JP5182362B2 - 光素子及びその製造方法 - Google Patents
光素子及びその製造方法 Download PDFInfo
- Publication number
- JP5182362B2 JP5182362B2 JP2010503705A JP2010503705A JP5182362B2 JP 5182362 B2 JP5182362 B2 JP 5182362B2 JP 2010503705 A JP2010503705 A JP 2010503705A JP 2010503705 A JP2010503705 A JP 2010503705A JP 5182362 B2 JP5182362 B2 JP 5182362B2
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- layer
- layers
- mask
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 163
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 74
- 239000000758 substrate Substances 0.000 claims description 58
- 238000005530 etching Methods 0.000 claims description 44
- 238000010030 laminating Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 678
- 230000008878 coupling Effects 0.000 description 135
- 238000010168 coupling process Methods 0.000 description 135
- 238000005859 coupling reaction Methods 0.000 description 135
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 134
- 238000000034 method Methods 0.000 description 35
- 229920002120 photoresistant polymer Polymers 0.000 description 27
- 239000000203 mixture Substances 0.000 description 26
- 125000006850 spacer group Chemical group 0.000 description 26
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 238000010894 electron beam technology Methods 0.000 description 15
- 238000001020 plasma etching Methods 0.000 description 15
- 230000003247 decreasing effect Effects 0.000 description 14
- 238000005253 cladding Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000010363 phase shift Effects 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000012792 core layer Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/065—Mode locking; Mode suppression; Mode selection ; Self pulsating
- H01S5/0651—Mode control
- H01S5/0653—Mode suppression, e.g. specific multimode
- H01S5/0654—Single longitudinal mode emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1215—Multiplicity of periods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
- H01S5/2209—GaInP based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32333—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm based on InGaAsP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/3434—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
Description
近年、DFBレーザにおいて、回折格子の帰還量を決定する結合係数を共振器方向で分布させる構造を採用することで、レーザ特性を向上させることが提案されている。
例えば、結合係数を共振器中央に向かって小さくなるように分布させた構造を採用することで、軸方向のホールバーニングを抑制し、高光出力時の縦モード安定性を向上させることが提案されている(例えば非特許文献1参照)。
また、共振器方向で駆動電極を3分割し、中央の電極の注入電流を変調することで、DFBレーザをFM変調光源として用いる場合に、共振器長を長くすることで、スペクトル線幅を狭くすることが提案されている(例えば非特許文献6、特許文献2参照)。
しかしながら、例えば上記特許文献2や上記非特許文献4,5に記載されているように、InP基板の表面に凹凸を形成し、これを半導体層で埋め込むことによって形成される表面回折格子を用いて、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくするためには、結合係数を小さくする領域において回折格子の深さを非常に浅くすることが必要になる。
また、例えば上記特許文献1に記載されているように、埋込回折格子の幅を変える場合、結合係数を最大にする領域の回折格子の幅は回折格子の周期の半分(デューティ比50%)にし、それよりも回折格子の幅を広く(デューティ比50%よりも大きく)又は狭く(デューティ比50%よりも小さく)することで結合係数の小さい領域の回折格子を形成することになる。
回折格子の幅を非常に広くする場合、回折格子を形成するためのマスクの開口部が非常に狭くなるため、エッチングによって加工して回折格子を形成するのが困難である。一方、回折格子の幅を非常に狭くする場合、エッチングマスクの幅も非常に狭くすることになるが、例えば数%幅のマスクを精度良く安定して作製することは困難である。また、非常に幅の狭い回折格子が形成できたとしても、これを埋め込むと消えてしまう場合があり、安定して埋込回折格子を作製することが難しい。このため、歩留まりも良くない。
2,3,20,30,40,21,31 回折格子層
2A,3A,20A,30A,40A,21A,31A 回折格子(埋込回折格子)
4,5,41,42,51,43,52 スペーサ層
101,201,301 n型ドープInP基板
102,202,104,204,206,302,304 n型ドープGaInAsP層
103,203,107,205,210,303,307 n型ドープInP層
105,207,305 電子ビームレジストマスク
106,208,306 ポジ型フォトレジスト
106A,208A,306A ポジ型フォトレジストマスク
108,211,308 量子井戸活性層
109,114,212,309,314 p型InPクラッド層
110,214,310 SiO2マスク
111,311 p型InP層
112,312 n型InP層
113,313 p型InP層
115,213,315 p型GaInAsコンタクト層
116,216,316 p側電極
117,217,317 n側電極
118,119,218,219,318,319 無反射コート
209 ネガ型フォトレジスト
209A ネガ型フォトレジストマスク
215 Feドープ型InP電流狭窄層
[第1実施形態]
まず、第1実施形態にかかる光素子及びその製造方法について、図1〜図4(E)を参照しながら説明する。
本実施形態にかかる光素子は、例えば、回折格子の結合係数を共振器内で分布させた構造を有するDFB(Distributed Feed-Back;分布帰還型)レーザ(レーザ素子;導波路型光素子;アクティブ型光素子;発光素子)であって、図1に示すように、光導波路1と、光導波路1に沿って設けられた複数(ここでは2つ)の回折格子層2,3とを備える。
各回折格子層2,3は、図1に示すように、分断された一の半導体層102,104と、一の半導体層102,104と屈折率が異なり、一の半導体層102,104を埋め込む他の半導体層103,107とによって構成される回折格子(埋込回折格子;埋込型回折格子)2A,3Aを含むものとして構成される。
本実施形態では、第1回折格子層2は、図1に示すように、回折格子2Aが光導波路1に沿う方向(共振器の長さ方向)の中央領域のみに形成されている。つまり、第1回折格子層2の回折格子2Aが形成されている領域は、光導波路1に沿う方向の中央領域である。
このように、本実施形態では、第1回折格子層2の回折格子2Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層3の回折格子3Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっており、第1回折格子層2と第2回折格子層3とで回折格子2A,3Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層2,3の対応する領域は、光導波路1に沿う方向の中央領域である。
なお、n型InP埋込層103のうち、n型GaInAsP層102の上側に形成される部分は第1回折格子層2と第2回折格子層3との間のスペーサ層4を構成し、n型InP埋込層107のうち、n型GaInAsP層104の上側に形成される部分は第2回折格子層3と活性層108との間のスペーサ層(クラッド層)5を構成する。なお、スペーサ層4の厚さは、エッチングのばらつきを吸収できる程度にできるだけ薄くするのが好ましい。
また、第1回折格子層2の回折格子2Aを構成する半導体層102,103の屈折率差を、第2回折格子層3の回折格子3Aを構成する半導体層104,107の屈折率差よりも大きくし、第1回折格子層2と第2回折格子層3とが異なる屈折率差を有するものとして構成されている。
このように、本実施形態の構成によれば、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
この例の加工精度を仮に適用し、共振器内全体で結合係数が小さくなる方向に変動したとすると、発振しきい値利得が、変動しない場合と比べて約1.4倍の値となり、これはレーザの発振しきい値の上昇をもたらすことになる。
これに対し、本実施形態では、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、結合係数のコントラストを大きくするために埋込層によって埋め込まれる溝を非常に深い部分と非常に浅い部分とを含むものにする必要はない。このため、埋込層の厚さをそれほど厚くしなくても、その表面を平坦にすることができ、所望の結合係数が得られることになる。
まず、表面回折格子を用いる場合、基板の途中又は一の半導体層の途中でエッチングを止めることで回折格子の深さが規定されることになるため、結合係数を精度良く制御するのは難しい。
これに対し、分断されたGaInAsP層102,104をInP層(埋込層)103,107によって埋め込むことによって形成される埋込回折格子2,3は、GaInAsP四元混晶層をInP埋込層で埋め込むため、基本的に分断されたGaInAsP層102,104の変形は生じない。
このため、設計どおりの結合係数を得ることができ、歩留まりを向上させることができる。また、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、結合係数のコントラストを大きくするために一のGaInAsP層に形成される溝の深さを非常に深くする必要がないため、結晶欠陥が発生しにくく、また、InPとの屈折率差がそれほど大きなものを用いなくても良いため、レーザ特性を劣化させることもない。
さらに、InP埋込層107の厚さ(スペーサ層5の厚さ;活性層108と第2回折格子層3との間の間隔)を変化させることで、全体の結合係数の値を微調整することができる。
まず、図2(A)に示すように、n型ドープInP基板101上に、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ25nm;基板101と屈折率が異なる層)102、n型ドープInP層(例えば厚さ15nm;基板101と屈折率が同一の層)103、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板101と屈折率が異なる層)104を、例えば有機金属気相成長(MOVPE;Metal Organic Chemical Vapor Deposition)法を用いて、順次積層させる。なお、n型ドープInP基板101とn型ドープGaInAsP層102との間にn型ドープInPクラッド層を形成しても良い。
なお、ここでは、マスク105に形成された回折格子パターンには、個々の素子の共振器中央に位相がπラジアンの位相シフト(λ/4位相シフト)を形成するためのパターンが含まれている。
ここでは、図2(C)に示すように、n型GaInAsP層104を分断し、n型InP層103の途中でエッチングが停止するようにしている。これにより、n型GaInAsP層104の全面に回折格子パターンが転写され、n型GaInAsP層104が分断されることになる。
次に、通常のフォトリソグラフィ技術を用いて、図2(E)に示すように、ポジ型フォトレジスト106の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)を除去して、光導波路に沿う方向の両端側の部分を覆う(マスク105の一部の領域の表面を覆う;光導波路の両端側の領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク106Aを形成する。
ここでは、図3(A)に示すように、n型InP層103とn型GaInAsP層102を分断し、n型InP基板101の途中(ここではエッチング深さ10nmの位置)でエッチングが停止するようにしている。
この場合、n型GaInAsP層104に形成される回折格子パターンと、n型GaInAsP層102に形成される回折格子パターンとは、同じマスク105を用いて形成されるため、後述のようにして形成される第1回折格子層2と第2回折格子層3とは、対応する領域に形成される回折格子2A,3Aの位相、周期、デューティ比が同一になる。
ここで、各回折格子層2,3は、層内でデューティ比が一定になっている。この場合、エッチングマスクの回折格子パターン(マスクパターン)の幅を変化させる必要がないため、回折格子の加工精度が安定する。ここでは、各回折格子層2,3は、層内で厚さ及び屈折率差も一定であるため、層内で回折格子の結合係数は一定である。
次いで、図3(C)に示すように、例えばMOVPE法を用いて、全面にn型ドープInP層(基板101と屈折率が同一の層)107を成長させる。これにより、n型InP層103の途中でエッチングが停止されて形成された溝、及び、n型InP基板101の途中でエッチングが停止されて形成された溝がn型InP層107によって埋め込まれる。
次に、図3(D)に示すように、量子井戸活性層108、p型ドープInPクラッド層(例えば厚さ250nm)109を、例えばMOVPE法によって順次積層させる。
その後、半導体表面に、図3(E)に示すように、通常の化学気相堆積法(CVD法)及びフォトリソグラフィ技術を用いて、SiO2からなるマスク(例えば、厚さ400nm、幅1.6μmのストライプ状のエッチングマスク)110を形成する。
次に、図4(B)に示すように、このメサ構造の両側に、p型InP層111/n型InP層112/p型InP層113で構成される電流狭窄層を、例えばMOVPE法を用いて成長させ、エッチングマスク110を例えばふっ酸で除去した後、図4(C)に示すように、例えばMOVPE法を用いて、p型InPクラッド層(例えば厚さ2.2μm)114、p型GaInAsコンタクト層(例えば厚さ300nm)115を順次成長させる。
したがって、本実施形態にかかる光素子(DFBレーザ)及びその製造方法によれば、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
特に、上述の実施形態の構成によれば、各回折格子層を構成する一の半導体層と他の半導体層との間の屈折率差、各回折格子層の厚さ、及び、各回折格子層の間隔(スペーサ層の厚さ)をすべて任意に設定可能であるため、例えば数cm−1から数100cm−1に亘る、非常に広い範囲の値の結合係数を持つ回折格子を精度良く作製することが可能となる。この場合、複数の回折格子層の層数が多いほど設計可能な結合係数の範囲が拡大する。
なお、上述のように構成されるDFBレーザは、例えば、上記非特許文献6あるいは上記特許文献2に記載されているように、共振器方向で駆動電極を3分割し、中央の電極の注入電流を変調することでFM変調光源として用いることもできる。
[第2実施形態]
次に、第2実施形態にかかる光素子及びその製造方法について、図5〜図8(E)を参照しながら説明する。
各回折格子層20,30,40は、図5に示すように、分断された一の半導体層202,204,206と、一の半導体層202,204,206と屈折率が異なり、一の半導体層202,204,206を埋め込む他の半導体層203,207,210とによって構成される回折格子(埋込回折格子;埋込型回折格子)20A,30A,40Aを含むものとして構成される。
また、第2回折格子層30は、図5に示すように、回折格子30Aが光導波路1に沿う方向(共振器の長さ方向)の中央領域のみに形成されている。つまり、第2回折格子層30の回折格子30Aが形成されている領域は、光導波路1に沿う方向の中央領域である。
このように、本実施形態では、図5に示すように、第1回折格子層20の回折格子20Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層30の回折格子30Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっている。また、第2回折格子層30の回折格子30Aが形成されている領域の光導波路1に沿う方向の長さが、第3回折格子層40の回折格子40Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっている。つまり、第1回折格子層20、第2回折格子層30、第3回折格子層40で回折格子20A,30A,40Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層20,30,40の対応する領域は、光導波路1に沿う方向の中央近傍領域である。
また、本実施形態の具体的構成例では、第1回折格子層20の回折格子20Aを構成するn型ドープGaInAsP層202の厚さを15nmとし、第2回折格子層30の回折格子30Aを構成するn型ドープGaInAsP層204の厚さ20nmとし、第3回折格子層40の回折格子40Aを構成するn型ドープGaInAsP層206の厚さを15nmとし、第1回折格子層20又は第3回折格子層40と第2回折格子層30とが異なる厚さを有するものとして構成されている。つまり、複数の回折格子層は、厚さが異なる回折格子層を含み、一部の回折格子層の厚さが異なる。
このように、本実施形態の構成によれば、上述の第1実施形態の場合と同様に、複数の回折格子層20,30,40を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
次に、本実施形態の具体的構成例にかかるDFBレーザの製造方法について、図6(A)〜図8(E)を参照しながら説明する。
まず、図6(A)に示すように、n型ドープInP基板201上に、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ15nm;基板201と屈折率が異なる層)202、n型ドープInP層(例えば厚さ15nm;基板201と屈折率が同一の層)203、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ20nm;基板201と屈折率が異なる層)204、n型ドープInP層(例えば厚さ15nm;基板201と屈折率が同一の層)205、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ15nm;基板201と屈折率が異なる層)206を、例えば有機金属気相成長法(MOVPE法)を用いて、順次積層させる。なお、n型InP基板201とn型GaInAsP層202との間にn型InPクラッド層を形成しても良い。
なお、ここでは、マスク207に形成された回折格子パターンには、個々の素子の共振器中央に位相がπラジアンの位相シフト(λ/4位相シフト)を形成するためのパターンが含まれている。
次に、通常のフォトリソグラフィ技術を用いて、図6(D)に示すように、ポジ型フォトレジスト208の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)を除去して、光導波路に沿う方向の両端側近傍部分を覆う(マスク207の一部の領域の表面を覆う;光導波路の両端側の領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク208Aを形成する。
ここでは、図6(E)に示すように、n型InP層205とn型GaInAsP層204を分断し、n型InP層203の途中でエッチングを停止するようにしている。
次に、この表面に、図7(A)に示すように、例えばネガ型フォトレジスト(東京応化製OMR85;厚さ300nm)209を塗布する。なお、マスク207を構成する電子ビームレジスト、マスク208Aを構成するポジ型フォトレジスト208、ネガ型フォトレジスト209は混ざり合うことはないため、マスク207が変形することはない。
ここでは、図7(C)に示すように、n型InP層203とn型GaInAsP層202を分断し、n型InP基板201の途中(ここではエッチング深さが10nmの位置)でエッチングを停止するようにしている。
この場合、n型GaInAsP層202に形成される回折格子パターンと、n型GaInAsP層204に形成される回折格子パターンと、n型GaInAsP層206に形成される回折格子パターンとは、同じマスク207を用いて形成されるため、後述のようにして形成される第1回折格子層20、第2回折格子層30、第3回折格子層40とは、対応する領域に形成される回折格子20A,30A,40Aの位相、周期、デューティ比が同一になる。
ここで、各回折格子層20,30,40は、層内でデューティ比が一定になっている。この場合、エッチングマスクの回折格子パターン(マスクパターン)の幅を変化させる必要がないため、回折格子の加工精度が安定する。ここでは、各回折格子層20,30,40は、層内で厚さ及び屈折率差も一定であるため、層内で回折格子の結合係数は一定である。
次いで、図7(E)に示すように、例えばMOVPE法を用いて、全面にn型ドープInP層(基板201と屈折率が同一の層)210を成長させる。これにより、n型InP層205の途中でエッチングが停止されて形成された溝、n型InP層203の途中でエッチングが停止されて形成された溝、及び、n型InP基板201の途中でエッチングが停止されて形成された溝がn型InP層210によって埋め込まれる。
ここで、量子井戸活性層211は、アンドープAlGaInAs量子井戸層(例えば、厚さ6.0nm、圧縮歪量1.0%)、及び、アンドープAlGaInAsバリア層(例えば、組成波長1.05μm、厚さ10nm)で構成され、量子井戸層の層数は10層であり、その発光波長は1310nmである。
その後、半導体表面に、図8(B)に示すように、通常の化学気相堆積法(CVD法)及びフォトリソグラフィ技術を用いて、SiO2からなるマスク(例えば、厚さ400nm、幅1.3μmのストライプ状のエッチングマスク)214を形成する。
次に、図8(D)に示すように、このメサ構造の両側に、Feドープ型InPで構成される電流狭窄層215を、例えばMOVPE法を用いて成長させ、エッチングマスク214を例えばふっ酸で除去した後、図8(E)に示すように、p側電極216及びn側電極217を形成した後、素子の両端面に無反射コート218,219を形成して、素子が完成する。
特に、本実施形態の素子では、上述の第1実施形態のものと比較して、結合係数がさらに中央に強く分布するように構成されているため、より高いFM変調効率が得られ、また、単一モード発振の安定性も高まるという利点がある。
[第3実施形態]
次に、第3実施形態にかかる光素子及びその製造方法について、図10〜図13(E)を参照しながら説明する。
各回折格子層21,31は、図10に示すように、分断された一の半導体層302,304と、一の半導体層302,304と屈折率が異なり、一の半導体層302,304を埋め込む他の半導体層303,307とによって構成される回折格子(埋込回折格子;埋込型回折格子)21A,31Aを含むものとして構成される。
本実施形態では、第1回折格子層21は、図10に示すように、回折格子21Aが光導波路1に沿う方向(共振器の長さ方向)の両端側の領域のみに形成されている。つまり、第1回折格子層21の回折格子21Aが形成されている領域は、光導波路1に沿う方向の両端側の領域である。
このように、本実施形態では、第1回折格子層21の回折格子21Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層31の回折格子31Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっており、第1回折格子層21と第2回折格子層31とで回折格子21A,31Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層21,31の対応する領域は、光導波路1に沿う方向の両端側の領域である。
なお、n型InP埋込層303のうち、n型GaInAsP層302の上側に形成される部分は第1回折格子層21と第2回折格子層31との間のスペーサ層43を構成し、n型InP埋込層307のうち、n型GaInAsP層304の上側に形成される部分は第2回折格子層31と活性層308との間のスペーサ層(クラッド層)52を構成する。また、スペーサ層43の厚さは、エッチングのばらつきを吸収できる程度にできるだけ薄くするのが好ましい。
また、第1回折格子層21の回折格子21Aを構成する半導体層302,303の屈折率差を、第2回折格子層31の回折格子31Aを構成する半導体層304,307の屈折率差と同一にし、第1回折格子層21と第2回折格子層31とが同一の屈折率差を有するものとして構成されている。
このように、本実施形態の構成によれば、複数の回折格子層21,31を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
次に、本実施形態の具体的構成例にかかるDFBレーザの製造方法について、図11(A)〜図13(E)を参照しながら説明する。
まず、図11(A)に示すように、n型ドープInP基板301上に、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板と屈折率が異なる層)302、n型ドープInP層(例えば厚さ20nm;基板と屈折率が同一の層)303、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板と屈折率が異なる層)304を、例えば有機金属気相成長法(MOVPE法)を用いて、順次積層させる。なお、n型InP基板301とn型GaInAsP層302との間にn型InPクラッド層を形成しても良い。
ここでは、図11(C)に示すように、n型GaInAsP層304を分断し、n型InP層303の途中でエッチングが停止するようにしている。これにより、n型GaInAsP層304の全面に回折格子パターンが転写され、n型GaInAsP層304が分断されることになる。
次に、通常のフォトリソグラフィ技術を用いて、図11(E)に示すように、ポジ型フォトレジスト306の一部(ここでは共振器の両端側部分;光導波路に沿う方向の両端側の領域)を除去して、共振器中央部分を覆う(マスク305の一部の領域の表面を覆う;光導波路の中央領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク306Aを形成する。
ここでは、図12(A)に示すように、n型InP層303とn型GaInAsP層302を分断し、n型InP基板301の途中(ここではエッチング深さ10nmの位置)でエッチングが停止するようにしている。
この場合、n型GaInAsP層304に形成される回折格子パターンと、n型GaInAsP層302に形成される回折格子パターンとは、同じマスク305を用いて形成されるため、後述のようにして形成される第1回折格子層21と第2回折格子層31とは、対応する領域に形成される回折格子21A,31Aの位相、周期、デューティ比が同一になる。
そして、図12(B)に示すように、マスク305及びマスク306Aを通常のレジスト剥離方法を用いて表面から除去する。
次に、図12(D)に示すように、量子井戸活性層308、p型ドープInPクラッド層(例えば厚さ250nm)309を、例えばMOVPE法によって順次積層させる。
なお、量子井戸活性層308の上下に、量子井戸活性層308を挟み込むように、アンドープGaInAsP−SCH(例えば、波長1.15μm、厚さ20nm)を設けても良い。
そして、図13(A)に示すように、例えばドライエッチング法を用いて、n型InP基板301が例えば0.7μm程掘り込まれる深さまで、上述のようにして形成された半導体積層構造をエッチングし、ストライプ状のメサ構造(メサストライプ)を形成する。
したがって、本実施形態にかかる光素子(DFBレーザ)及びその製造方法によれば、上述の第1実施形態のものと同様に、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
特に、本実施形態の素子では、素子端面側の結合係数が大きくなっているため、長共振器化して作製した場合でも軸方向のホールバーニングを抑制できる。このため、より高い光出力でも安定した単一縦モード動作を維持することができ、また、レーザの発振線幅をより狭くすることができる。
このような素子は、例えば、コヒーレント光伝送システム、あるいは、多値変調光通信システムのように、レーザの発振線幅が100〜500kHzと非常に狭いレーザ光源を必要とするシステムにおいて、そのレーザ光源として用いることができる。
さらに、線幅はレーザの光出力の逆数に比例するため、より高い光出力で動作させるほど狭線幅化を実現できることになる。このため、さらなる狭線幅化のためには、さらにレーザの共振器長を長くし、かつ、できる限り高い光出力で動作させれば良いが、長くしすぎると、高光出力動作時にDFBレーザにおける軸方向ホールバーニングの影響によって主モードと副モードの間のモード間利得差が減少していき、単一モード安定性が損なわれ、線幅が急激に太くなってしまうことになる。したがって、このような場合に、上述のように、高光出力動作時の軸方向ホールバーニングの影響を抑制できる構造が有効である。
[その他]
なお、上述の各実施形態及びその変形例では、各回折格子層は、層内で回折格子のデューティ比を一定にしているが、これに限られるものではない。
このように、複数の回折格子層を、デューティ比の異なる回折格子を含む回折格子層を少なくとも1層含むように構成することができる。
例えば、上述の各実施形態及びその変形例では、共振器方向に沿って共振器中央に対して結合係数の分布が対称になっている構造を例に挙げて説明しているが、共振器方向に沿って共振器中央に対して結合係数の分布が非対称、例えば戻り光耐性を高めるためにレーザ前端面側の結合係数を大きくした構造、逆に光出力を大きくするためにレーザ前端面側の結合係数を小さくした構造などを採用することも可能である。
また、上述の各実施形態及びその変形例では、共振器中央に位相がπの位相シフトを1つだけ有する場合を例に挙げて説明しているが、これに限られるものではなく、例えば、位相シフトがない構造、位相シフトが複数個ある構造であっても良いし、また、1個又は複数個の位相シフトの量は任意に設定可能である。
また、例えば、基板は、p型の導電性を有する基板や半絶縁性の基板を用いても良い。この場合、基板上に形成される各層の導電性は全て逆になる。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
また、例えばシリコン基板上に貼り合わせの方法で作製しても良い。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
また、上述の実施形態及びその変形例では、導波路構造としてpn埋込構造又はSI−BH構造を採用しているが、これに限られるものではなく、例えば、他の埋込構造を用いることも可能であるし、リッジ導波路構造などを用いることも可能である。
なお、本発明は、上述した各実施形態やその他の欄に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
Claims (10)
- 光導波路と、
前記光導波路に沿って設けられた複数の回折格子層とを備え、
前記各回折格子層は、分断された一の半導体層と、前記一の半導体層と屈折率が異なり、前記一の半導体層を埋め込む他の半導体層とによって構成される回折格子を含み、
前記複数の回折格子層は、前記回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含み、
前記複数の回折格子層は、対応する領域に形成されている前記回折格子の位相、周期が同一であることを特徴とする光素子。 - 前記複数の回折格子層は、前記対応する領域に形成されている前記回折格子のデューティ比が同一であることを特徴とする、請求項1に記載の光素子。
- 前記複数の回折格子層の前記対応する領域は、前記光導波路に沿う方向の中央領域であることを特徴とする、請求項1又は2に記載の光素子。
- 前記複数の回折格子層の前記対応する領域は、前記光導波路に沿う方向の両端側の領域であることを特徴とする、請求項1又は2に記載の光素子。
- 前記複数の回折格子層は、デューティ比の異なる回折格子を含む回折格子層を少なくとも1層含むことを特徴とする、請求項1〜4のいずれか1項に記載の光素子。
- 前記光導波路は、導波路コアとして活性層を備えることを特徴とする、請求項1〜5のいずれか1項に記載の光素子。
- 前記複数の回折格子層は、厚さが異なる回折格子層を含むことを特徴とする、請求項1〜6のいずれか1項に記載の光素子。
- 基板上に、複数の層を積層し、
表面上に、回折格子パターンを有する一のマスクを形成し、
前記一のマスクを用いてエッチングして前記複数の層の中の一の層に前記回折格子パターンを転写し、
前記一のマスクの一部の領域の表面を覆うように他のマスクを形成し、
前記一のマスク及び前記他のマスクを用いてエッチングして前記複数の層の中の他の層に前記回折格子パターンを転写し、
前記一のマスク及び前記他のマスクを除去し、
他の層によって埋め込むことによって複数の回折格子層を形成することを特徴とする光素子の製造方法。 - 光導波路を形成する工程を含み、
前記一のマスクの前記光導波路の両端側の領域に対応する領域の表面を覆うように前記他のマスクを形成することを特徴とする、請求項8記載の光素子の製造方法。 - 光導波路を形成する工程を含み、
前記一のマスクの前記光導波路の中央領域に対応する領域の表面を覆うように前記他のマスクを形成することを特徴とする、請求項8記載の光素子の製造方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/055113 WO2009116152A1 (ja) | 2008-03-19 | 2008-03-19 | 光素子及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2009116152A1 JPWO2009116152A1 (ja) | 2011-07-21 |
JP5182362B2 true JP5182362B2 (ja) | 2013-04-17 |
Family
ID=41090574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010503705A Expired - Fee Related JP5182362B2 (ja) | 2008-03-19 | 2008-03-19 | 光素子及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7899283B2 (ja) |
JP (1) | JP5182362B2 (ja) |
WO (1) | WO2009116152A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010116460A1 (ja) * | 2009-03-30 | 2010-10-14 | 富士通株式会社 | 光素子及びその製造方法 |
JP5440304B2 (ja) * | 2010-03-19 | 2014-03-12 | 富士通株式会社 | 光半導体装置及びその製造方法 |
US9164247B2 (en) * | 2011-07-28 | 2015-10-20 | Source Photonics, Inc. | Apparatuses for reducing the sensitivity of an optical signal to polarization and methods of making and using the same |
JP6155770B2 (ja) * | 2013-03-29 | 2017-07-05 | 富士通株式会社 | 光素子及び光モジュール |
JP6598202B2 (ja) * | 2014-10-30 | 2019-10-30 | 住友電工デバイス・イノベーション株式会社 | 半導体レーザの製造方法 |
FR3054734B1 (fr) * | 2016-07-27 | 2018-09-07 | Universite Paris Sud | Diode laser a retroaction repartie |
US10756507B2 (en) * | 2017-01-23 | 2020-08-25 | Sumitomo Electric Industries, Ltd. | Process of forming epitaxial substrate and semiconductor optical device |
JP6785331B2 (ja) * | 2018-03-30 | 2020-11-18 | Dowaエレクトロニクス株式会社 | 半導体光デバイスの製造方法及び半導体光デバイスの中間体 |
US11137536B2 (en) | 2018-07-26 | 2021-10-05 | Facebook Technologies, Llc | Bragg-like gratings on high refractive index material |
US10916915B2 (en) * | 2018-12-21 | 2021-02-09 | National Sun Yat-Sen University | Distributed feedback semiconductor laser device |
US11226446B2 (en) * | 2020-05-06 | 2022-01-18 | Facebook Technologies, Llc | Hydrogen/nitrogen doping and chemically assisted etching of high refractive index gratings |
CN118198856A (zh) * | 2022-12-14 | 2024-06-14 | 中兴光电子技术有限公司 | 激光器、发射机、可调谐激光装置及制作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0582888A (ja) * | 1991-09-19 | 1993-04-02 | Fujitsu Ltd | 分布帰還型半導体レーザ |
US20030147617A1 (en) * | 2002-02-07 | 2003-08-07 | Kyung-Hyun Park | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
JP2004356571A (ja) * | 2003-05-30 | 2004-12-16 | Matsushita Electric Ind Co Ltd | 分布帰還型半導体レーザ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69033405T2 (de) * | 1989-07-15 | 2000-07-20 | Fujitsu Ltd., Kawasaki | Abstimmbare Laserdiode mit verteilter Rückkoppelung |
JPH0529705A (ja) * | 1991-07-22 | 1993-02-05 | Hikari Keisoku Gijutsu Kaihatsu Kk | 半導体分布帰還型レーザ装置 |
WO1992007401A1 (en) * | 1990-10-19 | 1992-04-30 | Optical Measurement Technology Development Co., Ltd. | Distributed feedback semiconductor laser |
JPH08255954A (ja) * | 1995-03-17 | 1996-10-01 | Mitsubishi Electric Corp | 半導体レーザの構造及びその製造方法 |
JP2001281473A (ja) * | 2000-03-28 | 2001-10-10 | Toshiba Corp | フォトニクス結晶及びその製造方法、光モジュール並びに光システム |
US6990273B2 (en) * | 2001-10-12 | 2006-01-24 | Southampton Photonics, Ltd | Optical multi-band device with grating |
US7180930B2 (en) * | 2002-06-20 | 2007-02-20 | The Furukawa Electric Co., Ltd. | DFB semiconductor laser device having ununiform arrangement of a diffraction grating |
JP2004031402A (ja) * | 2002-06-21 | 2004-01-29 | Furukawa Electric Co Ltd:The | 分布帰還型半導体レーザ素子 |
JP2005317695A (ja) * | 2004-04-28 | 2005-11-10 | Furukawa Electric Co Ltd:The | レーザ装置 |
US7376306B2 (en) * | 2004-08-26 | 2008-05-20 | Avanex Corporation | Slanted Bragg grating gain flattening filter having spatially overlapping elementary filters and a manufacturing method therefor |
-
2008
- 2008-03-19 JP JP2010503705A patent/JP5182362B2/ja not_active Expired - Fee Related
- 2008-03-19 WO PCT/JP2008/055113 patent/WO2009116152A1/ja active Application Filing
-
2010
- 2010-08-25 US US12/868,163 patent/US7899283B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0582888A (ja) * | 1991-09-19 | 1993-04-02 | Fujitsu Ltd | 分布帰還型半導体レーザ |
US20030147617A1 (en) * | 2002-02-07 | 2003-08-07 | Kyung-Hyun Park | Semiconductor optical devices with differential grating structure and method for manufacturing the same |
JP2004356571A (ja) * | 2003-05-30 | 2004-12-16 | Matsushita Electric Ind Co Ltd | 分布帰還型半導体レーザ装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009116152A1 (ja) | 2011-07-21 |
US20100322557A1 (en) | 2010-12-23 |
WO2009116152A1 (ja) | 2009-09-24 |
US7899283B2 (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5182362B2 (ja) | 光素子及びその製造方法 | |
JP5177285B2 (ja) | 光素子及びその製造方法 | |
JP5287460B2 (ja) | 半導体レーザ | |
WO2009116140A1 (ja) | 光半導体素子及びその製造方法 | |
US8642365B2 (en) | Method of manufacturing ridge-type semiconductor laser | |
JP2011204895A (ja) | 半導体レーザ装置 | |
JP6588859B2 (ja) | 半導体レーザ | |
JP6510391B2 (ja) | 半導体レーザ | |
WO2014126261A1 (ja) | 半導体レーザ素子、集積型半導体レーザ素子、および、半導体レーザ素子の製造方法 | |
JP3682367B2 (ja) | 分布帰還型半導体レーザ | |
JP5929571B2 (ja) | 半導体レーザ | |
JP5310533B2 (ja) | 光半導体装置 | |
JP6588858B2 (ja) | 半導体レーザ | |
US12027818B2 (en) | Semiconductor laser | |
JP2009054721A (ja) | 半導体素子及び半導体素子の製造方法 | |
US20170194766A1 (en) | Optical device and optical module | |
JP2008243963A (ja) | 2次元フォトニック結晶面発光レーザ | |
JP7294453B2 (ja) | 直接変調レーザ | |
JP5163355B2 (ja) | 半導体レーザ装置 | |
JP2003218462A (ja) | 分布帰還型半導体レーザ装置 | |
JP2006013191A (ja) | 光半導体素子 | |
US20040151224A1 (en) | Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method | |
JP2004055797A (ja) | 分布帰還型半導体レーザ | |
JP2008085214A (ja) | 波長可変レーザ | |
JP2011205012A (ja) | 半導体発光素子、半導体発光素子を作製する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121231 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5182362 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |