[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5179823B2 - Vaporizer and film forming apparatus - Google Patents

Vaporizer and film forming apparatus Download PDF

Info

Publication number
JP5179823B2
JP5179823B2 JP2007254625A JP2007254625A JP5179823B2 JP 5179823 B2 JP5179823 B2 JP 5179823B2 JP 2007254625 A JP2007254625 A JP 2007254625A JP 2007254625 A JP2007254625 A JP 2007254625A JP 5179823 B2 JP5179823 B2 JP 5179823B2
Authority
JP
Japan
Prior art keywords
vaporizer
liquid
raw material
droplets
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254625A
Other languages
Japanese (ja)
Other versions
JP2009088157A (en
Inventor
澄 田中
宗久 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007254625A priority Critical patent/JP5179823B2/en
Priority to CN2008800225671A priority patent/CN101689499B/en
Priority to PCT/JP2008/064779 priority patent/WO2009041189A1/en
Priority to KR1020097027029A priority patent/KR101244096B1/en
Priority to TW097137042A priority patent/TW200932368A/en
Publication of JP2009088157A publication Critical patent/JP2009088157A/en
Application granted granted Critical
Publication of JP5179823B2 publication Critical patent/JP5179823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は,液体原料を気化させて原料ガスを生成する気化器およびその気化器を備えた成膜装置に関する。   The present invention relates to a vaporizer that vaporizes a liquid raw material to generate a raw material gas, and a film forming apparatus including the vaporizer.

一般に,誘電体,金属,半導体などで構成された各種薄膜を成膜する方法として,有機金属化合物などの有機原料ガスを成膜室に供給し,酸素やアンモニアなどの他のガスと反応させて成膜する化学気相成長(CVD:Chemical Vapor Deposition)法が知られている。このようなCVD法で用いられる有機原料には,常温で液体あるいは固体であるものが多いため,有機原料を気化させるための気化器が必要になる。例えば上記有機原料は,通常,溶媒を用いて希釈したり,溶解させたりすることによって液体原料とされる。   In general, as a method of depositing various thin films composed of dielectrics, metals, semiconductors, etc., an organic source gas such as an organometallic compound is supplied to the deposition chamber and reacted with other gases such as oxygen and ammonia. A chemical vapor deposition (CVD) method for forming a film is known. Since many organic raw materials used in such a CVD method are liquid or solid at room temperature, a vaporizer for vaporizing the organic raw materials is required. For example, the organic raw material is usually made into a liquid raw material by diluting or dissolving it with a solvent.

このような液体原料を気化させて原料ガスを生成する気化器としては,従来,例えば気化室内に多数の孔を有する気化面を設け,この気化面をヒータなどで加熱し,例えばノズルから液体原料を噴霧して液滴(ミスト)状にしたものをキャリアガスの流れに乗せて気化面に吹き付けることによって,液滴を気化面に接触させて気化させるものがある。   As a vaporizer for generating a raw material gas by vaporizing such a liquid raw material, conventionally, for example, a vaporization surface having a large number of holes is provided in the vaporization chamber, and this vaporization surface is heated by a heater or the like. There is one in which a droplet is made to come into contact with the vaporization surface to be vaporized by spraying the droplets into a droplet (mist) on the vaporization surface on the carrier gas flow.

このような気化器においては,気化効率を高めるために液体原料をできるだけ小径な液滴にして気化面に吹き付けることが望ましい。ところが,液滴の径を小さくするほど,気化面に接触せずにその孔を通り抜けてしまう虞がある。このように気化しきれなかった液滴は,キャリアガスの気流に乗って成膜室内に浸入してパーティクル発生の要因になる。例えば気化しきれなかった液体原料の液滴が成膜室内に浸入した際にその成膜室に酸素が残留していると,その液滴が酸化して微細なパーティクルとなり,これが基板に付着すると異常成膜や膜質不良が生じるという問題がある。   In such a vaporizer, in order to increase the vaporization efficiency, it is desirable to spray the liquid raw material into droplets having a diameter as small as possible and spray the vaporized surface. However, the smaller the diameter of the droplet, the more likely it will pass through the hole without contacting the vaporization surface. The droplets that could not be vaporized in this way enter the film formation chamber on the carrier gas stream and cause generation of particles. For example, if a liquid source droplet that could not be vaporized entered the deposition chamber and oxygen remained in the deposition chamber, the droplet would oxidize into fine particles that would adhere to the substrate. There is a problem that abnormal film formation and film quality defects occur.

このため,従来は,気化器で生成された原料ガスを微小な孔を有するフィルタを通して成膜室に供給させるようにし,このフィルタを外部から加熱して原料ガスに含まれる気化しきれなかった液滴をフィルタで気化させるようにしていた。これによれば,気化器自体の気化効率が多少悪くても,気化しきれなかった液滴がそのまま成膜室内に浸入することを防ぐことができる。   For this reason, conventionally, the raw material gas generated by the vaporizer is supplied to the film forming chamber through a filter having minute holes, and this filter is heated from the outside and the liquid contained in the raw material gas cannot be completely evaporated. The droplets were vaporized with a filter. According to this, even if the vaporization efficiency of the vaporizer itself is somewhat poor, it is possible to prevent the liquid droplets that could not be vaporized from entering the film forming chamber as they are.

また,気化効率を高めるため,細孔を有する固体充填物や多孔質体のような微小な孔を有する通気性部材を配置し,この通気性部材をその外側からヒータなどの加熱手段によって加熱した状態で,液状原料の液滴を通して気化させるものもある(例えば特許文献1,2参照)。これによれば,液滴が通気性部材に接触する可能性も増えるので,気化効率を高めることができる。   In addition, in order to increase the vaporization efficiency, a breathable member having fine pores such as a solid packing having a pore or a porous body is arranged, and this breathable member is heated from the outside by a heating means such as a heater. Some of them are vaporized through liquid material droplets in a state (see, for example, Patent Documents 1 and 2). According to this, since the possibility that the droplet contacts the breathable member increases, the vaporization efficiency can be improved.

特開2005−347598号公報JP 2005-347598 A 特開平10−85581号公報Japanese Patent Laid-Open No. 10-85581

しかしながら,従来,液体原料の液滴を気化するために使用されていた固体充填物,多孔質体,フィルタなどの通気性部材は外部からヒータなどの加熱手段で加熱していたので,通気性部材全体に渡って均一に熱量を供給することができなかった。通気性部材のうち例えば加熱手段から離れていて熱量が十分届かない部分など温度が低い部分が存在するので,液滴が気化されずに目詰まりを起こす虞があった。   However, since air-permeable members such as solid fillers, porous bodies, and filters that have been conventionally used to vaporize liquid raw material droplets are heated from the outside by a heating means such as a heater, the air-permeable members The amount of heat could not be supplied uniformly throughout. Among the breathable members, for example, there are portions where the temperature is low, for example, a portion where the amount of heat is not sufficiently reached because of being away from the heating means, there is a possibility that the droplets are not vaporized and clogged.

例えば特許文献1に記載の気化器では,固体充填物はその外側の加熱手段によって加熱されるため,固体充填物のうち加熱手段に近い外周領域に比べて中央領域の温度が低くなるなど,固体充填物全体の温度を均一にすることは困難である。このような場合,中央領域の温度が液体原料を気化させることができる温度に達せず,気化不良が発生して固体充填物が目詰まりしてしまう。   For example, in the vaporizer described in Patent Document 1, since the solid packing is heated by the heating means on the outside thereof, the temperature of the central area is lower than the outer peripheral area close to the heating means in the solid packing. It is difficult to make the temperature of the entire packing uniform. In such a case, the temperature of the central region does not reach the temperature at which the liquid raw material can be vaporized, and vaporization failure occurs and the solid packing is clogged.

これに対して,特許文献2に記載の気化器では,多孔質体にて目詰まりを起こすことなく液体原料を効率よく気化させるために,多孔質体内の一部を通る流路を設け,この流路に熱媒体を流通させることによって多孔質体の内部から加熱している。しかしながら,これだけでは十分ではない。すなわち,熱媒体を流通させる流路は多孔質体内の一部に配置されているだけなので,多孔質体全体に渡って均一に熱量を供給することはできない。このため,部分的に気化不良が発生し,多孔質体が目詰まりする虞は払拭しきれない。また,多孔質体全体に渡って均一に熱量を供給しようとすれば,多孔質体全体に渡って隈無く流路を形成すればよいとも考えられるが,そのようにすれば構造が複雑となるばかりか,流路を形成した分だけ原料ガスが接触できる表面積が減少し,多孔質体における圧力損失が大きくなってしまう。これでは,所定の流量の原料ガスを得ることができなくなる。   In contrast, in the vaporizer described in Patent Document 2, in order to efficiently vaporize the liquid raw material without causing clogging in the porous body, a flow path passing through a part of the porous body is provided. Heating is performed from the inside of the porous body by circulating a heat medium through the flow path. However, this is not enough. That is, since the flow path through which the heat medium flows is only disposed in a part of the porous body, it is not possible to supply heat uniformly over the entire porous body. For this reason, the vaporization failure partially occurs and the possibility of clogging the porous body cannot be wiped out. In addition, if it is intended to supply heat uniformly over the entire porous body, it may be sufficient to form a flow path throughout the entire porous body, but this makes the structure complicated. In addition, the surface area that can be contacted by the source gas is reduced by the amount formed by the flow path, and the pressure loss in the porous body increases. This makes it impossible to obtain a raw material gas having a predetermined flow rate.

そこで,本発明はこのような問題に鑑みてなされたもので,その目的とするところは,液体原料の液滴を通気性部材を通して気化させる際に,通気性部材全体の温度を均一にすることができ,気化しきれずに目詰まりを起こすことを防止できる気化器および成膜装置を提供することにある。   Therefore, the present invention has been made in view of such problems, and an object of the present invention is to make the temperature of the entire breathable member uniform when vaporizing liquid raw material droplets through the breathable member. It is an object of the present invention to provide a vaporizer and a film forming apparatus that can prevent clogging without being vaporized.

上記課題を解決するために,本発明のある観点によれば,液体原料を液滴状にして吐出する液体原料吐出手段と,前記液滴状の液体原料を導入する導入口と,前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,前記通気性部材を挟み込むように対向して配置された一対の電極と,前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,前記導入口からの前記液滴状の液体原料を発熱した前記通気性部材の内部に通して気化させることにより生成された原料ガスを外部に送出する送出口とを備えることを特徴とする気化器が提供される。   In order to solve the above problems, according to an aspect of the present invention, a liquid material discharge means for discharging a liquid material in the form of droplets, an introduction port for introducing the droplet-like liquid material, and the introduction port A plate-like air-permeable member made of a member having an electric resistance that generates heat when energized, a pair of electrodes arranged so as to sandwich the air-permeable member, and the pair of A power source for generating heat by energizing the breathable member through an electrode, and a raw material gas generated by vaporizing the liquid material in the form of droplets from the inlet through the heated breathable member A vaporizer is provided, characterized in that the vaporizer is provided with a delivery port for delivering the gas to the outside.

上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,前記気化器は,液体原料を液滴状にして吐出する液体原料吐出手段と,前記液滴状の液体原料を導入する導入口と,前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,前記通気性部材を挟み込むように対向して配置された一対の電極と,前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,前記導入口からの前記液滴状の液体原料を発熱した前記通気性部材の内部に通して気化させることにより生成された原料ガスを前記成膜室に送出する送出口とを備えることを特徴とする成膜装置が提供される。   In order to solve the above problems, according to another aspect of the present invention, a film forming process is performed on a substrate to be processed by introducing a source gas from a vaporizer that generates a source gas by vaporizing a liquid source. A film forming apparatus including a film chamber, wherein the vaporizer includes a liquid source discharge unit that discharges a liquid source in the form of droplets, an inlet for introducing the droplet-like liquid source, and an inlet for the inlet A plate-like air-permeable member made of a member having an electric resistance that is arranged to be opposed and generates heat when energized, a pair of electrodes arranged to face each other so as to sandwich the air-permeable member, and the pair of electrodes A power source for generating heat by energizing the breathable member through a gas source, and a raw material gas generated by vaporizing the liquid material in the form of droplets from the inlet through the heated breathable member A delivery port for feeding to the film formation chamber Film forming apparatus is provided, wherein.

このような本発明によれば,通気性部材を通電により発熱する電気抵抗を有する部材で構成するので,一対の電極を介して通気性部材を直接通電することにより,通気性部材全体に渡って発熱させることができる。これにより全体に渡って通気性部材の温度を均一にすることができるので,通気性部材に液滴状の液体原料を通すだけで,液滴を満遍なくすべて気化させることができる。これにより,従来以上に気化効率を向上させることができるとともに,部分的な温度低下による気化不良を防止できるため,通気性部材の目詰まりを防止することができる。   According to the present invention, since the breathable member is composed of a member having an electrical resistance that generates heat when energized, by directly energizing the breathable member via the pair of electrodes, the entire breathable member is provided. Can generate heat. As a result, the temperature of the air-permeable member can be made uniform throughout, so that all the liquid droplets can be vaporized evenly by simply passing the liquid material in the form of liquid droplets through the air-permeable member. Thereby, while being able to improve vaporization efficiency more than before, since the vaporization defect by a partial temperature fall can be prevented, clogging of a breathable member can be prevented.

また,上記一対の電極はそれぞれ,例えば前記通気性部材の前記導入口に対向する表側表面とその裏側表面に各面を覆うように接合して設け,前記一対の電極にはそれぞれ複数の貫通孔を形成するように構成してもよい。これによれば,一対の電極が通気性部材に接触する面積を大きくとれるので効率よく発熱させることができる。従って,例えば通気性部材を通電したときに全体にわたってすばやく所望の温度に上昇させることができる。   Each of the pair of electrodes is provided, for example, so as to cover the front surface and the back surface of the breathable member facing the introduction port so as to cover each surface, and each of the pair of electrodes has a plurality of through holes. You may comprise so that it may form. According to this, since the area where a pair of electrodes contact the air-permeable member can be increased, heat can be generated efficiently. Therefore, for example, when the air-permeable member is energized, it can be quickly raised to a desired temperature throughout.

また,上記通気性部材を矩形板状に構成して,前記一対の電極をそれぞれ,前記通気性部材の互いに対向する側面に各面を覆うように接合して設けるようにしてもよい。これによれば,導入口に対向する表側表面と裏側表面に電極を設ける場合に比して,液滴状の液体原料の流れ易さ,すなわちコンダクタンスを向上させることができる。   In addition, the air-permeable member may be formed in a rectangular plate shape, and the pair of electrodes may be provided so as to cover the respective surfaces of the air-permeable member facing each other. According to this, compared with the case where electrodes are provided on the front side surface and the back side surface facing the introduction port, it is possible to improve the ease of flow of the liquid material in liquid droplets, that is, the conductance.

また,上記通気性部材は,例えば多孔質材からなる抵抗発熱体で構成される。この場合,多孔質材は炭化ケイ素を含むものであることが好ましい。また,上記通気性部材は,繊維材からなる抵抗発熱体で構成してもよい。   The air-permeable member is composed of a resistance heating element made of, for example, a porous material. In this case, the porous material preferably contains silicon carbide. The breathable member may be formed of a resistance heating element made of a fiber material.

上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する他の気化器に接続される気化器であって,前記他の気化器で生成された原料ガスを導入する導入口と,前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,前記通気性部材を挟み込むように対向して配置された一対の電極と,前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,前記導入口から導入した前記他の気化器からの原料ガスを発熱した前記通気性部材の内部を通して外部に送出する送出口とを備えることを特徴とする気化器が提供される。   In order to solve the above problems, according to another aspect of the present invention, a vaporizer connected to another vaporizer that vaporizes a liquid raw material to generate a raw material gas, which is generated by the other vaporizer. An inlet for introducing the raw material gas, a plate-like breathable member that is disposed opposite to the inlet and has an electric resistance that generates heat when energized, and the breathable member A pair of electrodes arranged opposite to each other, a power source for energizing the breathable member through the pair of electrodes to generate heat, and the source gas from the other vaporizer introduced from the introduction port has generated heat. There is provided a vaporizer characterized by comprising a delivery port that feeds outside through the inside of the breathable member.

このような本発明によれば,通電により発熱する電気抵抗を有する部材で構成した気化器における通気性部材に,他の気化器で生成された原料ガスを通すことにより,他の気化器で気化しきれなかった液滴も,本発明にかかる気化器で気化させることができる。   According to the present invention as described above, by passing the raw material gas generated in the other vaporizer through the gas-permeable member in the vaporizer constituted by the member having electric resistance that generates heat when energized, the vaporization is performed in the other vaporizer. Droplets that could not be vaporized can also be vaporized by the vaporizer according to the present invention.

上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,前記気化器は,液体原料を気化させて原料ガスを生成する第1の気化器とこれに接続された第2の気化器により構成され,前記第2の気化器は,前記第1の気化器で生成された原料ガスを導入する導入口と,前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,前記通気性部材を挟み込むように対向して配置された一対の電極と,前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,前記導入口から導入した前記第1の気化器からの原料ガスを発熱した前記通気性部材の内部を通して前記成膜室に送出する送出口とを備えることを特徴とする成膜装置が提供される。   In order to solve the above problems, according to another aspect of the present invention, a film forming process is performed on a substrate to be processed by introducing a source gas from a vaporizer that generates a source gas by vaporizing a liquid source. A film forming apparatus including a film chamber, wherein the vaporizer includes a first vaporizer that vaporizes a liquid raw material to generate a raw material gas, and a second vaporizer connected thereto, and the second vaporizer. The carburetor is a plate-like member composed of an introduction port for introducing the raw material gas generated by the first vaporizer and a member having an electrical resistance that is disposed opposite to the introduction port and generates heat when energized. A breathable member, a pair of electrodes arranged so as to sandwich the breathable member, a power source for energizing the breathable member through the pair of electrodes and generating heat, and introduced from the introduction port The breathability that generated heat from the source gas from the first vaporizer Film forming apparatus characterized by comprising a delivery port delivering through the interior of the timber into the deposition chamber is provided.

このような本発明によれば,通電により発熱する電気抵抗を有する部材で構成した第2の気化器における通気性部材に,第1の気化器で生成された原料ガスを通すことにより,第1の気化器で気化しきれなかった液滴も,第2の気化器で気化させることができる。これにより,成膜室などに原料ガスとともに液体原料の液滴が入り込むことを防止できる。   According to the present invention, the first gas generated by the first vaporizer is passed through the gas permeable member of the second vaporizer constituted by a member having an electrical resistance that generates heat when energized. Even the droplets that could not be vaporized by this vaporizer can be vaporized by the second vaporizer. Thereby, it is possible to prevent liquid material droplets from entering the film forming chamber and the like together with the material gas.

本発明によれば,液体原料の液滴を通気性部材を通して気化させる際に,通気性部材を直接通電することにより,通気性部材全体に渡って発熱させることができる。これにより全体に渡って通気性部材の温度を均一にすることができるので,液滴を満遍なくすべて気化させることができる。これにより,従来以上に気化効率を向上させることができるとともに,部分的な温度低下による気化不良を防止できるため,通気性部材の目詰まりを防止することができる。   According to the present invention, when the liquid raw material droplet is vaporized through the air permeable member, heat can be generated over the entire air permeable member by directly energizing the air permeable member. As a result, the temperature of the air-permeable member can be made uniform throughout, so that all the droplets can be vaporized uniformly. Thereby, while being able to improve vaporization efficiency more than before, since the vaporization defect by a partial temperature fall can be prevented, clogging of a breathable member can be prevented.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態にかかる成膜装置)
まず,本発明の第1実施形態にかかる成膜装置について図面を参照しながら説明する。図1は第1実施形態にかかる成膜装置の概略構成例を説明するための図である。図1に示す成膜装置100は,被処理基板例えば半導体ウエハ(以下,単に「ウエハ」という)W上にCVD法により金属酸化物膜を成膜するものであり,Hf(ハフニウム)を含有する有機化合物からなる液体原料を供給する液体原料供給源110と,キャリアガスを供給するキャリアガス供給源120と,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する気化器300と,気化器300が生成した原料ガスを用いてウエハWに例えばHfO膜を形成する成膜室200と,成膜装置100の各部を制御する制御部140を備えている。なお,キャリアガスとして,例えばArなどの不活性ガスを用いることができる。
(Film Forming Apparatus According to First Embodiment)
First, a film forming apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a schematic configuration example of a film forming apparatus according to the first embodiment. A film forming apparatus 100 shown in FIG. 1 forms a metal oxide film on a substrate to be processed, for example, a semiconductor wafer (hereinafter simply referred to as “wafer”) W by a CVD method, and contains Hf (hafnium). A liquid source supply source 110 that supplies a liquid source made of an organic compound, a carrier gas supply source 120 that supplies a carrier gas, and a vaporizer that generates a source gas by vaporizing the liquid source supplied from the liquid source supply source 110 300, a film forming chamber 200 for forming, for example, an HfO 2 film on the wafer W using the source gas generated by the vaporizer 300, and a control unit 140 for controlling each part of the film forming apparatus 100. For example, an inert gas such as Ar can be used as the carrier gas.

液体原料供給源110と気化器300は,液体原料供給配管112で接続されており,キャリアガス供給源120と気化器300は,キャリアガス供給配管122で接続されており,気化器300と成膜室200は,原料ガス供給配管132で接続されている。そして,液体原料供給配管112には液体原料流量制御バルブ114が備えられ,キャリアガス供給配管122にはキャリアガス流量制御バルブ124を備えられ,原料ガス供給配管132には原料ガス流量制御バルブ134が備えられており,これら液体原料流量制御バルブ114,キャリアガス流量制御バルブ124,および原料ガス流量制御バルブ134は,制御部140からの制御信号によってそれぞれの開度が調整される。制御部140は,液体原料供給配管112を流れる液体原料の流量,キャリアガス供給配管122を流れるキャリアガスの流量,および原料ガス供給配管132を流れる原料ガスの流量に応じて制御信号を出力することが好ましい。   The liquid source supply source 110 and the vaporizer 300 are connected by a liquid source supply pipe 112, and the carrier gas supply source 120 and the vaporizer 300 are connected by a carrier gas supply pipe 122. The chambers 200 are connected by a source gas supply pipe 132. The liquid source supply pipe 112 is provided with a liquid source flow control valve 114, the carrier gas supply pipe 122 is provided with a carrier gas flow control valve 124, and the source gas supply pipe 132 is provided with a source gas flow control valve 134. The liquid raw material flow rate control valve 114, the carrier gas flow rate control valve 124, and the raw material gas flow rate control valve 134 are each adjusted in opening degree by a control signal from the control unit 140. The control unit 140 outputs a control signal according to the flow rate of the liquid source flowing through the liquid source supply pipe 112, the flow rate of the carrier gas flowing through the carrier gas supply pipe 122, and the flow rate of the source gas flowing through the source gas supply pipe 132. Is preferred.

成膜室200は,例えば略円筒状の側壁を有し,この側壁と天壁210と底壁212に囲まれた内部空間に,ウエハWが水平に載置されるサセプタ222を備えて構成される。側壁と天壁210と底壁212は,例えばアルミニウム,ステンレスなどの金属で構成される。サセプタ222は,円筒状の複数の支持部材224(ここでは,1本のみ図示)により支持されている。また,サセプタ222にはヒータ226が埋め込まれており,電源228からこのヒータ226に供給される電力を制御することによってサセプタ222上に載置されたウエハWの温度を調整することができる。   The film formation chamber 200 has, for example, a substantially cylindrical side wall, and includes a susceptor 222 on which the wafer W is horizontally placed in an internal space surrounded by the side wall, the top wall 210 and the bottom wall 212. The The side wall, the top wall 210 and the bottom wall 212 are made of a metal such as aluminum or stainless steel, for example. The susceptor 222 is supported by a plurality of cylindrical support members 224 (only one is shown here). A heater 226 is embedded in the susceptor 222, and the temperature of the wafer W placed on the susceptor 222 can be adjusted by controlling the power supplied from the power source 228 to the heater 226.

成膜室200の底壁212には,排気ポート230が形成されており,この排気ポート230には排気系232が接続されている。そして排気系232により成膜室200内を所定の真空度まで減圧することができる。   An exhaust port 230 is formed in the bottom wall 212 of the film forming chamber 200, and an exhaust system 232 is connected to the exhaust port 230. Then, the inside of the film formation chamber 200 can be decompressed to a predetermined degree of vacuum by the exhaust system 232.

成膜室200の天壁210には,シャワーヘッド240が取り付けられている。このシャワーヘッド240には原料ガス供給配管132が接続されており,この原料ガス供給配管132を経由して,気化器300で生成された原料ガスがシャワーヘッド240内に導入される。シャワーヘッド240は,内部空間242と,この内部空間242に連通する多数のガス吐出孔244を有している。原料ガス供給配管132を介してシャワーヘッド240の内部空間242に導入された原料ガスは,ガス吐出孔244からサセプタ222上のウエハWに向けて吐出される。   A shower head 240 is attached to the top wall 210 of the film forming chamber 200. A raw material gas supply pipe 132 is connected to the shower head 240, and the raw material gas generated by the vaporizer 300 is introduced into the shower head 240 via the raw material gas supply pipe 132. The shower head 240 has an internal space 242 and a number of gas discharge holes 244 communicating with the internal space 242. The source gas introduced into the internal space 242 of the shower head 240 via the source gas supply pipe 132 is discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244.

本実施形態にかかる成膜装置100において,液体原料供給源110は,液体原料として例えばHTB(ハフニウムタートブトキサイド)を貯留しており,この液体原料を,液体原料供給配管112を通じて気化器300に向けて送出する。   In the film forming apparatus 100 according to the present embodiment, the liquid source supply source 110 stores, for example, HTB (hafnium tarbutoxide) as a liquid source, and the liquid source is vaporized through the liquid source supply pipe 112. To send to.

このような構成の成膜装置100では,気化器300からの原料ガスが次のようにして供給される。気化器300に液体原料供給源110からの液体原料が液体原料供給配管112を介して供給されると共に,キャリアガス供給源120からのキャリアガスがキャリアガス供給配管122を介して供給されると,気化器300内に設けられた気化室にキャリアガスと共に液体原料が液滴状となって吐出され,その液体原料が気化して原料ガスが生成される。気化器300で生成された原料ガスは,原料ガス供給配管132を介して成膜室200に供給され,成膜室200内のウエハWに対して所望のプロセス処理が施される。   In the film forming apparatus 100 having such a configuration, the source gas from the vaporizer 300 is supplied as follows. When the liquid source from the liquid source supply source 110 is supplied to the vaporizer 300 via the liquid source supply line 112 and the carrier gas from the carrier gas supply source 120 is supplied via the carrier gas supply line 122, A liquid source is discharged in the form of droplets together with a carrier gas into a vaporization chamber provided in the vaporizer 300, and the liquid source is vaporized to generate a source gas. The source gas generated in the vaporizer 300 is supplied to the film formation chamber 200 via the source gas supply pipe 132, and a desired process is performed on the wafer W in the film formation chamber 200.

ところで,上記のような成膜装置100の気化器300において,液体原料を完全に気化させることができなかった場合,液体原料の液滴の一部が原料ガスに混入して原料ガス供給配管132に送出され,成膜室200内に浸入する虞がある。このように成膜室200内に浸入した液体原料の液滴は,パーティクルとしてウエハW上に形成される膜の膜質を低下させる要因となり得る。本実施形態にかかる気化器300によれば,以下説明するように,液体原料の液滴のすべてを効率よく気化させて良質な原料ガスを生成することができる。   By the way, in the vaporizer 300 of the film forming apparatus 100 as described above, when the liquid source cannot be completely evaporated, a part of the liquid source droplet is mixed into the source gas and the source gas supply pipe 132 is supplied. There is a risk of entering into the film forming chamber 200. Thus, the liquid material droplets that have entered the film formation chamber 200 may cause deterioration in the film quality of the film formed on the wafer W as particles. According to the vaporizer 300 according to the present embodiment, as will be described below, it is possible to efficiently vaporize all of the liquid material droplets and generate a high quality raw material gas.

(第1実施形態にかかる気化器の構成例)
次に,本発明の第1実施形態にかかる気化器300の構成例について図面を参照しながら説明する。図2は,第1実施形態にかかる気化器300の概略構成例を示す縦断面図である。この気化器300は,大きく分けて,液体原料を気化させる気化部300Bと,この気化部300Bに液体原料を液滴状にして供給する液体原料供給部300Aとから構成されている。
(Configuration example of vaporizer according to the first embodiment)
Next, a configuration example of the vaporizer 300 according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a longitudinal sectional view showing a schematic configuration example of the vaporizer 300 according to the first embodiment. The vaporizer 300 is roughly composed of a vaporization unit 300B that vaporizes a liquid material, and a liquid material supply unit 300A that supplies the liquid material to the vaporization unit 300B in the form of droplets.

まず液体原料供給部300Aの構成について説明する。この液体原料供給部300Aには,上面から内部に垂直方向に延びる液体原料流路310が設けられており,側面から内部に水平方向に延びるキャリアガス流路312が設けられている。液体原料流路310の一端には液体原料供給配管112が接続されており,キャリアガス流路312の一端にはキャリアガス供給配管122が接続されている。   First, the configuration of the liquid material supply unit 300A will be described. The liquid source supply unit 300A is provided with a liquid source channel 310 extending vertically from the upper surface to the inside, and a carrier gas channel 312 extending horizontally from the side to the inside. A liquid source supply pipe 112 is connected to one end of the liquid source channel 310, and a carrier gas supply pipe 122 is connected to one end of the carrier gas channel 312.

液体原料流路310の他端には,液体原料を液滴状にして吐出する吐出口314を有する液体原料吐出手段として吐出ノズル316が備えられている。この吐出ノズル316は,例えば先細りに構成され(図2ではこの構成を省略),その先端の吐出口314が気化部300Bの内部空間に向くように配置される。   At the other end of the liquid material flow path 310, a discharge nozzle 316 is provided as a liquid material discharge means having a discharge port 314 for discharging the liquid material in the form of droplets. The discharge nozzle 316 is configured to be tapered, for example (this configuration is omitted in FIG. 2), and is disposed so that the discharge port 314 at the tip thereof faces the internal space of the vaporization unit 300B.

吐出ノズル316の吐出口314の直径は,気化部300B内に供給される液体原料の液滴の目標サイズに応じて決定される。気化部300B内において,液滴状の液体原料を確実に気化させるためには,液滴のサイズは小さい方が有利であるため,吐出口314の直径も小さいことが好ましい。ただし,液滴のサイズが小さくなり過ぎると,液滴を気化して得られる原料ガスの流量が不足する虞がある。これらの点を考慮して,吐出口314の直径を決定することが好ましい。   The diameter of the discharge port 314 of the discharge nozzle 316 is determined according to the target size of the liquid material droplets supplied into the vaporization unit 300B. In order to reliably vaporize the liquid material in the form of droplets in the vaporization unit 300B, it is advantageous that the droplet size is small, and therefore the diameter of the discharge port 314 is preferably small. However, if the droplet size becomes too small, the flow rate of the raw material gas obtained by vaporizing the droplet may be insufficient. It is preferable to determine the diameter of the discharge port 314 in consideration of these points.

吐出ノズル316の構成材料としては,有機溶媒に対する耐性を有するポリイミド樹脂などの合成樹脂またはステンレス鋼やチタンなどの金属が好ましい。また,吐出ノズル316を合成樹脂で構成することによって,吐出される前の液体原料に周囲から熱が伝導しないようにすることができる。また,ポリイミド樹脂を用いることで,液体原料の残渣(析出物)が吐出ノズル316に付着し難くなり,ノズルの目詰まりが防止される。   As a constituent material of the discharge nozzle 316, a synthetic resin such as a polyimide resin having resistance to an organic solvent or a metal such as stainless steel or titanium is preferable. Further, by configuring the discharge nozzle 316 with a synthetic resin, it is possible to prevent heat from being conducted from the surroundings to the liquid raw material before being discharged. Further, by using the polyimide resin, it becomes difficult for the residue (precipitate) of the liquid raw material to adhere to the discharge nozzle 316 and the clogging of the nozzle is prevented.

また,液体原料供給部300Aの内部には,吐出ノズル316の先端を囲むようにキャリアガス噴射部318が配設されている。キャリアガス噴射部318は上記キャリアガス流路312の他端に接続されており,キャリアガス流路312からのキャリアガスを液体原料と共に気化部300Bに向けて噴出するように構成されている。   A carrier gas injection unit 318 is disposed inside the liquid source supply unit 300A so as to surround the tip of the discharge nozzle 316. The carrier gas injection unit 318 is connected to the other end of the carrier gas channel 312 and is configured to eject the carrier gas from the carrier gas channel 312 together with the liquid source toward the vaporization unit 300B.

具体的には,キャリアガス噴射部318は吐出ノズル316の先端を囲むカップ状に形成されており,その底部にキャリアガス噴出口320が形成されている。キャリアガス噴出口320は,吐出ノズル316の先端の吐出口314の近傍にこの吐出口314を囲むように形成されている。これによって吐出口314の周りからキャリアガスを噴出することができるようになり,吐出口314から吐出される液体原料の液滴を確実に気化部300Bに向けて飛行させ,気化部300B内の後述する通気性部材410に安定して吹き付けることができる。   Specifically, the carrier gas injection unit 318 is formed in a cup shape surrounding the tip of the discharge nozzle 316, and the carrier gas injection port 320 is formed at the bottom thereof. The carrier gas outlet 320 is formed in the vicinity of the outlet 314 at the tip of the outlet nozzle 316 so as to surround the outlet 314. As a result, the carrier gas can be ejected from around the ejection port 314, and the liquid material droplets ejected from the ejection port 314 are surely caused to fly toward the vaporization unit 300B, which will be described later in the vaporization unit 300B. The air-permeable member 410 can be stably sprayed.

次に,気化部300Bの構成について説明する。この気化部300Bは,後述する気化手段400などを内部に配設する略筒状のケーシングを有する。ケーシングは,筒状の側壁部材330とこの側壁部材330の上下にそれぞれ設けられた天壁部材332と底壁部材334からなる。これら側壁部材330,天壁部材332,底壁部材334はそれぞれ,例えばアルミニウム,ステンレスなどの金属で構成される。   Next, the configuration of the vaporization unit 300B will be described. The vaporizing unit 300B has a substantially cylindrical casing in which a vaporizing unit 400 described later is disposed. The casing includes a cylindrical side wall member 330 and a top wall member 332 and a bottom wall member 334 provided above and below the side wall member 330, respectively. The side wall member 330, the top wall member 332, and the bottom wall member 334 are each made of a metal such as aluminum or stainless steel.

側壁部材330と天壁部材332は,Oリング336を挟んだ状態でボルトなどの結合部材338A,338Bにて結合されており,側壁部材330と底壁部材334は,Oリング340を挟んだ状態でボルトなどの結合部材342A,342Bにて結合されている。これによって気化部300Bの内部空間の気密性が保たれる。   The side wall member 330 and the top wall member 332 are coupled by coupling members 338A and 338B such as bolts with the O-ring 336 interposed therebetween, and the side wall member 330 and the bottom wall member 334 sandwich the O-ring 340. Are coupled by coupling members 342A and 342B such as bolts. As a result, the airtightness of the internal space of the vaporizing unit 300B is maintained.

天壁部材332には液体原料の液滴を導入する導入口354が形成されており,底壁部材334には原料ガスを送出する送出口356が形成されている。側壁部材330の内側には,液体原料供給部300Aから供給された液滴状の液体原料を気化させて原料ガスを生成する気化手段400が設けられており,この気化手段400により気化部300Bの内部空間は上側空間350と下側空間352に区画される。上側空間350には導入口354から液体原料の液滴が導入され,気化手段400に吹き付けられる。そして,液体原料の液滴が気化手段400を通って気化して得られた原料ガスは下側空間352を介して送出口356から送出される。   The top wall member 332 is formed with an introduction port 354 for introducing a liquid raw material droplet, and the bottom wall member 334 is formed with a delivery port 356 for sending the raw material gas. Inside the side wall member 330 is provided vaporization means 400 for vaporizing the liquid material in the form of liquid droplets supplied from the liquid raw material supply unit 300A to generate a raw material gas. The internal space is divided into an upper space 350 and a lower space 352. Liquid droplets of liquid material are introduced into the upper space 350 from the introduction port 354 and sprayed onto the vaporizing means 400. The raw material gas obtained by vaporizing the liquid raw material droplets through the vaporizing means 400 is sent out from the outlet 356 via the lower space 352.

本実施形態にかかる気化手段400は,通電により発熱して液滴状の液体原料を気化させる通気性部材410,この通気性部材410の上下を挟み込むように対向配置された一対の第1電極(表側電極)420及び第2電極(裏側電極)430,これら各電極420,430にそれぞれ通気性部材410を通電して発熱するための電力を供給する第1給電線440,第2給電線450を備える。   The vaporizing means 400 according to the present embodiment includes a breathable member 410 that generates heat by energization to vaporize a liquid material in a droplet form, and a pair of first electrodes (a pair of first electrodes) disposed so as to sandwich the upper and lower sides of the breathable member 410. (Front side electrode) 420 and second electrode (back side electrode) 430, and first and second power supply lines 440 and 450 for supplying electric power for energizing the air-permeable member 410 to these electrodes 420 and 430, respectively. Prepare.

通気性部材410は,液滴状の液体原料の流れを通す通気性を有するとともに,通電により発熱する電気抵抗を有する板状部材である。このような通気性部材410は,例えば炭化ケイ素(SiC),導電性セラミックスなどの多孔質抵抗体により構成する。ここでは通気性部材410を炭化ケイ素(SiC)により,例えば図3に示すような円板状に形成した場合を例に挙げる。   The air-permeable member 410 is a plate-like member having air permeability that allows the flow of the liquid material in the form of liquid droplets and having electric resistance that generates heat when energized. Such a breathable member 410 is formed of a porous resistor such as silicon carbide (SiC) or conductive ceramics. Here, a case where the air permeable member 410 is formed of silicon carbide (SiC), for example, in a disk shape as shown in FIG. 3 will be described as an example.

このような通気性部材410は,図2に示すように通気性部材410の表側表面にはこの面全体を覆うように円板状の第1電極420が接合されており,また,通気性部材410の裏側表面にはこの面全体を覆うように円板状の第2電極430が接合されている。   As shown in FIG. 2, the air-permeable member 410 has a disk-like first electrode 420 joined to the front surface of the air-permeable member 410 so as to cover the entire surface. A disc-shaped second electrode 430 is joined to the back surface of 410 so as to cover the entire surface.

なお,第1実施形態にかかる気化部300Bにおいては,各電極420,430を通気性部材410の表裏に表面全体にわたって設けるので,液滴状の液体原料の流れに対して通気性部材410を塞いでしまう。このため,第1電極420には,例えば図4に示すように複数の貫通孔422を形成するとともに,第2電極430にも図5に示すように複数の貫通孔432を形成して,液滴状の液体原料の流れが貫通孔422,貫通孔432を介して通気性部材410に通過できるようにしている。   In the vaporization unit 300B according to the first embodiment, since the electrodes 420 and 430 are provided on the entire surface of the air-permeable member 410, the air-permeable member 410 is closed against the flow of liquid liquid material. It will end up. Therefore, for example, a plurality of through holes 422 are formed in the first electrode 420 as shown in FIG. 4, and a plurality of through holes 432 are also formed in the second electrode 430 as shown in FIG. The flow of the liquid material in the form of droplets is allowed to pass through the air permeable member 410 through the through hole 422 and the through hole 432.

すなわち,吐出ノズル316から吐出され,キャリアガスの流れに乗って上側空間350を飛行して来る液滴状の液体原料を,複数の貫通孔422を介して通気性部材410の表側表面に導くことができる。また,液滴状の液体原料が通気性部材410を通って気化して生成された原料ガスを,複数の貫通孔432を介して下側空間352へ導くことができる。   That is, the liquid material in the form of liquid droplets discharged from the discharge nozzle 316 and flying in the upper space 350 on the carrier gas flow is guided to the front surface of the air-permeable member 410 through the plurality of through holes 422. Can do. Further, the raw material gas generated by vaporizing the liquid material in the form of liquid droplets through the air-permeable member 410 can be guided to the lower space 352 through the plurality of through holes 432.

なお,これら貫通孔422,貫通孔432の数,大きさ,配置などは,図2,図4,図5に示すものに限定されるものではない。例えば貫通孔422の数と貫通孔432の数は同じにしてもよく,また異なるようにしてもよい。配置についても貫通孔422と貫通孔432を同軸状に配置してもよく,またずらして配置してもよい。液滴状の液体原料を通気性部材410の表側表面にできるだけ多く到達させるためには,第1電極420に形成されている貫通孔422の開口径を広げたり,貫通孔422の数を多くしたりすることが好ましい。同様に,通気性部材410を通過した原料ガスを滞りなく下側空間352へ送出するためには,第2電極430に形成されている貫通孔432の開口径を広げたり,貫通孔432の数を多くしたりすることが好ましい。   The number, size, arrangement, and the like of the through holes 422 and 432 are not limited to those shown in FIGS. For example, the number of through holes 422 and the number of through holes 432 may be the same or different. Regarding the arrangement, the through holes 422 and the through holes 432 may be arranged coaxially or may be arranged so as to be shifted. In order to make the liquid material in the form of droplets reach the front surface of the breathable member 410 as much as possible, the opening diameter of the through holes 422 formed in the first electrode 420 is increased, or the number of the through holes 422 is increased. Is preferable. Similarly, in order to send the raw material gas that has passed through the air-permeable member 410 to the lower space 352 without delay, the opening diameter of the through-hole 432 formed in the second electrode 430 is increased, or the number of the through-holes 432 is increased. It is preferable to increase the amount.

ただし,また,通気性部材410全体が偏りなく発熱するように,通気性部材410の電気的特性やサイズなどに応じて貫通孔422,432の開口径や数を設定して,通気性部材410に電力を供給することが好ましい。   However, the opening diameter and the number of the through holes 422 and 432 are set according to the electrical characteristics and size of the breathable member 410 so that the entire breathable member 410 generates heat without unevenness, and the breathable member 410. It is preferable to supply electric power.

また,図2に示すように第1電極420の外縁部には第1給電線440が接続されている。第1給電線440は下方に鉛直に延びて底壁部材334から下方に突出して設けられた第1外部端子366に第1内部端子364を介して接続している。また,第2電極430の外縁部には第2給電線450が接続されている。第2給電線450は下方に延びて底壁部材334から下方に突出して設けられた第2外部端子376に第2内部端子374を介して接続している。第1外部端子366と第2外部端子376には例えば交流電源380が接続されている。   Further, as shown in FIG. 2, a first power supply line 440 is connected to the outer edge portion of the first electrode 420. The first power supply line 440 extends vertically downward and is connected to a first external terminal 366 provided so as to protrude downward from the bottom wall member 334 via the first internal terminal 364. In addition, a second feed line 450 is connected to the outer edge of the second electrode 430. The second power supply line 450 extends downward and is connected to a second external terminal 376 provided so as to protrude downward from the bottom wall member 334 via a second internal terminal 374. For example, an AC power source 380 is connected to the first external terminal 366 and the second external terminal 376.

なお,通気性部材410,第1電極420,第2電極430,第1給電線440,第2給電線450は,導電性部材であるため,これらは側壁部材330などのケーシングと絶縁されている。具体的には,通気性部材410,第1電極420,第2電極430は,これらの外周を囲むように,側壁部材330との間に設けられた絶縁保持部材344により絶縁されながら固定されている。また,第1電極420は,天壁部材332との間のリング状の絶縁クランプ部材346によって絶縁されながら固定されている。   Since the air-permeable member 410, the first electrode 420, the second electrode 430, the first power supply line 440, and the second power supply line 450 are conductive members, they are insulated from the casing such as the side wall member 330. . Specifically, the air-permeable member 410, the first electrode 420, and the second electrode 430 are fixed while being insulated by an insulating holding member 344 provided between the side wall member 330 so as to surround the outer periphery thereof. Yes. The first electrode 420 is fixed while being insulated by a ring-shaped insulating clamp member 346 between the first electrode 420 and the top wall member 332.

また,第1給電線440は,絶縁保持部材344,絶縁スリーブ442により絶縁されている。第2給電線450は,絶縁保持部材344,絶縁スリーブ452により絶縁されている。   The first power supply line 440 is insulated by an insulating holding member 344 and an insulating sleeve 442. The second power supply line 450 is insulated by an insulating holding member 344 and an insulating sleeve 452.

ここで,第1電極420,第2電極430に外部から電力を供給するための端子構造について図2を参照しながら説明する。図2に示すように底壁部材334には,第1電極420に電力を供給するための第1端子部360と,第2電極430に電力を供給するための第2端子部370が設けられている。   Here, a terminal structure for supplying power to the first electrode 420 and the second electrode 430 from the outside will be described with reference to FIG. As shown in FIG. 2, the bottom wall member 334 is provided with a first terminal portion 360 for supplying power to the first electrode 420 and a second terminal portion 370 for supplying power to the second electrode 430. ing.

第1端子部360は,第1外部端子366をその先端を下方に突出した状態で収容する絶縁材からなるハウジング部材368と,第1外部端子366に接続した状態でハウジング部材368の上方に突きだして設けられる第1内部端子364とにより構成される。また,第2端子部370は,第2外部端子376をその先端を下方に突出した状態で収容する絶縁材からなるハウジング部材378と,第2外部端子376に接続した状態でハウジング部材378の上方に突きだして設けられる第2内部端子374とにより構成される。ハウジング部材368及びハウジング部材378はともに,底壁部材334に形成された取り付け孔に嵌合され,蝋付けなどによって密着固定されている。これによって気化部300Bの内部空間の気密性が保たれる。   The first terminal portion 360 protrudes above the housing member 368 in a state of being connected to the first external terminal 366 and a housing member 368 made of an insulating material that accommodates the first external terminal 366 in a state where the tip protrudes downward. And a first internal terminal 364 provided. Further, the second terminal portion 370 includes a housing member 378 made of an insulating material that accommodates the second external terminal 376 with its tip protruding downward, and an upper portion of the housing member 378 in a state connected to the second external terminal 376. And a second internal terminal 374 provided so as to protrude from the terminal. Both the housing member 368 and the housing member 378 are fitted into attachment holes formed in the bottom wall member 334, and are firmly fixed by brazing or the like. As a result, the airtightness of the internal space of the vaporizing unit 300B is maintained.

このように構成された端子構造においては,第1端子部360と第2端子部370が固定された底壁部材334が側壁部材330に取り付けられると,第1内部端子364は第1端子部360とともに,第2内部端子374は第2端子部370とともに,それぞれ側壁部材330内部に入り込み,第1給電線440の他端と第2給電線450の他端にそれぞれ電気的に接続される。これにより,気化器を組み立てる際の端子の取付が容易となる。なお,端子構造は上述したものに限定されるものではなく,例えば底壁部材334又は側壁部材330に着脱自在に設けるようにしてもよい。   In the terminal structure configured as described above, when the bottom wall member 334 to which the first terminal portion 360 and the second terminal portion 370 are fixed is attached to the side wall member 330, the first internal terminal 364 is connected to the first terminal portion 360. In addition, the second internal terminal 374 enters the side wall member 330 together with the second terminal portion 370, and is electrically connected to the other end of the first power supply line 440 and the other end of the second power supply line 450, respectively. This facilitates the attachment of the terminals when assembling the vaporizer. The terminal structure is not limited to that described above, and may be detachably provided on the bottom wall member 334 or the side wall member 330, for example.

このような気化手段400では,交流電源380によって第1外部端子366と第2外部端子376に交流電流を供給することにより,第1電極420と第2電極430を介して通気性部材410を直接通電することができる。これにより,交流電源380の出力値を制御することにより,通気性部材410の発熱温度を直接調整することができる。   In such a vaporizing means 400, an alternating current is supplied to the first external terminal 366 and the second external terminal 376 by the alternating current power supply 380, so that the air permeable member 410 is directly connected to the air through the first electrode 420 and the second electrode 430. It can be energized. Thereby, by controlling the output value of the AC power supply 380, the heat generation temperature of the breathable member 410 can be directly adjusted.

また,通気性部材410の近傍には温度センサヘッド例えば熱電対390などの温度センサを設けることによって,熱電対390に生じる電圧の変化は例えば外部の計測器392によって測定することができるようになっており,その測定データは制御部140に送信される。制御部140は,計測器392から受信したデータに基づいて交流電源380の出力値を制御して,通気性部材410の発熱温度を調整することができる。   Further, by providing a temperature sensor such as a thermocouple 390 in the vicinity of the air-permeable member 410, a change in voltage generated in the thermocouple 390 can be measured by an external measuring instrument 392, for example. The measurement data is transmitted to the control unit 140. The control unit 140 can control the output value of the AC power source 380 based on the data received from the measuring instrument 392 and adjust the heat generation temperature of the breathable member 410.

(成膜装置の動作)
以上のように構成された本実施形態にかかる成膜装置100の動作について図面を参照しながら説明する。気化器300によって原料ガスを生成するにあたり,液体原料流量制御バルブ114の開度を調整して,所定の流量の液体原料を,液体原料供給配管112を介して液体原料供給源110から気化器300に供給する。これと共に,キャリアガス流量制御バルブ124の開度を調整して,所定の流量のキャリアガスを,キャリアガス供給配管122を介してキャリアガス供給源120から気化器300に供給する。
(Operation of the deposition system)
The operation of the film forming apparatus 100 according to the present embodiment configured as described above will be described with reference to the drawings. In generating the raw material gas by the vaporizer 300, the opening degree of the liquid raw material flow rate control valve 114 is adjusted, and a liquid raw material having a predetermined flow rate is supplied from the liquid raw material supply source 110 via the liquid raw material supply pipe 112. To supply. At the same time, the opening degree of the carrier gas flow rate control valve 124 is adjusted, and a carrier gas having a predetermined flow rate is supplied from the carrier gas supply source 120 to the vaporizer 300 via the carrier gas supply pipe 122.

また,気化器300では,交流電源380から交流電力を出力して通気性部材410を発熱させておく。このとき,熱電対390に生じる電圧すなわち通気性部材410の温度を計測器392によって測定する。そして制御部140はその測定結果に基づいて交流電源380を制御して通気性部材410を少なくとも液体原料の気化温度よりも高い所定温度に調整する。   Further, the vaporizer 300 outputs AC power from the AC power source 380 to cause the breathable member 410 to generate heat. At this time, the voltage generated in the thermocouple 390, that is, the temperature of the air-permeable member 410 is measured by the measuring instrument 392. Then, the control unit 140 controls the AC power source 380 based on the measurement result to adjust the breathable member 410 to a predetermined temperature that is at least higher than the vaporization temperature of the liquid raw material.

液体原料供給配管112を介して気化器300に供給された液体原料は,液体原料流路310を経由して吐出ノズル316に達し,吐出口314から液滴状となって吐出される。また,液体原料の供給と共にキャリアガス供給配管122を介して気化器300に供給されたキャリアガスは,キャリアガス流路312を経由してキャリアガス噴射部318に達し,キャリアガス噴出口320から気化部300Bの上側空間350に向けて噴射される。このように噴射されたキャリアガスは,吐出ノズル316の吐出口314近傍を通過するため,吐出口314から連続的に吐出された液体原料の液滴をその流れに乗せて気化手段400の方向に安定的に飛行させることができる。   The liquid raw material supplied to the vaporizer 300 via the liquid raw material supply pipe 112 reaches the discharge nozzle 316 via the liquid raw material flow path 310 and is discharged as droplets from the discharge port 314. The carrier gas supplied to the vaporizer 300 via the carrier gas supply pipe 122 along with the supply of the liquid raw material reaches the carrier gas injection unit 318 via the carrier gas channel 312 and is vaporized from the carrier gas outlet 320. Injected toward the upper space 350 of the part 300B. Since the jetted carrier gas passes through the vicinity of the discharge port 314 of the discharge nozzle 316, liquid material droplets continuously discharged from the discharge port 314 are put on the flow in the direction of the vaporizing means 400. It is possible to fly stably.

気化部300Bの上側空間350内に入り込んで気化手段400に吹き付けられた液滴状の液体原料は,第1電極420の貫通孔422を介して通気性部材410に入り込む。このとき,通気性部材410は抵抗発熱して液体原料の気化温度よりも高い所定温度に調整されている。したがって,通気性部材410に通気性部材410に入り込んだ液滴状の液体原料は瞬時に気化して原料ガスが得られる。   The liquid material in the form of droplets that has entered the upper space 350 of the vaporization unit 300B and is sprayed onto the vaporization means 400 enters the air-permeable member 410 through the through-hole 422 of the first electrode 420. At this time, the air-permeable member 410 is heated to a resistance and adjusted to a predetermined temperature higher than the vaporization temperature of the liquid raw material. Accordingly, the liquid material in the form of droplets that has entered the gas permeable member 410 into the gas permeable member 410 is instantly vaporized to obtain a material gas.

なお,第1電極420は発熱している通気性部材410に密着しているため,その温度は通気性部材410の温度とほぼ等しくなっている。このため,液滴状の液体原料の一部が第1電極420に接触することも考えられるが,そのような場合でも通気性部材410の表面に接触した場合と同様に,瞬時に気化してキャリアガスの流れに乗って貫通孔422を介して通気性部材410に導かれる。   Since the first electrode 420 is in close contact with the heat-permeable breathable member 410, the temperature thereof is substantially equal to the temperature of the breathable member 410. For this reason, it is conceivable that a part of the liquid material in the form of droplets comes into contact with the first electrode 420, but even in such a case, as in the case of contact with the surface of the air-permeable member 410, it is instantly vaporized. It rides on the flow of the carrier gas and is led to the breathable member 410 through the through hole 422.

このようにして,液滴状の液体原料が通気性部材410を通ることによって気化して生成された原料ガスは,キャリアガスと共に,通気性部材410を通って裏側表面に抜けて,その後,下側空間352と送出口356を経由して原料ガス供給配管132に送出される。   In this way, the raw material gas generated by vaporizing the liquid material in the form of liquid droplets through the gas permeable member 410 passes through the gas permeable member 410 to the back side surface together with the carrier gas. It is sent to the source gas supply pipe 132 via the side space 352 and the delivery port 356.

原料ガス供給配管132に送出された原料ガスは,成膜室200に供給され,シャワーヘッド240の内部空間242に導入され,ガス吐出孔244からサセプタ222上のウエハWに向けて吐出される。そして,ウエハW上に所定の膜例えばHfO膜が形成される。なお,成膜室200に導入される原料ガスの流量は原料ガス供給配管132に備えられた原料ガス流量制御バルブ134の開度を制御することによって調整できる。 The source gas sent to the source gas supply pipe 132 is supplied to the film forming chamber 200, introduced into the internal space 242 of the shower head 240, and discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244. Then, a predetermined film such as an HfO 2 film is formed on the wafer W. The flow rate of the source gas introduced into the film forming chamber 200 can be adjusted by controlling the opening degree of the source gas flow rate control valve 134 provided in the source gas supply pipe 132.

以上のように第1実施形態によれば,通気性部材410を直接通電して発熱させることができるので,通気性部材410全体に渡って発熱させることができる。これにより全体に渡って通気性部材410の温度を均一にすることができるので,通気性部材410に液滴状の液体原料を通すだけで,液滴を満遍なくすべて気化させることができる。これにより,従来以上に気化効率を向上させることができる。また,部分的な温度低下による気化不良を防止できるため,通気性部材の目詰まりを防止することができる。従って,通気性部材410を含む気化手段400のメンテナンスサイクルを延ばすことができる。これにより,成膜装置100におけるスループットを向上させることもできる。   As described above, according to the first embodiment, since the air-permeable member 410 can be directly energized to generate heat, heat can be generated throughout the air-permeable member 410. As a result, the temperature of the air-permeable member 410 can be made uniform throughout, so that all the liquid droplets can be vaporized evenly by simply passing the liquid material in the form of liquid droplets through the air-permeable member 410. Thereby, vaporization efficiency can be improved more than before. In addition, since vaporization failure due to partial temperature drop can be prevented, clogging of the breathable member can be prevented. Therefore, the maintenance cycle of the vaporizing means 400 including the breathable member 410 can be extended. Thereby, the throughput in the film forming apparatus 100 can also be improved.

また,第1実施形態にかかる各電極420,430はそれぞれ,例えば通気性部材410の表側表面と裏側表面に各面を覆うように接合して設けるので,各電極420,430が通気性部材410に接触する面積を大きくとれるので効率よく発熱させることができる。従って,例えば通気性部材410を通電したときに全体にわたってすばやく所望の温度に上昇させることができる。   In addition, since the electrodes 420 and 430 according to the first embodiment are provided, for example, so as to cover the front surface and the back surface of the breathable member 410 so as to cover the respective surfaces, the electrodes 420 and 430 are provided with the breathable member 410. Since the area in contact with can be increased, heat can be generated efficiently. Therefore, for example, when the air-permeable member 410 is energized, it can be quickly raised to a desired temperature throughout.

また,液体原料を気化させための部材を外部から加熱していた従来の構成に比べて,本実施形態にかかる通気性部材410に電力を供給するための構成は電極を配置するという簡単な構成である。したがって,気化器300の製造コストを低減できると共に,そのメンテナンスコストも低減できる。また,本実施形態によれば,通気性部材410の内部に熱媒体の流路を配設する必要がないため,原料ガスの流路が遮られず,気化手段400における圧力損失を最小限に抑えることができる。この結果,十分な流量の原料ガスを成膜室200に導入することができる。   Compared to the conventional configuration in which the member for vaporizing the liquid material is heated from the outside, the configuration for supplying power to the air-permeable member 410 according to the present embodiment is a simple configuration in which electrodes are arranged. It is. Therefore, the manufacturing cost of the vaporizer 300 can be reduced, and the maintenance cost can be reduced. Further, according to the present embodiment, since it is not necessary to provide a heat medium flow path inside the air-permeable member 410, the flow path of the source gas is not blocked, and the pressure loss in the vaporizing means 400 is minimized. Can be suppressed. As a result, a source gas having a sufficient flow rate can be introduced into the film formation chamber 200.

なお,通気性部材410を例えば熱電対390などの温度センサによって通気性部材410の温度を直接監視し,その測定された温度に基づいて制御部140によって交流電源380の出力値を制御することにより,通気性部材410の温度を正確に制御することができる。このため,通気性部材410全体の温度を低下させることなく,かつ通気性部材410全体の温度を均一に保つことができる。したがって,通気性部材410を通る液滴状の液体原料を確実に気化させることができる。   The temperature of the breathable member 410 is directly monitored by a temperature sensor such as a thermocouple 390, and the output value of the AC power supply 380 is controlled by the control unit 140 based on the measured temperature. , The temperature of the breathable member 410 can be accurately controlled. For this reason, the temperature of the whole air permeable member 410 can be kept uniform, without reducing the temperature of the whole air permeable member 410. Therefore, the liquid material in the form of droplets passing through the air-permeable member 410 can be reliably vaporized.

また,第1実施形態にかかる気化器300によれば,液体原料の種類や量,また液滴の大きさに応じて通気性部材410の発熱温度を制御することができるので,より効率よく液体原料を確実に気化させることができる。   Further, according to the vaporizer 300 according to the first embodiment, the heat generation temperature of the air-permeable member 410 can be controlled in accordance with the type and amount of the liquid raw material and the size of the liquid droplets. The raw material can be surely vaporized.

なお,第1実施形態では,気化部300Bは,通気性部材を円板状にして,一対の電極をそれぞれ,通気性部材の導入口に対向する表側表面とその裏側表面に各面を覆うように接合して設けて構成した場合について説明したが,これに限定されるものではない。例えば気化部は,通気性部材を矩形板状に構成して,一対の電極をそれぞれ,通気性部材の互いに対向する側面に各面を覆うように接合して設けるようにしてもよい。   In the first embodiment, the vaporizing unit 300B is configured so that the air-permeable member has a disk shape, and the pair of electrodes are respectively covered on the front surface and the back surface facing the inlet of the air-permeable member. However, the present invention is not limited to this. For example, the vaporizing unit may be configured such that the air-permeable member is formed in a rectangular plate shape, and the pair of electrodes are respectively joined to the opposite side surfaces of the air-permeable member so as to cover each surface.

(第1実施形態にかかる気化器の変形例)
このような気化器300の変形例について図面を参照しながら説明する。図6は,第1実施形態の変形例にかかる気化器300の概略構成例を示す縦断面図である。図7は,図6に示す気化器のA−A断面図である。図6に示す気化器300と図1に示す気化器300とは気化部300Bの構成のみが異なっている。具体的には,図6に示す気化器300は気化手段402の構成が図1に示す気化手段400の構成と異なり,それ以外については図1に示す気化器300と共通するため,同一の機能を奏する部分には同一符号を付してその詳細な説明を省略する。
(Variation of the vaporizer according to the first embodiment)
A modification of the vaporizer 300 will be described with reference to the drawings. FIG. 6 is a longitudinal sectional view showing a schematic configuration example of a vaporizer 300 according to a modification of the first embodiment. FIG. 7 is a cross-sectional view of the vaporizer shown in FIG. The vaporizer 300 shown in FIG. 6 differs from the vaporizer 300 shown in FIG. 1 only in the configuration of the vaporizer 300B. Specifically, the vaporizer 300 shown in FIG. 6 differs from the vaporizer 400 shown in FIG. 1 in the configuration of the vaporizer 402, and the other functions are the same as those of the vaporizer 300 shown in FIG. The same reference numerals are given to the portions having the above and detailed description thereof is omitted.

図6に示す気化手段402は,通電により発熱して液滴状の液体原料を気化させる通気性部材412,この通気性部材412の両方の側端部を挟み込むように対向配置された一対の第1電極424及び第2電極434,これら各電極424,434にそれぞれ通気性部材412を通電して発熱するための電力を供給する第1給電線440,第2給電線450を備える。   The vaporizing means 402 shown in FIG. 6 has a pair of air-permeable members 412 that generate heat by energization to vaporize the liquid material in the form of droplets and are opposed to each other so as to sandwich both side ends of the air-permeable members 412. The 1st electrode 424 and the 2nd electrode 434, The 1st electric power feeding line 440 and the 2nd electric power feeding line 450 which supply the electric power for energizing the air-permeable member 412 to each of these electrodes 424 and 434, respectively, are provided.

図6に示す通気性部材412は,図2に示す通気性部材410と同様に,液滴状の液体原料の流れを通す通気性を有するとともに,通電により発熱する電気抵抗を有する板状部材である。ここでは通気性部材412を炭化ケイ素(SiC)により,例えば図7に示すような矩形形状に形成した場合を例に挙げる。   The air-permeable member 412 shown in FIG. 6 is a plate-like member having air resistance that allows the flow of the liquid material in the form of liquid droplets and electric resistance that generates heat when energized, as with the air-permeable member 410 shown in FIG. is there. Here, a case where the air-permeable member 412 is formed of silicon carbide (SiC) into a rectangular shape as shown in FIG. 7 is taken as an example.

このような通気性部材412は,図7に示すように通気性部材412の一側面にはこの面全体を覆うように長尺状の第1電極(一側面電極)424が接合されており,また,通気性部材412の他側面にはこの面全体を覆うように長尺状の第2電極(他側面電極)434が接合されている。このように構成することによって,液滴状の液体原料の流れに対して通気性部材410を塞ぐことなく,各電極424,434を配置することができる。これにより,通気性部材の表側表面と裏側表面に電極を設ける場合に比して,液滴状の液体原料の流れ易さ,すなわちコンダクタンスを向上させることができる。従って,より多くの液滴状の液体原料を短時間で気化させることができるので,より多くの原料ガスを生成することができる。   Such a breathable member 412 has a long first electrode (one side electrode) 424 bonded to one side surface of the breathable member 412 so as to cover the entire surface as shown in FIG. A long second electrode (another side electrode) 434 is joined to the other side surface of the air-permeable member 412 so as to cover the entire surface. With this configuration, the electrodes 424 and 434 can be arranged without blocking the air-permeable member 410 against the flow of liquid liquid material in the form of droplets. Thereby, compared with the case where electrodes are provided on the front side surface and the back side surface of the breathable member, it is possible to improve the ease of flow of the liquid material in the form of liquid droplets, that is, the conductance. Therefore, more liquid material in the form of liquid droplets can be vaporized in a short time, so that more raw material gas can be generated.

ところで,上記第1実施形態にかかる通気性部材410,通気性部材412はともに板状部材である。この板状部材の厚さについては,液滴状の液体原料の通過を阻止できる範囲において,より薄い方が気化手段400,402における圧力損失を低くすることができる。このようにすればより多くの流量の原料ガスを成膜室200に導入することができる。   By the way, the air permeable member 410 and the air permeable member 412 according to the first embodiment are both plate-like members. With regard to the thickness of the plate-like member, the pressure loss in the vaporizing means 400 and 402 can be reduced as the thickness becomes thinner as long as the passage of liquid material in the form of droplets can be prevented. In this way, a larger amount of source gas can be introduced into the film formation chamber 200.

また,気化手段400,402には板状の通気性部材410,412よりも薄い部材,例えばシート状の部材を用いるようにしてもよい。この場合,繊維材でシート状の部材を構成することができる。シート状の部材は織布であってもよく,また不織布であってもよい。また,このような繊維材としては金属繊維や炭素繊維を用いることができる。   Further, a member thinner than the plate-like air-permeable members 410 and 412, for example, a sheet-like member may be used for the vaporizing means 400 and 402. In this case, a sheet-like member can be comprised with a fiber material. The sheet-like member may be a woven fabric or a non-woven fabric. Moreover, as such a fiber material, a metal fiber or a carbon fiber can be used.

なお,上記第1実施形態にかかる気化器300は,液体原料供給部300Aと気化部300Bとを一体で構成した場合について説明したが,これに限られるものではなく,液体原料供給部300Aと気化部300Bとを別体で構成してもよい。その場合,液体原料供給部300Aは,他の気化器に入れ替えて構成し,気化部300Bを単体の気化器としてもよい。すなわち,他の気化器で生成された原料ガスが気化部300Bのみの構成からなる気化器の導入口354から導入されるように接続する。これによれば,通電により発熱させた通気性部材410に,他の気化器(例えば既存の気化器や従来の気化器など気化効率の悪い気化器も含む)で生成された原料ガスを通すことにより,他の気化器で気化しきれなかった液滴も,第1実施形態にかかる気化部300Bの構成からなる気化器で気化させることができる。   The vaporizer 300 according to the first embodiment has been described with respect to the case where the liquid raw material supply unit 300A and the vaporization unit 300B are integrally configured. However, the present invention is not limited to this, and the liquid raw material supply unit 300A and the vaporization unit 300B are vaporized. The unit 300B may be configured separately. In that case, the liquid raw material supply unit 300A may be replaced with another vaporizer, and the vaporization unit 300B may be a single vaporizer. That is, it connects so that the raw material gas produced | generated with the other vaporizer may be introduce | transduced from the inlet 354 of the vaporizer which consists of only the vaporization part 300B. According to this, the raw material gas generated by another vaporizer (for example, an existing vaporizer or a vaporizer with low vaporization efficiency such as a conventional vaporizer) is passed through the air-permeable member 410 that is heated by energization. Thus, the liquid droplets that could not be vaporized by other vaporizers can also be vaporized by the vaporizer having the configuration of the vaporization unit 300B according to the first embodiment.

(第2実施形態にかかる成膜装置)
次に,本発明の第2実施形態にかかる成膜装置について図面を参照しながら説明する。図8は第2実施形態にかかる成膜装置の概略構成例を説明するための図である。ここでは,成膜装置に利用する気化器302を第1の気化器304とこれに接続配管306で接続された第2の気化器308により構成した場合について説明する。なお,図8では気化器の構成以外については図1に示すものと同様であるため,同一機能を有する部分には同一符号を付して詳細な説明を省略する。
(Film Forming Apparatus According to Second Embodiment)
Next, a film forming apparatus according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a diagram for explaining a schematic configuration example of a film forming apparatus according to the second embodiment. Here, a case will be described in which the vaporizer 302 used in the film forming apparatus is configured by a first vaporizer 304 and a second vaporizer 308 connected to the vaporizer 302 by a connection pipe 306. 8 is the same as that shown in FIG. 1 except for the configuration of the carburetor. Therefore, portions having the same functions are denoted by the same reference numerals and detailed description thereof is omitted.

具体的には,第2実施形態にかかる気化器302は,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する第1の気化器304と,第1の気化器304で生成された原料ガスの吐出口に接続配管306を介して導入口と接続される第2の気化器308とを備え,第2の気化器308の吐出口から吐出された原料ガスを原料ガス供給配管132を介して成膜室に供給するように構成したものである。   Specifically, the vaporizer 302 according to the second embodiment includes a first vaporizer 304 that vaporizes a liquid raw material supplied from the liquid raw material supply source 110 to generate a raw material gas, and a first vaporizer 304. And a second vaporizer 308 connected to the introduction port via the connection pipe 306, and the raw material gas discharged from the discharge port of the second vaporizer 308 is used as the raw material gas. It is configured to be supplied to the film forming chamber via the supply pipe 132.

第2実施形態にかかる第2の気化器308の構成を例えば図9に示す。第2の気化器308の構成は,第1実施形態にかかる気化器300のうちの気化部300Bのみの構成からなる気化器である。図9に示す気化器は,図2に示す気化部300Bのみの構成からなる気化器である。また,第2の気化器308は図10に示す気化器であってもよい。図10に示す気化器は,図6に示す気化部300Bのみの構成からなる気化器である。従って,第2の気化器308は,図2又は図6に示す気化部300Bと同様の構成であるため,同一機能を有する部分には同一符号を付して詳細な説明を省略する。   The configuration of the second vaporizer 308 according to the second embodiment is shown, for example, in FIG. The configuration of the second vaporizer 308 is a vaporizer composed of only the vaporizer 300B of the vaporizer 300 according to the first embodiment. The vaporizer shown in FIG. 9 is a vaporizer composed of only the vaporizer 300B shown in FIG. Further, the second vaporizer 308 may be the vaporizer shown in FIG. The vaporizer shown in FIG. 10 is a vaporizer composed of only the vaporizer 300B shown in FIG. Accordingly, since the second vaporizer 308 has the same configuration as the vaporizer 300B shown in FIG. 2 or FIG. 6, the parts having the same functions are denoted by the same reference numerals and detailed description thereof is omitted.

これに対して,第1の気化器304は,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する気化器であれば,その構成や種類などは問わず,従来の気化器であってもよい。   On the other hand, the first vaporizer 304 is a conventional vaporizer that generates a raw material gas by vaporizing the liquid raw material supplied from the liquid raw material supply source 110, regardless of its configuration or type. A vaporizer may be used.

このような本発明によれば,第2の気化器308において通電により発熱させた通気性部材に,第1の気化器304で生成された原料ガスを通すことにより,第1の気化器304で気化しきれなかった液滴も,第2の気化器308で気化させることができる。これにより,成膜室200などに原料ガスとともに液体原料の液滴が入り込むことを防止できる。   According to the present invention as described above, the first vaporizer 304 is made to pass the raw material gas generated by the first vaporizer 304 through the air-permeable member that is heated by energization in the second vaporizer 308. The droplets that could not be vaporized can also be vaporized by the second vaporizer 308. Accordingly, it is possible to prevent liquid source droplets from entering the film forming chamber 200 and the like together with the source gas.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,本発明は,MOCVD装置,プラズマCVD装置,ALD(原子層成膜)装置,LP−CVD(バッチ式,縦型,横型,ミニバッチ式)などに用いられる気化器,気化モジュール及びこれらの成膜装置にも適用可能である。   For example, the present invention relates to a vaporizer, a vaporization module, and a component thereof used in an MOCVD apparatus, a plasma CVD apparatus, an ALD (atomic layer deposition) apparatus, an LP-CVD (batch type, vertical type, horizontal type, minibatch type). It can also be applied to a membrane device.

本発明は,液体原料を気化して原料ガスを生成する気化器およびこれらの成膜装置に適用可能である。   The present invention can be applied to a vaporizer that vaporizes a liquid raw material to generate a raw material gas and these film forming apparatuses.

本発明の第1実施形態にかかる成膜装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the film-forming apparatus concerning 1st Embodiment of this invention. 同実施形態にかかる気化器の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of the vaporizer | carburetor concerning the embodiment. 図2に示す通気性部材の平面図である。It is a top view of the air permeable member shown in FIG. 図2に示す第1電極の平面図である。It is a top view of the 1st electrode shown in FIG. 図2に示す第2電極の平面図である。It is a top view of the 2nd electrode shown in FIG. 同実施形態にかかる気化器の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the vaporizer | carburetor concerning the embodiment. 図6に示すA−A断面図である。It is AA sectional drawing shown in FIG. 本発明の第2実施形態にかかる成膜装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the film-forming apparatus concerning 2nd Embodiment of this invention. 同実施形態にかかる気化器の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of the vaporizer | carburetor concerning the embodiment. 同実施形態にかかる気化器の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the vaporizer | carburetor concerning the embodiment.

符号の説明Explanation of symbols

100 成膜装置
110 液体原料供給源
112 液体原料供給配管
114 液体原料流量制御バルブ
120 キャリアガス供給源
122 キャリアガス供給配管
124 キャリアガス流量制御バルブ
132 原料ガス供給配管
132 送出口
134 原料ガス流量制御バルブ
140 制御部
200 成膜室
210 天壁
212 底壁
222 サセプタ
224 支持部材
226 ヒータ
228 電源
230 排気ポート
232 排気系
240 シャワーヘッド
242 内部空間
244 ガス吐出孔
300 気化器
300A 液体原料供給部
300B 気化部
302 気化器
304 第1の気化器
306 接続配管
308 第2の気化器
310 液体原料流路
312 キャリアガス流路
314 吐出口
316 吐出ノズル
318 キャリアガス噴射部
320 キャリアガス噴出口
330 側壁部材
332 天壁部材
334 底壁部材
336,340 Oリング
338A,338B 結合部材
342A,342B 結合部材
344 絶縁保持部材
346 絶縁クランプ部材
360 第1端子部
364 第1内部端子
366 第1外部端子
370 第2端子部
374 第2内部端子
376 第2外部端子
350 上側空間
352 下側空間
354 導入口
356 送出口
368,378 ハウジング部材
380 交流電源
390 熱電対
392 計測器
400,402 気化手段
410,412 通気性部材
420 第1電極
430 第2電極
440 第1給電線
442,452 絶縁スリーブ
450 第2給電線
422,432 貫通孔
424 第1電極
434 第2電極
W ウエハ
DESCRIPTION OF SYMBOLS 100 Film-forming apparatus 110 Liquid raw material supply source 112 Liquid raw material supply piping 114 Liquid raw material flow control valve 120 Carrier gas supply source 122 Carrier gas supply piping 124 Carrier gas flow control valve 132 Raw material gas supply piping 132 Outlet 134 Raw material gas flow control valve 140 Control Unit 200 Film Formation Chamber 210 Top Wall 212 Bottom Wall 222 Susceptor 224 Support Member 226 Heater 228 Power Supply 230 Exhaust Port 232 Exhaust System 240 Shower Head 242 Internal Space 244 Gas Discharge Hole 300 Vaporizer 300A Liquid Material Supply Unit 300B Vaporizer 304 First vaporizer 306 Connection pipe 308 Second vaporizer 310 Liquid source flow channel 312 Carrier gas flow channel 314 Discharge port 316 Discharge nozzle 318 Carrier gas injection unit 320 Carrier gas discharge port 330 Side wall member 3 32 Top wall member 334 Bottom wall member 336, 340 O-ring 338A, 338B coupling member 342A, 342B coupling member 344 insulation holding member 346 insulation clamp member 360 first terminal portion 364 first internal terminal 366 first external terminal 370 second terminal Portion 374 Second internal terminal 376 Second external terminal 350 Upper space 352 Lower space 354 Inlet 356 Outlet 368, 378 Housing member 380 AC power source 390 Thermocouple 392 Measuring instrument 400, 402 Evaporating means 410, 412 Breathable member 420 First electrode 430 Second electrode 440 First feed line 442, 452 Insulation sleeve 450 Second feed line 422, 432 Through hole 424 First electrode 434 Second electrode W Wafer

Claims (5)

液体原料を液滴状にして吐出する液体原料吐出手段と,
前記液滴状の液体原料を導入する導入口と,
前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,
前記通気性部材を挟み込むように対向して配置された一対の電極と,
前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,
前記導入口からの前記液滴状の液体原料を発熱した前記通気性部材の内部に通して気化させることにより生成された原料ガスを外部に送出する送出口と,を備え,
前記一対の電極はそれぞれ,前記通気性部材の前記導入口に対向する表側表面とその裏側表面に各面を覆うように接合して設け,前記一対の電極にはそれぞれ複数の貫通孔を形成したことを特徴とする気化器。
Liquid raw material discharge means for discharging liquid raw material in the form of droplets;
An inlet for introducing the liquid material in the form of droplets;
A plate-like air-permeable member that is disposed to face the introduction port and is configured by a member having an electrical resistance that generates heat when energized;
A pair of electrodes arranged to face each other so as to sandwich the breathable member;
A power source for generating heat by energizing the breathable member through the pair of electrodes;
A delivery port for sending the raw material gas generated by vaporizing the liquid material in the form of droplets from the inlet through the inside of the breathable member that has generated heat, and
Each of the pair of electrodes is provided so as to cover the front surface and the back surface of the breathable member facing the introduction port so as to cover each surface, and a plurality of through holes are formed in the pair of electrodes. A vaporizer characterized by that.
前記通気性部材は,多孔質材からなる抵抗発熱体で構成したことを特徴とする請求項1に記載の気化器。 The vaporizer according to claim 1, wherein the breathable member is formed of a resistance heating element made of a porous material. 前記多孔質材は,炭化ケイ素を含むことを特徴とする請求項に記載の気化器。 The vaporizer according to claim 2 , wherein the porous material contains silicon carbide. 前記通気性部材は,繊維材からなる抵抗発熱体で構成されていることを特徴とする請求項1に記載の気化器。 The vaporizer according to claim 1, wherein the air-permeable member is formed of a resistance heating element made of a fiber material. 液体原料を気化させて原料ガスを生成する気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,
前記気化器は,
液体原料を液滴状にして吐出する液体原料吐出手段と,
前記液滴状の液体原料を導入する導入口と,
前記導入口に対向して配置され,通電により発熱する電気抵抗を有する部材で構成された板状の通気性部材と,
前記通気性部材を挟み込むように対向して配置された一対の電極と,
前記一対の電極を介して前記通気性部材を通電して発熱させる電源と,
前記導入口からの前記液滴状の液体原料を発熱した前記通気性部材の内部に通して気化させることにより生成された原料ガスを前記成膜室に送出する送出口と,を備え,
前記一対の電極はそれぞれ,前記通気性部材の前記導入口に対向する表側表面とその裏側表面に各面を覆うように接合して設け,前記一対の電極にはそれぞれ複数の貫通孔を形成したことを特徴とする成膜装置。
A film forming apparatus including a film forming chamber for performing a film forming process on a substrate to be processed by introducing the material gas from a vaporizer that vaporizes a liquid material to generate a material gas,
The vaporizer is
Liquid raw material discharge means for discharging liquid raw material in the form of droplets;
An inlet for introducing the liquid material in the form of droplets;
A plate-like air-permeable member that is disposed to face the introduction port and is configured by a member having an electrical resistance that generates heat when energized;
A pair of electrodes arranged to face each other so as to sandwich the breathable member;
A power source for generating heat by energizing the breathable member through the pair of electrodes;
A delivery port for sending a raw material gas generated by vaporizing the liquid material in the form of liquid droplets from the inlet through the inside of the breathable member that has generated heat; and
Each of the pair of electrodes is provided so as to cover the front surface and the back surface of the breathable member facing the introduction port so as to cover each surface, and a plurality of through holes are formed in the pair of electrodes. A film forming apparatus.
JP2007254625A 2007-09-28 2007-09-28 Vaporizer and film forming apparatus Expired - Fee Related JP5179823B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007254625A JP5179823B2 (en) 2007-09-28 2007-09-28 Vaporizer and film forming apparatus
CN2008800225671A CN101689499B (en) 2007-09-28 2008-08-20 vaporizer and film forming apparatus
PCT/JP2008/064779 WO2009041189A1 (en) 2007-09-28 2008-08-20 Vaporizer and film forming apparatus
KR1020097027029A KR101244096B1 (en) 2007-09-28 2008-08-20 Vaporizer and film forming apparatus
TW097137042A TW200932368A (en) 2007-09-28 2008-09-26 Vaporizer, and film-forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254625A JP5179823B2 (en) 2007-09-28 2007-09-28 Vaporizer and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2009088157A JP2009088157A (en) 2009-04-23
JP5179823B2 true JP5179823B2 (en) 2013-04-10

Family

ID=40511083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254625A Expired - Fee Related JP5179823B2 (en) 2007-09-28 2007-09-28 Vaporizer and film forming apparatus

Country Status (5)

Country Link
JP (1) JP5179823B2 (en)
KR (1) KR101244096B1 (en)
CN (1) CN101689499B (en)
TW (1) TW200932368A (en)
WO (1) WO2009041189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721681B1 (en) * 2016-03-24 2017-03-30 (주)티티에스 Vaporizer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595795B2 (en) * 2009-06-12 2014-09-24 東京エレクトロン株式会社 Method for reusing consumable parts for plasma processing equipment
KR101084997B1 (en) * 2011-06-30 2011-11-18 (주)그랜드 텍 Bubbler for evaporation of substances by a carrier gas
JP5426616B2 (en) * 2011-07-15 2014-02-26 株式会社リンテック Vaporizer and liquid raw material vaporizing and supplying apparatus equipped with the vaporizer
JP6694093B2 (en) * 2018-07-24 2020-05-13 株式会社リンテック Vaporizer
US11274367B2 (en) 2018-07-24 2022-03-15 Lintec Co., Ltd. Vaporizer
JP7201372B2 (en) * 2018-09-11 2023-01-10 株式会社アルバック acrylic vaporizer
EP4190939A4 (en) * 2020-07-27 2024-09-25 Jiangsu Favored Nanotechnology Co Ltd Raw material gasification device, film coating device, film coating apparatus and feeding method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300197A (en) * 1993-04-14 1994-10-28 Canon Inc Liquid raw material vapor feeding device
JP3004165B2 (en) * 1994-03-25 2000-01-31 東京エレクトロン株式会社 Processing equipment
KR20000000946A (en) * 1998-06-05 2000-01-15 주재현 Vaporizer and chemical vapor deposition apparatus using the same
JP2005057193A (en) 2003-08-07 2005-03-03 Shimadzu Corp Vaporizer
JP4263206B2 (en) * 2005-11-15 2009-05-13 東京エレクトロン株式会社 Heat treatment method, heat treatment apparatus and vaporization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721681B1 (en) * 2016-03-24 2017-03-30 (주)티티에스 Vaporizer

Also Published As

Publication number Publication date
TW200932368A (en) 2009-08-01
KR101244096B1 (en) 2013-03-18
WO2009041189A1 (en) 2009-04-02
CN101689499B (en) 2011-11-30
CN101689499A (en) 2010-03-31
JP2009088157A (en) 2009-04-23
KR20100057760A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
JP5179823B2 (en) Vaporizer and film forming apparatus
US7666260B2 (en) Vaporizer and semiconductor processing apparatus
WO2009098815A1 (en) Liquid material carburetor, and filming device using the carburetor
JP2021031769A (en) Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
WO2010038515A1 (en) Vaporizer and deposition system using the same
US6409839B1 (en) Method and apparatus for vapor generation and film deposition
JP6724005B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and vaporization system
KR20080106544A (en) Direct liquid injector device
WO2009122966A1 (en) Liquid raw material vaporizer and film forming apparatus using the same
JP5059371B2 (en) Vaporizer and deposition system
JP2001156055A (en) Method and apparatus for gasifying liquid material
WO2004040630A1 (en) Method for manufacturing semiconductor device and substrate processing system
US9975320B2 (en) Diffusion bonded plasma resisted chemical vapor deposition (CVD) chamber heater
JP2009246173A (en) Vaporizer and film forming device using the same
TWI424524B (en) Apparatus and method for substrate clamping in a plasma chamber
JP6151943B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2001295050A (en) Vaporizer, method for using vaporizer, and method for vaporizing raw liquid
JP4404674B2 (en) Thin film manufacturing equipment
JP2010067906A (en) Vaporizer and film-forming apparatus using the same
JP2006083441A (en) Pressure measuring method and maintenance method for gaseous starting material feed system, pressure measuring method and maintenance method for film deposition system, vaporizer and film deposition system
WO2007036997A1 (en) Liquid-material feeder and control method for liquid-material feeder
KR20220087031A (en) Apparatus for processing substrate
JP2022020956A (en) Carburetor
TW201327636A (en) Heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5179823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees