以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本発明に係る測定装置100の構成の一例を示す。測定装置100は、被試験回路/被試験電子デバイス/被試験システム(以下DUT)のビット誤り率を算出する。測定装置100は、DUTのジッタ伝達関数を測定するジッタ伝達関数測定装置101と、ジッタ伝達関数測定装置101が測定したジッタ伝達関数に基づいて、DUTにおけるビット誤り率を測定するビット誤り率推定部102とを備える。ビット誤り率推定部102は、例えば、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を測定する。また、ビット誤り率推定部102は、ジッタ伝達関数の位相に更に基づいて、DUTのビット誤り率を推定してよく、また、DUTの内部雑音に更に基づいて、DUTのビット誤り率を推定してよい。
図2は、本発明に係る測定方法の一例を示すフローチャートである。まず、ジッタ伝達関数推定段階S201で、DUTのジッタ伝達関数を測定する。S201は、図1において説明したジッタ伝達関数測定装置101と同一又は同様の機能を有する。S201は、ジッタ伝達関数測定装置101を用いて行ってよい。次に、ビット誤り率推定段階S202で、DUTのジッタ伝達関数に基づいて、DUTのビット誤り率を測定する。S202は、図1において説明したビット誤り率推定部102と同一又は同様の機能を有する。S202は、ビット誤り率推定部102を用いて行ってよい。
図3は、ジッタ伝達関数測定装置101の構成の一例を示す。ジッタ伝達関数測定装置101は、DUTに入力される入力信号に応じて、DUTが出力する出力信号に基づいて、出力信号の出力タイミングジッタを示す出力タイミングジッタ系列を算出するタイミングジッタ推定部501と、出力タイミングジッタ系列に基づいて、DUTにおけるジッタ伝達関数を算出するジッタ伝達関数推定部103とを有する。タイミングジッタ推定部501は、DUTの出力信号として、DUTの出力信号に対応する再生クロック信号を受け取ってよい。タイミングジッタ推定部501の詳細については後述する。また、タイミングジッタ推定部501は、出力信号に基づいて、出力信号の出力瞬時位相雑音を算出してもよい。この場合であっても、ジッタ伝達関数測定装置101は、出力タイミングジッタ系列に代えて出力瞬時位相雑音を用いて、ジッタ伝達関数を算出することができる。
また、ジッタ伝達関数推定部103は、出力タイミングジッタ系列に基づいてジッタ伝達関数のゲインを測定するジッタゲイン推定部502を有する。本例において、ビット誤り率推定部102は、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を算出する。ジッタ伝達関数のゲインの算出方法については後述する。
ジッタゲイン推定部502は、入力信号におけるタイミングジッタと、出力信号におけるタイミングジッタとに基づいて、DUTにおけるジッタ伝達関数のゲインを測定する。例えば、ジッタゲイン推定部502は入力信号における入力タイミングジッタを示す情報と、タイミングジッタ推定部501が算出した出力タイミングジッタ系列とを受け取る。
ジッタゲイン推定部502は、受け取った入力タイミングジッタを示す情報と、出力タイミングジッタ系列とに基づいてDUTのジッタ伝達関数のゲインを測定する。この場合、ジッタゲイン推定部502は、出力タイミングジッタ系列に基づいて、出力タイミングジッタ値を算出する。例えば、ジッタゲイン推定部502は、出力タイミングジッタ系列に基づいて、出力タイミングジッタのピーク値又は実効値を、出力タイミングジッタ値として算出する。また、他の例においては、ジッタゲイン推定部502は、入力信号の入力タイミングジッタ系列と、出力信号の出力タイミングジッタ系列とを受け取り、ジッタ伝達関数のゲインを推定してよい。この場合、ジッタゲイン推定部502は、入力タイミングジッタ系列から入力タイミングジッタ値を算出し、出力タイミングジッタ系列から出力タイミングジッタ値を算出してよい。
図4は、ジッタ伝達関数推定段階S201の一例のフローチャートを示す。S201は、タイミングジッタ推定段階S221で、出力信号の出力タイミングジッタ系列を算出する。S221は、図3に関連して説明したタイミングジッタ推定部501と同一又は同様の機能を有する。また、S221は、タイミングジッタ推定部501を用いておこなってよい。また、S221は、入力信号の入力タイミングジッタ系列を算出してもよい。
次に、タイミングジッタ値算出段階S222で、タイミングジッタ系列に基づいて、タイミングジッタ値を算出する。S222は、出力タイミングジッタ系列に基づいて、出力タイミングジッタ値を算出してよく、また、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、入力タイミングジッタ値及び出力タイミングジッタ値を算出してもよい。例えば、S222は、タイミングジッタ系列の実効値、又はピークツゥピーク値を、タイミングジッタ値として算出してよい。
次に、ジッタ伝達関数推定段階S223で、ジッタ伝達関数を算出する。S223は、図3に関連して説明したジッタ伝達関数推定部103と同一又は同様の機能を有する。S223は、ジッタ伝達関数推定部103を用いて行ってよい。
図5は、ジッタ伝達関数測定装置101の構成の他の例を示す。本例におけるジッタ伝達関数測定装置101のジッタ伝達関数推定部103は、図3に関連して説明したジッタ伝達関数推定部103の構成に加え、ジッタ位相差推定部503を更に有する。また、ジッタ伝達関数測定装置101は、複数のタイミングジッタ推定部501を有する。一のタイミングジッタ推定部501は、入力信号の入力タイミングジッタ系列を算出し、他のタイミングジッタ推定部501は、出力信号の出力タイミングジッタ系列を算出する。
ジッタ位相差推定部503は、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、入力タイミングジッタと出力タイミングジッタとの位相差を算出する。つまり、ジッタ位相差推定部503は、ジッタ伝達関数の位相を算出する。例えばジッタ位相差推定部503は、下式に基づいてジッタ伝達関数の位相を算出する。
ビット誤り率推定部102は、ジッタ伝達関数の位相に更に基づいて、DUTのビット誤り率を算出する。ジッタ伝達関数の位相に更に基づいてビット誤り率を算出する方法については後述する。
本例のジッタ伝達関数測定装置101を用いた測定装置100において、ビット誤り率推定部102は、ジッタ伝達関数のゲイン及びジッタ伝達関数の位相に基づいて、DUTのビット誤り率を算出する。
図6は、ジッタ伝達関数推定段階S201の他の例を示すフローチャートである。S201は、まず入力タイミングジッタ系列推定段階S241で、入力タイミングジッタ系列を算出する。次に入力タイミングジッタ値算出段階S242で、入力タイミングジッタ値を算出する。次に、出力タイミングジッタ系列推定段階S243で、出力タイミングジッタ系列を算出する。次に、出力タイミングジッタ値算出段階S244で、出力タイミングジッタ値を算出する。次に、ジッタ伝達関数推定段階S245で、ジッタ伝達関数を測定する。S241及びS243は、図4に関連して説明したタイミングジッタ推定段階S221と同様の方法で、タイミングジッタ系列を算出する。また、S242及びS244は、図4に関連して説明したタイミングジッタ値算出段階S222と同様の方法で、タイミングジッタ値を算出する。また、S245は、図4に関連して説明したジッタ伝達関数推定段階S223と同様の方法で、ジッタ伝達関数を算出する。
図7は、ジッタ伝達関数推定段階S223の一例を示すフローチャートである。ジッタゲイン推定段階S261で、入力タイミングジッタ系列と出力タイミングジッタ系列に基づいて、ジッタ伝達関数のゲインを算出する。S261は、図5に関連して説明したジッタゲイン推定部502と同一又は同様の方法で、ジッタ伝達関数のゲインを算出する。S261は、ジッタゲイン推定部502を用いて行ってよい。
また、位相差推定段階S2301で、入力タイミングジッタ系列と出力タイミングジッタ系列に基づいて、ジッタ伝達関数の位相を算出する。S2301は、図5に関連して説明したジッタ位相差推定部503と同一又は同様の方法で、ジッタ伝達関数の位相を算出する。S2301は、ジッタ位相差推定部503を用いて行ってよい。
また、ジッタ伝達関数推定段階S223において、ジッタゲイン推定段階S261と、位相差推定段階S2301は、いずれを先に行ってもよく、また、同時に行ってもよい。
図8は、入力タイミングジッタ値と出力タイミングジッタ値との関係の一例を示す。ジッタゲイン推定部502は、ジッタ量の異なる複数の入力信号の、入力タイミングジッタ系列と、それぞれの入力タイミングジッタ系列に対応する出力信号における出力タイミングジッタ系列とに基づいて、複数の入力タイミング値と出力タイミングジッタ値を算出する。例えば、ジッタゲイン推定部502は、タイミングジッタ系列の実効値又はピークツゥピーク値をタイミングジッタ値として算出する。
ジッタゲイン推定部502は、ジッタ伝達関数のゲインを測定する。つまり、DUTには入力タイミングジッタが異なる入力信号が順次与えられ、ジッタゲイン推定部502は、それぞれの入力タイミングジッタ系列と、それぞれの入力信号に対応する出力タイミングジッタ系列とに基づいて、ジッタ伝達関数のゲインを測定する。
ジッタゲイン推定部502は、図8に示すように、複数の入力タイミングジッタ値と出力タイミングジッタ値との関係を直線適合し、当該直線の傾きをDUTのジッタ伝達関数のゲインとして算出する。以下、DUTのジッタ伝達関数について説明する。
Fourier変換によって入力信号の入力瞬時位相雑音Δφ(nT
S)と出力信号の出力瞬時位相雑音Δφ(nT
S)を周波数領域へ変換すれば、位相雑音スペクトル
をえる。ただし、f
Jはジッタ周波数(クロック周波数からのオフセット周波数)、T
Sはサンプリング周期である。
サンプリング周期T
SをDUTのクロック再生器のクロック周期Tに等しくし、ゼロ交叉(立ち上がりエッジまたは立下りエッジ)付近の瞬時位相雑音をサンプリングすると、入力タイミングジッタΔφ[nT]と出力タイミングジッタΔφ[nT]をえる。Fourier変換によってΔθ[nT]とΔφ[nT]を周波数領域へ変換すれば、タイミングジッタスペクトル
をえる。タイミングジッタは周期Tの弱義周期定常(wide-sense cyclostationary)であるから、タイミングジッタスペクトルは、位相雑音スペクトルより変調ノイズ源の解析に有効である。ただし、狭帯域のフィルタを通過させ、弱義周期定常信号を定常信号に変換すると
がなりたつ。すなわち、狭帯域のフィルタをもちいると、ジッタを有する信号のゼロ交叉におけるサンプリング(弱義周期定常信号にともなう時間依存処理)を避けることができる。
DUTのジッタ伝達関数は
と定義される。ジッタ伝達関数は定係数線形系(constant-parameter linear system)の周波数応答関数としてあたえられる。ジッタ伝達関数をもちいて、DUTのクロック再生器の出力タイミングジッタスペクトルをあらわすと
のようになる。
線形性の仮定から、入力タイミングジッタのピークツゥピーク値はジッタ伝達関数のゲインだけ増幅され、出力信号のタイミングジッタのピークツゥピーク値をあたえる。以下、周波数領域と時間領域でジッタ伝達関数のゲインを測定する方法を説明する。
|ΔΘ(f
J)|がゼロでないとき、ピークジッタまたはRMSジッタに対応するジッタ伝達関数のゲインは、それぞれ
により周波数領域で推定できることがわかる。ジッタ伝達関数は定係数線形系の周波数応答関数としてあたえられるから、ジッタ伝達関数は系への入力の関数ではない。この性質に基づいて、時間領域でジッタ伝達関数を測定する手順を説明する。DUTが線形動作を示す範囲で入力タイミングジッタのピークツゥピーク値を設定し、Δθ[nT]とΔφ[nT]間の入出力関係を複数回測定する。つぎに、図8に示すΔθ[nT]とΔφ[nT]間の入出力関係にたいし直線適合すると、その傾きがジッタ伝達関数のゲイン
をえる。ただし、ある観測時間内の最悪値はピークツゥピーク値(周波数領域ではピーク値)に対応する。
線形性の仮定から、入力ジッタのピークツゥピーク値はジッタ伝達関数のゲイン|HJ(fJ)|だけ増幅され、再生クロックのタイミングジッタのピークツゥピーク値をあたえる。ジッタ伝達関数は、入出力ジッタのピーク値または平均値の比から測定される。次に、周波数領域と時間領域でジッタ伝達関数のゲインを測定する方法を説明する。
|ΔΘ(f
J)|がゼロでないとき、ジッタ伝達関数のゲインはタイミングジッタスペクトル(位相雑音スペクトル)のピーク値または平均値から
により周波数領域で推定できる。
ジッタ伝達関数は定係数線形系の周波数応答関数としてあたえられるから、ジッタ伝達関数は系への入力の関数ではない。この性質に基づき、時間領域でジッタ伝達関数を測定する手順を説明する。被試験クロック再生器が線形動作を示す範囲で入力タイミングジッタのピークツゥピーク値を設定し、Δθ[nT]とΔφ[nT]間の入出力関係を複数回測定する。つぎに、図8に示すように、Δθ[nT]とΔφ[nT]間のピークツゥピークジッタの入出力関係またはRMSジッタの入出力関係にたいし直線適合すると、その傾きからジッタ伝達関数のゲイン
をえる。例えば、直線適合によりジッタ伝達関数のゲインを求めるために、測定装置100は、入力タイミングジッタ系列Δθ[nT]と出力タイミングジッタ系列Δφ[nT]との入出力関係を4回程度測定してよい。
図9は、タイミングジッタ推定部501の構成の一例を示す。タイミングジッタ推定部501は、瞬時位相雑音推定部700と、リサンプリング部901とを有する。瞬時位相雑音推定部700は、受け取った信号を複素数の解析信号に変換する解析信号変換部701と、解析信号に基づいて、解析信号の瞬時位相を測定する瞬時位相推定部702と、解析信号の瞬時位相に基づいて、解析信号701が受け取った信号のリニア瞬時位相を測定するリニア瞬時位相推定部703と、瞬時位相及びリニア瞬時位相に基づいて、瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出するリニア位相除去部704とを有する。瞬時位相雑音推定部700は、DUTの出力信号の瞬時位相雑音を算出してよく、また、DUTの出力信号の瞬時位相雑音及びDUTへの入力信号の瞬時位相雑音を算出してもよい。また、タイミングジッタ推定部501は、DUTの出力信号の出力タイミングジッタを算出してよく、また、DUTの出力信号の出力タイミングジッタ系列及びDUTへの入力信号の入力タイミングジッタ系列を算出してもよい。また、解析信号変換部701は、受け取った信号の所定の周波数成分に基づいて、解析信号を生成してよい。
リサンプリング部901は、図16、及び図17において後述するように、リニア位相除去部704が生成した瞬時位相雑音をゼロクロスタイミングでサンプリングしたタイミングジッタ系列を出力する。瞬時位相雑音をゼロクロスタイミングでサンプリングすることにより、信号のエッジにおける位相雑音を検出することができる。このため、ジッタ伝達関数のゲインを精度よく算出することができる。
図10は、タイミングジッタ推定段階S221の一例を示す。本例においてタイミングジッタ推定段階S221は、解析信号変換段階S801で、受け取った信号を解析信号に変換する。S801は、図9に関連して説明した解析信号変換部701と同様の方法で、受け取った信号を解析信号に変換する。S801は、解析信号変換部701を用いて行ってよい。
次に、瞬時位相推定段階S802で、解析信号の瞬時位相を測定する。S802は、図9に関連して説明した瞬時位相推定部702と同様の方法で、解析信号の瞬時位相を測定する。S802は、瞬時位相推定部702を用いて行ってよい。
次に、リニア瞬時位相推定段階S803で、S801で受け取った信号のリニア瞬時位相を測定する。S803は、図9に関連して説明したリニア瞬時位相推定部703と同様の方法で、受け取った信号のリニア瞬時位相を測定する。S803は、リニア瞬時位相推定部703を用いて行ってよい。
次に、リニア位相除去段階S804で、瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出する。S804は、図9に関連して説明したリニア位相除去部704と同様の方法で瞬時位相雑音を算出する。S804は、リニア位相除去部704を用いて行ってよい。
次に、リサンプリング段階S1001で、瞬時位相雑音をサンプリングしたタイミングジッタ系列を生成する。S1001は、図9において説明したリサンプリング部901と同様の方法でタイミングジッタ系列を生成する。また、S1001は、リサンプリング部901を用いて行ってよい。
図11は、DUTが出力する出力信号x(t)の一例を示す。本例において、タイミングジッタ推定部501は、出力信号の出力タイミングジッタ系列を測定する。出力信号は、ジッタを有する。解析信号変換部701は、出力信号を複素数の解析信号に変換する。本例において、解析信号変換部701は、ヒルベルト変換を用いて出力信号を解析信号に変換する。ヒルベルト変換については後述する。
図12は、解析信号変換部701が生成する解析信号z(t)の一例を示す。解析信号変換部701は、ヒルベルト変換を用いて実部と虚部を有する解析信号を生成する。図12において、解析信号の実部を実線で示し、解析信号の虚部を破線で示す。瞬時位相推定部702は、解析信号の瞬時位相を算出する。瞬時位相の算出についての詳細は後述する。
図13は、瞬時位相推定部702が算出する解析信号の瞬時位相φ(t)の一例を示す。また、瞬時位相推定部702は、位相が不連続な瞬時位相をアンラップし、位相が連続した瞬時位相を算出する。
図14は、アンラップされた瞬時位相φ(t)の一例を示す。リニア瞬時位相推定部703は、アンラップされた瞬時位相に基づいて、タイミングジッタ推定部501が受けとった信号のリニア瞬時位相を算出する。リニア瞬時位相推定部703は、アンラップされた瞬時位相を直線近似し、リニア瞬時位相を算出する。リニア瞬時位相推定部703は、最小二乗法を用いて、リニア瞬時位相を算出してよい。
図15は、リニア瞬時位相φ(t)の一例を示す。リニア位相除去部704は、アンラップされた瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出する。つまり、リニア位相除去部704は、図14に示したアンラップされた瞬時位相の波形と、図15に示したリニア瞬時位相の波形との差分を、瞬時位相雑音として算出する。
図16は、瞬時位相雑音Δφ(t)の一例を示す。リサンプリング部901は、瞬時位相雑音に基づいて、タイミングジッタ推定部501が受け取った信号のタイミングジッタ系列を算出する。リサンプリング部901は、瞬時位相雑音を、解析信号z(t)の実数部x(t)の各ゼロクロス点にもっとも近いタイミング(近似ゼロクロス点)で瞬時位相雑音波形Δφ(t)をサンプリングし、ゼロクロスタイミングnT0における瞬時位相雑音、すなわちタイミングジッタ系列Δφ[n](=Δφ(nT0))を算出する。ゼロクロスタイミングにおける瞬時位相雑音に基づいて、ジッタ伝達関数のゲインを算出することにより、精度よくジッタ伝達関数のゲインを算出することができる。
図17は、タイミングジッタ系列Δφ[n]の一例を示す。ジッタゲイン推定部502は、タイミングジッタ系列に基づいて、タイミングジッタのRMS値とピークツゥピーク値を算出する。RMSタイミングジッタΔφ
RMSは、タイミングジッタ系列Δφ[n]の二乗平均値であり、ジッタゲイン推定部502は下式に基づいてRMSタイミングジッタを算出する。
ここで、Nは測定されたタイミングジッタデータの標本数である。また、ピークツゥピークタイミングジッタΔφ
PPは、Δφ[n]の最大値と最小値の差であり、ジッタゲイン推定部502は下式に基づいてピークツゥピークタイミングジッタを算出する。
次に、ゼロクロス点の検出について説明する。
図18は、解析信号z(t)の実数部の一例を示す。はじめに、入力された被測定信号の解析信号の実数部の最大値を100%レベル、最小値を0%レベルとし、ゼロクロスのレベルとして50%レベルの信号値V50%を算出する。つぎに、解析信号の実数部の各隣り合うサンプル値と50%レベルV50%との差(x(j-1)-V50%)、(x(j)-V50%)をもとめ、さらにこれらの積(x(j-1)-V50%)×(x(j)-V50%)を計算する。x(t)が50%レベル、つまりゼロクロスレベルを横切るときは、これらサンプル値(x(j-1)-V50%)、(x(j)-V50%)の符号が負から正、または正から負となるから、前記積が負となったときは、x(t)がゼロクロスレベルを横切ったことになり、その時点におけるサンプル値(x(j-1)-V50%)、(x(j)-V50%)の絶対値の小さいほうの時刻j-1またはjが近似ゼロクロス点としてもとめられる。図18において、○印は検出された立ち上がりゼロクロス点にもっとも近い点(近似ゼロクロス点)を示す。
図3に関連して説明したジッタゲイン推定部502は、以上説明した入力タイミングジッタ及び出力タイミングジッタのRMS値又はピークツゥピーク値に基づいて、上述したDUTのジッタ伝達関数のゲインを算出する。また、図5に関連して説明したジッタ位相差推定部503は、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、上述したDUTのジッタ伝達特性の位相を算出する。以下、図1に関連して説明したビット誤り率推定部102が、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を算出する場合における、ビット誤り率の算出について説明する。
図19は、ビット誤り率推定部102が算出したビット誤り率の一例を示す。図19において、横軸は入力タイミングジッタのピークツゥピーク値を示し、縦軸はビット誤り率を示す。本例において、DUTに対する入力信号は、サイン波ジッタが印加されているものとする。
ビットクロックの瞬時位相Δθ[nT]をサイン波cos(2πf
PMt)により変化させる。このとき、DUTへの入力信号のデータ列は、つぎのタイミングジッタ
をもつ。ただし、2K
iは入力ジッタのピークツゥピーク値、f
PMはサイン波による位相変調周波数である。DUTへ、DUTが発生する内部ジッタより十分大きいサイン波ジッタを入力すると
となる。ただし、H
J(f
PM)はDUTのジッタ伝達関数である。例えば、DUTはクロック再生部を有し、ジッタ伝達関数は、クロック再生部のジッタ伝達関数を示す。式(21)と式(22)よりサイン波ジッタのピークツゥピーク値は下式のように有界であることがわかる。
また、ジッタ周波数f
Jは位相変調周波数f
PMによりあたえられる。
したがって、ジッタ周波数f
Jにおけるピークジッタの最悪値と平均値は
ともとめられる。また、時間領域のピークツゥピークジッタ値とRMS値は、それぞれ
からえられる。ここで、|X|^2や(|X|^2)^0.5は、|X|として計算してもよい。以上により、入力信号にサイン波ジッタを印加した場合、サイン波ジッタは確定的なジッタをDUTに与える。さらに、サイン波ジッタの確率密度分布は最悪ケースに対応する。サイン波ジッタの詳細については後述する。
印加ジッタの影響で入力信号のデータ列の立ち上がりエッジがゆれているときについて考える。隣り合う立ち上がりエッジのタイミングt
zero-crossingがt
decisionをそれぞれクロスすると、先行するビットやつぎのビットをt
decisionにおいて識別することになる。すなわち、ビット誤りが生じる。先行するビットもつぎのビットも誤って判定される確率は等しいから、ビット誤り率は
であたえられる。簡単のためt
decisionを最適な標本化時点とみなし、標本化時点のタイミングゆらぎΔφ[nT]を入力データ列のゆらぎΔθ[nT]に組み込む。この結果、アラインメントジッタによるビット誤り率のみを理論計算すればよいことになる。ところで、サイン波分布は平均値を中心として対称であるから、第1項と第2項は等しい。したがって、
となる。
ここで、アラインメントジッタについて説明する。アラインメントジッタは、P. R. Trischittaにより定義され、入力信号のタイミングジッタと出力信号(再生クロック)のタイミングジッタ間のアラインメント誤差をあらわし、下式で定義される。
ただし、Δθ[nT]とΔφ[nT]は、それぞれDUTへの入力信号のタイミングジッタと出力信号のタイミングジッタである。
式(31)より、アラインメントジッタの確率密度関数は、式(21)と式(22)を式(31)に代入し、
をえる。位相変調周波数f
PMをあたえると、
は定数となる。したがってサイン波ジッタ入力のとき、アラインメントジッタの確率密度関数はサイン波分布を示すことがわかる。
ここで、X = K
i{|H
J(f
PM)| -1} である。簡単のため、このサイン波分布をつぎの一様分布
で近似する。ここで、X=Δφ
P=Δθ
P{|H
J(f
PM)|-1}である。
図20は、最悪ケースのアラインメントジッタの一例を示す。最小の入力ジッタ0.5UI
PPにより再生ビットの境界が0 UIから0.5UIの間をスイングする。一様分布を示す確率変数が、t
decisionをこえる部分の確率を算出すると、式(30)から
をえる。さらに、t
decisionは、ビット間隔の中心値、又は0.5UIであることに注意すると、BERは、
である。ビット誤り率推定部102は、式(36)に基づいて、DUTのビット誤り率を算出してよい。つまり、DUTのジッタ伝達関数のゲインH
J(f
PM)に基づいて、図19に示すような入力タイミングジッタとビット誤り率との関係を算出することができる。
また、測定装置100は、DUTのジッタ耐力を算出してよい。ここで、ジッタ耐力とはビット誤り率が所定の値以上を示す入力タイミングジッタ量を指す。例えば、ジッタ耐力は、ビット誤り率が零より大きくなる最小の入力タイミングジッタ量であってよい。
DUTのビット誤り率は、上述した式(36)に基づいて算出できる。ジッタ耐力の下限値は、式(36)より、
であたえられる。ここで、一般に|H
J(f
PM)|<1であるため、式(36)及び式(37)において、||H
J(f
PM)|−1|=1−|H
J(f
PM)|として、ビット誤り率及びジッタ耐力を算出してよい。
また、本例における測定装置100は、式(36)及び式(37)に関連して説明したように、ジッタ伝達関数のゲインに基づく、入力信号及び出力信号のアラインメント誤差に基づいて、ビット誤り率及びジッタ耐力を算出する。式(36)及び式(37)は、DUTにおける内部雑音を零として算出しているため、式(36)及び式(37)に示したビット誤り率及びジッタ耐力は、DUTのビット誤り率及びジッタ耐力の最良値を示す。測定装置100は、式(36)及び式(37)に示したビット誤り率及びジッタ耐力を、DUTのビット誤り率及びジッタ耐力の最良値として算出してよく、DUTのビット誤り率及びジッタ耐力として近似的に算出してもよい。
また、測定装置100は、図5に関連して説明したように、ジッタ伝達関数の位相に更に基づいて、ビット誤り率及びジッタ耐力を算出してよい。式(36)及び式(37)であたえられるビット誤り率とジッタ耐力へ、ジッタ伝達関数の位相を組み込むと、
となる。測定装置100は、式(38)及び式(39)に基づいて、ビット誤り率及びジッタ耐力を算出してよい。式(38)及び式(39)においても、式(36)及び式(37)と同様に、DUTにおける内部雑音を零として算出しているため、式(38)及び式(39)に示したビット誤り率及びジッタ耐力は、DUTのビット誤り率及びジッタ耐力の最良値を示す。測定装置100は、式(38)及び式(39)に示したビット誤り率及びジッタ耐力を、DUTのビット誤り率及びジッタ耐力の最良値として算出してよく、DUTのビット誤り率及びジッタ耐力として近似的に算出してもよい。また、一般に、
であるため、式(38)及び式(39)において、
として、ビット誤り率及びジッタ耐力を算出してよい。
また、測定装置100は、下式に基づいてDUTのビット誤り率及びジッタ耐力を算出してもよい。
ここで、βはDUTの性能劣化を示す補正係数であり、測定等により予め与えられている。
また、測定装置100は、DUTの内部雑音に更に基づいて、ビット誤り率及びジッタ耐力を算出してよい。例えば、DUTが再生クロックを生成するためのPLLを有し、当該再生クロックをDUTの出力信号として受け取る場合、測定装置100は、当該PLLにおける内部雑音に更に基づいて、DUTのビット誤り率及びジッタ耐力を算出してよい。
PLL内部雑音により発生する位相雑音は
であたえられる。ただしf
bはDUTの出力信号の帯域の上限周波数である。例えば、DUTが再生クロックを出力信号として出力する場合、f
b当該再生クロックを生成するPLLループの通過帯域の上限周波数である。f
bはクロック周波数f
0から式(41)でもとめられる。あるいは、f
bは、ジッタ伝達関数の位相要素の極大値から算出することもできる。
式(38)であたえられるビット誤り率に、式(40)の位相雑音の項を加えると
となる。したがって、ビット誤り率とジッタ耐力の下限値は、それぞれ
であたえられる。ここで、f
PM < f
bにおいては、
であることに注意すると、ジッタ耐力下限値はf
PM > f
bにおけるジッタ耐力下限値の1/2程度に劣化することがわかる。また、一般に、
であるため、式(43)及び式(44)において、
として、ビット誤り率及びジッタ耐力を算出してよい。
測定装置100は、式(43)及び式(44)に基づいて、DUTのビット誤り率及びジッタ耐力を算出してよい。DUTの内部雑音に更に基づいているため、更に精度よくDUTのビット誤り率及びジッタ耐力を算出することができる。
以上説明したように、ジッタ耐力の下限値はジッタ伝達関数のみから算出することができる。fPM < fbにおいては、ジッタ耐力測定は位相雑音の影響を試験していることに対応する。ジッタ伝達関数は計算機をもちいて簡単に算出できるため、ビット誤り率及びジッタ耐力の下限値は、式(36)、式(37)、式(38)、式(39)、式(43)、及び式(44)から計算可能である。つまり、ビット誤り率推定部102は、式(36)、式(38)、又は(43)のいずれかに基づいて、DUTのビット誤り率を算出してよい。
図21は、入力タイミングジッタの周波数と、ジッタ耐力との関係の一例を示す。図21において、縦軸はジッタ耐力を示し、横軸は入力タイミングジッタの周波数を示す。図21において、実線はDUTのスペックの一例を示し、丸印は実測値の一例を示す。図21に示したジッタ耐力は、式(44)と対応する。また、入力タイミングジッタの周波数が高周波数で有る場合、式(39)及び式(44)によって算出されるジッタ耐力は同一である。また、入力タイミングジッタが、更に高周波数である場合、式(44)は、式(37)に近似する。つまり、式(44)における(fPM<fb)の周波数領域は、図21における低周波数側のスロープ領域に対応する。
図22は、位相雑音スペクトルの一例を示す。図22に示した位相雑音スペクトルのスロープと、図21に示したジッタ耐力のスロープが対応する。図21及び図22より、位相雑音スペクトルとジッタ耐力とが、低いジッタ周波数において、ほぼ同一のスロープ領域を有していることがわかる。
図23は、タイミングジッタ推定部501の構成の他の例を示す。図23において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、波形クリップ部1701を更に有する。
波形クリップ部1701は、タイミングジッタ推定部501が受け取った信号の振幅変調成分を除去する。波形クリップ部1701は、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換えて、信号の振幅変調成分を除去する。また、他の例において説明したタイミングジッタ推定部501においても、本例におけるタイミングジッタ推定部501と同様に、波形クリップ部1701を有してよい。波形クリップ部1701が、信号の振幅変調成分を除去することにより、ジッタ伝達関数を精度よく算出することができる。
図24は、タイミングジッタ推定段階S221の他の例を示す。図24において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、波形クリップ段階S1801を更に有する。
波形クリップ段階S1801は、信号の振幅変調成分を除去する。解析信号変換段階S801は、振幅変調成分が除去された信号の解析信号を生成する。S1801は、図23において説明した波形クリップ部1701と同様の方法で振幅変調成分を除去する。また、S1801は、波形クリップ部1701を用いて行ってよい。
図25及び図26は、波形クリップ部1701における振幅変調成分の除去を説明する図である。図25は、タイミングジッタ推定部501が受け取る信号の一例を示す。波形クリップ部1701は、アナログあるいはデジタルの入力信号に対し、信号の値を定数倍し、予め決めた第1の閾値より大きい信号値は第1の閾値と置きかえ、予め決めた第2の閾値より小さい信号値は第2の閾値と置きかえることにより行われる。ここで、第1の閾値は第2の閾値より大きいと仮定する。図26は、振幅変調成分が除去された信号の一例を示す。
図27は、タイミングジッタ推定部501の他の構成の一例を示す。図27において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、低周波成分除去部1901を更に有する。低周波位相雑音除去部1901は、瞬時位相雑音から、所望の帯域の周波数成分を抽出して出力する。低周波位相雑音除去部1901は、瞬時位相雑音の低周波成分を除去して出力してよい。瞬時位相雑音の低周波成分を除去することにより、更に精度よくジッタ伝達関数のゲインを算出することができる。
図28は、タイミングジッタ推定段階S221の他の例を示す。図28において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、低周波位相雑音除去段階S2001を更に有する。
低周波位相雑音除去段階S2001は、信号の低周波成分を除去する。S2001は、図27において説明した低周波成分除去部1901と同様の方法で振幅変調成分を除去する。また、S1801は、低周波成分除去部1901を用いて行ってよい。
図29は、タイミングジッタ推定部501の構成の他の例を示す。図29において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、AD変換部9901を更に有する。
AD変換部9901は、タイミングジッタ推定部501が受け取ったアナログ信号をデジタル信号に変換する。AD変換部9901は、当該デジタル信号を解析信号変換部701に供給し、解析信号変換部701は、当該デジタル信号に基づいて、解析信号を生成する。AD変換部9901は、高速なAD変換器、デジタイザ、デジタル・オシロスコープを用いてよい。また、他の例において説明したタイミングジッタ推定部501においても、本例におけるタイミングジッタ推定部501と同様に、AD変換部9901を有してよい。
図30は、タイミング推定段階S221の他の例を示すフローチャートである。図30において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、AD変換段階S9801を更に有する。
AD変換段階S9801は、アナログ信号をデジタル信号に変換する。解析信号変換段階S801は、AD変換されたデジタル信号の解析信号を生成する。S9801は、図29に関連して説明したAD変換部9901と同様の方法で、アナログ信号をデジタル信号に変換する。また、S9801は、AD変換部9901を用いて行ってよい。
図31は、解析信号変換部701の構成の一例を示す。解析信号変換部701は、タイミングジッタ推定部501が受け取った信号から、信号の基本周波数近傍の周波数成分を抽出した帯域制限信号を生成する帯域制限部1101と、帯域制限信号をヒルベルト変換し、信号のヒルベルト変換対を生成するヒルベルト変換部1102とを有する。
帯域制限部1101は、アナログフィルタでもデジタルフィルタでもよいし、FFTなどのデジタル信号処理をもちいて実装してもよい。また、帯域制限部1101は、信号の通過帯域を自由に変更できるように構成してもよい。本例における解析信号変換部701によれば、受け取った信号の基本周波数に基づく解析信号を生成できるため、精度よくジッタ伝達関数のゲインを算出できる。以下、ヒルベルト変換を用いた解析信号の生成について説明する。
実信号x(t)の解析信号z(t)は、次式の複素信号で定義される。
ここで、jは虚数単位であり、複素信号z(t)の虚数部x^(t)は実数部x(t)のヒルベルト変換(Hilbert transform)である。
一方、時間波形x(t)のHilbert変換は、次式で定義される。
ここで、x^(t)は関数x(t)と(1/πt)の畳み込みである。すなわち、ヒルベルト変換は、x(t)を全帯域通過フィルタを通過させたときの出力と等価である。ただし、このときの出力x^(t)は、スペクトル成分の大きさは変わらないが、その位相はπ/2だけシフトする。
解析信号およびヒルベルト変換については、たとえば、A. Papoulis、 Probability、 Random Variables、 and Stochastic Processes、 2nd edition、 McGraw-Hill Book Company、 1984.に記載されている。
実信号x(t)の瞬時位相波形φ(t)は、解析信号z(t)から次式をもちいてもとめられる。
つぎに、ヒルベルト変換をもちいて瞬時位相を測定するアルゴリズムについて説明する。はじめに、図11に示した被測定信号
にヒルベルト変換を適用して複素信号の虚数部に対応する信号
を求めることにより、被測定信号x(t)を図12に示した解析信号
に変換する。
ここで、えられた解析信号には帯域制限部1101により帯域通過フィルタ処理が施されている。このため、被測定信号の基本周波数の揺らぎに対応するジッタを精度よく算出できる。
また、瞬時位相推定部702が、解析信号z(t)から式(47)をもちいて図13に示した位相関数φ(t)を測定する。
ここで、φ(t)は、-πから+πの範囲の位相の主値(principal value)をもちいて表され、+πから-πに変化する付近で不連続点をもつ。最後に、不連続な位相関数φ(t)をアンラップする(unwrapping)(すなわち、主値φ(t)に2πの整数倍を適切に加える)ことにより、不連続を取り除き連続な図14に示した瞬時位相φ(t)をえることができる。
また、解析信号変換部701は、次式に示すように、実数部をτ遅れさせたものを、解析信号として生成してよい。
式(53)に示したように、解析信号変換部701が解析信号を生成することにより、ヒルベルト変換処理において、フィルタ遅延に対応する遅延時間τが生じた場合であっても、精度のよい解析信号を生成することができる。また、タイミングジッタ推定部501は、次式に基づいて、線形位相項を除去した瞬時位相φ(t)を算出してよい。
また、タイミングジッタ推定部501は、次式に基づいて、Hirbert変換における遅延時間τを補正した瞬時位相φ(t)を算出してよい。
ただし、f
Jは、信号x(t)におけるジッタ周波数を示す。線形位相項を除去することにより、図16に示したような、信号x(t)の瞬時位相雑音を検出することができる。
図32は、解析信号変換段階S801の一例を示すフローチャートである。解析信号変換段階S801は、帯域制限段階S1201で、タイミングジッタ推定部501が受け取った信号の基本周波数近傍の周波数成分を抽出した帯域制限信号を生成する。S1201は、図31に関連して説明した帯域制限部1101と同様の方法で、帯域制限信号を生成する。S1201は、帯域制限部1101を用いて行ってよい。
次に、ヒルベルト変換段階S1202で、帯域制限信号をヒルベルト変換し、ヒルベルト変換対を生成する。S1202は、図31に関連して説明したヒルベルト変換部1102と同様の方法で、ヒルベルト変換対を生成する。S1202は、ヒルベルト変換部1102を用いて行ってよい。
次に、出力段階S1203で、解析信号の実数部として帯域制限信号を出力し、解析信号の虚数部としてヒルベルト変換した帯域制限信号を出力する。
図33は、解析信号変換部701の構成の他の例を示す。解析信号変換部701は、タイミングジッタ推定部501が受け取った信号を周波数領域の両側スペクトルに変換する周波数領域変換部1301と、周波数領域の両側スペクトルにおける正の基本周波数近傍の周波数成分を抽出する帯域制限部1302と、帯域制限部1302の出力を時間領域の信号に変換する時間領域変換部1303とを有する。周波数領域変換部1301および時間領域変換部1303は、それぞれFFTおよび逆FFTを用いて実装してもよい。また、帯域制限処理部1302は、図31に関連して説明した帯域制限部1101と同一又は同様の機能及び構成を有してよい。帯域制限部1302における通過帯域は任意に変更可能である。本例における解析信号変換部701の動作の詳細は後述する。
図34は、解析信号変換段階S801の他の例を示すフローチャートである。解析信号変換段階S801は、周波数領域変換段階S1401で、タイミングジッタ推定部501が受け取った信号を周波数領域の信号に変換する。S1401は、図33に関連して説明した周波数領域変換部1301と同様の方法で、周波数領域の信号を生成する。S1401は、周波数領域変換部1301を用いて行ってよい。
次に、負成分除去段階S1402で、周波数領域の信号の両側スペクトルにおける負の周波数成分を除去する。S1402は、図33に関連して説明した帯域制限部1302と同様の機能を有してよい。S1403は、帯域制限部1302を用いて行ってよい。
次に、帯域制限段階S1403で、周波数領域の信号に変換された信号における正の基本周波数近傍の周波数成分を抽出する。S1403は、図33に関連して説明した帯域制限部1302と同様の機能を有してよい。S1403は、帯域制限部1302を用いて行ってよい。
次に、時間領域変換段階S1404で、周波数領域の信号を時間領域の信号に変換する。S1404は、図33に関連して説明した時間領域変換部1303と同様の方法で、時間領域の信号を生成してよい。S1404は、時間領域変換部1303を用いて行ってよい。以下、高速フーリエ変換を用いて解析信号を生成する解析信号変換部701の動作の詳細を説明する。
図35は、解析信号変換部701が受け取る信号の一例を示す。解析信号変換部701は、図35の丸印に示されるような離散化された信号x(t)を受け取る。周波数領域変換部1301は、信号x(t)に対してFFT演算を行い、信号x(t)を周波数領域の信号X(f)に変換する。
図36に周波数領域の信号X(f)の一例を示す。帯域制限部1302は、スペクトルX(f)の正の周波数成分における基本周波数付近のデータのみを残して残りのデータをゼロとし、さらに、正の周波数成分を2倍する。周波数領域におけるこれらの処理が、時間領域において被測定信号を帯域制限し解析信号に変換することに対応する。
図37は、帯域制限された周波数領域の信号Z(f)を示す。時間領域変換部1303は、信号Z(f)に対して逆フーリエ変換演算を行い、帯域制限された解析信号z(t)を生成する。
図38は、帯域制限された解析信号z(t)を示す。また、瞬時位相推定が目的であるとき、正の周波数成分を2倍する処理は省略してもよい。図33に関連して説明した解析信号変換部701において、信号x(t)の周期と、高速フーリエ変換のポイント数と対応していない場合がある。この場合、離散化された信号x(t)に対して、窓関数を乗算する必要がある。以下、窓関数を乗算する場合についての、解析信号変換部701について説明する。
図39は、解析信号変換部701の構成の他の例を示す。解析信号変換部701は、受け取った信号を蓄積するバッファメモリ1501と、バッファメモリ1501が蓄積した信号を順次選択する信号選択部1502と、信号選択部1502が選択した信号成分に、予め定められた窓関数を乗算する窓関数乗算部1503と、窓関数が乗算された信号成分を、周波数領域のスペクトルに変換する周波数領域変換部1504と、スペクトルのうち、与えられた信号の正の基本周波数近傍の周波数成分を抽出する帯域制限部1505と、帯域制限部1505が抽出した周波数成分を、時間領域の信号に変換する時間領域変換部1506と、時間領域の信号に、窓関数の逆数を乗算し、解析信号を生成する振幅補正部1507とを有する。また、信号選択部1502は、直前に選択した信号成分と、一部が重複する信号成分を選択する。
信号x(t)の信号成分に、窓関数を乗算した場合、信号x(t)は振幅変調される。しかし、本例における解析信号変換部701によれば、振幅補正部1507において窓関数の逆数を乗算することにより、信号x(t)の振幅変調を補正することができる。
窓関数乗算部1303は、信号x(t)に窓関数w(t)を乗算した信号x(t)・w(t)を、周波数領域変換部1304に出力する。周波数領域変換部1304は、受け取った信号を周波数領域の信号に変換し、帯域制限部1305は、当該周波数領域の信号の負の周波数成分を零としたスペクトルZ(f)を出力する。
時間領域変換部1506は、スペクトルZ(f)を時間領域の信号に変換した信号IFFT[Z(f)]を出力する。本例において、解析信号変換部701は、時間領域変換部1506が出力する信号の実数部及び虚数部を、解析信号の実数部及び虚数部として出力してよい。解析信号の実数部をx
real(t)及び虚数部をx
imag(t)と、時間領域変換部1506の出力信号の実数部Re{IFFT[Z(f)]}及び虚数部Im{IFFT[Z(f)]}とは、次式の関係を有する。
ここで、w'(t)は、スペクトルZ(f)における、窓関数w(t)の成分を示す。解析信号の実数部x
real(t)及び虚数部x
imag(t)は、窓関数w(t)による振幅変調の影響を略等しく受けている。このため、式(54)に示した瞬時位相は、次式で表される。
式(57)に示すように、本例においては、信号x(t)の瞬時位相を算出する場合、窓関数による振幅変調による位相推定誤差は、実数部と虚数部において互いにキャンセルすることができる。窓関数による振幅変調が生じた場合、式(54)から、下式のように、振幅変調によって位相推定誤差が生じる。
本例においては、xreal(t)とximag(t)とによる位相推定誤差を、互いにキャンセルできるため、窓関数による振幅変調による位相推定誤差を除去した瞬時位相を算出することができる。つまり、式(56)及び式(57)から明らかなように、時間領域変換部1506の出力信号の実数部Re{IFFT[Z(f)]及び虚数部Im{IFFT[Z(f)]を、解析信号の実数部及び虚数部として出力しても、瞬時位相推定部702は、信号x(t)の瞬時位相を精度よく算出することができる。
また、図39に示したように、振幅補正部1507において、窓関数による振幅変調成分を除去した信号の実数部及び虚数部を、解析信号の実数部及び虚数部として出力した場合、例えば、DUTの他の解析、試験等を行う場合に、当該解析信号を用いて効率よく行うことができる。
周波数領域変換部1504、帯域制限部1505、及び時間領域変換部1506は、図33に関連して説明した周波数領域変換部1301、帯域制限部1302、及び時間領域変換部1303と同一又は同様の機能及び構成を有する。
つぎに、本発明の解析信号変換部701の動作を説明する。はじめに、バッファメモリ1501は、被測定信号を蓄積する。つぎに、信号選択部1502は、バッファメモリ1501が蓄積した信号の一部を取り出す。つぎに、窓関数乗算部1503は、信号選択部1502が選択した部分信号に窓関数を乗算する。つぎに、周波数領域変換部1504は、窓関数を乗算された部分信号にFFTを施し、時間領域の信号を周波数領域の両側スペクトルに変換する。つぎに、帯域制限処理部1505は、変換された周波数領域の両側スペクトルにたいし、負の周波数成分をゼロに置き換える。つぎに、帯域制限処理部1505は、負の周波数成分をゼロに置き換えられた片側スペクトルにたいし、被測定信号の基本周波数付近の成分のみを残しその他の周波数成分をゼロに置き換え、周波数領域の信号を帯域制限する。つぎに、時間領域変換部1506は、帯域制限された周波数領域の片側スペクトルに逆FFTを施し、周波数領域の信号を時間領域の信号に変換する。つぎに、逆窓関数乗算部1507は、逆変換された時間領域の信号に窓関数の逆数を乗算し、帯域制限された解析信号を生成する。解析信号変換部701は、バッファメモリ1501に処理されていないデータが存在するか否かを確認し、処理されていないデータが存在する場合、信号選択部1502は、次の信号を選択する。信号選択部1502が、前回取り出した分と一部重複させながら信号を順次取り出した後、解析信号変換部701は、上述した処理を繰り返す。
図40は、解析信号変換段階S801の他の例を示すフローチャートである。S801は、まずバッファメモリ段階S1601で、被測定信号を格納する。S1601は、図39において説明したバッファメモリ1501と同一又は同様の機能を有する。S1601は、バッファメモリ1501を用いて行ってよい。
次に、信号選択段階S1602で、S1601において格納した被測定信号の一部を選択して取り出す。S1602は、図39において説明した信号選択部1502と同一又は同様の機能を有する。S1602は、信号選択部1502を用いて行ってよい。
次に、窓関数乗算段階S1603で、S1602において選択された信号部分に所定の窓関数を乗算する。S1603は、窓関数として、例えばハニング関数を信号部分に乗算してよい。S1603は、図39において説明した窓関数乗算部1503と同一又は同様の機能を有する。S1603は、窓関数乗算部1503を用いて行ってよい。
次に、周波数領域変換段階S1604で、窓関数が乗算された信号を周波数領域の信号に変換する。S1604は、図39において説明した周波数領域変換部1504と同一又は同様の機能を有する。
次に、負成分除去段階S1605で、周波数領域に変換された信号の負周波数成分を除去する。S1605は、図39において説明した帯域制限部1505と同一又は同様の機能を有する。S1605は、帯域制限部1505を用いて行ってよい。
次に、帯域制限段階S1606で、周波数領域に変換された信号の基本周波数近傍の周波数成分を抽出する。S1606は、図39において説明した帯域制限部1505と同一又は同様の機能を有する。S1606は、帯域制限部1505を用いて行ってよい。
次に、時間領域変換段階S1607で、帯域制限された信号を時間領域の信号に変換する。S1607は、図39において説明した時間領域変換部1506と同一又は同様の機能を有する。S1607は、時間領域変換部1506を用いて行ってよい。
次に、振幅補正段階S1608で、時間領域に変換された信号の振幅変調成分を除去する。S1608は、図39において説明した振幅補正部1507と同一又は同様の機能を有する。S1608は、振幅補正部1507を用いて行ってよい。
次に、判定段階S1609で、S1601において格納した被測定信号のデータのうち、まだ処理していないデータが存在するかを判定する。まだ処理していないデータが存在する場合、信号選択段階S1610で、次の信号部分を、前回の信号部分と一部を重複して取り出す。S1610は、S1602と同様の機能を有する。S1609において、全てのデータを処理したと判定した場合、処理を終了する。
次に、ジッタ伝達関数の位相を算出する方法について説明する。図41は、図7に関連して説明した位相差推定段階S2301の一例を示すフローチャートである。まず、入力タイミングジッタスペクトル推定段階S2604において、図6に関連して説明した入力タイミングジッタ系列推定段階S241において算出した、入力タイミングジッタ系列をフーリエ変換し、入力信号の入力タイミングジッタスペクトルを算出する。つぎに、出力タイミングジッタスペクトル推定段階S2605において、図6に関連して説明した出力タイミングジッタ系列推定段階S243において算出した、出力タイミングジッタ系列をフーリエ変換し、出力信号の出力タイミングジッタスペクトルを算出する。最後に、ジッタ位相差算出段階S2606において、S2604及びS2605において算出したタイミングジッタスペクトルから入出力タイミングジッタ系列間の位相差を算出し、処理を終了する。
入力タイミングジッタからタイミングジッタスペクトルを算出するS2604において、ジッタ位相差推定部503は、式(3)を用いて入力信号のタイミングジッタスペクトルを測定する。また、出力タイミングジッタからタイミングジッタスペクトルを算出するS2605において、ジッタ位相差推定部503は、式(4)を用いて出力信号のタイミングジッタスペクトルを測定する。また、タイミングジッタスペクトルから入出力タイミングジッタ間の位相差を算出するS2606において、ジッタ位相差推定部503は、式(9)を用いて入出力タイミングジッタ系列間の位相差を算出する。また、S2606において、ジッタ位相差推定部503は、ジッタ伝達関数の実数部と虚数部の比Im/Re、及びIm/Reの逆正接を算出することにより、入出力タイミングジッタ間の位相差を算出してもよい。
入出力タイミングジッタ間の位相差は、入力瞬時位相雑音波形のゼロクロスタイミングと出力瞬時位相雑音波形のゼロクロスタイミング間のタイミング差を算出し、印加ジッタの周期(ジッタ周波数の逆数)との比を計算して、2πラジアン(または360度)を乗じることによって算出してもよい。同様に、入力タイミングジッタ系列波形のゼロクロスタイミングと、出力タイミングジッタ系列波形のゼロクロスタイミングとのタイミング差を算出し、印加ジッタの周期(ジッタ周波数の逆数)との比を計算して、2πラジラン(または360度)を乗じることによって算出してもよい。
また、ジッタ伝達関数の位相は、入出力信号の瞬時位相雑音波形から、算出してもよい。図42は、図7に関連して説明した位相差推定段階S2301の他の例を示すフローチャートである。入力瞬時位相雑音推定段階S2502において、DUTへの入力信号の瞬時位相雑音波形を算出する。つぎに、出力瞬時位相雑音推定段階S2503において、DUTからの出力信号の瞬時位相雑音波形を算出する。つぎに、入力位相雑音スペクトル推定段階S2504において、入力信号の瞬時位相雑音波形をフーリエ変換し、入力信号の位相雑音スペクトルを算出する。つぎに、出力位相雑音スペクトル推定段階S2505において、出力信号の瞬時位相雑音波形をフーリエ変換し、出力信号の位相雑音スペクトルを算出する。最後に、ジッタ位相差推定段階S2506において、S2504及びS2506において算出した位相雑音スペクトルから各瞬時位相雑音間の位相差もとめ、処理を終了する。
入力瞬時位相雑音から位相雑音スペクトルを算出するS2504において、ジッタ位相差推定部503は、式(1)を用いて入力信号の位相雑音スペクトルを測定する。また、出力瞬時位相雑音から位相雑音スペクトルを算出するS2505において、ジッタ位相差推定部503は、式(2)を用いて出力信号の位相雑音スペクトルを測定する。また、位相雑音スペクトルから各瞬時位相雑音間の位相差を算出するS2506において、ジッタ位相差推定部503は、式(9)を用いて入出力瞬時位相雑音間の位相差を算出し、ジッタ伝達関数の位相を算出する。
図43は、測定装置100の構成の他の例を示す。図43において、図1と同一の符号を附した要素は、図1に関連して説明した要素と同一又は同様の機能及び構成を有する。本例における測定装置100は、図1において説明した測定装置100の構成に加え、ジッタ重畳部301及びジッタ耐力推定部302を更に備える。
ジッタ重畳部301は、DUTに入力するべき入力信号に所望のジッタを重畳した信号を、DUTに供給する。例えば、ジッタ重畳部301は、入力信号にサイン波ジッタを重畳する。サイン波ジッタを重畳することにより、精度よくDUTのビット誤り率を算出することができる。サイン波ジッタを重畳した場合についての詳細は後述する。
ジッタ耐力推定部302は、DUTのジッタ伝達関数に基づいて、DUTのジッタ耐力を測定する。ジッタ耐力推定部302は、前述したように、ジッタ伝達関数のゲインに基づいてジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、ジッタ伝達関数の位相に更に基づいて、ジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、DUTの内部雑音に更に基づいて、ジッタ耐力を推定してよい。
ジッタ耐力推定部302は、式(37)、式(39)、又は式(44)に基づいて、DUTのジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、前述したように、DUTのジッタ耐力の最良値を算出してよい。
ジッタ伝達関数測定装置101は、ジッタ重畳部301が入力信号に重畳した入力タイミングジッタと、DUTの出力信号における出力タイミングジッタとに基づいて、DUTのジッタ伝達関数を測定する。ジッタ重畳部301は、ジッタ量の異なる入力タイミングジッタを順次入力信号に重畳する。本例において、ジッタ伝達関数測定装置101は、DUTに入力した信号と、DUTが出力した信号とを受け取る。
図44は、本発明に係る測定方法の他の例を示すフローチャートである。図44において、図2と同一の符号を附した段階は、図2に関連して説明した段階と同一又は同様の機能を有する。まず、ジッタ重畳段階S401で、入力信号に所望のジッタを重畳し、DUTに供給する。S401は、図43に関連して説明したジッタ重畳部301と同一又は同様の機能を有する。S401は、ジッタ重畳部301を用いて行ってよい。
次に、S201で、ジッタ伝達関数を算出する。S201は、図2におけるジッタ伝達関数推定段階S201と同様である。次に、S202で、ビット誤り率を算出する。S202は、図2におけるビット誤り率推定段階S202と同様である。
次に、ジッタ耐力推定段階S402で、DUTのジッタ耐力を算出する。S402は、図43に関連して説明したジッタ耐力推定部302と同一又は同様の機能を有する。S402は、ジッタ耐力推定部302を用いて行ってよい。
図45は、測定装置100の構成の他の例を示す。図45において図1と同一の符号を附した要素は、図1に関連して説明した要素と同一又は同様の機能及び構成を有する。本例における測定装置100は、図1に関連して説明した測定装置100の構成に加え、クロック再生部2101を更に備える。
クロック再生部2101は、DUTの出力信号に基づいて、出力信号の再生クロック信号を生成する。ジッタ伝達関数測定装置101は、再生クロック信号をDUTの出力信号として受け取り、再生クロック信号に基づいて、DUTのジッタ伝達関数を算出する。
図46は、本発明に係る測定方法の他の例を示すフローチャートである。まず、クロック再生段階S2201で、DUTの出力信号の再生クロック信号を生成する。S2201は、図45において説明したクロック再生部2101と同一又は同様の機能を有する。S2201は、クロック再生部2101を用いて行ってよい。
次に、ジッタ伝達関数推定段階S201で、DUTのジッタ伝達関数を算出する。S201は、図45に関連して説明したジッタ伝達関数測定装置101と同一又は同様の機能を有してよい。S201は、ジッタ伝達関数測定装置101を用いて行ってよい。
次に、ビット誤り率推定段階S202で、DUTのビット誤り率を算出する。S202は、図45に関連して説明したビット誤り率推定部102と同一又は同様の機能を有する。S202は、ビット誤り率推定部102を用いて行ってよい。
図47は、DUTの構成の一例を示す。DUTは、シリアル入力の入力信号を受け取り、パラレル出力の出力信号を出力する。DUTは、フリップフロップ3001と、クロック再生部3003と、シリアルパラレル変換部3002とを備える。
クロック再生部3003は、入力信号を受け取り、入力信号に基づいて出力信号を出力するための再生クロックを生成する。本例において、クロック再生部3003は、フェーズロックループ(PLL)を有する。
フリップフロップ3001は、入力信号をシリアルパラレル変換部3002に供給する。シリアルパラレル変換部3002は、再生クロックを受け取り、再生クロックのタイミングに基づいて、シリアルの入力信号をパラレルの出力信号に変換する。
測定装置100は、クロック再生部3003が生成した再生クロックを、DUTの出力として受け取り、再生クロックに基づいて、DUTのビット誤り率及び/又はジッタ耐力を算出する。
図48は、測定装置100の構成の他の例を示す。図48において図1と同一の符号を附した要素は図1に関連して説明した要素と同一又は同様の機能及び構成を有する。測定装置100は、タイミング推定部3100と、タイミング差推定部3102と、ビット誤り率推定部102とを備える。
タイミング推定部3100は、DUTを試験するための入力信号の入力タイミング誤差系列、及び入力信号に応じてDUTが出力する出力信号の出力タイミング誤差系列を測定する。タイミング差推定部3102は、入力タイミング誤差系列と、出力タイミング誤差系列とのタイミング差を算出する。タイミング差推定部3102は、入力タイミング誤差系列及び出力タイミング誤差系列の、ピーク値、又は実効値の差に基づいて、タイミング差を算出してよい。ビット誤り率推定部102は、タイミング差に基づいて、DUTにおけるビット誤り率を測定する。ビット誤り率推定部102は、当該タイミング差とビット誤り率の関係を示す式が予め与えられていてよく、また、当該タイミング差とビット誤り率の関係を示すテーブルが予め与えられていてもよい。
図49は、入力信号と出力信号の一例を示す。本例において、DUTは再生クロックを出力信号として出力する。入力信号のタイミングと、出力信号のタイミングとを図49において矢印で示す。入力信号と出力信号とは、図49示すようなタイミング差を有する。ビット誤り率推定部102は、当該タイミング差に基づいてビット誤り率を算出する。
図50は、本発明に係る測定方法の他の例を示すフローチャートである。まず、タイミング推定段階S3201で、入力信号及び出力信号のタイミング誤差系列を算出する。S3201は、図48において説明したタイミング推定部3100と同一又は同様の機能を有する。S3201は、タイミング推定部3100を用いて行ってよい。
次に、タイミング差推定段階S3202で、入力信号と出力信号のタイミング差を算出する。S3202は、図48において説明したタイミング差推定部3102と同一又は同様の機能を有する。S3202は、タイミング差推定部3102を用いて行ってよい。
次に、ビット誤り率推定段階S3203で、DUTのビット誤り率を算出する。S3203は、図48において説明したビット誤り率推定部102と同一又は同様の機能を有する。S3203は、ビット誤り率推定部102を用いて行ってよい。
図51は、タイミング推定部3100の構成の一例を示す。図51において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。タイミング推定部3100は、入力信号及び出力信号を複素数の解析信号に変換する解析信号変換部701と、解析信号の瞬時位相を算出する瞬時位相推定部702と、瞬時位相の初期位相角及び平均周波数を算出し、入力信号及び出力信号の理想タイミングを測定する理想タイミング推定部3301と、瞬時位相をリサンプリングし、入力信号の入力タイミング系列及び出力信号の出力タイミング系列を生成するリサンプリング部3304と、理想タイミングと、タイミング系列とに基づいて、入力信号の入力タイミング誤差系列及び出力信号の出力タイミング誤差系列を算出するタイミングエラー算出部3305とを有する。
また、リサンプリング部3304は、タイミング誤差系列Δφ[n]における、タイミングnを理想タイミング推定部3301に供給してよい。また、リサンプリング部3304は、解析信号の実数部の波形のゼロクロスタイミングで瞬時位相をサンプリングしてよい。また、リサンプリング部3304は、リサンプリング部3304におけるサンプリングタイミングを、タイミングnとして理想タイミング推定部3301に供給してよい。理想タイミング推定部3301は、与えられたタイミングnに基づいて、入力信号及び出力信号の理想タイミングを算出する。
解析信号変換部701、瞬時位相推定部702、及びリサンプリング部3304は、図11に関連して説明した解析信号変換部701、瞬時位相推定部702、及びリサンプリング部901と同一又は同様の機能及び構成を有する。
理想タイミング推定部3301は、入力信号及び出力信号の、図14に示したようなリニア瞬時位相の波形の初期位相角及び平均周波数を算出し、入力信号及び出力信号の理想タイミングを算出してよい。この場合、理想タイミング推定部3301は、リニア瞬時位相推定部703を有してよい。理想タイミング推定部3301は、タイミングnにおける、リニア瞬時位相の値を、理想タイミングとして出力してよい。タイミングエラー算出部3305は、理想タイミングと、リサンプリング部3304のサンプリング結果に基づいて、入力信号と出力信号のタイミング誤差系列を生成する。本例における測定装置100は、入力信号及び出力信号のジッタによるアラインメント誤差(タイミング差)に基づくビット誤り率を算出する。アラインメント誤差については後述する。
図52は、タイミング推定段階S3201の一例を示すフローチャートである。まず、解析信号変換段階S3400で、入力信号及び出力信号を解析信号に変換する。S3400は、図51に関連して説明した解析信号変換部701と同一又は同様の機能を有する。S3400は、解析信号変換部701を用いて行ってよい。次に、瞬時位相推定段階S3401で、入力信号及び出力信号の瞬時位相を算出する。S3401は、図51に関連して説明した瞬時位相推定部702と同一又は同様の機能を有する。S3401は、瞬時位相推定部702を用いて行ってよい。
次に、リサンプリング段階S3402で、入力信号及び出力信号の瞬時位相をサンプリングした入力タイミング系列及び出力タイミング系列を生成する。S3402は、図51に関連して説明したリサンプリング部3304と同一又は同様の機能を有する。S3402は、リサンプリング部3304を用いて行ってよい。
次に、理想タイミング推定段階S3403で、入力信号及び出力信号の初期位相角及び平均周波数を算出し、入力信号と出力信号の理想タイミングを算出する。S3404は、図51に関連して説明した理想タイミング推定部3301と同一又は同様の機能を有する。S3403は、理想タイミング推定部3301を用いて行ってよい。
次に、タイミングエラー算出段階S3406で、入力信号及び出力信号のタイミング誤差系列を生成する。S3406は、図51に関連して説明したタイミングエラー算出部3305と同一又は同様の機能を有する。S3406は、タイミングエラー算出部3305を用いて行ってよい。
以下、アラインメントジッタについて説明する。アラインメントジッタは、P. R. Trischittaにより定義され、入力信号のタイミングジッタと出力信号(再生クロック)のタイミングジッタ間のアラインメント誤差をあらわし、式(31)で定義される。
Δθ[nT]とΔφ[nT]は、それぞれDUTへの入力信号の入力タイミングジッタ系列と出力信号の出力タイミングジッタ系列である。アラインメントジッタのピークツゥピーク値とRMS値は、それぞれ
であたえられる。ただし、ρは再生クロックのタイミングジッタとDUT入力データのタイミングジッタ間の相関係数(correlation coefficient)である。たとえば、再生クロックのタイミングジッタとDUT入力データのタイミングジッタ間に、強い相関(strongly correlated)が存在すると仮定する。すなわち、ρ=1.0とみなせ
のようになり、入力データと再生クロック間のアラインメント誤差を最小にできる。このとき、クロック再生器は最小のビット誤り率を示す。逆に、再生クロックのタイミングジッタとクロック再生器入力データのタイミングジッタが無相関(completely uncorrelated)のときは、ρ= 0.0とみなせ
となる。入力データと再生クロック間のアラインメント誤差のため、このDUTは無視できないビット誤り率を示す。また、再生クロックのタイミングジッタのピークツゥピーク値は
であたえられる。 アラインメントジッタのピークツゥピーク値は
となる。
次に、DUTへの入力信号にサイン波ジッタを重畳した場合について説明する。入力タイミングジッタΔθ[nT]により位相変調されたDUTへの入力信号x(t)と、出力タイミングジッタΔφ[nT]により位相変調された再生クロックy(t)を、それぞれ位相変調波形としてあらわすと
のようになる。ただし、f
bは、ビットレート(ビットクロック周波数)である。
ビットクロックの瞬時位相Δθ[nT]やΔφ[nT]をサイン波cos(2πf
PMt)に対応させるとサイン波ジッタとなる。逆に、サイン波ジッタを復調するとサイン波をえる。ところで、このサイン波は周波数領域で線スペクトルに対応するから、ジッタ周波数f
Jは単一周波数f
PMであたえられる。したがって、f
PMにおける復調サイン波の比が式(8)のジッタ伝達関数をあたえる。
一方、Δθ[nT]やΔφ[nT]をガウス雑音ng(t)に対応させると、ガウス雑音ジッタをえる。ガウス雑音ジッタを復調するとガウス雑音波形をえる。ガウス雑音は、周波数領域で広帯域スペクトルに対応するから、ジッタ周波数fJは周波数区間(flower、 fupper) であたえられる。したがって、この周波数区間における入出力スペクトルの比がジッタ伝達関数をあたえる。
端部(tail)を切り取ったガウス分布とサイン波ジッタを同じピークツゥピーク値で比べると、サイン波ジッタはガウス分布よりも1 dB程度大きいペナルティをビット誤り率にあたえることが知られている。すなわち、サイン波ジッタは伝送系にたいし最悪ケースのジッタ分布をあたえることができる。従って測定装置100が、入力信号にサイン波ジッタを重畳した場合、精度よくビット誤り率及びジッタ耐力の試験を行うことができる。
次に、ジッタ耐力について説明する。ジッタ耐力測定は、ビット誤り率試験の拡張である。すなわち、DUTへの入力データのタイミングジッタΔθ[nT]はサイン波ジッタなどにより変動させられ、ビット誤り率を試験する。ジッタ周波数fJを固定し印加ジッタ量を増加させ、ビット誤り率が発生する最小印加ジッタ量を算出する。つぎに、サイン波ジッタとビット誤り率の関係について説明する。まず、標本化時点(decision boundary、 sampling instant)について説明する。ビット列がタイミングジッタをもたないと仮定する。
図53は、出力信号の理想信号と実信号の一例を示す。図53に示すように、最適な標本化時点t
decisionは、隣り合うゼロ交叉(すなわち、立ち上がりエッジと立下りエッジ)の中間時点である。この最適標本化時点の周期は、ビット周期T
b = 1/f
bであたえられる。(a) 従来の測定装置は、DUTからの出力ビット列を最適標本化時点t
decisionでサンプリングする。たとえば、DUTがシリアライザで有る場合、シリアライザからの出力ビット列はビット周期であたえられるt
decisionサンプリングされる。一方、DUTがデシリアライザで有る場合、1:Lで多重化されたデータが出力されるから、デシリアライザからの出力ビット列はチャンネル当りデータ周期LT
bであたえられるt
decisionサンプリングされる。(b) つぎに、従来の測定装置はサンプル値としきい値を比較し、DUTからの出力ビット列の論理値「1」、「0」を識別する。(c) 従来の測定装置は、サンプリング値から判定した論理値と対応する期待値を比較し、誤り率を算出する。
ここで、ビット誤り率試験に必要なテスト時間について説明する。たとえば、2.5 Gbpsのシリアル通信デバイスのジッタ耐力試験をおこなうため、ジッタ周波数5 MHzで位相変調されているパターン長215-1の疑似ランダム2値系列を印加するには13 μsecの時間しか要しない。さらに、パターン長223-1の疑似ランダム2値系列を印加するには、3.4 msecの時間を要するのみである。一方、ビット誤り率10-9をテストするには、0.4 secを要する。このテスト時間はパターン長に独立である。さらに、ビット誤り率10-12をテストするには400 secを要することになる。また、印加ジッタ量を増加させると、DUT内部のPLLが正しく動作しなくなる場合がある。特に、ビットクロック周波数が高くなると、印加ジッタ量をわずかに増加した場合であっても、ビット誤りが生じてしまう。まとめると、ビット誤りの発生を検出する方法では、再現性のよい測定や、テスト時間の短縮が困難なことがわかる。したがって、テスト時間を短縮するには、ビット誤りの発生を直接検出しなくてよい方法を見つける必要がある。
図1から図47に関連して説明した測定装置100は、DUTのジッタ伝達関数を算出し、当該ジッタ伝達関数に基づいてDUTのビット誤り率及び/又はDUTのジッタ耐力を算出しているため、従来の測定装置に比べ、テスト時間を短縮することができる。また、図1から図47に関連して説明した測定装置100は、DUTのジッタ伝達関数を算出していたが、他の例においては、測定装置100は、ジッタ伝達関数が予め与えられ、与えられたジッタ伝達関数に基づいて、DUTのビット誤り率及び/又はジッタ耐力を算出してよい。
つまり、測定装置100は、予め与えられた、DUTにおけるジッタ伝達関数に基づいて、DUTにおけるビット誤り率を測定するビット誤り率推定部を備えてよい。また、測定装置100は、予め与えられた、DUTにおけるジッタ伝達関数のゲインに基づいて、DUTにおけるジッタ耐力を測定するジッタ耐力推定部を備えてよい。この場合、当該ビット誤り率推定部及びジッタ耐力推定部は、上述したビット誤り率推定部102及びジッタ耐力推定部302と同一又は同様の機能及び構成を有してよい。
また、図48から図52に関連して説明した測定装置100は、入力信号と出力信号のタイミング差を算出し、当該タイミング差に基づいてDUTのビット誤り率を算出しているため、従来の測定装置に比べ、テスト時間を短縮することができる。また、図48から図52に関連して説明した測定装置100においても、DUTのジッタ耐力を算出するジッタ耐力推定部を更に備えてよい。当該ジッタ耐力推定部は、入力信号と出力信号のタイミング差に基づいて、DUTのジッタ耐力を算出する。
図54は、測定装置100と従来のビット誤り率測定装置のテスト時間の比較例を示す。また、図55は、測定装置100における、印加ジッタ量の変更回数と、測定されるジッタ耐力との関係の一例を示す。図54に示すように、従来のビット誤り率測定装置は、ジッタ耐力を測定するのに、印加ジッタ量を20回変更して、各印加ジッタ量にたいして1 secのビット誤り率試験をおこなうため、20 secのテスト時間を要する。一方、上述した測定装置100は、図55に示すように、印加ジッタ量を最小回数(たとえば4回)変更してジッタゲインを算出することにより、ジッタ耐力を精度よく測定することができる。図55に示すように、測定装置100は、例えば4回印加ジッタ量を変更し、それぞれについて測定することにより、精度よくジッタ耐力を算出することができる。測定装置100において、印加ジッタ量のそれぞれに対するジッタ測定に約0.5 msecの時間がかかることから、測定装置100は、2 sec程度でDUTのジッタゲインを算出することができる。すなわち、従来法の約1/10のテスト時間でジッタ耐力を算出することができる。
図56は、測定装置100の構成の他の例を示す。本例における測定装置100は、図43に関連して説明した測定装置100の構成に加え、セレクタ4020a及びセレクタ4020b(以下4020と総称する)を更に備える。セレクタ4020は、電子デバイスに与えられる入力データ信号、又は入力データ信号を生成するための入力データクロック信号のいずれかを選択し、DUT3000の入力信号としてジッタ伝達関数推定装置101に供給する。また、セレクタ4020は、DUT3000が入力データ信号に応じて出力する出力データ信号、又はDUT3000が入力データ信号に応じて出力する再生クロック信号のいずれかを選択し、DUT3000の出力信号としてジッタ伝達関数推定装置101に供給する。
ジッタ伝達関数推定装置101は、受け取った入力信号と出力信号との間のジッタ伝達関数を測定する。ジッタ伝達関数推定装置101の動作は、図43において説明したジッタ伝達関数推定装置101の動作と同一である。また、ビット誤り率推定部102及びジッタ耐力推定部302の動作は、図43において説明したビット誤り率推定部102及びジッタ耐力推定部302の動作と同一である。
また、ジッタ重畳部301は、DUT3000に供給する入力データ信号を生成し、パターン発生器4012、タイミング発生器4014、及びシリアライザ4010を有する。パターン発生器4012は、入力データ信号を生成するためのパターンデータをシリアライザ4010に供給し、タイミング発生器4014は、入力信号を生成するための入力データクロック信号をシリアライザ4010に供給する。シリアライザ4010は、受け取ったパターンデータ及び入力データクロックに基づいて入力データ信号を生成する。例えば、シリアライザ4010は、受け取ったパターンデータのそれぞれのデータを、受け取った入力データクロック信号のエッジのタイミングに応じて順次出力する。
また、図43において説明したように、ジッタ重畳部301は、入力データ信号に所望のタイミングジッタを重畳する。ジッタ重畳部301は、入力データクロック信号にタイミングジッタを重畳することにより、入力データ信号にタイミングジッタを重畳してよい。
出力信号として、再生クロック信号を選択した場合、ジッタ伝達関数推定装置101は、図47において説明したクロック再生部3003における、ジッタ伝達関数を測定することができる。この場合、入力信号はいずれを選択してもよい。
また、出力信号として、出力データ信号を選択した場合、ジッタ伝達関数推定装置101は、図47において説明したDUT3000の構成の全てにおける、ジッタ伝達関数を測定することができる。この場合も、入力信号はいずれを選択してもよい。つまり、出力信号としていずれを選択するかにより、ジッタ伝達関数を測定するDUT3000の箇所を選択することができる。
また、図44において説明した測定方法においても、S401とS201との間に、入力信号として入力データ信号又は入力データクロック信号のいずれかを選択する段階、及び出力信号として出力データ信号又は再生クロック信号のいずれかを選択する段階を更に備えてよい。これらのステップは、セレクタ4020を用いて行ってよい。
図57は、パターン発生器4012が生成するパターンデータの一例を示す。パターン発生器4012は、例えばデータAに示すような、疑似ランダム2値系列の信号を生成してよい。また、パターン発生器4012は、例えばデータBに示すような、DUT3000の被測定ピンに対応するビットが交互にH論理とL論理とを繰り返すパターンデータを生成してもよい。この場合、被測定ピンに対応するビットだけを考慮すると、DUT3000には入力データクロック信号と同様の入力データ信号が入力される。これにより、ジッタ伝達関数推定装置101は、より精度よくジッタ伝達関数を測定することができる。
また、パターン発生器4012は、例えばデータCに示すような、出力ピン数と同数のビット毎に、H論理とL論理とを繰り返すパターンデータを生成してもよい。この場合においても、データBと同様に、より精度よくジッタ伝達関数を測定することができ、且つパターンデータを容易に生成することができる。
図58は、ジッタ伝達関数推定装置101のタイミングジッタ推定部501の構成の他の例を示す。本例においてタイミングジッタ推定部501は、信号測定部4062、周期ジッタ系列推定部4004、理想エッジタイミング推定部4006、及びエッジ誤差推定部4008を有する。例えば、本例におけるタイミングジッタ推定部501は、従来のオシロスコープである。
信号測定部4062は、DUTの出力信号を取り込む。また、信号測定部4062は、取り込んだ出力信号の周期等の測定を行う。周期ジッタ系列推定部4004は、信号測定部4062における測定結果に基づいて、出力信号の周期ジッタ系列を測定する。ここで、周期ジッタ系列は、出力信号の各サイクルの長さを示してよく、また出力信号の各エッジのタイミングを示してもよい。
理想エッジタイミング推定部4006は、周期ジッタ系列に基づいて、出力信号の平均周期を算出する。例えば、周期ジッタ系列が出力信号の各サイクルの長さを示している場合、理想エッジタイミング推定部4006は、周期ジッタ系列のそれぞれの値の平均値を、出力信号の平均周期として算出する。
次に、エッジ誤差推定部4008は、周期ジッタ系列の平均周期と、周期ジッタ系列とに基づいて、出力タイミングジッタ系列を算出する。例えば、出力信号の平均周期に基づいて、出力信号の各エッジの理想タイミングを示す理想エッジタイミング系列を算出し、理想エッジタイミング系列と、出力信号の各エッジのタイミングを示す周期ジッタ系列との差を算出することにより、出力タイミングジッタを算出してよい。
本例におけるタイミングジッタ推定部501の構成によっても、他のタイミングジッタ推定部501と同様に、出力信号のタイミングジッタ系列を算出することができる。また、DUTの入力信号のタイミングジッタ系列を算出してもよい。
図59は、タイミングジッタ推定段階S221の一例を示すフローチャートである。本例におけるタイミングジッタ推定段階S221は、図58において説明したタイミングジッタ推定部501を用いて行ってよい。
まず、信号測定段階S8000で、タイミングジッタを測定するべき信号を測定する。S8000は、図58において説明した信号測定部4002を用いて行ってよい。次に、周期ジッタ系列推定段階S8002で、測定した信号の周期ジッタ系列を算出する。S8002は、図58において説明した周期ジッタ系列推定部4004を用いて行ってよい。
次に、理想エッジタイミング推定段階S8004で、当該信号の平均周期を算出する。S8004は、図58において説明した理想エッジタイミング推定部4006を用いて行ってよい。
次に、エッジ誤差推定段階S8006で、当該信号のタイミングジッタ系列を算出する。S8006は、図58において説明したエッジ誤差推定部4008を用いて行ってよい。
図60は、ビット誤り率曲線の一例を示す。図60において、丸印は従来の測定装置によって測定されたビット測定点を示し、実線は、測定装置100によって測定したビット誤り率曲線を示す。測定装置100によれば、従来法と互換性のあるビット誤り率曲線を得ることができる。また、図56において説明したように、入力信号、及び出力信号としていずれの信号を選択した場合であっても、図60に示すようなビット誤り率曲線を得ることができる。
図61は、ジッタ耐力の測定例を示す。図61において横軸は入力タイミングジッタの周波数を示し、縦軸はジッタ耐力を示す。また、図61において丸印は従来の測定装置によって測定したジッタ耐力を示し、四角印は測定装置100によって測定したジッタ耐力を示す。本例においては、測定装置100は式(39)を用いてジッタ耐力を測定した。図61に示すように、測定装置100は、従来法と互換性のあるジッタ耐力を測定することができる。また、図56において説明したように、入力信号、及び出力信号としていずれの信号を選択した場合であっても、図61に示すようなジッタ耐力を得ることができる。
また、測定装置100は、式(39.2)を用いてジッタ耐力を測定してもよい。この場合は、例えばβ=0.75として測定することにより、より精度のよいジッタ耐力を測定することができる。
図62は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す。測定装置100は、ジッタ重畳部301、タイミングジッタ推定部501、ジッタ歪み推定部4100、及び対ジッタ信頼性推定部4102を備える。ジッタ重畳部301は図56に関連して説明したジッタ重畳部301と同一の機能及び構成を有し、タイミングジッタ推定部501は図3に関連して説明したタイミングジッタ推定部501と同一の機能及び構成を有する。
ジッタ歪み推定部4100は、出力タイミングジッタ系列のジッタ歪みを測定する。ここで、出力タイミングジッタ系列のジッタ歪みは、入力信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、入力信号に応じてDUT3000が実際に出力する出力信号の出力タイミングジッタの歪みである。
対ジッタ信頼性推定部4102は、ジッタ歪みに基づいて、DUT3000の対ジッタ信頼性を測定する。例えば、対ジッタ信頼性推定部4102は、DUT3000のジッタ耐力を測定する。また、対ジッタ信頼性推定部4102は、所定の振幅の入力タイミングジッタに対して、DUT3000が正常に動作するか否かを測定してもよい。つまり、ジッタ重畳部301は入力信号に所望の振幅の入力タイミングジッタを重畳し、DUT3000に供給し、対ジッタ信頼性推定部4102は、入力タイミングジッタの振幅に対するDUT3000の対ジッタ信頼性を測定してもよい。
図63は、DUT3000を測定する測定方法の一例を示すフローチャートである。まず、ジッタ周波数設定段階S4500で、DUT3000に入力する入力信号に重畳する入力タイミングジッタの周波数を設定する。
次に、ジッタ振幅設定段階S4502で、DUT3000に入力する入力信号に重畳する入力タイミングジッタの振幅を設定する。S4500及びS4502は、図62に関連して説明したジッタ重畳部301を用いて行ってよい。
次に、タイミングジッタ推定段階S4504で、DUT3000の出力信号に基づいて、出力タイミングジッタ系列を測定する。S4504は、図62に関連して説明したタイミングジッタ推定部501を用いて行ってよい。
次に、ジッタ歪み推定段階S4506で、入力信号に応じてDUT3000が出力するべき出力信号のタイミングジッタに対する、実際にDUT3000が出力した出力信号のタイミングジッタのジッタ歪みを測定する。S4506は、図62に関連して説明したジッタ歪み推定部4100を用いておこなってよい。
次に、判定段階S4508で、ジッタ歪みが所定の大きさより大きいか否かを判定する。S4508は、図62に関連して説明した対ジッタ信頼性推定部4102を用いて行ってよい。
S4508で、ジッタ歪みが所定の大きさより小さい場合、再度S4502において前回より振幅を大きくした入力タイミングジッタを重畳した入力信号をDUT3000に入力し、S4508でジッタ歪みが所定の大きさより大きくなるまで、S4502〜S4508の処理を繰り返す。
S4508で、ジッタ歪みが所定の大きさより大きい場合、ジッタ耐力推定段階S4510で、DUT3000のジッタ耐力を算出する。S4510では、S4508においてジッタ歪みが所定の大きさより大きいと判定されたときの、入力タイミングジッタの振幅を、当該入力タイミングジッタの周波数における、DUT3000のジッタ耐力として算出してよい。また、S4510は、図62において説明した対ジッタ信頼性推定部4102を用いて行ってよい。
次に、S4512で、更に測定するべき入力タイミングジッタの周波数があるか否かを判定し、測定するべき周波数がある場合は、S4500で当該周波数を設定し、S4500〜S4510の処理を繰り返す。また、測定するべき周波数が無い場合は、ジッタ耐力の測定を終了する。つまり、ジッタ重畳部301は、周波数の異なる例えば複数のサイン波ジッタを重畳した入力信号をDUT3000に供給し、対ジッタ信頼性推定部4102は、サイン波ジッタの周波数毎に、DUTの対ジッタ信頼性を測定する。また、ジッタ重畳部301は、複数の周波数成分を有する入力タイミングジッタを重畳した入力信号をDUT3000に供給してもよい。この場合、それぞれの周波数成分毎にDUT3000の対ジッタ信頼性を測定する。
図64は、ジッタ耐力の測定の一例を示す。図64において、横軸は所定の周波数を有する入力タイミングジッタの振幅を示し、縦軸は出力タイミングジッタの振幅を示す。図63において説明したように、測定装置100のジッタ重畳部301は、入力タイミングジッタの振幅の異なる複数の入力信号をDUT3000に供給し、対ジッタ信頼性推定部4102は、複数の入力信号に対するそれぞれの出力タイミングジッタのジッタ歪みに基づいて、DUT3000のジッタ耐力を測定する。
つまり、ジッタ歪み推定部4100は図63の丸印に示すように、振幅の異なる複数の入力タイミングジッタに対する、出力タイミングジッタの振幅を算出し、対ジッタ信頼性推定部4102は、入力タイミングジッタの振幅に対する出力タイミングジッタの振幅が、非線形となる入力タイミングジッタの振幅に基づいて、ジッタ耐力を測定する。
図47において説明したように、DUT3000は、クロック再生部3003が入力信号に基づいて再生クロックを生成し、フリップフロップ3001及びシリアルパラレル変換部3002が、受け取った信号を再生クロックに応じて出力する。このため、入力信号における入力タイミングジッタの振幅が小さい場合は、出力タイミングジッタは、入力タイミングジッタの振幅に対して線形の関係を有する。しかし、例えば入力タイミングジッタの振幅が、入力信号のビット幅等より大きくなる場合、フリップフロップ3001及びシリアルパラレル変換部3002は、出力するべきビット値とは異なるビット値を出力する場合がある。このため、出力タイミングジッタの振幅が、入力タイミングジッタの振幅に対して非線形となる。この場合、前述したように出力信号は本来のビット値とは異なるビット値を出力する場合があるため、出力タイミングジッタの振幅が、入力タイミングジッタの振幅に対して非線形となる領域を検出することにより、DUT3000のジッタ耐力を容易に測定することができる。
図65は、ジッタ歪み推定部4100の構成の一例を示す。本例において、ジッタ歪み推定部4100は、出力タイミングジッタ系列のスペクトルに基づいて、出力タイミングジッタのジッタ歪みを測定する。ジッタ歪み推定部4100は、タイミングジッタスペクトル推定部4104、及びジッタ歪み算出部4106を有する。また、本例においてジッタ重畳部301は、例えばサイン波ジッタのように、所定の周波数を有する入力タイミングジッタを入力信号に重畳する。
タイミングジッタスペクトル推定部4104は、出力タイミングジッタ系列を受け取り、出力タイミングジッタ系列のジッタスペクトルを算出する。例えば、タイミングジッタスペクトル推定部4104は、フーリエ変換によりジッタスペクトルを算出する。
ジッタ歪み算出部4106は、ジッタスペクトルに基づいて出力タイミングジッタのジッタ歪みを算出する。例えば、ジッタ歪み算出部4106は、DUT3000が出力するべき出力信号における出力タイミングジッタのジッタスペクトルに対する、DUT3000が出力した出力信号における出力タイミングジッタのジッタスペクトルの歪みを算出する。
図66は、ジッタ耐力の測定の他の例を説明する図である。図66は、サイン波ジッタが入力信号に重畳された場合に、DUT3000が出力するべき出力信号の出力タイミングジッタのジッタスペクトルの一例を示す。図66において、横軸はジッタ周波数を示し、縦軸は当該ジッタ周波数におけるジッタの強度を示す。入力信号に入力タイミングジッタが重畳された場合、出力タイミングジッタは、サイン波ジッタとDUT3000のジッタ伝達関数によって定まる。
例えば、所定の周波数を有するサイン波ジッタが入力信号に重畳された場合、出力タイミングジッタのスペクトルは、サイン波ジッタの周波数に応じた基本周波数に、ジッタ伝達関数に応じたピークを有する。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した線形領域にある場合、出力タイミングジッタのスペクトルは、図66に示すようにサイン波に応じたスペクトルを示す。つまり、基本周波数成分の大きさに対して、高調波成分の大きさが十分に小さいスペクトルを示す。
図67は、サイン波ジッタが入力信号に重畳された場合に、DUT3000が出力するべき出力信号の出力タイミングジッタのジッタスペクトルの他の例を示す。図67において、横軸はジッタ周波数を示し、縦軸は当該ジッタ周波数におけるジッタの強度を示す。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合、出力タイミングジッタのスペクトルは、図67に示すように、図66に示したスペクトルに対して歪みが生じる。つまり、主周波数成分に対する高調波成分が増大する。図65において説明したジッタ歪み推定部4100は、当該歪みを測定する。例えば、サイン波ジッタの周波数と同一のジッタスペクトルの主周波数成分と、ジッタスペクトルにおける主周波数成分の高調波成分との比に基づいて、出力タイミングジッタのジッタ歪みを測定する。本例において、ジッタ歪み推定部4100は、主周波数成分の大きさに対する、一次高調波成分の大きさの比が所定の値より大きい場合に、出力タイミングジッタが歪んでいると判定する。出力タイミングジッタにジッタ歪みが生じている場合、DUT3000の出力信号にビット誤りが生じる場合がある。
本例におけるジッタ歪み推定部4100によれば、重畳された入力タイミングジッタによって、DUT3000の出力信号にビット誤りが生じるか否かを判定することができる。また、振幅の異なる複数の入力タイミングジッタに対して同様の測定を行うことにより、DUT3000のジッタ耐力を測定することができる。
図68及び図69は、ジッタ耐力の測定の更なる他の例を説明する図である。図68及び図69は、入力タイミングジッタとしてサイン波ジッタが重畳された場合の、出力タイミングジッタの振幅のジッタヒストグラムを示す。図68及び図69において、出力タイミングジッタの振幅をユニットインターバル単位で示し、縦軸はそれぞれの振幅の出現頻度を示す。
図68は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す。本例において、DUT3000は、入力されたサイン波ジッタの振幅が線形領域にある場合、図68に示すようにジッタヒストグラムの両端にピークを有する出力タイミングジッタを出力する。
図69は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合、出力タイミングジッタのジッタヒストグラムは、図69に示すように、図68に示したジッタヒストグラムに対して歪みが生じる。
本例において、ジッタ歪み推定部4100は、出力タイミングジッタ系列のジッタヒストグラムを生成し、ジッタヒストグラムに基づいて出力タイミングジッタのジッタ歪みを測定する。例えば、ジッタ歪み推定部4100は、ジッタヒストグラムの両端にピークがあるか否かに基づいて、入力されたサイン波ジッタに対する出力タイミングジッタの歪みを測定してよい。
図70は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す。本例における測定装置100は、図62において説明した測定装置100の構成に加え、ジッタ伝達関数推定部101、及びジッタ耐力推定部302を更に備える。ここで、ジッタ伝達関数推定部101、及びジッタ耐力推定部302は、図43に関連して説明したジッタ伝達関数推定部101、及びジッタ耐力推定部302同一又は同様の機能及び構成を有する。
本例における測定装置100は、まず、タイミングジッタ推定部501、ジッタ伝達関数推定部101、及びジッタ耐力推定部301によって、図44において説明した方法でジッタ耐力を測定する。次に、ジッタ重畳部301が、ジッタ耐力推定部302が測定したジッタ耐力に応じた振幅のタイミングジッタを重畳した第1確認信号を、DUT3000に供給する。
ジッタ歪み推定部4100は、第1確認信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、第1確認信号に応じてDUT3000が出力する出力信号の出力タイミングジッタのジッタ歪みを測定する。
そして、判定部の一例である対ジッタ信頼性推定部4102は、ジッタ歪み推定部4100が測定したジッタ歪みに基づいて、ジッタ耐力推定部302が測定したジッタ耐力が正しい値であるか否かを判定する。
対ジッタ信頼性推定部4102が、当該ジッタ耐力が正しい値でないと判定した場合、ジッタ重畳部301は、第1確認信号より振幅の小さいタイミングジッタを重畳した第2確認信号をDUT3000に供給し、ジッタ歪み推定部4100は、第2確認信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、第2確認信号に応じてDUT3000が出力する出力信号の出力タイミングジッタのジッタ歪みを測定する。そして、対ジッタ信頼性推定部4102は、ジッタ歪み推定部4100が測定した、第2確認信号に対応するジッタ歪みに基づいて、新たにジッタ耐力を算出する。例えば、図63において説明したS4502〜S4508の処理によって、新たにジッタ耐力を算出してよい。
本例における測定装置100によれば、より精度よく且つ高速にDUT3000のジッタ耐力を測定することができる。つまり、図44及び図63において説明したそれぞれの方法でジッタ耐力を測定するため、より精度よくジッタ耐力を測定できる。例えば、図44において説明した方法で測定したジッタ耐力が大きめの値を測定してしまう場合であっても、当該ジッタ耐力を更に精度よく測定することができる。また、最初に図44の方法によってジッタ耐力の暫定値を算出することにより、図63において説明した方法より高速にジッタ耐力を測定することができる。
また、本例における測定装置100は、図56において説明した測定装置100と同様に、入力信号として入力データ信号又は入力データクロック信号のいずれを選択してもよく、出力信号として出力データ信号又は再生クロック信号のいずれを選択してもよい。
図71は、測定装置100の構成の更なる他の例を示す。本例における測定装置100は、まずジッタ伝達関数のゲインに基づいて電子デバイス3000のジッタ耐力の暫定値を算出する。そして、当該ジッタ耐力の値に応じて定まる入力タイミングジッタの振幅値の近傍の振幅を有する入力タイミングジッタを順次入力信号に重畳し、入力信号と基準信号とのビット値を比較し、ビット誤りが生じたときの入力タイミングジッタの振幅をジッタ耐力として算出する。
測定装置100は、図62に関連して説明した測定装置100の構成に加え、ビット誤り検出部3500を更に備える。図71において図62と同一の符号を付した構成要素は、図62に関連して説明した構成要素と同一又は同様の機能及び構成を有する。また、本例において対ジッタ信頼性推定部4102は、ジッタ耐力推定部302を有し、電子デバイス3000のジッタ耐力を測定する。
ビット誤り検出部3500は、電子デバイス3000が出力する出力信号のそれぞれのビットと、電子デバイス3000が出力するべき基準信号のそれぞれのビットとを比較することにより、電子デバイス3000の出力信号におけるビット誤りを検出する。
例えば、電子デバイス3000が図47に示したようにデシリアライザである場合、ビット誤り検出部3500は、電子デバイス3000が出力するパラレルデータ信号のうち少なくとも一つと、電子デバイスが出力する再生クロックとを受取り、これらを離散化する。このときのサンプリングレートは、被離散化信号の周波数の3倍以上であることが望ましい。
次に、離散化したデータ信号をコンパレータ手段等により2値化し、離散化された再生クロックの立ち上がりで2値化したデータ信号をサンプリングし、2値系列を生成し、入力信号に応じた基準信号と比較しビット誤りを検出する。
ところで、15段(15-stage)のPRBS(pseudo random binary sequence)のとき、シリアルビット列には15個の"1"が連続する部分が1箇所必ず存在する。従って、このような最大連長に対応する2値系列の部分をパターンマッチングにより見つけることにより、2値系列と基準PRBSをお互いに整列(align)できる。最後に、ビット対ビットの比較を行うことにより2値系列の誤りを検出できる。次に、フローチャートを用いて測定装置100の動作の一例を説明する。
図72は測定装置100の動作の一例を説明するフローチャートである。まず、S3502において、ジッタ重畳部301が入力信号に重畳する入力タイミングジッタのタイプを設定する。ここでは、ランダムジッタを入力タイミングジッタとして選択する。
次に、S3504において、ジッタ重畳部301は、入力タイミングジッタの振幅を設定する。そして、ジッタ重畳部301は、入力タイミングジッタを重畳した入力信号を電子デバイス3000に入力する。
ジッタ伝達関数推定部101は、電子デバイス3000に入力された入力信号と、当該入力信号に応じて電子デバイス3000が出力する出力信号を受け取る。そして、S3506においてジッタ伝達関数推定部101は、受け取った入力信号及び出力信号に基づいて、電子デバイス3000のジッタ伝達関数を算出する。ジッタ伝達関数を算出する方法は、前述した通りである。
次に、S3508において、対ジッタ信頼性推定部4102は、ジッタ伝達関数のゲイン及び位相に基づいて、電子デバイス3000のジッタ耐力の暫定値を算出する。つまり、対ジッタ信頼性推定部4102は、前述した方法によってジッタ伝達関数に基づいて算出したジッタ耐力を、おおよそのジッタ耐力の値として算出する。また前述したように、S3508ではジッタ伝達関数に基づいてジッタ耐力を算出しているため、入力タイミングジッタの全ての周波数帯域に対するジッタ耐力の暫定値を算出することができる。
次に、S3510において、ジッタ重畳部301は、入力信号に重畳する入力タイミングジッタのタイプを設定する。ここでは、サイン波ジッタを入力タイミングジッタとして選択する。そして、S3512において、ジッタ重畳部301は、ジッタ耐力を測定するべき入力タイミングジッタの周波数を設定する。次に、S3514において、ジッタ重畳部301は、入力タイミングジッタの振幅を、対ジッタ信頼性推定部4102が算出したジッタ耐力の値に応じた振幅に設定する。例えば、ジッタ重畳部301は、対ジッタ信頼性推定部4102が算出したジッタ耐力の暫定値に対応する、入力タイミングジッタの振幅値の近傍に、入力タイミングジッタの振幅を設定し、入力信号に重畳して電子デバイス3000に入力する。
ビット誤り検出部3500は、入力信号に応じて電子デバイス3000が出力する出力信号を受け取る。そして、S3516において、ビット誤り検出部3500は、入力信号に応じて電子デバイス3000が出力するべき基準信号のそれぞれのビットと、実際に電子デバイス3000が出力した出力信号のそれぞれのビットを比較することにより、出力信号のビット誤りを検出する。また、出力信号は例えば電子デバイス3000が出力するデータ信号であって、ビット誤り検出部3500は、当該データ信号を、電子デバイス3000がデータ信号と同期して出力するクロック信号でサンプリングすることによってデータ信号のそれぞれのビットの値を検出してよい。また他の例においては、ビット誤り検出部3500は、他のクロック信号によってデータ信号をサンプリングしてもよい。
次に、S3518において、ビット誤り検出部3500が検出した誤りビット数が零であるか否かを判定する。誤りビット数が零である場合には、S3514において、入力タイミングジッタの振幅値を増加させて、ビット誤り検出部3500がビット誤りを検出するまでS3514〜S3518の処理を繰り返す。S3518において、誤りビット数が零より大きい場合、S3520において対ジッタ信頼性推定部4102は、このときの入力タイミングジッタの振幅を電子デバイス3000のジッタ耐力として検出する。
次に、S3522において、試験するべき入力タイミングジッタの周波数がまだ残っているか否かを判定し、まだ試験するべき周波数帯域が残っている場合には、S3512において入力タイミングジッタの周波数を変更し、S3512〜S3522の処理を繰り返す。試験するべき全ての周波数について測定した場合には処理を終了する。 このような処理により、測定装置100は、ジッタ伝達関数に基づいてジッタ耐力の暫定値を高速に測定し、おおよそのジッタ耐力に基づいて、精度のよいジッタ耐力値を精度よく測定することができる。このため、測定装置100は、高速且つ精度よくジッタ耐力を測定することができる。
図73は、測定装置100の構成の更なる他の例を示す。本例における測定装置100は、図71に関連して説明した測定装置100の構成において、ジッタ伝達関数測定装置101に代えて、タイミングジッタ推定部501及びジッタ歪み推定部4100を備える。タイミングジッタ推定部501及びジッタ歪み推定部4100は、図62に関連して説明したタイミングジッタ推定部501及びジッタ歪み推定部4100と同一又は同様の機能及び構成を有する。
本例における測定装置100は、図71において説明した測定装置100と同様に、電子デバイス3000のジッタ耐力の暫定値を、出力タイミングジッタのスペクトルに基づいて算出し、算出したジッタ耐力の暫定値に基づいて、精度のよいジッタ耐力値を算出する。
本例における測定装置100は、図72において説明したS3506において、タイミングジッタ推定部501が出力タイミングジッタを算出する。そしてジッタ歪み推定部4100は、出力タイミングジッタのスペクトルに基づいて、出力タイミングジッタの歪みを算出する。そして、S3508において対ジッタ信頼性推定部4102が、ジッタ歪みに基づいてジッタ耐力の暫定値を算出する。これらの処理は、図62において説明した測定装置100と同様である。また、図72において説明したS3502〜S3504、S3512〜S3522については、図71において説明した測定装置100と同一の処理を行う。本例における測定装置100によっても、高速且つ精度よくジッタ耐力を測定することができる。
また、本例における対ジッタ信頼性推定部4102は、入力タイミングジッタの周波数に基づいて、ビット誤り検出部3500がビット誤りを検出するまで入力タイミングジッタの振幅を変更させ、ビット誤り検出部がビット誤りを検出しない入力タイミングジッタの最大振幅をジッタ耐力として算出するか、出力タイミングジッタのジッタ歪みに基づいて、ジッタ耐力を算出するかを選択し、ジッタ耐力を算出してもよい。
例えば、対ジッタ信頼性推定部4102は、電子デバイス3000の内部にあるPLLの制御帯域に応じて、いずれの方法でジッタ耐力を算出するかを選択する。ここで、PLLの制御帯域とは、PLLにおいてジッタが補正されるジッタ周波数の帯域を指す。つまり、入力タイミングジッタの周波数が、PLLの制御帯域内の周波数である場合、出力信号に生じるビット誤りは、PLLで生じるジッタに依存する割合が高いため、対ジッタ信頼性推定部4102は、出力タイミングジッタのジッタ歪みに基づいてジッタ耐力を算出する。また、入力タイミングジッタの周波数が、PLLの制御帯域外の周波数である場合には、出力信号に生じるビット誤りは、データ信号のサンプリング誤差等に依存する割合が高いため、ビット誤り検出部3500のビット誤り検出結果に基づいて、ジッタ耐力を算出する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更または改良を加えることができる。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。また、本発明に係る測定装置及び試験方法は、測定対象として光回路等を含んだネットワーク等をも測定できることは明らかである。つまり、特許請求の範囲に記載した測定対象としての電子デバイスの範囲には、被試験回路、被試験電子デバイス、被試験システム、光回路等を含んだネットワーク等が含まれることは明らかである。また、内部に光回路等が含まれる被試験回路、被試験電子デバイス、及び被試験システムをも特許請求の範囲に記載した測定対象としての電子デバイスの範囲に含まれることは明らかである。
上記説明から明らかなように、本発明によれば、DUTのジッタ伝達関数、ビット誤り率、及びジッタ耐力を効率よく算出することができる。本発明の測定装置および測定方法によれば、タイミングジッタからジッタ伝達関数、ビット誤り率、及びジッタ耐力を推定することにより、処理時間がかかるヒストグラム処理を必要せずテスト時間を最小にできるため、ビット誤り率、ジッタ耐力試験等におけるコストを大幅に削減できる。