程度である。尚、設けられる凹部のピッチも、造形物エリア、凹部サイズまたは凹部の個数などに依存し得るものの、例えば図10(a)に示すような態様を例にとると、凹部のピッチLpは10〜80mm程度であってよい。   At least one recess is provided on the main surface of the modeling plate used in the manufacturing method of the present invention (that is, the surface with which the bottom surface of the three-dimensional modeled object is in contact). Specifically, a concave portion 60 is provided in a region 21a where a modeled object is formed, as shown in FIG. The shape of the recess 60 is not particularly limited, but as shown in FIG. 9, a cylindrical shape (FIG. 9A), a polygonal column shape (for example, a rectangular column shape (FIG. 9B)), a conical shape, etc. (FIG. 9 (c)), a truncated cone shape (FIG. 9 (d) and FIG. 9 (e)), etc. From the viewpoint of easy processing, a cylinder as shown in FIG. Although the shape is preferable, the number of the recesses may depend on the individual size, the bottom size of the modeled object, the main surface size of the modeled plate, etc., for example, a modeled object area 21a (width La: 100 mm as shown in FIG. , Width Lb: 100 mm) and the number of recesses (about 4 to 100) are assumed, the width Wa of the cylindrical recess shown in FIG. 9A is about 0.5 to 20 mm, and the depth Da Is about 0.5 to 10 mm, and the pitch of the recessed portion to be provided is Also, the shaped object area, although may depend like number of recesses sized or recess, the embodiment as shown in FIG. 10 (a) for example, is taken as an example, the pitch Lp of the recess may be about 10 to 80 mm.

尚、反り上がろうとする又は剥離しようとする三次元形状造形物の底面をより効果的に“引っかける”という観点から、凹部の形態は下方に向かって広がるテーパ状になっていることが好ましい。即ち、凹部の形態は、図9(e)に示すような形態であることが好ましい。また、図9(f)および図11に示すように、ある深さ以上となってから下方に向かってテーパ状に広がる形態であってもよい。凹部がテーパ状を有する場合、図9(e)の右上に示すようなテーパの広がり角αは、1°〜45°程度であることが好ましい。凹部がテーパ状を有する場合、凹部自体の加工が容易となる点で図12に示すような貫通孔の形態であってもよい。   In addition, from the viewpoint of more effectively “hooking” the bottom surface of the three-dimensional shaped object to be warped or peeled off, it is preferable that the shape of the concave portion is a tapered shape extending downward. That is, it is preferable that the shape of the recess is as shown in FIG. Moreover, as shown in FIG.9 (f) and FIG. 11, after it becomes more than a certain depth, the form which spreads in a taper shape toward the downward direction may be sufficient. When the recess has a taper shape, the taper spread angle α as shown in the upper right of FIG. 9E is preferably about 1 ° to 45 °. When the recess has a taper shape, it may be in the form of a through hole as shown in FIG. 12 in that the recess itself can be easily processed.

製造過程における三次元形状造形物は、その周縁部分から反り上がろうとする傾向又は剥離しようとする傾向を有し得るので(図2(b)参照)、図10(a)〜(c)に示すように、造形プレートの造形物エリア21aの周縁部に凹部60を設けることが好ましい。特に造形物のコーナー(角部分)からの反り上がりが考えられるので、簡易的には図10(c)に示す態様であってもよい。また、凹部を造形物エリア21aの周縁部に設ける場合では、凹部60が全体的に溝形態を有していてもよい(図13参照)。かかる場合、三次元形状造形物の底面エッジが溝形状の凹部に沿うように三次元形状造形物を形成していくと、「引っかけ効果」を三次元形状造形物の周縁全体に対して供すことができ、反り上がり/剥離をより確実に防止することができる。ちなみに、溝形状の凹部は、その加工が容易となる点でも有利である。溝形状の凹部のサイズについて例示すると、図13に示す溝幅Wbは0.5〜10mm程度であり、溝深さDbは0.5〜10mm程度である。   Since the three-dimensional shaped object in the manufacturing process may have a tendency to warp or peel off from the peripheral portion (see FIG. 2B), FIG. 10A to FIG. 10C. As shown, it is preferable to provide the recessed part 60 in the peripheral part of the molded article area 21a of a modeling plate. In particular, since the warping from the corner (corner portion) of the modeled object can be considered, the embodiment shown in FIG. Moreover, when providing a recessed part in the peripheral part of the molded article area 21a, the recessed part 60 may have a groove form entirely (refer FIG. 13). In such a case, when the three-dimensional shaped object is formed so that the bottom edge of the three-dimensional shaped object follows the groove-shaped recess, the “hook effect” is provided to the entire periphery of the three-dimensional shaped object. And warpage / peeling can be prevented more reliably. Incidentally, the groove-shaped recess is also advantageous in that the processing becomes easy. Exemplifying the size of the groove-shaped recess, the groove width Wb shown in FIG. 13 is about 0.5 to 10 mm, and the groove depth Db is about 0.5 to 10 mm.

造形プレートの造形物エリア21aの周縁部に凹部を設ける場合では、三次元形状造形物の底面が凹部の少なくとも一部にのみ接するように、最下層の固化層を形成してよい。例えば、図13(a)において21bで示す領域(破線で囲った領域)に最下層を形成してよく、特に図13(b)に示すように造形物底部の周縁部が溝形状凹部にかかるようにしてよい。この場合であっても中心に向かって反り上がろうとする造形物が凹部に引っかかることになるので、造形物の内部の応力が緩和され、“剥離”が抑えられる。   When providing a recessed part in the peripheral part of the modeling object area 21a of a modeling plate, you may form a lowermost solidified layer so that the bottom face of a three-dimensional shaped modeling object may contact | connect only at least one part of a recessed part. For example, the lowermost layer may be formed in an area indicated by 21b (area surrounded by a broken line) in FIG. 13A, and in particular, as shown in FIG. You may do it. Even in this case, the modeled object that warps upward toward the center is caught in the concave portion, so that the stress inside the modeled product is relieved and “peeling” is suppressed.

造形プレートに凹部を設ける方法としては、特に制限するわけではないが、切削加工、放電加工またはレーザ加工などを用いることができる。また、ダイサーを用いたり、ドリル加工やサンドブラストなどの機械的な方法で造形プレートの表面に凹部を設けることも可能である。貫通孔形態の凹部を設ける場合には、ドリルなどの機械加工による作製が好ましい。   The method of providing the concave portion on the modeling plate is not particularly limited, but cutting, electric discharge machining, laser machining, or the like can be used. Moreover, it is also possible to provide a concave portion on the surface of the modeling plate by using a dicer or a mechanical method such as drilling or sandblasting. In the case where a through-hole-shaped recess is provided, it is preferable to make it by machining such as a drill.

本発明の製造方法で得られる三次元形状造形物は造形プレートと接合した状態で一体的に得られるので、そのように一体化した「三次元形状造形物」と「造形プレート」とを分離することなく金型等の製品として用いることができる。かかる場合、造形プレートの材質は、三次元形状造形物(即ち、形成される固化層)と接合性の高いものが望ましい。例えば三次元形状造形物の製造に際して鉄粉を用いる場合では、造形プレートは鋼材またはステンレス等の材質から成ることが好ましく、三次元形状造形物の製造に際してナイロンなどの樹脂粉末を用いる場合では、造形プレートは、同種の樹脂(ナイロンなど)等の材質から成ることが好ましい。但し、必要に応じて、三次元形状造形物を造形プレートから分離して使用してもよく、その場合には、造形プレートの材質は、三次元形状造形物(即ち、形成される固化層)と接合性の低いものが望ましい。例えば三次元形状造形物の製造に際して鉄粉を用いる場合では、造形プレートはアルミナまたはジルコニア等の高融点材質から成ることが好ましく、溶射などによるコーティングでもよい。三次元形状造形物の製造に際してナイロンなどの樹脂粉末を用いる場合では、造形プレートは金属またはアルミナ等のセラミックス等の材質から成ることが好ましい。三次元形状造形物を造形プレートから分離した後は、“凹部に対応して形成され得る造形物底面の凸部”を必要に応じて切削除去してよい。尚、三次元形状造形物を造形プレートから分離する場合、図14に示すように、凹部60と、その内部に形成される造形物底部24’との接触面積を小さくしてよい。これにより、“材料面”でなく、“構造面”に起因して容易な分離が助力される。   Since the three-dimensional shaped object obtained by the manufacturing method of the present invention is integrally obtained in a state of being joined to the shaping plate, the “three-dimensional shaped object” and the “shaped plate” integrated as such are separated. It can be used as a product such as a mold without any problems. In such a case, it is desirable that the material of the modeling plate has high bondability with the three-dimensional modeled object (that is, the solidified layer to be formed). For example, in the case of using iron powder in the production of a three-dimensional shaped object, the modeling plate is preferably made of a material such as steel or stainless steel, and in the case of using a resin powder such as nylon in the production of a three-dimensional shaped object, The plate is preferably made of a material such as the same kind of resin (such as nylon). However, if necessary, the three-dimensional shaped object may be used separately from the modeling plate. In that case, the material of the modeling plate is a three-dimensional shaped object (that is, a solidified layer to be formed). It is desirable to have a low bondability. For example, when iron powder is used in the production of a three-dimensional shaped object, the modeling plate is preferably made of a high melting point material such as alumina or zirconia, and may be coated by thermal spraying or the like. In the case of using a resin powder such as nylon when manufacturing a three-dimensional shaped object, the modeling plate is preferably made of a material such as metal or ceramics such as alumina. After separating the three-dimensional modeled object from the modeling plate, “the convex part on the bottom of the modeled object that can be formed corresponding to the concave part” may be cut and removed as necessary. When the three-dimensional shaped object is separated from the modeling plate, as shown in FIG. 14, the contact area between the recess 60 and the molded object bottom 24 ′ formed therein may be reduced. This helps easy separation due to the “structural plane” rather than the “material plane”.

次に、図15および図16を参照することによって、造形プレート上で三次元形状造形物を製造する工程を経時的に説明する。ちなみに、粉末としては「金属粉末」を用い、固化層が焼結層となると共に、造形プレートが固化層に対して接合性の高い材質から成る場合を例にとって説明する。   Next, with reference to FIG. 15 and FIG. 16, the process of manufacturing a three-dimensional shape molded article on a modeling plate is demonstrated over time. Incidentally, the case where “metal powder” is used as the powder, the solidified layer is a sintered layer, and the modeling plate is made of a material having high bonding property to the solidified layer will be described as an example.

まず、図15(a)に示すように、三次元形状造形物が設けられる領域に凹部60を備えた造形プレート21を用意する。次いで、図15(b)に示すように凹部を粉末19pで充填した後、充填された粉末19pに光ビームを照射することによって、粉末を焼結させて焼結部24pを形成する(図15(c)参照)。焼結を経ることに起因して、焼結部24pは凹部表面に接合し得る。形成された焼結部24pに対しては、必要に応じて切削加工を施してもよい(例えば、焼結部24pが凹部からはみ出すように盛り上がって形成された場合では、造形プレート面が平らになるように切削除去してもよい)。引き続いて、図15(d)に示すように焼結部24pを覆うように造形プレート21上に第1金属粉末層19aを形成し、所定の箇所に光ビームを照射することによって第1焼結層24aを形成する(図15(e)参照)。焼結を経ることに起因して、第1焼結層24aは、造形プレート面に接合すると共に、その下に存在する焼結部24pと一体化する。次いで、図15(f)に示すように第1焼結層24a上に第2金属粉末層19bを形成し、所定の箇所に光ビームを照射することによって第2焼結層24bを形成する(図15(g)参照)。焼結を経ることに起因して、第2焼結層24bは、その下に存在する第1焼結層24aと積層一体化する。以降は、同様の操作を繰り返すことによって、三次元形状造形物の形状を構成していく。かかる製造工程に際しては、複数の焼結層(24a,24b、24c・・・)から成る三次元形状造形物に対して、図15(g)に示すように、内向きに反り上がる力(モーメント)が生じることになるものの、焼結部24aが凹部に接合又は引っかかることに起因して、それを打ち消す力が反作用として生じる。つまり、凹部によって、三次元形状造形物が造形プレートから剥離する現象が防止される。   First, as shown to Fig.15 (a), the modeling plate 21 provided with the recessed part 60 in the area | region in which a three-dimensional molded object is provided is prepared. Next, as shown in FIG. 15B, after filling the recess with the powder 19p, the powder 19p is irradiated with a light beam to sinter the powder to form a sintered portion 24p (FIG. 15). (See (c)). Due to the sintering, the sintered portion 24p can be joined to the concave surface. The formed sintered portion 24p may be cut as necessary (for example, in the case where the sintered portion 24p is formed so as to protrude from the concave portion, the modeling plate surface is flattened). It may be removed by cutting). Subsequently, as shown in FIG. 15 (d), a first metal powder layer 19a is formed on the modeling plate 21 so as to cover the sintered portion 24p, and the first sintering is performed by irradiating a predetermined portion with a light beam. The layer 24a is formed (see FIG. 15E). Due to the sintering, the first sintered layer 24a is joined to the modeling plate surface and integrated with the sintered portion 24p existing therebelow. Next, as shown in FIG. 15F, a second metal powder layer 19b is formed on the first sintered layer 24a, and a second sintered layer 24b is formed by irradiating a predetermined portion with a light beam ( (Refer FIG.15 (g)). Due to the sintering, the second sintered layer 24b is laminated and integrated with the first sintered layer 24a existing therebelow. Thereafter, the same operation is repeated to form the shape of the three-dimensional shaped object. In such a manufacturing process, as shown in FIG. 15G, a force (moment that warps inward) is applied to a three-dimensional shaped object composed of a plurality of sintered layers (24a, 24b, 24c...). ) Will occur, but due to the sintered portion 24a being joined or caught in the recess, a force to counteract it will occur as a reaction. That is, the phenomenon in which the three-dimensional shaped object is separated from the modeling plate is prevented by the recess.

上述の製造工程では、焼結部24pと第1焼結部24aとを別個に形成したが、それらを一体的に形成してもよい。かかる態様を図16に示す。この態様では、図16(b)に示すように、凹部60が粉末で充填されるように、造形プレート21上に第1金属粉末層19aを形成する。そして、図16(c)に示すように、第1金属粉末層19aの所定箇所の金属粉末のみならず、凹部に充填された金属粉末までもが焼結するように、光ビームを照射する。一般的には、図16(b)に示すA領域の粉末とB領域の粉末とを比べた場合、B領域の粉末に対する方がより大きな照射エネルギー密度となるように光ビームの照射条件を調整する。このような照射によって、焼結部24pと第1焼結層24aとが一体化した焼結層を得ることができる。引き続いて、図16(d)に示すように第1焼結層24a上に第2金属粉末層19bを形成し、所定の箇所に光ビームを照射することによって第2焼結層24bを形成する(図16(e)参照)。焼結を経ることに起因して、第2焼結層24bは、その下に存在する第1焼結層24aおよび焼結部24pと積層一体化する。以降は、同様の操作を繰り返すことによって、三次元形状造形物の形状を構成していく。   In the manufacturing process described above, the sintered portion 24p and the first sintered portion 24a are separately formed, but they may be integrally formed. Such an embodiment is shown in FIG. In this embodiment, as shown in FIG. 16B, the first metal powder layer 19a is formed on the modeling plate 21 so that the recess 60 is filled with powder. And as shown in FIG.16 (c), a light beam is irradiated so that not only the metal powder of the predetermined part of the 1st metal powder layer 19a but the metal powder with which the recessed part was sintered may be sintered. In general, when comparing the powder in the A region and the powder in the B region shown in FIG. 16B, the irradiation condition of the light beam is adjusted so that the irradiation energy density is larger for the powder in the B region. To do. By such irradiation, a sintered layer in which the sintered portion 24p and the first sintered layer 24a are integrated can be obtained. Subsequently, as shown in FIG. 16D, a second metal powder layer 19b is formed on the first sintered layer 24a, and a second sintered layer 24b is formed by irradiating a predetermined portion with a light beam. (See FIG. 16 (e)). Due to the sintering, the second sintered layer 24b is laminated and integrated with the first sintered layer 24a and the sintered portion 24p existing therebelow. Thereafter, the same operation is repeated to form the shape of the three-dimensional shaped object.

[本発明の製造装置]
次に、本発明の製造方法の実施に好適な装置について説明する(粉末として金属粉末を用い、固化層が焼結層となる態様を例にとって説明する)。かかる装置は、図1、図3、図4、図7および図8に示すように
金属粉末層を形成するための粉末層形成手段2、
金属粉末層および/または焼結層が形成されることになる“造形テーブル20”または“造形テーブル20上に配される造形プレート21”、ならびに
焼結層が形成されるように金属粉末層に光ビームを照射するための光ビーム照射手段3
を有して成り、
造形テーブル20または造形プレート21の主面の造形物形成領域21aに凹部60が少なくとも1つ設けられている。かかる装置では、造形プレート21または造形テーブル20の主面の造形物形成領域に設けられた凹部60が、製造過程において焼結層に生じ得る応力(モーメント)を緩和することになるので、三次元形状造形物が造形プレートまたは造形テーブルから剥離する現象を抑えることができる。かかる装置の動作も含めて、「粉末層形成手段2」、「造形テーブル20」、「造形プレート21」、「光ビーム照射手段3」および「凹部60」等については、上述しているので重複を避けるために説明を省略する。
[Production apparatus of the present invention]
Next, an apparatus suitable for carrying out the production method of the present invention will be described (this will be described taking an example in which a metal powder is used as the powder and the solidified layer is a sintered layer). Such an apparatus comprises a powder layer forming means 2 for forming a metal powder layer, as shown in FIGS. 1, 3, 4, 7, and 8.
The “modeling table 20” or “modeling plate 21 arranged on the modeling table 20” on which the metal powder layer and / or the sintered layer is formed, and the metal powder layer so that the sintered layer is formed. Light beam irradiation means 3 for irradiating a light beam
Comprising
At least one concave portion 60 is provided in the modeling object forming region 21 a on the main surface of the modeling table 20 or the modeling plate 21. In such an apparatus, the concave portion 60 provided in the modeling object forming region on the main surface of the modeling plate 21 or the modeling table 20 relieves stress (moment) that may be generated in the sintered layer in the manufacturing process. It is possible to suppress the phenomenon that the shaped object is peeled off from the modeling plate or the modeling table. The “powder layer forming means 2”, “modeling table 20”, “modeling plate 21”, “light beam irradiating means 3”, “recessed portion 60” and the like including the operation of the apparatus have been described above. The description is omitted to avoid this.

以上、本発明の実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。   As mentioned above, although embodiment of this invention has been described, it has only illustrated the typical example of the application scope of this invention. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto and various modifications can be made.

例えば、造形プレートに設けられる凹部の内面を粗面化しておいてもよい。これにより、三次元形状造形物の底面と凹部との摩擦抵抗が増すので、製造過程において反り上がろうとする三次元形状造形物の底面を凹部でより確実に“引っかける”ことができる。   For example, you may roughen the inner surface of the recessed part provided in a modeling plate. As a result, the frictional resistance between the bottom surface of the three-dimensional modeled object and the concave portion is increased, so that the bottom surface of the three-dimensional modeled product that is going to warp in the manufacturing process can be more reliably “hooked” by the concave part.

また、上述の説明では、予め凹部が形成された造形プレートを用いることを前提にしているが、必ずしもこれに限定されるわけではない。例えば、平らな造形プレートを用いてよく、三次元形状造形物の製造に先立って凹部を切削加工して用いてよい。より具体的には、「平らな面を有する未加工の造形プレート」を造形テーブルに配した後、光造形複合加工機を用いて所望の箇所に切削加工を施して凹部を形成してよい。造形プレートに凹部が形成された後は、上述した態様と同様に粉末層/固化層を繰り返して形成して三次元形状造形物を製造する。“平らな造形プレート”を用いた後に凹部を形成する場合では、“位置合わせ”が不要となる点で有利である。つまり、予め凹部が形成された造形プレートを用いる場合では、その予め形成された凹部の位置を考慮した上で、造形プレートを造形テーブル上に配する必要があったり、あるいは、粉末層もしくは固化層の形成位置を決める必要があったものの、平らな造形プレートを用いる場合では、造形テーブル上に配した後で凹部を形成するので凹部の形成箇所を任意かつ随意に選択することができ、“凹部の予め決められた形成位置”に起因する不都合を回避することができる。   In the above description, it is assumed that a modeling plate in which concave portions are formed in advance is used, but the present invention is not necessarily limited to this. For example, a flat modeling plate may be used, and the concave portion may be cut and used prior to the manufacture of the three-dimensional shaped object. More specifically, after the “unprocessed modeling plate having a flat surface” is arranged on the modeling table, a concave portion may be formed by performing a cutting process on a desired location using an optical modeling composite processing machine. After the concave portion is formed on the modeling plate, the powder layer / solidified layer is repeatedly formed in the same manner as described above to manufacture a three-dimensional modeled article. In the case where the concave portion is formed after using the “flat modeling plate”, it is advantageous in that “positioning” is not necessary. That is, in the case of using a modeling plate in which a concave portion is formed in advance, it is necessary to arrange the modeling plate on the modeling table in consideration of the position of the concave portion formed in advance, or a powder layer or a solidified layer However, in the case of using a flat modeling plate, the concave portion is formed after being placed on the modeling table, so that the concave portion can be arbitrarily and arbitrarily selected. Inconvenience due to the “predetermined formation position” can be avoided.

尚、上述の説明では、『造形プレート21上にて三次元形状造形物24を製造する態様A(図7(a)参照)』を主として例示したが、『造形テーブル20上にて直接的に三次元形状造形物24を製造する態様B(図7(b)参照)』であっても、これまで説明してきた態様Aと同様の特徴・効果などを有し得ることを当業者は容易に理解できるであろう。つまり、造形テーブル上で直接的に製造する場合であっても、それに凹部を設けることにより、造形物の剥離現象を防止することができる。また、上述の実施形態では、『粉末層が金属粉末層であって、固化層が焼結層となる態様C』を例にとって説明している箇所があるものの、『粉末層が樹脂粉末層であって、固化層が硬化層となる態様D』であっても、態様Cと同様の特徴・効果などを有し得ることを当業者は容易に理解できるであろう。   In the above description, the “mode A (see FIG. 7A) for manufacturing the three-dimensional shaped object 24 on the modeling plate 21” is mainly exemplified, but “directly on the modeling table 20”. A person skilled in the art can easily understand that the aspect B (see FIG. 7B) for producing the three-dimensional shaped object 24 can have the same features and effects as the aspect A described so far. You can understand. That is, even if it manufactures directly on a modeling table, the peeling phenomenon of a modeling object can be prevented by providing a recessed part in it. Further, in the above-described embodiment, although there is a portion described taking as an example “mode C in which the powder layer is a metal powder layer and the solidified layer is a sintered layer”, “the powder layer is a resin powder layer” Thus, those skilled in the art will easily understand that even if the solidified layer is the mode D ”in which the hardened layer is a cured layer, it can have the same characteristics and effects as the mode C.

本発明の三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、『粉末層が金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。また、『粉末層が樹脂粉末層であって、固化層が硬化層となる』では、得られる三次元形状造形物を樹脂成形品して用いることができる。   Various articles | goods can be manufactured by implementing the manufacturing method of the three-dimensional shape molded article of this invention. For example, in the case of “when the powder layer is a metal powder layer and the solidified layer is a sintered layer”, the resulting three-dimensional shaped article is a plastic injection mold, press mold, die casting mold, casting mold. It can be used as a mold such as a mold or a forged mold. In addition, in “the powder layer is a resin powder layer and the solidified layer is a hardened layer”, the obtained three-dimensional shaped article can be used as a resin molded product.

光造形複合加工機の動作を模式的に示した断面図Sectional view schematically showing the operation of the stereolithography combined processing machine 三次元形状造形物が剥離を引き起こす現象を模式的に示した断面図Cross-sectional view schematically showing the phenomenon that three-dimensional shaped objects cause peeling 粉末焼結積層法が行われる態様を模式的に示した斜視図The perspective view which showed typically the aspect by which the powder sintering lamination method is performed 粉末焼結積層法が実施される光造形複合加工機の構成を模式的に示した斜視図The perspective view which showed typically the structure of the optical shaping complex processing machine by which a powder sintering lamination method is implemented 光造形複合加工機の動作のフローチャートFlow chart of operation of stereolithography combined processing machine 本発明の特徴を概念的に示した模式図Schematic diagram conceptually showing the features of the present invention 造形物が製造される態様を模式的に示した断面図Sectional drawing which showed the aspect by which a molded article is manufactured typically 造形プレートを模式的に示した斜視図Perspective view schematically showing modeling plate 凹部の種々の態様を示した模式図Schematic diagram showing various aspects of recesses 凹部の種々の配置態様を模式的に示した造形プレートの上面図Top view of modeling plate schematically showing various arrangements of recesses テーパ形状の凹部を備えた造形プレートを模式的に示した斜視図The perspective view which showed typically the modeling plate provided with the taper-shaped recessed part 貫通孔形態の凹部を模式的に示した断面図Cross-sectional view schematically showing a through-hole-shaped recess 溝形態の凹部を備えた造形プレートを模式的に示した斜視図The perspective view which showed typically the modeling plate provided with the recessed part of a groove form 凹部と造形物底部との接触面積が小さい態様を模式的に示した図The figure which showed typically the aspect with a small contact area of a recessed part and a molded article bottom part 本発明の製造方法における工程を模式的に示した断面図Sectional drawing which showed the process in the manufacturing method of this invention typically 本発明の製造方法における工程を模式的に示した断面図Sectional drawing which showed the process in the manufacturing method of this invention typically

符号の説明Explanation of symbols

1 光造形複合加工機
2 粉末層形成手段
3 光ビーム照射手段
4 切削手段
19 粉末/粉末層(例えば金属粉末/金属粉末層または樹脂粉末/樹脂粉末層)
19p 凹部に充填された粉末(例えば金属粉末または樹脂粉末)
19a 第1粉末層(例えば第1金属粉末層または第1樹脂粉末層)
19b 第2粉末層(例えば第2金属粉末層または第2樹脂粉末層)
20 造形テーブル
21 造形プレート
21a 造形物形成領域(造形物エリア)
21b 造形物形成領域(造形物エリア)
22 粉末層(例えば金属粉末層または樹脂粉末層)
23 スキージング用ブレード
24 固化層(例えば焼結層または硬化層)またはそれから得られる三次元形状造形物
24p 固化部(例えば焼結部または硬化部)
24a 第1固化層(例えば第1焼結層または第1硬化層)
24b 第2固化層(例えば第2焼結層または第2硬化層)
25 粉末テーブル
26 粉末材料タンクの壁部分
27 造形タンクの壁部分
28 粉末材料タンク
29 造形タンク
30 光ビーム発振器
31 ガルバノミラー
40 ミーリングヘッド
41 XY駆動機構
50 チャンバー
52 光透過窓
60 凹部
L 光ビーム
DESCRIPTION OF SYMBOLS 1 Optical modeling combined processing machine 2 Powder layer formation means 3 Light beam irradiation means 4 Cutting means 19 Powder / powder layer (For example, metal powder / metal powder layer or resin powder / resin powder layer)
19p Powder filled in recess (for example, metal powder or resin powder)
19a First powder layer (for example, first metal powder layer or first resin powder layer)
19b Second powder layer (for example, second metal powder layer or second resin powder layer)
20 Modeling table 21 Modeling plate 21a Modeling object formation area (modeling object area)
21b Modeling object formation area (modeling object area)
22 Powder layer (for example, metal powder layer or resin powder layer)
23 Blade for squeezing 24 Solidified layer (for example, sintered layer or hardened layer) or three-dimensional shaped product 24p obtained therefrom Solidified portion (for example, sintered portion or hardened portion)
24a First solidified layer (for example, first sintered layer or first hardened layer)
24b Second solidified layer (for example, second sintered layer or second hardened layer)
25 Powder table 26 Wall part 27 of powder material tank 27 Wall part 28 of modeling tank Powder material tank 29 Modeling tank 30 Light beam oscillator 31 Galvano mirror 40 Milling head 41 XY drive mechanism 50 Chamber 52 Light transmission window 60 Recess L Light beam

Claims (5)

(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、前記新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
を繰り返して行う三次元形状造形物の製造方法であって、
粉末層または固化層が設けられる造形テーブルまたは造形プレートの主面に全体的に溝形態を有する凹部が設けられており、
前記製造される三次元形状造形物の底面エッジが前記溝形態の前記凹部の一部にのみ接するように前記固化層を形成し、それによって、該底面エッジが該溝形態の該凹部に沿って設けられる、ことを特徴とする、三次元形状造形物の製造方法。
(I) irradiating a predetermined portion of the powder layer with a light beam to sinter or melt-solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer. Forming a layer, irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer, a method for producing a three-dimensional shaped object,
A concave portion having a groove shape as a whole is provided on the main surface of the modeling table or modeling plate on which the powder layer or the solidified layer is provided ,
The solidified layer is formed so that a bottom edge of the manufactured three-dimensional shaped object is in contact with only a part of the recess in the groove shape, whereby the bottom edge is along the recess in the groove shape. A method for producing a three-dimensional shaped object, characterized in that it is provided .
前記溝形態の前記凹部につき、溝幅Wbが0.5〜10mmであり、溝深さDbが0.5〜10mmであることを特徴とする、請求項1に記載の三次元形状造形物の製造方法。The three-dimensional shaped object according to claim 1, wherein the groove width Wb is 0.5 to 10 mm and the groove depth Db is 0.5 to 10 mm for the recess in the groove shape. Production method. 三次元形状造形物の製造装置であって、A manufacturing apparatus for a three-dimensional shaped object,
粉末層を形成するための粉末層形成手段、Powder layer forming means for forming a powder layer,
粉末層および/または固化層が形成されることになる造形テーブルまたは造形テーブル上に配される造形プレート、ならびにA shaping table on which a powder layer and / or a solidified layer is to be formed or a shaping plate arranged on the shaping table, and
固化層が形成されるように粉末層に光ビームを照射するための光ビーム照射手段Light beam irradiation means for irradiating the powder layer with a light beam so as to form a solidified layer
を有して成り、Comprising
造形テーブルまたは造形プレートの主面には全体的に溝形態を有する凹部が設けられており、The main surface of the modeling table or modeling plate is provided with a recess having a groove shape as a whole,
前記製造される三次元形状造形物の底面エッジが前記溝形態の前記凹部の一部にのみ接することになるように該溝形態の該凹部が造形物形成領域の周縁部分と部分的に重なっていることを特徴とする、三次元形状造形物の製造装置。The concave portion of the groove shape partially overlaps with the peripheral portion of the molded object forming region so that the bottom edge of the manufactured three-dimensional shape molded article contacts only a part of the concave portion of the groove shape. An apparatus for producing a three-dimensional shaped object, characterized in that
前記溝形態の前記凹部につき、溝幅Wbが0.5〜10mmであり、溝深さDbが0.5〜10mmであることを特徴とする、請求項3に記載の三次元形状造形物の製造装置。The three-dimensional shaped object according to claim 3, wherein the groove width Wb is 0.5 to 10 mm and the groove depth Db is 0.5 to 10 mm for the recess in the groove shape. manufacturing device. 前記凹部が下方に向かって広がるテーパ形状を有していることを特徴とする、請求項3または4に記載の三次元形状造形物の製造装置。5. The three-dimensional shaped article manufacturing apparatus according to claim 3, wherein the concave portion has a tapered shape spreading downward.
JP2008272084A 2008-10-22 2008-10-22 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP5189953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272084A JP5189953B2 (en) 2008-10-22 2008-10-22 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272084A JP5189953B2 (en) 2008-10-22 2008-10-22 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2010100883A JP2010100883A (en) 2010-05-06
JP5189953B2 true JP5189953B2 (en) 2013-04-24

Family

ID=42291772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272084A Expired - Fee Related JP5189953B2 (en) 2008-10-22 2008-10-22 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP5189953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766721B2 (en) 2019-08-23 2023-09-26 Indium Corporation Thermally decomposing build plate for facile release of 3D printed objects
WO2023183566A1 (en) * 2022-03-24 2023-09-28 Indium Corporation Thermally decomposable build plate structure for stabilization of metal build surface during 3d printing and facile release of 3d printed objects
US12042864B2 (en) 2021-02-23 2024-07-23 Indium Corporation Thermally decomposing build plate with casting mold for facile release of 3D printed objects

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150805A1 (en) 2009-06-23 2010-12-29 パナソニック電工株式会社 Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
JP5653657B2 (en) 2010-06-09 2015-01-14 パナソニック株式会社 Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
JP5584019B2 (en) 2010-06-09 2014-09-03 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
US9597730B2 (en) 2013-04-19 2017-03-21 United Technologies Corporation Build plate and apparatus for additive manufacturing
JP2015183245A (en) * 2014-03-25 2015-10-22 日本電子株式会社 Three-dimensional laminate shaping apparatus
CN104190936B (en) * 2014-09-24 2017-01-25 北京太尔时代科技有限公司 Optimized 3D printing method
JP6097898B2 (en) * 2015-04-17 2017-03-15 肇 南澤 3D printer model fixing method
EP3156164A1 (en) * 2015-10-14 2017-04-19 Siemens Aktiengesellschaft Method of producing a workpiece using generative manufacturing ; corresponding workpiece
JP6220459B1 (en) * 2016-03-25 2017-10-25 技術研究組合次世代3D積層造形技術総合開発機構 Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
CN107650381B (en) 2016-07-26 2021-02-19 精工爱普生株式会社 Three-dimensional object molding table, manufacturing device, and manufacturing method
JP6826321B2 (en) * 2016-07-26 2021-02-03 セイコーエプソン株式会社 Modeling stage of 3D model, 3D model manufacturing device and 3D model manufacturing method
EP3366392A1 (en) * 2017-02-23 2018-08-29 Siemens Aktiengesellschaft Build platform for additive manufacturing adapted for heat treatment process
JP6897279B2 (en) * 2017-04-26 2021-06-30 花王株式会社 Stage for 3D modeling
GR1009361B (en) 2017-05-11 2018-09-17 Κωνσταντινος Ηλια Θεοδοσοπουλος A system for the production of tablets, granules and capsules via three-dimensional printing
JP6926820B2 (en) * 2017-08-24 2021-08-25 セイコーエプソン株式会社 3D modeling device and 3D modeling method
EP3482911A1 (en) 2017-11-13 2019-05-15 SLM Solutions Software GmbH Support system for a transport system and workpiece holder for same
JP7358903B2 (en) 2019-10-21 2023-10-11 セイコーエプソン株式会社 Three-dimensional object manufacturing method and data processing device
JP7447465B2 (en) 2019-12-18 2024-03-12 セイコーエプソン株式会社 3D modeling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095302B2 (en) * 1992-11-24 2000-10-03 松下電工株式会社 Molding method for three-dimensional shaped objects
DE19511772C2 (en) * 1995-03-30 1997-09-04 Eos Electro Optical Syst Device and method for producing a three-dimensional object
JP4337216B2 (en) * 2000-03-13 2009-09-30 沖電気工業株式会社 Modeling method by stereolithography and stereolithography by stereolithography
JP2003305778A (en) * 2003-03-31 2003-10-28 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766721B2 (en) 2019-08-23 2023-09-26 Indium Corporation Thermally decomposing build plate for facile release of 3D printed objects
US12042864B2 (en) 2021-02-23 2024-07-23 Indium Corporation Thermally decomposing build plate with casting mold for facile release of 3D printed objects
WO2023183566A1 (en) * 2022-03-24 2023-09-28 Indium Corporation Thermally decomposable build plate structure for stabilization of metal build surface during 3d printing and facile release of 3d printed objects
US12023735B2 (en) 2022-03-24 2024-07-02 Indium Corporation Thermally decomposable build plate structure for stabilization of metal build surface during 3D printing and facile release of 3D printed objects

Also Published As

Publication number Publication date
JP2010100883A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5189953B2 (en) Manufacturing method of three-dimensional shaped object
JP5119123B2 (en) Manufacturing method of three-dimensional shaped object
JP5599921B1 (en) Manufacturing method of three-dimensional shaped object
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5612735B1 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP6443698B2 (en) Manufacturing method of three-dimensional shaped object
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5302710B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
US10821663B2 (en) Method for manufacturing three-dimensional shaped object
US11203065B2 (en) Method for manufacturing three-dimensional shaped object
JPWO2013132840A1 (en) Manufacturing method of three-dimensional shaped object
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
JP2002249805A (en) Method for manufacturing molding of three-dimensional product
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP2012241261A (en) Method for producing three-dimensionally shaped object
JPWO2017221912A1 (en) Manufacturing method of three-dimensional shaped object
JP6817561B2 (en) Manufacturing method of 3D shaped object
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JP6643644B2 (en) Manufacturing method of three-dimensional shaped object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees