[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5165201B2 - Injection material, manufacturing method thereof, and injection method using the same - Google Patents

Injection material, manufacturing method thereof, and injection method using the same Download PDF

Info

Publication number
JP5165201B2
JP5165201B2 JP2006036352A JP2006036352A JP5165201B2 JP 5165201 B2 JP5165201 B2 JP 5165201B2 JP 2006036352 A JP2006036352 A JP 2006036352A JP 2006036352 A JP2006036352 A JP 2006036352A JP 5165201 B2 JP5165201 B2 JP 5165201B2
Authority
JP
Japan
Prior art keywords
injection
silica
injection material
cement
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006036352A
Other languages
Japanese (ja)
Other versions
JP2007217453A (en
Inventor
克明 入内島
勇 平野
栄一 有水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006036352A priority Critical patent/JP5165201B2/en
Publication of JP2007217453A publication Critical patent/JP2007217453A/en
Application granted granted Critical
Publication of JP5165201B2 publication Critical patent/JP5165201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、注入材、その製造方法、及びそれを用いた注入工法、詳しくは、土木、建築分野で基礎地盤の遮水性、固密性、及び変形性等を改良するために使用する注入材、その製造方法、並びに、それを用いた注入工法に関する。   The present invention relates to an injecting material, a method for producing the same, and an injecting method using the injecting material, and more specifically, an injecting material to be used for improving the water shielding, solidity, and deformability of the foundation ground in the civil engineering and construction fields. , Its manufacturing method, and an injection method using the same.

従来、ダムや発電所等、大型構造物の基礎、トンネル、地下備蓄基地、及び放射性廃棄物処理施設等の地下構造物や都市部の大深度地下開発においては、地盤の遮水性、水密性、及び変形性を向上させ、地盤を安定化させるために注入工事が行われている。   Conventionally, in underground structures such as dams and power plants, large structure foundations, tunnels, underground storage bases, and radioactive waste treatment facilities, and deep underground development in urban areas, In addition, in order to improve the deformability and stabilize the ground, injection work has been performed.

このような社会的に重要度の高い構造物では、地盤の安定性を長期にわたり持続させるため、使用される注入材は、安定性の高い無機粉末又は固化反応する無機粉末を水に分散させた懸濁液型注入材が多く使用されている(非特許文献1参照)。
しかしながら、この懸濁液型注入材を用いる場合、浸透性能が阻害される場合があるなどの施工上の問題が多く、しばしば浸透性不良による地盤の安定性の維持が不充分になる場合があった。
In such a socially important structure, in order to maintain the stability of the ground for a long period of time, the injection material used is a highly stable inorganic powder or a solidified inorganic powder dispersed in water. Many suspension-type injection materials are used (see Non-Patent Document 1).
However, when this suspension-type injection material is used, there are many construction problems such as the infiltration performance being hindered, and maintenance of the stability of the ground due to poor permeability is often insufficient. It was.

その原因としては地盤を構成する地質の影響が大きい。その代表的な地盤としては、未固結や低固結の砂質地盤、あるいは、岩盤に生じている亀裂がミクロンオーダーの開口幅で発達している岩質地盤の場合が多い。
これら地盤では、注入材を細部まで充填するのに高い浸透性能が要求されるため、懸濁液型注入材のように材料の粒子が水に溶けず分散しているものは、その構成粒子の粒子径の大きさと、注入材溶液の粘度により施工結果が左右される。
The cause is the influence of the geology that constitutes the ground. Typical examples of the ground are unconsolidated and low-consolidated sandy ground, or rocky ground where cracks occurring in the rock are developed with an opening width of micron order.
In these grounds, high penetration performance is required to fill the injection material in detail, so that the particles of the material that are not dissolved in water and dispersed like the suspension type injection material, The construction result depends on the size of the particle diameter and the viscosity of the injection solution.

粒子径に関しては、一般に、注入材の最大粒子径が、岩質の場合は亀裂幅の1/3、砂質の場合は地層を構成する砂の粒子径の1/10以下で浸透するといわれている。   Regarding the particle size, it is generally said that the maximum particle size of the injected material penetrates at 1/3 of the crack width in the case of rocky material and 1/10 or less of the particle size of the sand that forms the formation in the case of sandy material. Yes.

また、注入材の粘度に関しては、粘度が高くなれば高くなるほど、抵抗が強くなるため浸透性が悪くなるが、一方で、施工時間の短縮、透水性の低下等の改良効果を得る面では、なるべく強度を高める方が好ましく、この分野では、常に粒子径が小さく、高濃度のスラリーでも低粘性な材料が望まれている。   In addition, regarding the viscosity of the injection material, the higher the viscosity, the worse the resistance because the resistance becomes stronger, but on the other hand, in terms of obtaining improvement effects such as shortening the construction time and water permeability, It is preferable to increase the strength as much as possible. In this field, a material having a small particle diameter and a low viscosity even in a high concentration slurry is desired.

現在、懸濁液型注入材として良く使用されている注入材としては、セメントの粒子径を小さくした微粉セメントに、ポゾラン活性を持つ微粉末、例えば、フライアッシュや高炉スラグを混合した超微粒子セメントなどが開発、使用されている(特許文献1、特許文献2参照)。
しかしながら、超微粒子セメントは、従来の懸濁液型注入材に比べ性能は向上したが、超微粒子セメント自体の製造の限界もあり、最大粒子径で約10μm、平均粒子径で数ミクロン程度の粒子径に留まっており、実際の工事では、超微粒子セメントでも浸透できない空隙がある場合には、充填による緻密化の改良が不充分となる場合があるのが現状である。したがって、このような工事ではさらに高性能の地盤注入材や地盤注入工法の開発が要望されている。
At present, as an injecting material that is often used as a suspension type injecting material, a finely divided cement having a small particle size of cement and a fine powder having pozzolanic activity, such as fly ash or blast furnace slag, are mixed. Have been developed and used (see Patent Document 1 and Patent Document 2).
However, although ultrafine cement has improved performance compared to conventional suspension-type injection materials, there is a limit to the production of ultrafine cement itself, particles with a maximum particle size of about 10 μm and an average particle size of several microns. In actual construction, if there are voids that cannot be penetrated even by ultrafine cement, the improvement of densification by filling may be insufficient. Therefore, there is a demand for the development of higher performance ground injection materials and ground injection methods for such construction.

このような背景において現在では、超微粒子セメントに、粒子径の小さい微粒子を併用し、性能を向上させる注入材が検討されている。
例えば、平均粒子径約1μmのカオリンと超微粒子セメントとを併用する方法(特許文献3)や、シリカフュームと微粒子セメントとを混合し注入材として使用する方法(特許文献4)も提案されている。
しかしながら、カオリンを併用する場合、カオリンの粒子径は最大で5μm、平均粒子径で約1μmと高い浸透性を得るには充分では無く、また、スラリーの粘性についても高濃度では粘性が高くなるため低濃度で使用するものであり、また、セメントとの反応による耐久性についても不明瞭となっている。一方、シリカフュームを併用する場合、シリカフュームを主体とする微粒子シリカを使用しているため、一次粒子は0.5μm程度と粒子径は小さいが、水又はセメント液と単純に混合しただけでは、通常数μm程度に凝集している二次粒子が分散せず大きな粒子が残るという課題がある。
Under such circumstances, an injecting material that improves performance by using fine particles having a small particle diameter in combination with ultrafine particle cement is currently being studied.
For example, a method of using kaolin with an average particle size of about 1 μm and ultrafine cement (Patent Document 3) and a method of mixing silica fume and fine particle cement and using it as an injection material (Patent Document 4) have been proposed.
However, when kaolin is used in combination, the particle size of kaolin is 5 μm at maximum and the average particle size is about 1 μm, which is not sufficient to obtain high permeability, and the viscosity of the slurry is high at high concentrations. It is used at a low concentration, and the durability due to reaction with cement is unclear. On the other hand, when silica fume is used in combination, the primary particle is about 0.5 μm and the particle diameter is small because of the use of fine particle silica mainly composed of silica fume, but it is usually a few μm simply by mixing with water or cement liquid. There is a problem that secondary particles that are aggregated to a certain extent are not dispersed and large particles remain.

また、シリカ微粉末は、セメントと混合して使用した場合、特に濃度が高い程、瞬時に増粘し分散性が低下するため、浸透性能を発揮できないなどの課題がある。
このように微粒子の粉体を使用する場合、微粒子であるが故に発生する問題があり、その課題を如何に解決し最大限の注入効果を得られるかが求められている。
In addition, when silica fine powder is used in combination with cement, the higher the concentration, the higher the viscosity and the lower the dispersibility.
Thus, when the fine particle powder is used, there is a problem that occurs because it is a fine particle, and there is a demand for how to solve the problem and obtain the maximum injection effect.

土木学会第58回年次学術講演会講演予稿集、平成15年9月、第341〜342頁Proceedings of the 58th Annual Conference of the Japan Society of Civil Engineers, September 2003, pp. 341-342 特開2003−336066号公報JP 2003-336066 A 特許第3423913号公報Japanese Patent No. 3423913 特許第3473810号公報Japanese Patent No. 3473810 特許第3219276号公報Japanese Patent No. 3219276

本発明が解決しようとする課題は、微細な空隙により構成された地盤において、従来の懸濁液型注入材以上の微細な空隙への浸透が可能であり、さらに、同等以上の安定性の注入材が得られ、さらに、長期にわたり安定性が持続可能な注入材を提供することであり、さらにその性能を充分に得るための注入工法を提供することである。   The problem to be solved by the present invention is that, in the ground constituted by fine voids, it is possible to penetrate into fine voids more than conventional suspension type injection material, and furthermore, injection of stability equal to or higher than that. It is to provide an injection material from which a material can be obtained, and which can be stably maintained over a long period of time, and also to provide an injection method for obtaining sufficient performance.

本発明は、SiO2成分が85%以上で一次粒子の最大粒子径が1.0μm以下の粒子が90%以上の微粒子シリカと水のみからなり、pHが3以上、9未満で、濃度が5〜60%で、粘度が20〜50mPa・Sのシリカスラリーである注入材であり、濃度が30〜60%である該注入材であり、超音波装置、高速攪拌機、及び湿式粉砕機からなる群より選ばれた一種又は二種以上を用いる注入材の製造方法であり、該注入材を使用してなる注入工法であり、該注入材と、セメント系注入材を併用してなる注入工法である。 The present invention, SiO 2 component comprises only fine particulate silica and water maximum particle size of particles below 1.0μm is 90% or more of primary particles of 85% or more, pH of 3 or more, less than 9, the concentration is 5 60% of an injection material that is a silica slurry having a viscosity of 20 to 50 mPa · S , and the concentration of the injection material is 30 to 60%, and consists of an ultrasonic device, a high-speed stirrer, and a wet pulverizer It is a method for producing an injection material using one or two or more types selected from the above, an injection method using the injection material, and an injection method using the injection material and a cement-based injection material in combination. .

本発明の注入材と注入工法を用いることにより、従来の懸濁液型注入材では浸透性の改良が不可能であった、例えば、数μm以下の地盤の微細な空隙にも浸透でき、さらに、浸透後はセメントから溶出する石灰成分と反応し固化することにより、遮水性を向上させ、また、その効果を長期間持続させることができ、長期耐久性に優れた効果が得られる。   By using the injection material and the injection method of the present invention, it was impossible to improve the permeability with the conventional suspension type injection material, for example, it can penetrate into fine voids in the ground of several μm or less, After permeation, it reacts with the lime component eluted from the cement and solidifies, thereby improving the water barrier property and maintaining the effect for a long period of time, thereby obtaining an effect excellent in long-term durability.

本発明における部や%は特に規定しない限り質量基準で示す。   Unless otherwise specified, parts and% in the present invention are shown on a mass basis.

本発明で使用する微粒子シリカは、金属シリコン、フェロシリコン、又はジルコニアを製造する過程で電気炉から発生するフューム(シリカフューム)を捕集する方法、例えば、金属シリコン粉末を分散させたスラリーを高温場に噴射し燃焼、酸化させる方法、並びに、例えば、四塩化ケイ素等のハロゲン化物のように、ガス化したケイ素化合物を火炎中に送り製造する方法等の、いわゆる、乾式法で製造されるもの、又は、例えば、ケイ酸塩水溶液からのゾルゲル法により沈降生成させ製造する湿式法のいずれの製法で製造されたシリカ粉末を使用することができ、特に限定されるものではない。その中でも特に乾式法で製造された微粒子シリカが、凝集(ストラクチャー)が少なく好ましい。
微粒子シリカのSiO2成分は、85%以上が好ましく、90%以上がより好ましい。
さらに、使用する微粒子シリカの粒子径は、一次粒子の最大粒子径が1.0μm以下が好ましく、0.7μm以下がより好ましい。一次粒子の最大粒子径が1.0μmを超えるとスラリーの粘性を下げると、分散しないで沈降する場合がある。
The fine particle silica used in the present invention is a method for collecting fumes (silica fume) generated from an electric furnace in the process of producing metallic silicon, ferrosilicon, or zirconia, for example, a slurry in which metallic silicon powder is dispersed in a high temperature field. Injected, burned, oxidized, and, for example, a method of sending a gasified silicon compound into a flame, such as a halide such as silicon tetrachloride, produced by a so-called dry method, Alternatively, for example, silica powder produced by any of wet methods of producing by precipitation from a silicate aqueous solution by a sol-gel method can be used, and there is no particular limitation. Of these, fine-particle silica produced by a dry method is particularly preferred because it has less agglomeration (structure).
The SiO 2 component of the fine particle silica is preferably 85% or more, more preferably 90% or more.
Further, the particle diameter of the fine particle silica used is preferably 1.0 μm or less, more preferably 0.7 μm or less, as the maximum particle diameter of primary particles. If the maximum particle size of the primary particles exceeds 1.0 μm, if the viscosity of the slurry is lowered, the primary particles may settle without being dispersed.

本発明では、微粒子シリカを水に分散し、シリカスラリーを調製する。   In the present invention, fine particle silica is dispersed in water to prepare a silica slurry.

本発明におけるシリカスラリーの濃度は、5〜60%が好ましい。通常、シリカスラリーは、実際に使用する上で、濃度が希薄になるとセメントとの反応性が低下したりすることから、また、経済上から、濃度は30〜60%がより好ましい。シリカスラリーの濃度が、5%未満では、沈降分離し、シリカスラリーの安定性を損なう場合があり、60%を超えるとシリカスラリー中での粉体の密度が高くなり均一に分散することが難しく、高粘度となる場合がある。
なお、本発明では、地盤条件に応じ、ミキサ内で通常の濃度30〜60%程度のシリカスラリーを水により希釈することが可能であり、そのときの水/シリカスラリー比は1〜6程度である。
The concentration of the silica slurry in the present invention is preferably 5 to 60%. Usually, when the silica slurry is actually used, the reactivity with the cement is lowered when the concentration is dilute, and from the economical viewpoint, the concentration is more preferably 30 to 60%. If the concentration of the silica slurry is less than 5%, it may cause sedimentation and impair the stability of the silica slurry. If it exceeds 60%, the density of the powder in the silica slurry will increase and it will be difficult to disperse uniformly. In some cases, the viscosity becomes high.
In the present invention, it is possible to dilute a silica slurry having a normal concentration of about 30 to 60% with water in the mixer according to the ground conditions, and the water / silica slurry ratio at that time is about 1 to 6. is there.

シリカスラリーの粘度は、100mPa・S以下が好ましく、20〜50mPa・Sがより好ましい。100mPa・Sを超えるとポンプ圧送時に圧力がかかり、施工性が悪くなったり、地盤への浸透性が低下する場合がある。   The viscosity of the silica slurry is preferably 100 mPa · S or less, and more preferably 20 to 50 mPa · S. If it exceeds 100mPa · S, pressure will be applied when pumping, and workability may be deteriorated or permeability to the ground may be reduced.

本発明では、シリカスラリー中の、1.0μm以下の微粒子シリカが90%以上であることが好ましい。90%未満では、即ち、1.0μmを超える大きい粒子の割合が10%を超えると、浸透性を阻害するため、充分な浸透性が得られない場合がある。
微粒子シリカの粒子径が1.0μmを超えるとシリカスラリー中で沈降し、分散安定性が低下する場合がある。
In the present invention, it is preferable that the fine particle silica of 1.0 μm or less in the silica slurry is 90% or more. If it is less than 90%, that is, if the proportion of large particles exceeding 1.0 μm exceeds 10%, the permeability may be hindered, so that sufficient permeability may not be obtained.
If the particle diameter of the fine particle silica exceeds 1.0 μm, it may settle in the silica slurry and the dispersion stability may be lowered.

本発明では、水で、微粒子シリカを分散し、シリカスラリーを調製するが、水の数%程度までをアルコール類等の水酸基を有する有機化合物で置き換えることも可能である。   In the present invention, fine particle silica is dispersed with water to prepare a silica slurry, but it is also possible to replace up to several percent of water with an organic compound having a hydroxyl group such as alcohols.

本発明の微粒子スラリーは、水のみでの分散も可能だが、濃度が高い場合にはスラリーの安定性を保つために、pHを3以上、9未満にすることが好ましい。pHが3未満では酸性が強く使用する機器等を腐食する恐れがあり、pH9以上では粒子が凝集しスラリーの粘度が大きくなったりゲル化する場合がある。
pHを3以上、9未満にするためには、添加剤を使用することが好ましい。
The fine particle slurry of the present invention can be dispersed only with water, but when the concentration is high, the pH is preferably 3 or more and less than 9 in order to maintain the stability of the slurry. If the pH is less than 3, there is a risk of corroding the equipment that is strongly acidic, and if the pH is 9 or more, the particles may aggregate and the viscosity of the slurry may increase or gel.
In order to make the pH 3 or more and less than 9, it is preferable to use an additive.

添加剤としては、硫酸、塩酸、硝酸、及びリン酸等の無機酸、並びに、クエン酸、リンゴ酸、酒石酸、及びグルコン酸等の有機酸又はその塩等が挙げられ、その中でも有機酸又はその塩が好ましい。
添加剤の使用量は、微粒子シリカ100部に対し、5部以下が好ましく、2部以下がより好ましい。5部を超えると分散性を阻害する場合があり、経済的にも好ましくない。
Examples of additives include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and organic acids such as citric acid, malic acid, tartaric acid, and gluconic acid, and salts thereof, among which organic acids or their Salts are preferred.
The amount of the additive used is preferably 5 parts or less, more preferably 2 parts or less, based on 100 parts of fine-particle silica. If it exceeds 5 parts, dispersibility may be hindered, which is not preferable economically.

本発明で使用する微粒子シリカの分散処理方法は、超音波装置、高速攪拌機、及び湿式粉砕機のいずれを使用する方法でも良く、シリカの凝集状態により、単独又は併用して選択するものであり特に制限されるものではない。これらのうち、粉砕ボールが直接粒子に接触し、凝集を解砕するために分散性能が高い面から、湿式粉砕機を使用する方法が好ましい。   The dispersion treatment method of the fine particle silica used in the present invention may be a method using any of an ultrasonic device, a high-speed stirrer, and a wet pulverizer. It is not limited. Among these, a method using a wet pulverizer is preferable from the viewpoint of high dispersibility in order that the pulverized ball directly contacts the particles and breaks up the aggregation.

超音波装置としては特に限定されるものではないが、一般的に、ホモジナイザーと言われる高出力の超音波機が粉砕効率が良く、好ましい。   Although it does not specifically limit as an ultrasonic device, Generally the high output ultrasonic machine called a homogenizer has a favorable grinding | pulverization efficiency, and is preferable.

高速攪拌機としては、単純に攪拌子が高速で回転するだけではなく、いわゆる、乱流状態となり粒子に剪断力が働くような構造が好ましい。例えば、太平洋機工社製商品名「シャープフローミル」や、特殊機化工業社製商品名「ホモミクサー」、「ホモミックラインミル」、及び「ホモディスパー」などがそれに類する。   As the high-speed stirrer, a structure in which not only the stirrer simply rotates at high speed but also a so-called turbulent state and a shearing force acts on the particles is preferable. For example, the product name “Sharp Flow Mill” manufactured by Taiheiyo Kiko Co., Ltd., the product names “Homomixer”, “Homomic Line Mill”, and “Homo Disper” manufactured by Tokushu Kika Kogyo Co., Ltd. are similar.

また、湿式粉砕機では処理能力が高い装置として、媒体攪拌式ミルや高圧水を使用した粉砕機等が好ましく、粉砕能力の面から媒体攪拌式ミルがより好ましい。さらに媒体攪拌式ミルのなかでも粉砕性能に優れている流通管型ミルが好ましい。   In addition, as a device having a high processing capacity in a wet pulverizer, a medium stirring mill, a pulverizer using high-pressure water, or the like is preferable, and a medium stirring mill is more preferable from the viewpoint of pulverization capability. Furthermore, among the medium agitation mills, a flow tube type mill having excellent grinding performance is preferable.

高圧水を使用した粉砕機とは、例えば、シリカフュームと水とを混合したスラリーに、50〜300MPaの高圧を加え、このスラリーを二つの流路に分岐させ、再度合流する部分で対向衝突させて粉砕するものである。このような粉砕機としてはスギノマシン社製商品名「アルティーマイザー」、ナノマイザー社製商品名「ナノマイザー」、及びマイクロフルイディスク社製商品名「マイクロフルイタイザー」などがあげられる。   A pulverizer using high-pressure water means, for example, that a high pressure of 50 to 300 MPa is applied to a slurry in which silica fume and water are mixed, this slurry is branched into two flow paths, and collided against each other at the part where it merges again. It is to be crushed. Examples of such a pulverizer include a trade name “Ultimizer” manufactured by Sugino Machine, a product name “Nanomizer” manufactured by Nanomizer, and a product name “MicroFluitizer” manufactured by Microfluidic.

本発明の注入材を使用した注入工法としては、通常施工されている注入工法が使用可能であり、特に限定されるものではない。   As an injection method using the injection material of the present invention, a normal injection method can be used and is not particularly limited.

本発明の注入材は、セメントより溶出する成分とポゾラン反応して硬化するため、施工目的により注入材を固結させる必要がある場合には、セメント系注入材と併用することが好ましい。   Since the injection material of the present invention is cured by pozzolanic reaction with components eluted from cement, it is preferable to use it together with a cement-based injection material when it is necessary to consolidate the injection material for the purpose of construction.

併用するセメント系注入材としては、普通セメント、早強セメント、及び高炉セメントなどのセメントや、注入用に開発されたスラグとセメントとを混合した微粒子セメントや、超微粒子セメントや普通セメントを分級した分級セメントなどの特殊セメントを使用する注入材や、例えば、アルミン酸ソーダや水ガラス、又はカルシウムアルミネートなどのセメント鉱物等、一般的にセメント系注入材に分類されるセメントの硬化促進を与える混和剤を使用する注入材や、粘土鉱物を使用する注入材も使用可能であるが、本発明では、本発明の注入材と、粒子径の小さい特殊セメントと併用することが好ましい。   As cement-based injecting materials to be used in combination, cement such as ordinary cement, early-strength cement, and blast furnace cement, fine cement obtained by mixing slag and cement developed for pouring, ultra fine cement and ordinary cement are classified. Admixtures that promote hardening of cements that are generally classified as cement-based injections, such as injections that use special cements such as classified cements, and cement minerals such as sodium aluminate, water glass, or calcium aluminate. An injection material using an agent or an injection material using a clay mineral can be used, but in the present invention, it is preferable to use the injection material of the present invention in combination with a special cement having a small particle diameter.

本発明の注入材をセメント系注入材と併用する場合の注入工法は、セメント系注入材と混合して使用することも可能であるが、セメント系注入材と混合して使用せず、別々に調製した注入材を各々圧送し、地盤中で混合する、又は、注入直前で合流させ注入することが好ましい。
さらに、あらかじめ、セメント系注入材を地盤中に注入し、浸透できず改良が不充分な個所に本発明の注入材を再注入する方法や、あらかじめ、スラリーを注入し、微細な空隙を充填後、セメント系注入材を注入する方法も可能である。
The injection method when the injection material of the present invention is used in combination with a cement-type injection material can be used by mixing with a cement-type injection material, but it is not used by mixing with a cement-type injection material. It is preferable that each of the prepared injection materials is pumped and mixed in the ground, or is joined and injected immediately before injection.
In addition, a cement-based injection material is injected into the ground in advance, and a method of re-injecting the injection material of the present invention into a place where improvement cannot be sufficiently achieved, or after injecting slurry and filling fine voids in advance. A method of injecting a cement-based injection material is also possible.

以下、実施例、比較例をあげて更に詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

実験例1
微粒子シリカと水を配合して、特殊機化工業社製高速攪拌機商品名「T.Kホモディスパーf-モデル」を使用し、回転数5,000rpmで10分間、分散処理し、1.0μm以下の微粒子シリカが95%で、表1に示す濃度や粘度のシリカスラリーを調製し、その浸透性とブリーディング率を評価した。結果を表1に併記する。
Experimental example 1
Fine particles of 1.0μm or less are blended with fine silica and water, dispersed using a high-speed stirrer trade name “TK homodisper f-model” manufactured by Tokushu Kika Kogyo Co., Ltd. for 10 minutes at a rotational speed of 5,000 rpm. A silica slurry having a silica content of 95% and the concentrations and viscosities shown in Table 1 was prepared, and its permeability and bleeding rate were evaluated. The results are also shown in Table 1.

<使用材料>
微粒子シリカ:電気化学工業製、球状シリカ、SiO2成分98%以上、一次最大粒子径0.7μm、一次粒子平均粒子径0.5μm
水 :水道水
<Materials used>
Fine particle silica: manufactured by Denki Kagaku Kogyo, spherical silica, SiO 2 component 98% or more, primary maximum particle size 0.7μm, primary particle average particle size 0.5μm
Water: Tap water

<測定方法>
粘度 :B型回転粘度計を用いて測定
浸透性 :豊浦標準砂を充填した径5cm、長さ50cmの円筒の上部より注入材1,000ccを流し込み、その浸透距離を測定
ブリーディング率:φ50cm×30cmのビニルチューブに試料を充填し、充填長さに対する、1日静置後にスラリーと分離している水の高さの比率を測定
<Measurement method>
Viscosity: Measured using a B-type rotational viscometer Penetration: 1000 cc of injected material is poured from the top of a cylinder with a diameter of 5 cm and a length of 50 cm filled with Toyoura standard sand, and the penetration distance is measured. Bleeding rate: φ50 cm x 30 cm Fill the vinyl tube with the sample and measure the ratio of the height of the water separated from the slurry after standing for one day to the filling length.

Figure 0005165201
Figure 0005165201

実験例2
微粒子シリカと水を配合して、濃度50%、粘度50mPa・Sで、表2に示す1.0μm以下の微粒子シリカを含有するシリカスラリーを調製して、浸透性を評価したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
Experimental Example 1 except that a silica slurry containing fine particle silica having a concentration of 50% and a viscosity of 50 mPa · S and containing 1.0 μm or less of fine particle silica as shown in Table 2 was prepared and the permeability was evaluated. As well as. The results are also shown in Table 2.

<測定方法>
1.0μm以下の微粒子シリカ:粒度分布、レーザー回折/散乱式粒度分布測定機、HORIBA社製商品名「LA-910W」を用い測定
<Measurement method>
Fine particle silica of 1.0μm or less: particle size distribution, laser diffraction / scattering type particle size distribution analyzer, measured using the product name “LA-910W” manufactured by HORIBA

Figure 0005165201
Figure 0005165201

実験例3
粘度50mPa・Sで、表3に示す濃度と1.0μm以下の微粒子シリカを含有するシリカスラリーを調製したこと以外は実験例2と同様に行った。結果を表3に併記する。
Experimental example 3
It was carried out in the same manner as in Experimental Example 2 except that a silica slurry containing a concentration shown in Table 3 and a fine particle silica of 1.0 μm or less with a viscosity of 50 mPa · S was prepared. The results are also shown in Table 3.

Figure 0005165201
Figure 0005165201

実験例4
濃度50%で、表4に示す粘度と1.0μm以下の微粒子シリカを含有するシリカスラリーを調製したこと以外は実験例2と同様に行った。結果を表4に併記する。
Experimental Example 4
The experiment was conducted in the same manner as in Experimental Example 2 except that a silica slurry containing a viscosity shown in Table 4 and a fine particle silica of 1.0 μm or less was prepared at a concentration of 50%. The results are also shown in Table 4.

Figure 0005165201
Figure 0005165201

実験例5
表5に示す濃度、粘度、及び1.0μm以下の微粒子シリカを含有するシリカスラリーを調製したこと以外は実験例2と同様に行った。結果を表5に併記する。
Experimental Example 5
The experiment was performed in the same manner as in Experimental Example 2 except that a silica slurry containing the concentration, viscosity, and fine particle silica of 1.0 μm or less shown in Table 5 was prepared. The results are also shown in Table 5.

Figure 0005165201
Figure 0005165201

実験例6
表6に示す濃度、粘度、及び1.0μm以下の微粒子シリカを含有するシリカスラリーのpHを添加剤を使用して変化して、シリカスラリーを調製したこと以外は実験例2と同様に行った。結果を表6に併記する。
Experimental Example 6
The experiment was conducted in the same manner as in Experimental Example 2 except that the silica slurry was prepared by changing the concentration, viscosity, and pH of the silica slurry containing fine particle silica of 1.0 μm or less shown in Table 6 using an additive. The results are also shown in Table 6.

<使用材料>
添加剤 :1級硫酸、純度97%以上、キシダ化学社製
添加剤 :1級試薬、水酸化ナトリウム、純度95%以上、関東化学社製
<Materials used>
Additive: 1st grade sulfuric acid, purity 97% or more, manufactured by Kishida Chemical Co., Ltd. 1st grade reagent, sodium hydroxide, purity 95% or more, manufactured by Kanto Chemical Co., Inc.

<測定方法>
pH :HORIBA社製pHメーターD−51を用い測定
<Measurement method>
pH: measured using pH meter D-51 manufactured by HORIBA

Figure 0005165201
Figure 0005165201

実験例7
表7に示す装置を使用して分散処理をしたこと以外は実験例2と同様に行った。結果を表7に併記する。
Experimental Example 7
The same procedure as in Experimental Example 2 was performed except that the dispersion treatment was performed using the apparatus shown in Table 7. The results are also shown in Table 7.

<測定方法>
超音波装置:日本精機社製商品名「ウルトラソニックUS-300」
湿式粉砕機:ターボ工業社製商品名「OBミル」
<Measurement method>
Ultrasonic device: Product name “Ultrasonic US-300” manufactured by Nippon Seiki Co., Ltd.
Wet crusher: Product name "OB Mill" manufactured by Turbo Industry Co., Ltd.

Figure 0005165201
Figure 0005165201

ダムや発電所等、大型構造の基礎、トンネル、地下備蓄基地、及び放射性廃棄物処理施設等の地下構造物や都市部の大深度地下開発等、地盤の遮水性、水密性、及び変形性を向上させる注入工事に適用可能である。   Improve the water-blocking, water-tightness, and deformability of the ground, such as dams and power plants, underground structures such as large structures, tunnels, underground storage bases, and radioactive waste treatment facilities, and deep underground development in urban areas. It can be applied to improved injection construction.

Claims (5)

SiO2成分が85%以上で一次粒子の最大粒子径が1.0μm以下の粒子が90%以上の微粒子シリカと水のみからなり、pHが3以上、9未満で、濃度が5〜60%で、粘度が20〜50mPa・Sのシリカスラリーである注入材。 SiO 2 component comprises only fine particulate silica and water maximum particle size of particles below 1.0μm is 90% or more of primary particles of 85% or more, pH of 3 or more, less than 9, the concentration is 5 to 60% An injection material which is a silica slurry having a viscosity of 20 to 50 mPa · S. 濃度が30〜60%である請求項1に記載の注入材。   The injection material according to claim 1, wherein the concentration is 30 to 60%. 超音波装置、高速攪拌機、及び湿式粉砕機からなる群より選ばれた一種又は二種以上を用いる請求項1または2に記載の注入材の製造方法。   The manufacturing method of the injection material of Claim 1 or 2 using 1 type, or 2 or more types selected from the group which consists of an ultrasonic device, a high-speed stirrer, and a wet crusher. 請求項1または2に記載の注入材を使用してなる注入工法。   An injection method using the injection material according to claim 1. 請求項1または2に記載の注入材と、セメント系注入材を併用してなる注入工法。   An injection method comprising the injection material according to claim 1 and 2 in combination with a cement-based injection material.
JP2006036352A 2006-02-14 2006-02-14 Injection material, manufacturing method thereof, and injection method using the same Expired - Fee Related JP5165201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036352A JP5165201B2 (en) 2006-02-14 2006-02-14 Injection material, manufacturing method thereof, and injection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036352A JP5165201B2 (en) 2006-02-14 2006-02-14 Injection material, manufacturing method thereof, and injection method using the same

Publications (2)

Publication Number Publication Date
JP2007217453A JP2007217453A (en) 2007-08-30
JP5165201B2 true JP5165201B2 (en) 2013-03-21

Family

ID=38495085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036352A Expired - Fee Related JP5165201B2 (en) 2006-02-14 2006-02-14 Injection material, manufacturing method thereof, and injection method using the same

Country Status (1)

Country Link
JP (1) JP5165201B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208588B2 (en) * 2008-06-10 2013-06-12 電気化学工業株式会社 Injection material construction method
JP2011026572A (en) * 2009-07-01 2011-02-10 Denki Kagaku Kogyo Kk Grouting material and grouting workpiece
JP5390442B2 (en) * 2010-03-19 2014-01-15 戸田建設株式会社 How to repair cracks in mortar or concrete at a radioactive waste disposal site
WO2011115245A1 (en) * 2010-03-19 2011-09-22 電気化学工業株式会社 Injection material for repairing cracks in concrete, method for manufacturing same, and injection method using same
WO2012108359A1 (en) * 2011-02-08 2012-08-16 電気化学工業株式会社 Filling material for repairing concrete cracks, and filling method
JP7077778B2 (en) * 2018-05-24 2022-05-31 東亞合成株式会社 Ground improver composition and its use
CN114956721B (en) * 2022-05-06 2023-05-23 山西中科赛德能源科技有限公司 High-strength superfine deep hole grouting reinforcement material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221355A (en) * 1984-04-18 1985-11-06 電気化学工業株式会社 High strength non-shrink grout material
JPS61117143A (en) * 1984-11-13 1986-06-04 電気化学工業株式会社 Slurry silica fume for admixing cement
JP3129745B2 (en) * 1990-12-14 2001-01-31 電気化学工業株式会社 Injection material
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP3451407B2 (en) * 1994-03-15 2003-09-29 株式会社エヌエムビー Silica slurry for cement composition
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JPH08199165A (en) * 1995-01-19 1996-08-06 Denki Kagaku Kogyo Kk High-strength grouting material

Also Published As

Publication number Publication date
JP2007217453A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5165201B2 (en) Injection material, manufacturing method thereof, and injection method using the same
CN103214217B (en) Composite superfine cement grout slurry and preparation method thereof
JP5770180B2 (en) Injection material, injection material manufacturing method and injection method
JPH0841455A (en) Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JP5189274B2 (en) Ground injection material and ground injection method using the same
JP5956931B2 (en) Injection material, injection material manufacturing method, and injection method
JP6159963B1 (en) Ground injection material and ground improvement method
JP5401664B2 (en) Injection material construction method
JPH04221116A (en) Grouting engineering method
JP4533190B2 (en) Injection material
JPH1161125A (en) Grouting material
JP6998025B1 (en) Silica grout and ground injection method using it
JP6159195B2 (en) Injection method
JP2010215865A (en) Injection material and injection method
JP4627153B2 (en) Suspension type ground improvement material and manufacturing method thereof
JP5717441B2 (en) Injection material
JP3150380B2 (en) Ground injection agent and its injection method
JP5498695B2 (en) Ground injection material and ground injection method using the same
JP7326384B2 (en) Ground improvement method
JPH08199165A (en) High-strength grouting material
JP4172762B2 (en) Curing material composition for clay soil
JP6058505B2 (en) Injection method
JP5519148B2 (en) Injection material and injection method using the same
JPH11228959A (en) Suspension-type grout
JP6450573B2 (en) Ground injection material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5165201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees