JP5167314B2 - Method for producing ferritic stainless steel with excellent ridging resistance - Google Patents
Method for producing ferritic stainless steel with excellent ridging resistance Download PDFInfo
- Publication number
- JP5167314B2 JP5167314B2 JP2010155751A JP2010155751A JP5167314B2 JP 5167314 B2 JP5167314 B2 JP 5167314B2 JP 2010155751 A JP2010155751 A JP 2010155751A JP 2010155751 A JP2010155751 A JP 2010155751A JP 5167314 B2 JP5167314 B2 JP 5167314B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- stainless steel
- steel
- ridging
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000005096 rolling process Methods 0.000 claims description 89
- 229910000831 Steel Inorganic materials 0.000 claims description 57
- 239000010959 steel Substances 0.000 claims description 57
- 230000009467 reduction Effects 0.000 claims description 25
- 238000000137 annealing Methods 0.000 claims description 23
- 229910001566 austenite Inorganic materials 0.000 claims description 16
- 230000002441 reversible effect Effects 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 description 29
- 238000005098 hot rolling Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、フェライト系ステンレス鋼の成形加工の際に圧延方向と平行方向に発生する、「リジング」或いは「ローピング」と呼ばれる表面欠陥を低減したフェライト系ステンレス鋼の製造方法に関するものである。なお、「リジング」は、「ローピング」とも呼ばれるが、以下、「リジング」に統一して記載する。 The present invention relates to a method for producing a ferritic stainless steel in which surface defects called “ridging” or “roping” that occur in the direction parallel to the rolling direction during forming of ferritic stainless steel are reduced. Note that “riding” is also referred to as “roping”, but is hereinafter collectively described as “riding”.
SUS430に代表されるフェライト系ステンレス鋼は、一般に、オーステナイト系ステンレス鋼に比べて安価であると共に、マルテンサイト系ステンレス鋼に比べて耐食性、耐熱性、および成形加工性に優れている。このため、フェライト系ステンレス鋼は、厨房機器や食器類、家電用機器および建築用金物などの用途に広く使用されている。 Ferritic stainless steel represented by SUS430 is generally cheaper than austenitic stainless steel, and excellent in corrosion resistance, heat resistance, and moldability compared to martensitic stainless steel. For this reason, ferritic stainless steel is widely used in applications such as kitchen equipment, tableware, home appliances and building hardware.
しかし、フェライト系ステンレス鋼に圧延加工を施すと、鋼板表面に生じる圧延方向と平行方向に縞状或いは筋状の起伏である「リジング」と呼ばれる表面欠陥が生じる。リジングが生じると、成形品の美感が損なわれるので、リジングを除去するための研磨工程が必要となるが、この「リジング」が大きいと研磨量が増え、このため、研磨作業の負荷が増大して成形品のコスト増に跳ね返る。 However, when a ferritic stainless steel is rolled, surface defects called “ridging”, which are striped or streaky undulations, occur in a direction parallel to the rolling direction generated on the surface of the steel sheet. When ridging occurs, the aesthetics of the molded product are impaired, so a polishing step is required to remove ridging, but if this `` riding '' is large, the amount of polishing increases, which increases the load of polishing work. Rebounded to increased cost of molded products.
前述のように、「リジング」は、鋼板表面に圧延方向と平行方向に、縞状或いは筋状の起伏で、これをそのまま成形すると成形品の表面に「リジング」がそのまま残って現れ成形品の美観を損ねる。そのため成形加工した後にそれを除去するための研磨工程が必要となるが、鋼板表面の「リジング」が過大であると研磨量もそれだけ増え、成形工程における研磨負荷を増大させる。 As described above, the “riding” is a striped or streak-like undulation in the direction parallel to the rolling direction on the surface of the steel sheet. If this is molded as it is, the “riding” remains on the surface of the molded product and appears. Detract from aesthetics. For this reason, a polishing step for removing it after forming is necessary. However, if the “riding” on the surface of the steel sheet is excessive, the amount of polishing increases accordingly, and the polishing load in the forming step increases.
「リジング」は、連続鋳造で製造したスラブ組織の柱状晶に起因すると言われており、スラブ組織の微細化や電磁攪拌などによって等軸晶率を上げる試みがされてきたが、実際にはそれだけでは不十分であった。また、冷延工程において、圧延と焼鈍を繰返し行うことで、「リジング」を改善することができるが、コストの増大が問題となる。 "Ridging" is said to be caused by columnar crystals of the slab structure produced by continuous casting, and attempts have been made to increase the equiaxed crystal ratio by miniaturizing the slab structure or electromagnetic stirring. It was not enough. In the cold rolling process, “riding” can be improved by repeatedly performing rolling and annealing, but an increase in cost becomes a problem.
「リジング」の原因となるスラブ組織の柱状晶の破壊には、再結晶を繰返し生じさせることが必要であり、例えば熱間圧延(以下、熱延と略称する。)を利用することが考えられる。しかし、フェライト系ステンレス鋼は、動的再結晶が極めて生じ難く、反面、回復現象が生じやすいため、熱延において大加工歪の付与と再結晶時間を設ける必要がある。しかしながら、そのようにするとその分だけ生産性が低下する。 In order to destroy the columnar crystals of the slab structure that cause “riding”, it is necessary to repeatedly cause recrystallization. For example, it is conceivable to use hot rolling (hereinafter abbreviated as hot rolling). . However, in ferritic stainless steel, dynamic recrystallization hardly occurs, and on the other hand, since a recovery phenomenon is likely to occur, it is necessary to provide a large working strain and a recrystallization time in hot rolling. However, if it does so, productivity will fall correspondingly.
このように、「リジング」は成形品市場における競争力を低下させる要因となることから、フェライト系ステンレス鋼のリジング発生を防止又は軽減するために、従来から様々な技術が開発されている。「リジング」は、前述のように連続鋳造で製造されたスラブ組織の柱状晶に起因することから、例えば、特許文献1に記載の「スラブ組織の微細化や電磁攪拌などによって等軸晶率を上げる技術」を挙げることができる。また、特許文献2に記載の「オーステナイト・ポテンシャルを増加させる技術」や、特許文献3に記載の「スラブの冷却制御」や、特許文献4、5に記載の「粗圧延条件」や、特許文献6に記載の「圧延板焼鈍」などを挙げることができる。 As described above, “riding” is a factor that lowers the competitiveness in the molded product market. Therefore, various techniques have been conventionally developed in order to prevent or reduce the occurrence of ridging in ferritic stainless steel. Since “riding” is caused by columnar crystals of a slab structure manufactured by continuous casting as described above, for example, “equiaxial crystal ratio is reduced by refining a slab structure or electromagnetic stirring” described in Patent Document 1. Can be mentioned. Further, “Technology for increasing austenite potential” described in Patent Document 2, “Slab cooling control” described in Patent Document 3, “Rough rolling conditions” described in Patent Documents 4 and 5, and Patent Document 6 "rolled sheet annealing" and the like.
本発明はこのような状況を鑑み、耐リジング性に優れたフェライト系ステンレス鋼の製造方法を提供する。 In view of such circumstances, the present invention provides a method for producing ferritic stainless steel having excellent ridging resistance.
本発明者は、熱延条件とフェライト系ステンレス鋼の再結晶挙動との関係を種々研究した結果、圧延温度、圧下率、圧延後の保持時間と再結晶挙動の関係を明らかにし、本発明に至った。すなわち、本発明は、
質量%で、0.040%≦C≦0.100%、0.20%≦Si≦1.00%、0.30%≦Mn≦1.00%、P≦0.040%、S≦0.010%、Ni≦0.45%、16.0%≦Cr≦18.0%、Mo≦0.50%、Cu≦0.30%、N≦0.050%と、残部がFeと不可避不純物からなり、且つ、
下記式1の値が、55%≦オーステナイト・ポテンシャル≦65%となる成分を有したスラブを1,000℃〜1,200℃の範囲で加熱した後、
粗圧延機で、1パス当たりの圧下率が30%以上の熱間粗圧延を2パス以上行い、
その後、1分以上保持させ、
然る後、仕上げ圧延機の両側に保温炉を備えた可逆式圧延機で、鋼板温度を前記保温炉にて850℃以上に維持した状態で、1パス当たり圧下率30%以上の高圧下仕上げ圧延で、3パス以上行って熱間仕上げ圧延を行い、
次いで、900℃以上の温度で4時間以上の均熱下でバッチ焼鈍を行った後、鋼板温度が600℃になるまで自然冷却させることを特徴とするフェライト系ステンレス鋼を製造 する製造方法である。
オーステナイト・ポテンシャル〔以下、A.P.という〕(%)
=288(%C)+350(%N)+22(%Ni)+7.5(%Mn)-18.75(%Cr)-54(%Si)+338.5……式1
As a result of various studies on the relationship between hot rolling conditions and the recrystallization behavior of ferritic stainless steel, the present inventor has clarified the relationship between the rolling temperature, the rolling reduction, the holding time after rolling, and the recrystallization behavior. It came. That is, the present invention
% By mass, 0.040% ≦ C ≦ 0.100%, 0.20% ≦ Si ≦ 1.00%, 0.30% ≦ Mn ≦ 1.00%, P ≦ 0.040%, S ≦ 0 0.010%, Ni ≦ 0.45%, 16.0% ≦ Cr ≦ 18.0%, Mo ≦ 0.50%, Cu ≦ 0.30%, N ≦ 0.050%, the balance being inevitable with Fe Consisting of impurities, and
After heating the slab having a component of the following formula 1 with 55% ≦ austenite potential ≦ 65% in the range of 1,000 ° C. to 1,200 ° C.,
With a roughing mill, perform hot rough rolling with a reduction rate of 30% or more per pass for 2 passes or more,
Then hold it for more than 1 minute,
After that, in a reversible rolling mill equipped with a heat-retaining furnace on both sides of the finish rolling mill, with a steel plate temperature maintained at 850 ° C. or higher in the heat-retaining furnace, a high-pressure finish with a reduction rate of 30% or more per pass. In rolling, perform 3 passes or more to perform hot finish rolling,
Then, after performing batch annealing at a temperature of 900 ° C. or higher under soaking for 4 hours or longer, the steel sheet is naturally cooled until the steel plate temperature reaches 600 ° C., and is a manufacturing method for manufacturing a ferritic stainless steel. .
Austenite potential [A. P. (%)
= 288 (% C) +350 (% N) +22 (% Ni) +7.5 (% Mn) -18.75 (% Cr) -54 (% Si) + 338.5 …… Formula 1
請求項1の発明によれば、請求項1の化学組成を有し、且つ、A.P.が55%〜65%であるスラブを請求項1に記載の条件で熱間粗圧延を行うことにより、フェライト系ステンレス鋼板組織を再結晶させることが出来、耐リジング性を向上させることができた。その後に可逆式圧延機(例えば、ステッケルミル)による高圧下仕上げ圧延を行う。 According to the invention of claim 1, it has the chemical composition of claim 1 and A. P. By subjecting a slab having a content of 55% to 65% to hot rough rolling under the conditions described in claim 1, the ferritic stainless steel sheet structure could be recrystallized and the ridging resistance could be improved. . Thereafter, finish rolling under high pressure is performed by a reversible rolling mill (for example, a Steckel mill).
可逆式圧延機の使用による高圧下仕上げ圧延をすることにより、生産性を落とす事なく更に耐リジング性に優れたフェライト系ステンレス鋼の製造方法を提供することができる。更に詳述すれば、可逆式圧延機では保温炉が仕上げ圧延機の両側に設けられているため、1のパスと次のパスとの間に生じる数分の保温炉による加熱保温時間が再結晶のための待ち時間として利用することができ、組織の再結晶時間を別に設ける必要がなく、耐リジング性向上のために特別な手段を必要としないことから、生産性を損なうことがない。 By performing finish rolling under high pressure by using a reversible rolling mill, it is possible to provide a method for producing ferritic stainless steel having further excellent ridging resistance without reducing productivity. More specifically, in a reversible rolling mill, a heat-retaining furnace is provided on both sides of the finish rolling mill, so that the heat-retaining time in the heat-retaining furnace for a few minutes generated between one pass and the next pass is recrystallized. Therefore, it is not necessary to provide a separate recrystallization time for the structure, and no special means is required for improving ridging resistance, so that productivity is not impaired.
そして、高い温度(オーステナイト+フェライト域)で焼鈍することにより、リジングを改善し、且つ、焼鈍後の冷却条件を制御すればマルテンサイトサイト組織が生じず、耐食性のよいフェライト系ステンレス鋼を製造することが出来る。 And by annealing at a high temperature (austenite + ferrite region), improving ridging and controlling the cooling conditions after annealing does not produce a martensite structure and produces ferritic stainless steel with good corrosion resistance. I can do it.
本発明によれば、フェライト系ステンレス鋼の組成、オーステナイト・ポテンシャル、粗圧延、および仕上げ圧延などを適切に選定することにより、コスト増なくフェライト系ステンレスの表面に発生するリジングを大幅に軽減することができ、成形品へのフェライト系ステンレス鋼の適用をより容易にすることができる。 According to the present invention, by appropriately selecting the composition, austenite potential, rough rolling, and finish rolling of ferritic stainless steel, ridging generated on the surface of ferritic stainless steel can be significantly reduced without increasing costs. And the application of ferritic stainless steel to the molded product can be made easier.
以下、本発明におけるスラブの化学組成の限定理由について説明する。これら各成分の割合はすべて質量%である。 Hereinafter, the reasons for limiting the chemical composition of the slab in the present invention will be described. The proportions of these components are all mass%.
0.040%≦C≦0.100%:Cには、フェライト系ステンレス鋼(以下、単に「ステンレス鋼」と記載する。)を加熱して1100℃にしたときに、ステンレス鋼の全組織におけるオーステナイト組織の占める割合を示すオーステナイト・ポテンシャル(以下、「A.P.」と記載する。)を上げる作用があることから、少なくとも0.04%の含有量が必要である。一方、多量の炭素は、炭化物の析出が多くなることでステンレス鋼の耐食性が低下するとともに、ステンレス鋼の耐力が増加してプレス成形性に悪影響を与えるため含有量の上限を0.100%とした。 0.040% ≦ C ≦ 0.100%: In C, when ferritic stainless steel (hereinafter simply referred to as “stainless steel”) is heated to 1100 ° C., the entire structure of the stainless steel The content of at least 0.04% is necessary because it has the effect of increasing the austenite potential (hereinafter referred to as “AP”) indicating the proportion of the austenite structure. On the other hand, a large amount of carbon lowers the corrosion resistance of stainless steel due to an increase in precipitation of carbides, and increases the proof stress of stainless steel and adversely affects the press formability, so the upper limit of the content is 0.100%. did.
0.20%≦Si≦1.00%:Siは溶解時、溶湯の脱酸剤の役割をすると同時にフェライト系ステンレス鋼の耐食性を増加させる効果もあり、0.20%以上は必要となる。一方、SiはA.P.を下げるため、1.00%を上限とする。 0.20% .ltoreq.Si.ltoreq.1.00%: When dissolved, Si has the effect of increasing the corrosion resistance of the ferritic stainless steel as well as acting as a deoxidizer for the molten metal, and 0.20% or more is necessary. On the other hand, Si is A.I. P. In order to lower the value, the upper limit is made 1.00%.
0.35%≦Mn≦1.00%:MnはA.P.を上げる作用があり、0.35%は必要である。マンガンの含有量が0.35%よりも多くなったとしても、特に材料特性には大きく影響しないが、A.P.の上限を超えないようにするために1.00%を上限とした。 0.35% ≦ Mn ≦ 1.00%: Mn is A.I. It has the effect of increasing P. 0.35% is necessary. Even if the manganese content exceeds 0.35%, the material properties are not particularly affected. P. In order not to exceed the upper limit of 1.00%, the upper limit was made 1.00%.
P≦0.040%:Pの含有量が多くなると、ステンレス鋼の熱間加工性に悪影響を及ぼすため、その上限を0.040%とした。 P ≦ 0.040%: If the P content increases, the hot workability of stainless steel is adversely affected, so the upper limit was made 0.040%.
S≦0.010%:Pと同様、Sの含有量が多くなると、熱間加工性に悪影響を及ぼすため、その上限を0.010%とした。 S ≦ 0.010%: As with P, if the S content increases, the hot workability is adversely affected, so the upper limit was made 0.010%.
Ni≦0.45%:NiはA.P.を上げる方向に作用する元素であるが、本発明はフェライト系ステンレス鋼のため上限を0.45%とした。 Ni ≦ 0.45%: Ni is A.I. P. However, since the present invention is ferritic stainless steel, the upper limit was made 0.45%.
16.0%≦Cr≦18.0%:Crは耐食性に効果的な元素であるため、16.0%以上は必要である。しかし、CrはA.P.を下げる方向に作用する元素であるため、含有量の上限を18.0%とした。 16.0% ≦ Cr ≦ 18.0%: Since Cr is an element effective for corrosion resistance, 16.0% or more is necessary. However, Cr is A.I. P. Therefore, the upper limit of the content is set to 18.0%.
Mo≦0.50%:Moはステンレス鋼の耐食性に効果的な元素であるが、高価なため0.50%を上限とした。 Mo ≦ 0.50%: Mo is an element effective for the corrosion resistance of stainless steel, but since it is expensive, the upper limit was made 0.50%.
Cu≦0.30%:Cuはステンレス鋼の熱間加工性に悪影響を及ぼすため、0.30%を含有量の上限とした。 Cu ≦ 0.30%: Since Cu adversely affects the hot workability of stainless steel, 0.30% was made the upper limit of the content.
N≦0.050%:NはA.P.を上げる方向に作用する元素であるが、多量の添加は、窒化物の形成による耐食性の低下や、耐力の増加をもたらすため成形性が悪くなる。したがって、0.050%を含有量の上限とした。 N ≦ 0.050%: N is A.I. P. However, when a large amount is added, the corrosion resistance is reduced due to the formation of nitrides and the yield strength is increased, so that the formability is deteriorated. Therefore, 0.050% was made the upper limit of the content.
55%≦A.P.≦65%:A.P.は、1100℃に加熱した時に組織中のオーステナイト組織の占める割合を表している。フェライト系ステンレス鋼の高温加工では、回復しやすいので、再結晶を生じさせるためには大加工歪と再結晶時間を要する。加熱組織中にオーステナイト組織が存在していると、熱延の際、フェライトよりも硬質なオーステナイトによって、フェライトが分断されることになる。これによって、スラブ組織が分断され、かつオーステナイトとフェライトの結晶粒界に歪が集中し、再結晶核の生成サイトとなり、再結晶を促進する。しかし、その効果を得るためには、55%以上のA.P.が必要である。一方、多量のA.P.となる成分では、最終製品で、フェライト組織が得られ難くなるため、65%を上限とした。 55% ≦ A. P. ≦ 65%: A.I. P. Represents the proportion of the austenite structure in the structure when heated to 1100 ° C. Since high temperature processing of ferritic stainless steel is easy to recover, large processing strain and recrystallization time are required to cause recrystallization. If an austenite structure is present in the heated structure, the ferrite is divided by austenite harder than ferrite during hot rolling. As a result, the slab structure is divided, and the strain concentrates at the grain boundaries of austenite and ferrite, forming recrystallization nuclei and promoting recrystallization. However, in order to obtain the effect, 55% or more of A.I. P. is necessary. On the other hand, a large amount of A.I. P. In the final component, it is difficult to obtain a ferrite structure in the final product, so 65% was made the upper limit.
本発明は、このような組成成分を含有するスラブを所定の粗圧延温度まで加熱してから高圧下粗圧延し、この高圧下粗圧延した鋼板を所定時間保持し、続いて、所定の鋼板温度を維持した状態で仕上げ熱延し、更にこれを所定温度で鋼板を焼鈍することによりリジング性に優れたフェライト系ステンレス鋼を製造する方法である。リジング改善のためには従来から連続鋳造組織を破壊し、再結晶を促進させることが有効であることが知られていたが、従来の圧延方法では再結晶指数(再結晶率を段階で示したもの)で1又は2程度しか実現できずリジング改善が限定的であった。そこで、発明者らはリジングの改善をするための方策として、熱延条件とその後の焼鈍条件について更に検討した。換言すれば、耐リジング性に優れたステンレス鋼を製造するために必要なスラブの粗圧延条件と仕上げ熱延条件とその後の焼鈍条件とを決定した。以下、この根拠について説明する。 In the present invention, a slab containing such a composition component is heated to a predetermined rough rolling temperature and then subjected to high pressure rough rolling, and the high pressure rough rolled steel sheet is held for a predetermined time. In this state, ferritic stainless steel having excellent ridging properties is produced by subjecting the steel sheet to a finish hot rolling in a state where it is maintained and further annealing the steel sheet at a predetermined temperature. In order to improve ridging, it has been known that it is effective to destroy the continuous cast structure and promote recrystallization. However, the conventional rolling method showed the recrystallization index (recrystallization rate in stages). However, improvement of ridging was limited. Therefore, the inventors further examined hot rolling conditions and subsequent annealing conditions as measures for improving ridging. In other words, rough slab rolling conditions, finish hot rolling conditions, and subsequent annealing conditions necessary for producing stainless steel with excellent ridging resistance were determined. Hereinafter, this basis will be described.
本発明では、粗圧延機と可逆式圧延機(例えば、ステッケルミル)からなる熱延設備でフェライト系ステンレス鋼を熱延することが前提である。可逆式圧延機は、仕上げ圧延機の前後に保温炉を備え、仕上げ圧延中の鋼板温度の低下を避けるために保温している。 In the present invention, it is assumed that ferritic stainless steel is hot-rolled by a hot-rolling facility composed of a rough rolling mill and a reversible rolling mill (for example, a Steckel mill). The reversible rolling mill includes a heat-retaining furnace before and after the finish rolling mill, and keeps the temperature in order to avoid a decrease in the steel plate temperature during the finish rolling.
まず、粗圧延機において、圧延温度、圧下率および保持時間と再結晶率との関係を検討した。図1に、研究段階での圧延温度、圧下率および保持時間と再結晶指数との関係を示す。これは所定の温度に加熱後、研究実験用の4段圧延機にて、所定の圧下率で1パス圧延した後、所定の温度炉内で所定の時間保持した後、水冷した試験片の再結晶率を測定して得られた結果を示す。この結果、1,000〜1,200℃の圧延温度において、圧下率30%以上で圧延し、所定時間保持した時、再結晶が生じることが明らかとなった。 First, in a roughing mill, the relationship between rolling temperature, rolling reduction, holding time, and recrystallization rate was examined. FIG. 1 shows the relationship between the recrystallization index and the rolling temperature, rolling reduction and holding time at the research stage. This is done by heating to a predetermined temperature, rolling for one pass at a predetermined rolling reduction in a four-stage rolling mill for research experiments, holding in a predetermined temperature furnace for a predetermined time, and then re-cooling the water-cooled test piece. The result obtained by measuring the crystal ratio is shown. As a result, it has been clarified that recrystallization occurs when the rolling is performed at a rolling temperature of 1,000 to 1,200 ° C. at a rolling reduction of 30% or more and held for a predetermined time.
リジング改善のためには、前述のように再結晶率が高いほど好ましいことが分かっているが、従来方法では再結晶指数が1又は2程度しか実現できなかった処、圧下率30%、1,200℃で1分以上保持した場合、再結晶指数3以上(つまり、再結晶率50%以上)を達成することが出来た。実機製造では、3以上の再結晶指数を確実に達成するため、圧下率30%以上の高圧下粗圧延を2パス以上行い、そして、その後、1分以上保持することとし、これによって再結晶指数3以上(再結晶率50%以上)の実現を確認した。 As described above, it is known that a higher recrystallization rate is preferable for improving ridging. However, in the conventional method, the recrystallization index could be realized only about 1 or 2, and the reduction rate was 30%, 1, When held at 200 ° C. for 1 minute or longer, a recrystallization index of 3 or higher (that is, a recrystallization ratio of 50% or higher) could be achieved. In actual production, in order to reliably achieve a recrystallization index of 3 or more, rough rolling under high pressure with a reduction rate of 30% or more is performed for 2 passes or more, and then held for 1 minute or more. Realization of 3 or more (recrystallization rate of 50% or more) was confirmed.
また、実機製造における粗圧延では被圧延材の板厚が厚いため、特に加熱保持しなくても材料が保有する熱で再結晶が進行することを確認した。 In addition, in rough rolling in actual production, it was confirmed that recrystallization proceeds with the heat of the material even if the material to be rolled is thick, even if it is not heated and held.
続いて、仕上げ熱延が行われるが、本実施例では、仕上げ熱延用の熱間圧延機として、可逆式圧延機であるステッケルミルを用いている。そして、このステッケルミルの前後には、鋼板保温炉(コイラーファーネス)が設けられている。このようなステッケルミルを用いることで、1のパスと次のパスとの間に生じる数分の待ち時間において、鋼板を保温炉で所定温度に保温することができ、当該「待ち時間」を鋼板組織の再結晶時間として利用することができる。 Subsequently, finish hot rolling is performed. In this embodiment, a stickel mill, which is a reversible rolling mill, is used as a hot rolling mill for finishing hot rolling. And before and after this Steckel mill, a steel plate insulation furnace (coiler furnace) is provided. By using such a stickel mill, the steel sheet can be kept at a predetermined temperature in a heat-retaining furnace in a waiting time of several minutes generated between one pass and the next pass. It can be used as the recrystallization time.
このような仕上げ可逆式圧延機(ステッケルミル)を用いて、仕上げ圧延時の圧延温度、圧下率および保持時間と組織および硬さ変化との関係から再結晶挙動を検討した。図2に、圧延温度、圧下率および保持時間と硬さとの関係を示す。なお、試験方法は、温度が異なる以外は図1の場合と同じであり、硬さは板厚中央部をビッカース硬度計で測定した。この測定結果について以下に説明する。 Using such a finish reversible rolling mill (Steckel mill), the recrystallization behavior was examined from the relationship between the rolling temperature, rolling reduction and holding time during finish rolling, and the changes in structure and hardness. FIG. 2 shows the relationship between rolling temperature, rolling reduction, holding time and hardness. The test method was the same as in FIG. 1 except that the temperature was different, and the hardness was measured with a Vickers hardness meter at the center of the plate thickness. This measurement result will be described below.
700℃での圧延では、圧下率および保持時間が変化しても硬さの変化はほとんど認められなかった。 In rolling at 700 ° C., hardly any change in hardness was observed even if the rolling reduction and holding time were changed.
次に800℃では、圧下率40%の時、保持時間の経過とともに硬さが低下したが、それ以外の条件では、硬さに変化はほとんど認められなかった。そして、組織観察の結果、硬さ変化が認められた40%圧下率試験片は、保持時間の経過とともに再結晶組織が得られた。 Next, at 800 ° C., when the rolling reduction was 40%, the hardness decreased with the lapse of the holding time, but under the other conditions, almost no change was observed in the hardness. As a result of the structure observation, the 40% rolling reduction test piece in which the change in hardness was recognized had a recrystallized structure as the holding time passed.
さらに、850℃では、圧下率10%と20%の時は、保持時間が経過しても硬さに変化は認められなかったが、それ以外(即ち、圧下率が30%および40%の時)は、保持時間の経過とともに硬さが低下し、しかも圧下率の増加とともに、軟化の大きさが大きくなった。そして、保持時間の経過とともに再結晶組織が得られた。軟化の度合いが大きくなるのは、組織観察の結果、圧下率および保持時間の増加に伴い、再結晶組織が増加することが要因であることが分かった。 Further, at 850 ° C., when the rolling reductions were 10% and 20%, no change in hardness was observed even after the holding time had elapsed, but other than that (ie, when the rolling reductions were 30% and 40%). ) Decreased in hardness with the lapse of the holding time, and increased in degree of softening as the rolling reduction increased. A recrystallized structure was obtained as the holding time passed. As a result of the structure observation, it has been found that the degree of softening is caused by an increase in the recrystallized structure as the rolling reduction and holding time increase.
900℃では、硬さの変化が大きく、圧下率、保持時間と硬さに規則性は認められなかった。組織観察の結果、マルテンサイト組織が多く観察されたため、この温度域ではフェライトとオーステナイトの2相組織での圧延となっていたと思われる。 At 900 ° C., the change in hardness was large, and regularity was not observed in the rolling reduction, holding time and hardness. As a result of the structure observation, a lot of martensite structure was observed. Therefore, it seems that the rolling was performed in a two-phase structure of ferrite and austenite in this temperature range.
これら結果から、仕上げ圧延では、圧延温度850℃で、1パス(実機製造では安全のため3パスとする。)の圧下率が30%以上であれば、保温炉に保持中に再結晶が進行する可能性が高いことが分かった。また、特に900℃以上でも仕上げ圧延は、粗圧延時と同様の再結晶発生効果が得られると推定された。なお、実機製造では3パス以上とすることで確実に再結晶が進行することが確認された。 From these results, in finish rolling, if the rolling temperature is 850 ° C. and the rolling reduction of one pass (three passes for safety in actual production) is 30% or more, recrystallization proceeds during holding in the heat-retaining furnace. It turns out that there is a high possibility of doing. In particular, it was estimated that the finish rolling can achieve the same recrystallization effect as that during rough rolling even at 900 ° C. or higher. In addition, it was confirmed that the recrystallization surely progressed by using 3 passes or more in the actual machine manufacture.
最後に、熱延板の焼鈍条件について検討した。フェライト系、特に高温域での焼鈍によりオーステナイトが生じるSUS430などでは、焼鈍は、通常、変態点温度以下で行われる。これは、焼鈍時に、オーステナイトが発生し、冷却時にマルテンサイトが生じると、最終製品での耐食性に問題が生じる場合があるためである。 Finally, the annealing conditions for hot-rolled sheets were examined. In a ferrite system, particularly SUS430 in which austenite is generated by annealing in a high temperature region, annealing is usually performed at a transformation point temperature or lower. This is because when austenite is generated during annealing and martensite is generated during cooling, a problem may occur in the corrosion resistance of the final product.
一方、スラブ組織の破壊、またはフェライトの微細化には、オーステナイト−フェライト変態が有効である。そのため、バッチ焼鈍後の冷却速度を下げることで、マルテンサイトの発生を避ける事とした。 On the other hand, the austenite-ferrite transformation is effective for breaking the slab structure or making the ferrite finer. Therefore, we decided to avoid the generation of martensite by lowering the cooling rate after batch annealing.
即ち、従来の冷却方法は、800〜850℃の温度範囲でバッチ焼鈍した後、直ちに、専用の冷却機で強制的に冷却していたが、本発明では900〜950℃の温度範囲でバッチ焼鈍をした後は強制的な冷却を行わず、鋼板温度が600℃になるまで自然冷却し、鋼板温度が600℃以下になった時点で、強制冷却を行った。この結果、冷却後の組織にマルテンサイトが生じることはなかった。 That is, in the conventional cooling method, after batch annealing in the temperature range of 800 to 850 ° C., immediately after the forced cooling by a dedicated cooler, batch annealing is performed in the temperature range of 900 to 950 ° C. in the present invention. After the cooling, forced cooling was not performed, natural cooling was performed until the steel plate temperature reached 600 ° C., and forced cooling was performed when the steel plate temperature reached 600 ° C. or lower. As a result, martensite did not occur in the cooled structure.
ステンレス鋼のA.P.が本発明の範囲内である開発鋼1〜6と、A.P.が本発明の範囲を外れる比較鋼1〜4を比較し、更に製造工程、条件を従来法と本発明法で比較し、本発明にかかるステンレス鋼の耐リジング効果を検証した。 A. Stainless steel P. Developed steels 1-6, which are within the scope of the present invention; P. However, the comparative steels 1 to 4 that fall outside the scope of the present invention were compared, and the manufacturing process and conditions were compared between the conventional method and the present invention method, and the ridging resistance effect of the stainless steel according to the present invention was verified.
表1に示す化学成分を有する比較鋼1〜4及び開発鋼1〜6をそれぞれ電気炉で溶解し、AOD炉(アルゴン−酸素−脱炭精錬炉)で精錬し、連続鋳造機でスラブを製造した。これらスラブに表2に示す製造工程および製造条件に基づき加工を施し、比較鋼1〜4及び開発鋼1〜6について「リジング」を評価した。 Comparative steels 1 to 4 and developed steels 1 to 6 having the chemical components shown in Table 1 are respectively melted in an electric furnace, refined in an AOD furnace (argon-oxygen-decarburization refining furnace), and a slab is produced with a continuous casting machine. did. These slabs were processed based on the manufacturing process and manufacturing conditions shown in Table 2, and “Ridging” was evaluated for Comparative Steels 1-4 and Development Steels 1-6.
リジングの測定は、冷延板(厚さ:0.7mmまたは0.8mm)を圧延方向に15%引張加工したときに生じる表面のうねり『=ろ波中心線うねり』を、粗さ計を用いて測定し、リジング評価とした。なお、バッチ焼鈍後に連続焼鈍酸洗工程を通過しているが、これは、酸洗によるスケールオフが目的である。 For the measurement of ridging, the surface waviness (= filtered centerline waviness) generated when cold-rolled sheet (thickness: 0.7 mm or 0.8 mm) is stretched 15% in the rolling direction is used with a roughness meter. And measured as ridging. In addition, although the continuous annealing pickling process is passed after batch annealing, the purpose of this is scale-off by pickling.
比較鋼1は連続焼鈍のみが施された鋼であり、比較鋼2はバッチ焼鈍(810℃)が施された鋼である。これら鋼に生じたリジングは、それぞれ4.0μmおよび4.2μmであった。比較鋼3はバッチ焼鈍(900℃)したもので、そのリジングは3.8μmとなり若干改善された。しかし、いずれの比較鋼もA.P.が本発明の範囲を外れているため、そのリジングは本発明例に比べると大きい。 Comparative steel 1 is a steel that has been subjected only to continuous annealing, and comparative steel 2 is a steel that has been subjected to batch annealing (810 ° C.). The ridging produced in these steels was 4.0 μm and 4.2 μm, respectively. Comparative steel 3 was subjected to batch annealing (900 ° C.), and its ridging was 3.8 μm, which was slightly improved. However, both comparative steels are P. Is out of the scope of the present invention, and its ridging is larger than that of the present invention.
開発鋼1〜3は、本発明に係る成分組成およびA.P.(=56%)で製造した実施例である。しかし、開発鋼1は、同じ製造工程で製造された比較鋼1とを比較すると、リジングは3.5μmと改善されてはいるが、開発鋼1の製造工程は本発明の条件を満たしておらず、リジングの改善程度は不十分である。 The developed steels 1 to 3 have the component composition and A.I. P. (= 56%). However, compared with the comparative steel 1 manufactured in the same manufacturing process, the developed steel 1 is improved to 3.5 μm in ridging, but the manufacturing process of the developed steel 1 does not satisfy the conditions of the present invention. However, the improvement of ridging is insufficient.
開発鋼2及び開発鋼3は本発明例である。開発鋼2は、開発鋼1に対し、熱間圧延粗圧延工程において、高圧下圧延(1パス当たりの圧下率が30%以上…以下同じ)を行ったものであり、リジングは2.6μmであり、耐リジング性が大きく改善されている。 Development steel 2 and development steel 3 are examples of the present invention. The developed steel 2 is the one in which the developed steel 1 is subjected to high-pressure rolling (the rolling reduction per pass is 30% or more, the same applies hereinafter) in the hot rolling rough rolling process, and the ridging is 2.6 μm. Yes, ridging resistance is greatly improved.
開発鋼3は、開発鋼2に対し、更に熱間圧延仕上げ圧延において、高圧下圧延を行ったものであり、リジングは更に小さい2.5μmであった。 The developed steel 3 was obtained by subjecting the developed steel 2 to high pressure rolling in hot rolling finish rolling, and the ridging was 2.5 μm, which was even smaller.
開発鋼4〜6も、本発明にかかる成分組成及びA.P.(=63%)を有している。開発鋼4のリジングは2.0μmであり大きく改善されているが、冷延を2ヒート行っているので製造コスト増大の問題が付きまとう。 The developed steels 4 to 6 also have the component composition and A.I. P. (= 63%). The ridging of the developed steel 4 is 2.0 μm, which is greatly improved. However, since the cold rolling is performed for two heats, there is a problem that the manufacturing cost increases.
開発鋼5及び開発鋼6は本発明例である。開発鋼5は熱間粗圧延において、高圧下圧延を行い、更にバッチ焼鈍(900℃)を行ったものであり、リジングは1.4μmと大きく改善された。 Development steel 5 and development steel 6 are examples of the present invention. The developed steel 5 was hot rough rolled under high pressure rolling and further subjected to batch annealing (900 ° C.), and the ridging was greatly improved to 1.4 μm.
開発鋼6は、開発鋼5に対し、熱間仕上げ圧延において高圧下圧延を行ったものであり、リジングは1.1μmと更に改善された。以上のように、本発明例である開発鋼2、開発鋼3、開発鋼5及び開発鋼6は大きなリジング改善効果が得られている。 The developed steel 6 was obtained by performing high pressure rolling in the hot finish rolling on the developed steel 5, and the ridging was further improved to 1.1 μm. As described above, the developed steel 2, the developed steel 3, the developed steel 5 and the developed steel 6 as examples of the present invention have a great ridging improvement effect.
図3に、比較鋼1および4と、開発鋼1〜6に生じたリジングの外観写真を示す。図の上下方向が圧延方向であり、この圧延方向に15%の引張加工が施されている。試験片の表面に観察される縞状の模様がリジングである。リジングが4μmであった比較鋼1に係る試験片に比べ、本発明に係る製造方法で製造した開発鋼6のリジングが、外観においても非常に軽微なものであることがわかる。
In FIG. 3, the external appearance photograph of the ridging produced in comparative steel 1 and 4 and development steel 1-6 is shown. The vertical direction in the figure is the rolling direction, and a 15% tensile process is applied in this rolling direction. The striped pattern observed on the surface of the test piece is ridging. It can be seen that the ridging of the developed steel 6 produced by the production method according to the present invention is very slight in appearance as compared with the test piece according to the comparative steel 1 having a ridging of 4 μm.
Claims (1)
下記式1の値が、55%≦オーステナイト・ポテンシャル≦65%となる成分を有したスラブを1,000℃〜1,200℃の範囲で加熱した後、
粗圧延機で、1パス当たりの圧下率が30%以上の熱間粗圧延を2パス以上行い、
その後、1分以上保持させ、
然る後、仕上げ圧延機の両側に保温炉を備えた可逆式圧延機で、鋼板温度を前記保温炉にて850℃以上に維持した状態で、1パス当たり圧下率30%以上の高圧下仕上げ圧延で、3パス以上行って熱間仕上げ圧延を行い、
次いで、900℃以上の温度で4時間以上の均熱下でバッチ焼鈍を行った後、鋼板温度が600℃になるまで自然冷却させることを特徴とするフェライト系ステンレス鋼を製造する製造方法。
オーステナイト・ポテンシャル(%)
=288(%C)+350(%N)+22(%Ni)+7.5(%Mn)-18.75(%Cr)-54(%Si)+338.5……式1
% By mass, 0.040% ≦ C ≦ 0.100%, 0.20% ≦ Si ≦ 1.00%, 0.30% ≦ Mn ≦ 1.00%, P ≦ 0.040%, S ≦ 0 0.010%, Ni ≦ 0.45%, 16.0% ≦ Cr ≦ 18.0%, Mo ≦ 0.50%, Cu ≦ 0.30%, N ≦ 0.050%, the balance being inevitable with Fe Consisting of impurities, and
After heating the slab having a component of the following formula 1 with 55% ≦ austenite potential ≦ 65% in the range of 1,000 ° C. to 1,200 ° C.,
With a roughing mill, perform hot rough rolling with a reduction rate of 30% or more per pass for 2 passes or more,
Then hold it for more than 1 minute,
After that, in a reversible rolling mill equipped with a heat-retaining furnace on both sides of the finish rolling mill, with a steel plate temperature maintained at 850 ° C. or higher in the heat-retaining furnace, a high-pressure finish with a reduction rate of 30% or more per pass. In rolling, perform 3 passes or more to perform hot finish rolling,
Next, a manufacturing method for producing a ferritic stainless steel, characterized in that after batch annealing is performed at a temperature of 900 ° C. or higher under soaking for 4 hours or longer, the steel plate is naturally cooled until the steel plate temperature reaches 600 ° C.
Austenite potential (%)
= 288 (% C) +350 (% N) +22 (% Ni) +7.5 (% Mn) -18.75 (% Cr) -54 (% Si) + 338.5 …… Formula 1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010155751A JP5167314B2 (en) | 2010-07-08 | 2010-07-08 | Method for producing ferritic stainless steel with excellent ridging resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010155751A JP5167314B2 (en) | 2010-07-08 | 2010-07-08 | Method for producing ferritic stainless steel with excellent ridging resistance |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006034183A Division JP2007211313A (en) | 2006-02-10 | 2006-02-10 | Ferritic stainless steel having excellent ridging resistance and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010270399A JP2010270399A (en) | 2010-12-02 |
JP5167314B2 true JP5167314B2 (en) | 2013-03-21 |
Family
ID=43418650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010155751A Active JP5167314B2 (en) | 2010-07-08 | 2010-07-08 | Method for producing ferritic stainless steel with excellent ridging resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5167314B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331899A (en) * | 2015-09-24 | 2016-02-17 | 宝钢不锈钢有限公司 | Ferritic stainless steel with good crease resistance and manufacturing method of ferritic stainless steel |
CN115341147B (en) * | 2022-08-19 | 2023-09-26 | 山西太钢不锈钢股份有限公司 | Medium chromium ferrite stainless steel for elevator panel and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4239257B2 (en) * | 1998-11-02 | 2009-03-18 | Jfeスチール株式会社 | Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance |
JP3917320B2 (en) * | 1999-03-05 | 2007-05-23 | 日本冶金工業株式会社 | Method for producing ferritic stainless steel sheet with excellent ridging resistance |
JP4590719B2 (en) * | 1999-12-03 | 2010-12-01 | Jfeスチール株式会社 | Ferritic stainless steel sheet excellent in ridging resistance and formability and method for producing the same |
JP2002294343A (en) * | 2001-03-30 | 2002-10-09 | Kawasaki Steel Corp | Method for producing ferritic stainless cold rolled steel sheet |
JP4507680B2 (en) * | 2004-04-23 | 2010-07-21 | Jfeスチール株式会社 | Method for producing ferritic stainless steel sheet having excellent ductility and ridging resistance |
-
2010
- 2010-07-08 JP JP2010155751A patent/JP5167314B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010270399A (en) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5687624B2 (en) | Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel | |
JP5349015B2 (en) | Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet | |
JP5888476B2 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
KR100500791B1 (en) | FERRITIC Cr-CONTAINING STEEL SHEET HAVING EXCELLENT DUCTILITY, FORMABILITY, AND ANTI-RIDGING PROPERTIES, AND METHOD OF PRODUCING THE SAME | |
CA3015441C (en) | Ti-containing ferritic stainless steel sheet, manufacturing method, and flange | |
WO2017002147A1 (en) | Ferritic stainless steel sheet and method for manufacturing same | |
WO2015105046A1 (en) | Ferritic stainless steel and method for producing same | |
EP3231882B1 (en) | Stainless steel and production method therefor | |
KR101850231B1 (en) | Ferritic stainless steel and method for producing same | |
JPH01172524A (en) | Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength | |
JP2007211313A (en) | Ferritic stainless steel having excellent ridging resistance and its production method | |
JP6411881B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP3241114B2 (en) | Method for producing ferritic stainless steel sheet excellent in ridging property and workability | |
JP2011202211A (en) | Cold rolled steel sheet for nitriding treatment having excellent nitriding property and recrystallization softening resistance, and method for producing the same | |
JP5167314B2 (en) | Method for producing ferritic stainless steel with excellent ridging resistance | |
JP2010202922A (en) | Method for manufacturing cold-rolled steel sheet superior in recrystallization softening resistance, and cold-rolled steel sheet for automatic transmission | |
JP5887179B2 (en) | Duplex stainless steel with excellent overworkability and method for producing the same | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
KR101279051B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
JP5282456B2 (en) | A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method | |
JPS62199721A (en) | Production of steel sheet or strip of ferritic stainless steel having good workability | |
JP5534112B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
KR101316907B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
JP2007270168A (en) | Method for producing chromium-containing ferritic steel sheet | |
JPS5896851A (en) | Ferritic stainless steel for formed steel plate with improved ridging resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5167314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |