[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5162728B1 - Conductive material and connection structure - Google Patents

Conductive material and connection structure Download PDF

Info

Publication number
JP5162728B1
JP5162728B1 JP2012537045A JP2012537045A JP5162728B1 JP 5162728 B1 JP5162728 B1 JP 5162728B1 JP 2012537045 A JP2012537045 A JP 2012537045A JP 2012537045 A JP2012537045 A JP 2012537045A JP 5162728 B1 JP5162728 B1 JP 5162728B1
Authority
JP
Japan
Prior art keywords
conductive material
conductive
connection
weight
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012537045A
Other languages
Japanese (ja)
Other versions
JPWO2013021895A1 (en
Inventor
彰 結城
淳一 島岡
洋 小林
英亮 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012537045A priority Critical patent/JP5162728B1/en
Application granted granted Critical
Publication of JP5162728B1 publication Critical patent/JP5162728B1/en
Publication of JPWO2013021895A1 publication Critical patent/JPWO2013021895A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • H01L2224/83011Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

カチオン発生剤を用いているにも関わらず、接続対象部材の電極間を電気的に接続した場合に、得られる接続構造体の導通信頼性及び絶縁信頼性を高めることができる導電材料、並びに該導電材料を用いた接続構造体を提供する。
本発明に係る導電材料は、硬化性成分と、陽イオン交換体と、陰イオン交換体と、導電性粒子5とを含む。上記硬化性成分は、硬化性化合物と、カチオン発生剤とを含有する。本発明に係る接続構造体1は、第1の接続対象部材2と、第2の接続対象部材4と、第1,第2の接続対象部材2,4を電気的に接続している接続部3とを備える。接続部3は、上記導電材料を硬化させることにより形成されている。
【選択図】図1
In spite of using a cation generator, when the electrodes of the connection target member are electrically connected, a conductive material capable of improving the conduction reliability and insulation reliability of the resulting connection structure, and the A connection structure using a conductive material is provided.
The conductive material according to the present invention includes a curable component, a cation exchanger, an anion exchanger, and conductive particles 5. The curable component contains a curable compound and a cation generator. The connection structure 1 according to the present invention includes a connection part that electrically connects the first connection target member 2, the second connection target member 4, and the first and second connection target members 2, 4. 3. The connecting portion 3 is formed by curing the conductive material.
[Selection] Figure 1

Description

本発明は、複数の導電性粒子を含む導電材料に関し、例えば、フレキシブルプリント基板、ガラス基板、ガラスエポキシ基板、半導体チップ及び有機エレクトロルミネッセンス表示素子用基板などの様々な接続対象部材の電極間を電気的に接続するために用いることができる導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。   The present invention relates to a conductive material including a plurality of conductive particles, and for example, electrically connects electrodes of various connection target members such as a flexible printed circuit board, a glass substrate, a glass epoxy substrate, a semiconductor chip, and an organic electroluminescence display element substrate. The present invention relates to a conductive material that can be used for connection. The present invention also relates to a connection structure using the conductive material.

ペースト状又はフィルム状の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂などに複数の導電性粒子が分散されている。   Pasty or film-like anisotropic conductive materials are widely known. In the anisotropic conductive material, a plurality of conductive particles are dispersed in a binder resin or the like.

上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。   In order to obtain various connection structures, the anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)) or a connection between a semiconductor chip and a flexible printed circuit board (COF ( Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.

上記異方性導電材料の一例として、下記の特許文献1には、熱硬化性樹脂を主成分とする樹脂成分と、電極から解離する金属イオンを捕捉する金属イオン捕捉剤と、導電性粒子とを含む異方性導電材料が開示されている。上記金属イオン捕捉剤は導電性粒子よりも小さい粒径を有する。   As an example of the anisotropic conductive material, the following Patent Document 1 includes a resin component mainly composed of a thermosetting resin, a metal ion scavenger for capturing metal ions dissociated from an electrode, and conductive particles. An anisotropic conductive material containing is disclosed. The metal ion scavenger has a smaller particle size than the conductive particles.

下記の特許文献2には、絶縁性接着剤と、導電性粒子と、無機イオン交換体とを含む異方性導電材料が開示されている。   The following Patent Document 2 discloses an anisotropic conductive material including an insulating adhesive, conductive particles, and an inorganic ion exchanger.

また、下記の特許文献3には、脂環式エポキシ樹脂と、ジオール類と、エポキシ基を有するスチレン系熱可塑性エラストマーと、紫外線活性型カチオン重合触媒と、導電性粒子とを含む異方性導電材料が開示されている。   Patent Document 3 listed below discloses an anisotropic conductive material comprising an alicyclic epoxy resin, a diol, a styrenic thermoplastic elastomer having an epoxy group, an ultraviolet active cationic polymerization catalyst, and conductive particles. A material is disclosed.

下記の特許文献4には、硬化剤と、硬化性の絶縁性樹脂と、導電性粒子と、イオン捕捉剤粒子とを含む異方導電性接着シートが開示されている。特許文献4では、イオン捕捉剤粒子が交換するイオンのタイプに関しては、陽イオンタイプ、陰イオンタイプ及び両イオンタイプがあることが記載されている。また、特許文献4では、電極端子のイオンマイグレーションの直接の原因になる金属イオン(陽イオン)と、電気伝導度を上昇させ、金属イオンを生成する原因になる陰イオンとを両方とも交換できるため、両イオンタイプが好ましいことが記載されている。   Patent Document 4 below discloses an anisotropic conductive adhesive sheet including a curing agent, a curable insulating resin, conductive particles, and ion scavenger particles. In Patent Document 4, it is described that there are a cation type, an anion type, and a both ion type regarding the types of ions exchanged by the ion scavenger particles. Moreover, in patent document 4, since both the metal ion (positive ion) which causes the ion migration of an electrode terminal directly, and the anion which raises electrical conductivity and produces a metal ion can be exchanged. Both ion types are described as being preferred.

特開2001−237006号公報JP 2001-237006 A 特開平10−245528号公報Japanese Patent Laid-Open No. 10-245528 特開平11−060899号公報JP-A-11-060899 特開2007−16088号公報JP 2007-16088 A

上記異方性導電材料により、例えば、半導体チップの電極とガラス基板の電極とを電気的に接続する際には、ガラス基板上に、導電性粒子を含む異方性導電材料を配置する。次に、半導体チップを積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、かつ導電性粒子を介して電極間を電気的に接続し、接続構造体を得る。   For example, when the electrode of the semiconductor chip and the electrode of the glass substrate are electrically connected by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass substrate. Next, the semiconductor chips are stacked, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.

特許文献1〜4に記載のような従来の異方性導電材料を用いて接続構造体を作製すると、得られた接続構造体が高湿下で通電した状態で使用されると、マイグレーションが生じることがある。このため、上記接続構造体の絶縁信頼性が低いことがある。   When a connection structure is produced using conventional anisotropic conductive materials as described in Patent Documents 1 to 4, migration occurs when the obtained connection structure is used in a state of being energized under high humidity. Sometimes. For this reason, the insulation reliability of the connection structure may be low.

特に、特許文献3に記載のようなカチオン発生剤を含む従来の異方性導電材料を用いた接続構造体では、高湿下で通電した状態での使用により、マイグレーションが生じやすいという問題がある。   In particular, a connection structure using a conventional anisotropic conductive material containing a cation generator as described in Patent Document 3 has a problem that migration is likely to occur due to use in a state of being energized under high humidity. .

また、特許文献4に記載のように、イオン捕捉剤を用いただけでは、マイグレーションを十分に抑制できないことがある。さらに、特許文献4の実施例では、陽イオンタイプのイオン捕捉剤粒子と、陰イオンタイプのイオン捕捉剤粒子との内いずれかが用いられているにすぎない。特許文献4の実施例で用いられている陽イオンタイプのイオン捕捉剤粒子及び陰イオンタイプのイオン捕捉剤粒子、並びに特許文献4で挙げられた両イオンタイプのイオン捕捉剤粒子では、他の配合成分の種類により、マイグレーションを十分に抑制できないことがある。   Moreover, as described in Patent Document 4, migration may not be sufficiently suppressed only by using an ion scavenger. Furthermore, in the Example of patent document 4, any one of a cation type ion capture agent particle and an anion type ion capture agent particle is used. In the examples of the cation type ion scavenger particles and the anion type ion scavenger particles used in the examples of Patent Document 4, and the both ion type ion scavenger particles mentioned in Patent Document 4, other formulations are used. Depending on the type of component, migration may not be sufficiently suppressed.

また、近年、上記接続構造体における電極幅/電極間幅であるL/S(ライン/スペース)がより一層小さくなってきている。上記接続構造体における電極のL/Sが小さいほど、マイグレーションが生じたときに、絶縁不良が生じやすいという問題がある。   In recent years, L / S (line / space) which is the electrode width / interelectrode width in the connection structure has been further reduced. As the L / S of the electrode in the connection structure is smaller, there is a problem that an insulation failure is more likely to occur when migration occurs.

本発明の目的は、カチオン発生剤を用いているにも関わらず、接続対象部材の電極間を電気的に接続した場合に、得られる接続構造体の導通信頼性及び絶縁信頼性を高めることができる導電材料、並びに該導電材料を用いた接続構造体を提供することである。   The object of the present invention is to improve the conduction reliability and insulation reliability of the resulting connection structure when the electrodes of the connection target members are electrically connected despite the use of a cation generator. It is to provide a conductive material that can be formed, and a connection structure using the conductive material.

本発明の広い局面によれば、硬化性成分と、陽イオン交換体と、陰イオン交換体と、導電性粒子とを含み、上記硬化性成分が、硬化性化合物と、カチオン発生剤とを含有する、導電材料が提供される。   According to a wide aspect of the present invention, the curable component includes a curable component, a cation exchanger, an anion exchanger, and conductive particles, and the curable component includes a curable compound and a cation generator. A conductive material is provided.

本発明に係る導電材料のある特定の局面では、上記陽イオン交換体の中性交換容量が2meq/g以上であり、かつ上記陰イオン交換体の中性交換容量が1meq/g以上である。   In a specific aspect of the conductive material according to the present invention, the cation exchanger has a neutral exchange capacity of 2 meq / g or more, and the anion exchanger has a neutral exchange capacity of 1 meq / g or more.

上記陽イオン交換体はジルコニウム原子を含むことが好ましい。上記陰イオン交換体は、マグネシウム原子とアルミニウム原子とを含むことが好ましい。   The cation exchanger preferably contains a zirconium atom. The anion exchanger preferably contains a magnesium atom and an aluminum atom.

本発明に係る導電材料の他の特定の局面では、上記硬化性化合物100重量部に対して、上記陽イオン交換体の含有量が0.01重量部以上、5重量部以下であり、かつ上記陰イオン交換体の含有量が0.01重量部以上、5重量部以下である。   In another specific aspect of the conductive material according to the present invention, the content of the cation exchanger is 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the curable compound, and The content of the anion exchanger is 0.01 parts by weight or more and 5 parts by weight or less.

本発明に係る導電材料の別の特定の局面では、上記導電性粒子が、樹脂粒子と、該樹脂粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外側の表面が、融点が450℃以下である低融点金属層である。   In another specific aspect of the conductive material according to the present invention, the conductive particles include resin particles and a conductive layer disposed on the surface of the resin particles, and at least the outer surface of the conductive layer is A low melting point metal layer having a melting point of 450 ° C. or lower.

本発明に係る導電材料のさらに別の特定の局面では、フラックスがさらに含まれている。   In another specific aspect of the conductive material according to the present invention, a flux is further included.

本発明に係る導電材料は、銅電極を有する接続対象部材を接続するために用いられる導電材料であることが好ましい。   The conductive material according to the present invention is preferably a conductive material used for connecting a connection target member having a copper electrode.

本発明に係る導電材料は、異方性導電材料であることが好ましい。   The conductive material according to the present invention is preferably an anisotropic conductive material.

本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備え、該接続部が、上述した導電材料により形成されている。   A connection structure according to the present invention includes a first connection target member, a second connection target member, and a connection part that electrically connects the first and second connection target members, The connection part is formed of the conductive material described above.

本発明に係る接続構造体のある特定の局面では、上記第1の接続対象部材が表面に第1の電極を有し、上記第2の接続対象部材が表面に第2の電極を有し、上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されており、上記第1の電極及び上記第2の電極の内の少なくとも一方が、銅電極である。   In a specific aspect of the connection structure according to the present invention, the first connection target member has a first electrode on the surface, the second connection target member has a second electrode on the surface, The first electrode and the second electrode are electrically connected by the conductive particles, and at least one of the first electrode and the second electrode is a copper electrode.

本発明に係る導電材料は、硬化性化合物及びカチオン発生剤を含有する硬化性成分と導電性粒子とを含み、更に陽イオン交換体と陰イオン交換体との双方を含むので、カチオン発生剤を用いているにも関わらず、接続対象部材の電極間を電気的に接続した場合に、得られる接続構造体の導通信頼性及び絶縁信頼性を高めることができる。   The conductive material according to the present invention includes a curable component and a conductive particle containing a curable compound and a cation generator, and further includes both a cation exchanger and an anion exchanger. In spite of being used, when the electrodes of the connection target members are electrically connected, the conduction reliability and the insulation reliability of the obtained connection structure can be improved.

図1は、本発明の一実施形態に係る導電材料を用いた接続構造体を模式的に示す正面断面図である。FIG. 1 is a front sectional view schematically showing a connection structure using a conductive material according to an embodiment of the present invention. 図2(a)〜(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を得る各工程を説明するための正面断面図である。2A to 2C are front cross-sectional views for explaining each step of obtaining a connection structure using a conductive material according to an embodiment of the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る導電材料は、硬化性成分と、陽イオン交換体と、陰イオン交換体と、導電性粒子とを含む。上記硬化性成分は、硬化性化合物と、カチオン発生剤とを含有する。   The conductive material according to the present invention includes a curable component, a cation exchanger, an anion exchanger, and conductive particles. The curable component contains a curable compound and a cation generator.

本発明に係る導電材料が上述した組成を有することにより、特に陽イオン交換体と陰イオン交換体との双方を用いることにより、カチオン発生剤を用いているにも関わらず、接続対象部材の電極間を電気的に接続した場合に、得られる接続構造体の導通信頼性及び絶縁信頼性を高めることができる。特に、該接続構造体が高湿下で通電した状態で使用されても、導電性粒子における導電部及び電極にマイグレーションが生じ難くなり、高い絶縁信頼性を十分に確保できる。   When the conductive material according to the present invention has the above-described composition, particularly by using both a cation exchanger and an anion exchanger, the electrode of the connection target member is used although the cation generator is used. When the gaps are electrically connected, the conduction reliability and the insulation reliability of the obtained connection structure can be improved. In particular, even when the connection structure is used in a state of being energized under high humidity, migration hardly occurs in the conductive portions and the electrodes in the conductive particles, and high insulation reliability can be sufficiently ensured.

本発明に係る導電材料では、上記硬化性成分は、硬化性化合物と硬化剤とを含有する。上記硬化剤は、カチオン発生剤を含有する。導電材料がカチオン発生剤を含むことによって、接続構造体におけるマイグレーションが生じやすい傾向がある。これに対して、本発明に係る導電材料が、硬化性化合物及びカチオン発生剤を含有する硬化性成分と導電性粒子とを含み、更に陽イオン交換体と陰イオン交換体との双方を含むので、カチオン発生剤を用いているにも関わらず、接続構造体におけるマイグレーションを効果的に抑制でき、絶縁信頼性を効果的に高めることができる。   In the conductive material according to the present invention, the curable component contains a curable compound and a curing agent. The curing agent contains a cation generator. When the conductive material contains a cation generator, migration in the connection structure tends to occur. On the other hand, the conductive material according to the present invention includes a curable component containing a curable compound and a cation generator and conductive particles, and further includes both a cation exchanger and an anion exchanger. Although the cation generator is used, migration in the connection structure can be effectively suppressed, and insulation reliability can be effectively increased.

また、本発明らは、カチオン発生剤を用いることで、カチオン発生剤以外の熱硬化剤(イミダゾール化合物など)を用いた場合と比べて、導通信頼性を効果的に高めることができることを見出した。   In addition, the present inventors have found that by using a cation generator, the conduction reliability can be effectively increased as compared to the case where a thermosetting agent other than the cation generator (such as an imidazole compound) is used. .

また、本発明者らは、陽イオン交換体と陰イオン交換体との双方を併用することで、陽イオン交換体を単独で用いたり、陰イオン交換体を単独で用いたり、両イオン交換体を単独で用いたりした場合と比べて、カチオン発生剤を含む導電材料において、マイグレーションの発生をかなり効果的に抑制でき、絶縁信頼性を効果的に高めることができることを見出した。   In addition, the present inventors can use both a cation exchanger and an anion exchanger to use a cation exchanger alone, an anion exchanger alone, or both ion exchangers. It has been found that the occurrence of migration can be suppressed considerably effectively and the insulation reliability can be effectively increased in a conductive material containing a cation generator as compared with the case where is used alone.

本発明に係る導電材料には、イオン交換体として、陽イオン交換体のみを含む導電材料は含まれない。本発明に係る導電材料には、イオン交換体として、陰イオン交換体のみを含む導電材料は含まれない。本発明に係る導電材料には、イオン交換体として、両イオン交換体を含み、かつ陽イオン交換体と陰イオン交換体との双方を含まない導電材料は含まれない。   The conductive material according to the present invention does not include a conductive material containing only a cation exchanger as an ion exchanger. The conductive material according to the present invention does not include a conductive material containing only an anion exchanger as an ion exchanger. The conductive material according to the present invention does not include a conductive material that includes both ion exchangers and does not include both a cation exchanger and an anion exchanger as an ion exchanger.

また、低温速硬化のためには、カチオン硬化系を適用することが好ましい。カチオン発生剤の分子構造中に含まれるイオン性成分が組成物中に拡散しやすいこと、並びにエポキシ化合物などのカチオン硬化性化合物が塩素イオンを含むことがあることなどの理由により、カチオン発生剤を用いた場合には、微量のイオン性成分による電極腐食が起こりやい。このため、カチオン発生剤を用いた場合には、電極間の接続信頼性に課題がある。   Moreover, it is preferable to apply a cationic curing system for low temperature rapid curing. The cation generator is used because the ionic component contained in the molecular structure of the cation generator tends to diffuse into the composition and the cation curable compound such as an epoxy compound may contain chlorine ions. When used, electrode corrosion due to a small amount of ionic components is likely to occur. For this reason, when a cation generator is used, there is a problem in connection reliability between electrodes.

一方で、イオン交換体を適用することは、上記課題に対し効果は得られるが、その効果は十分ではないことがある。陽イオン交換体と陰イオン交換体との内のいずれかのイオン交換体のみを用いるのではなく、陽イオン交換体と陰イオン交換体との双方を用いることで、上記課題に対し著しい効果が得られることを見出した。これは、陽イオン交換体と陰イオン交換体との内の一方のみを用いる場合は、一方のイオンのみが捕捉されることで、カチオン発生剤等の乖離平衡のバランスがくずれ、その結果対イオンが遊離した状態になって存在し続けるため、組成物中のイオン成分の悪影響を十分に低減できないためと考えられる。また、陰陽両性のイオン捕捉能を持つ両イオン交換体を用いるよりも、陽イオン交換体と陰イオン交換体との双方を用いる方が、上記課題に対しより一層効果的である。この理由は明らかではないが、陰陽両性のイオン捕捉能を持つ化合物は、陰陽それぞれの捕捉能を有するサイトが近接するために捕捉能を打ち消しあって効果が低減することが考えられる。   On the other hand, application of an ion exchanger is effective for the above problem, but the effect may not be sufficient. By using both the cation exchanger and the anion exchanger, rather than using only one of the cation exchanger and the anion exchanger, a significant effect on the above problems can be achieved. It was found that it can be obtained. This is because when only one of the cation exchanger and the anion exchanger is used, only one of the ions is trapped, and the balance of the dissociation equilibrium of the cation generator and the like is lost. This is considered to be because the adverse effect of the ionic component in the composition cannot be sufficiently reduced because the salt remains in a free state. In addition, it is more effective to use both the cation exchanger and the anion exchanger than the above-described both ion exchangers having an anion-positive amphoteric ion capturing ability. The reason for this is not clear, but it is conceivable that a compound having an yin and yang amphoteric ion trapping ability cancels the trapping ability because the sites having the respective yin and yang trapping ability are close to each other, thereby reducing the effect.

本発明に係る導電材料を硬化させる方法としては、導電材料に光を照射する方法、導電材料を加熱する方法、導電材料に光を照射した後、導電材料を加熱する方法、並びに導電材料を加熱した後、導電材料に光を照射する方法が挙げられる。また、光硬化の速度及び熱硬化の速度が異なる場合などには、光の照射と加熱とを同時に行ってもよい。なかでも、導電材料に光を照射した後、導電材料を加熱する方法が好ましい。光硬化と熱硬化との併用により、導電材料を短時間で硬化させることができる。   As a method of curing the conductive material according to the present invention, a method of irradiating the conductive material with light, a method of heating the conductive material, a method of heating the conductive material after irradiating the conductive material with light, and heating the conductive material Then, a method of irradiating the conductive material with light can be mentioned. In addition, when the photocuring speed and the thermosetting speed are different, light irradiation and heating may be performed simultaneously. Especially, the method of heating a conductive material after irradiating light to a conductive material is preferable. By the combined use of photocuring and heat curing, the conductive material can be cured in a short time.

上記硬化性化合物は、加熱により硬化可能な硬化性化合物(熱硬化性化合物、又は光及び熱硬化性化合物)であってもよく、光の照射により硬化可能な硬化性化合物(光硬化性化合物、又は光及び熱硬化性化合物)であってもよい。上記硬化性化合物は、加熱により硬化可能な硬化性化合物(熱硬化性化合物、又は光及び熱硬化性化合物)であることが好ましい。   The curable compound may be a curable compound (thermosetting compound or light and thermosetting compound) curable by heating, and is curable by irradiation with light (photocurable compound, Or light and thermosetting compounds). The curable compound is preferably a curable compound (thermosetting compound or light and thermosetting compound) that can be cured by heating.

上記導電材料は、加熱により硬化可能な導電材料であり、上記硬化性化合物として、加熱により硬化可能な硬化性化合物(熱硬化性化合物、又は光及び熱硬化性化合物)を含んでいてもよい。該加熱により硬化可能な硬化性化合物は、光の照射により硬化しない硬化性化合物(熱硬化性化合物)であってもよく、光の照射と加熱との双方により硬化可能な硬化性化合物(光及び熱硬化性化合物)であってもよい。   The conductive material is a conductive material curable by heating, and may include a curable compound (thermosetting compound or light and thermosetting compound) curable by heating as the curable compound. The curable compound curable by heating may be a curable compound (thermosetting compound) that is not cured by light irradiation, and is curable by both light irradiation and heating (light and light). Thermosetting compound).

また、上記導電材料は、光の照射と加熱との双方により硬化可能な導電材料であり、上記硬化性化合物として、光の照射により硬化可能な硬化性化合物(光硬化性化合物、又は光及び熱硬化性化合物)をさらに含むことが好ましい。この場合には、光の照射により導電材料を半硬化(Bステージ化)させ、導電材料の流動性を低下させた後、加熱により導電材料を硬化させることができる。上記光の照射により硬化可能な硬化性化合物は、加熱により硬化しない硬化性化合物(光硬化性化合物)であってもよく、光の照射と加熱との双方により硬化可能な硬化性化合物(光及び熱硬化性化合物)であってもよい。   The conductive material is a conductive material that can be cured by both light irradiation and heating, and the curable compound is a curable compound that can be cured by light irradiation (a photocurable compound, or light and heat). It is preferable to further contain a curable compound). In this case, the conductive material can be semi-cured (B-staged) by light irradiation to reduce the fluidity of the conductive material, and then the conductive material can be cured by heating. The curable compound that can be cured by light irradiation may be a curable compound (photocurable compound) that is not cured by heating, and is a curable compound that can be cured by both light irradiation and heating (light and light). Thermosetting compound).

本発明に係る導電材料は、硬化剤を含む。本発明に係る導電材料は、上記硬化剤として、カチオン発生剤を含む。上記カチオン発生剤は、加熱によりカチオンを発生するカチオン発生剤(熱カチオン発生剤、又は光及び熱カチオン発生剤)であってもよく、光の照射によりカチオンを発生するカチオン発生剤(光カチオン発生剤、又は光及び熱カチオン発生剤)であってもよい。上記硬化性化合物は、加熱によりカチオンを発生するカチオン発生剤(熱カチオン発生剤、又は光及び熱カチオン発生剤)であることが好ましい。   The conductive material according to the present invention includes a curing agent. The conductive material according to the present invention includes a cation generator as the curing agent. The cation generator may be a cation generator that generates cations by heating (thermal cation generator, or light and thermal cation generator), and a cation generator that generates cations by light irradiation (photo cation generation). Agent, or light and thermal cation generator). The curable compound is preferably a cation generator that generates cations by heating (thermal cation generator, or light and thermal cation generator).

本発明に係る導電材料は、光硬化開始剤を含んでいてもよい。本発明に係る導電材料は、上記光硬化開始剤として、光ラジカル発生剤を含むことが好ましい。   The conductive material according to the present invention may contain a photocuring initiator. The conductive material according to the present invention preferably contains a photoradical generator as the photocuring initiator.

上記導電材料は、上記硬化性化合物として、熱硬化性化合物を含み、光硬化性化合物、又は光及び熱硬化性化合物をさらに含むことが好ましい。上記導電材料は、上記硬化性化合物として、熱硬化性化合物と光硬化性化合物とを含むことが好ましい。   The conductive material preferably contains a thermosetting compound as the curable compound, and further contains a photocurable compound or light and a thermosetting compound. The conductive material preferably contains a thermosetting compound and a photocurable compound as the curable compound.

以下、先ず、本発明に係る導電材料に好適に用いられる各成分の詳細を説明する。   Hereinafter, first, details of each component suitably used for the conductive material according to the present invention will be described.

(硬化性化合物)
上記導電材料に含まれている硬化性化合物は特に限定されない。上記硬化性化合物として、従来公知の硬化性化合物が使用可能である。上記硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Curable compound)
The curable compound contained in the conductive material is not particularly limited. A conventionally known curable compound can be used as the curable compound. As for the said sclerosing | hardenable compound, only 1 type may be used and 2 or more types may be used together.

上記硬化性化合物は、エポキシ基を有する硬化性化合物を含有することが好ましい。エポキシ基を有する硬化性化合物は、エポキシ化合物である。上記エポキシ基を有する硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。   The curable compound preferably contains a curable compound having an epoxy group. The curable compound having an epoxy group is an epoxy compound. As for the said curable compound which has an epoxy group, only 1 type may be used and 2 or more types may be used together.

上記エポキシ基を有する硬化性化合物は、芳香族環を有することが好ましい。上記芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環及びペリレン環等が挙げられる。なかでも、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。また、ナフタレン環は、平面構造を有するためにより一層速やかに硬化させることができるので好ましい。   The curable compound having an epoxy group preferably has an aromatic ring. Examples of the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetracene ring, chrysene ring, triphenylene ring, tetraphen ring, pyrene ring, pentacene ring, picene ring, and perylene ring. Especially, it is preferable that the said aromatic ring is a benzene ring, a naphthalene ring, or an anthracene ring, and it is more preferable that it is a benzene ring or a naphthalene ring. A naphthalene ring is preferred because it has a planar structure and can be cured more rapidly.

上記導電材料の硬化性を高める観点からは、上記硬化性化合物の全体100重量%中、上記エポキシ基を有する硬化性化合物の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、100重量%以下である。上記硬化性化合物の全量が上記エポキシ基を有する硬化性化合物であってもよい。上記エポキシ基を有する硬化性化合物と該エポキシ基を有する硬化性化合物とは異なる他の硬化性化合物とを併用する場合には、上記硬化性化合物の全体100重量%中、上記エポキシ基を有する硬化性化合物の含有量は、好ましくは99重量%以下、より好ましくは95重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。   From the viewpoint of enhancing the curability of the conductive material, the content of the curable compound having an epoxy group is preferably 10% by weight or more, more preferably 20% by weight or more, in the total 100% by weight of the curable compound. , 100% by weight or less. The total amount of the curable compound may be the curable compound having the epoxy group. When using together the curable compound which has the said epoxy group, and the other curable compound different from the curable compound which has this epoxy group, hardening which has the said epoxy group in the whole 100 weight% of the said curable compound The content of the functional compound is preferably 99% by weight or less, more preferably 95% by weight or less, still more preferably 90% by weight or less, and particularly preferably 80% by weight or less.

上記硬化性化合物は、エポキシ基を有する硬化性化合物とは異なる他の硬化性化合物をさらに含有していてもよい。該他の硬化性化合物としては、不飽和二重結合を有する硬化性化合物、フェノール硬化性化合物、アミノ硬化性化合物、不飽和ポリエステル硬化性化合物、ポリウレタン硬化性化合物、シリコーン硬化性化合物及びポリイミド硬化性化合物等が挙げられる。上記他の硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。   The curable compound may further contain another curable compound different from the curable compound having an epoxy group. Examples of the other curable compounds include curable compounds having an unsaturated double bond, phenol curable compounds, amino curable compounds, unsaturated polyester curable compounds, polyurethane curable compounds, silicone curable compounds, and polyimide curable compounds. Compounds and the like. As for said other curable compound, only 1 type may be used and 2 or more types may be used together.

上記導電材料の硬化を容易に制御したり、接続構造体における導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、不飽和二重結合を有する硬化性化合物を含有することが好ましい。上記導電材料の硬化を容易に制御したり、接続構造体における導通信頼性をさらに一層高めたりする観点からは、上記不飽和二重結合を有する硬化性化合物は、(メタ)アクリロイル基を有する硬化性化合物であることが好ましい。上記(メタ)アクリロイル基を有する硬化性化合物の使用により、Bステージ化した導電材料全体(光が直接照射された部分と光が直接照射されなかった部分とを含む)で硬化率を好適な範囲に制御することが容易になり、得られる接続構造体における導通信頼性がより一層高くなる。   From the viewpoint of easily controlling the curing of the conductive material or further improving the conduction reliability in the connection structure, the curable compound may contain a curable compound having an unsaturated double bond. preferable. From the viewpoint of easily controlling the curing of the conductive material or further enhancing the conduction reliability in the connection structure, the curable compound having an unsaturated double bond is a cured product having a (meth) acryloyl group. It is preferable that it is an ionic compound. By using the curable compound having the (meth) acryloyl group, the curing rate is suitable for the entire B-staged conductive material (including the part directly irradiated with light and the part not directly irradiated with light). Therefore, the conduction reliability in the obtained connection structure is further enhanced.

Bステージ化した導電材料層の硬化率を容易に制御し、更に得られる接続構造体の導通信頼性をより一層高める観点からは、上記(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリロイル基を1個又は2個有することが好ましい。   From the viewpoint of easily controlling the curing rate of the B-staged conductive material layer and further enhancing the conduction reliability of the resulting connection structure, the curable compound having the (meth) acryloyl group is (meth) It preferably has one or two acryloyl groups.

Bステージ化した導電材料層の硬化率を容易に制御し、更に得られる接続構造体の導通信頼性をより一層高める観点からは、上記(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリロイル基を1個又は2個有することが好ましい。   From the viewpoint of easily controlling the curing rate of the B-staged conductive material layer and further enhancing the conduction reliability of the resulting connection structure, the curable compound having the (meth) acryloyl group is (meth) It preferably has one or two acryloyl groups.

上記(メタ)アクリロイル基を有する硬化性化合物としては、エポキシ基を有さず、かつ(メタ)アクリロイル基を有する硬化性化合物、及びエポキシ基を有し、かつ(メタ)アクリロイル基を有する硬化性化合物が挙げられる。   The curable compound having the (meth) acryloyl group has no epoxy group and has a (meth) acryloyl group, and has a epoxy group and a curable compound having a (meth) acryloyl group. Compounds.

上記(メタ)アクリロイル基を有する硬化性化合物として、(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させて得られるエポキシ(メタ)アクリレート、又はイソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させて得られるウレタン(メタ)アクリレート等が好適に用いられる。上記「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基とを示す。上記「(メタ)アクリル」は、アクリルとメタクリルとを示す。上記「(メタ)アクリレート」は、アクリレートとメタクリレートとを示す。   As the curable compound having the (meth) acryloyl group, an ester compound obtained by reacting a (meth) acrylic acid and a compound having a hydroxyl group, an epoxy obtained by reacting (meth) acrylic acid and an epoxy compound ( A (meth) acrylate, a urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with an isocyanate, or the like is preferably used. The “(meth) acryloyl group” refers to an acryloyl group and a methacryloyl group. The “(meth) acryl” refers to acryl and methacryl. The “(meth) acrylate” refers to acrylate and methacrylate.

上記(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物は特に限定されない。該エステル化合物として、単官能のエステル化合物、2官能のエステル化合物及び3官能以上のエステル化合物のいずれも使用可能である。   The ester compound obtained by making the said (meth) acrylic acid and the compound which has a hydroxyl group react is not specifically limited. As the ester compound, any of a monofunctional ester compound, a bifunctional ester compound, and a trifunctional or higher functional ester compound can be used.

上記エポキシ基を有し、かつ(メタ)アクリロイル基を有する硬化性化合物は、エポキシ基を2個以上有する化合物の一部のエポキシ基を、(メタ)アクリロイル基に変換することにより得られる硬化性化合物であることが好ましい。この硬化性化合物は、部分(メタ)アクリレート化エポキシ化合物である。   The curable compound having an epoxy group and a (meth) acryloyl group is obtained by converting a part of the epoxy group of the compound having two or more epoxy groups into a (meth) acryloyl group. A compound is preferred. This curable compound is a partially (meth) acrylated epoxy compound.

上記硬化性化合物は、エポキシ基を2個以上有する化合物と、(メタ)アクリル酸との反応物を含有することが好ましい。この反応物は、エポキシ基を2個以上有する化合物と(メタ)アクリル酸とを、常法に従って酸性触媒などの触媒の存在下で反応させることにより得られる。エポキシ基の20%以上が(メタ)アクリロイル基に変換(転化率)されていることが好ましい。転化率は、より好ましくは30%以上、好ましくは80%以下、より好ましくは70%以下である。エポキシ基の40%以上、60%以下が(メタ)アクリロイル基に変換されていることが最も好ましい。   The curable compound preferably contains a reaction product of a compound having two or more epoxy groups and (meth) acrylic acid. This reaction product is obtained by reacting a compound having two or more epoxy groups with (meth) acrylic acid in the presence of a catalyst such as an acidic catalyst according to a conventional method. It is preferable that 20% or more of the epoxy group is converted (conversion rate) to a (meth) acryloyl group. The conversion is more preferably 30% or more, preferably 80% or less, more preferably 70% or less. Most preferably, 40% or more and 60% or less of the epoxy groups are converted to (meth) acryloyl groups.

上記部分(メタ)アクリレート化エポキシ化合物としては、ビスフェノール型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。   Examples of the partially (meth) acrylated epoxy compound include bisphenol type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac type epoxy (meth) acrylate. Is mentioned.

上記硬化性化合物として、エポキシ基を2個以上有するフェノキシ樹脂の一部のエポキシ基が(メタ)アクリロイル基に変換された変性フェノキシ樹脂を用いてもよい。すなわち、エポキシ基と(メタ)アクリロイル基とを有する変性フェノキシ樹脂を用いてもよい。   As the curable compound, a modified phenoxy resin in which a part of the epoxy group of the phenoxy resin having two or more epoxy groups is converted to a (meth) acryloyl group may be used. That is, a modified phenoxy resin having an epoxy group and a (meth) acryloyl group may be used.

また、上記硬化性化合物は、架橋性化合物であってもよく、非架橋性化合物であってもよい。   The curable compound may be a crosslinkable compound or a non-crosslinkable compound.

上記架橋性化合物の具体例としては、例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレート等が挙げられる。   Specific examples of the crosslinkable compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerol methacrylate acrylate, pentaerythritol tri (meth) acrylate, tri Examples include methylolpropane trimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, polyester (meth) acrylate, and urethane (meth) acrylate.

上記非架橋性化合物の具体例としては、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート及びテトラデシル(メタ)アクリレート等が挙げられる。   Specific examples of the non-crosslinkable compound include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, and the like.

熱硬化性化合物と光硬化性化合物とを併用する場合には、光硬化性化合物と熱硬化性化合物との配合比は、光硬化性化合物と熱硬化性化合物との種類に応じて適宜調整される。上記導電材料は、光硬化性化合物と熱硬化性化合物とを重量比で、1:99〜90:10で含むことが好ましく、5:95〜60:40で含むことがより好ましく、10:90〜40:60で含むことが更に好ましい。   When a thermosetting compound and a photocurable compound are used in combination, the blending ratio of the photocurable compound and the thermosetting compound is appropriately adjusted according to the type of the photocurable compound and the thermosetting compound. The The conductive material preferably contains a photocurable compound and a thermosetting compound in a weight ratio of 1:99 to 90:10, more preferably 5:95 to 60:40, and more preferably 10:90. More preferably, it is contained at ˜40: 60.

(硬化剤)
上記導電材料は、硬化剤を含む。該硬化剤は、熱硬化剤であってもよく、光硬化開始剤であってもよい。該硬化剤は、カチオン発生剤を含む。該カチオン発生剤として従来公知のカチオン発生剤が使用可能である。また、本発明では、カチオン発生剤は、導電材料を光硬化のみさせるための光カチオン発生剤として用いるのではなく、導電材料を少なくとも熱硬化させるための熱カチオン発生剤として用いることが好ましい。さらに、本発明では、カチオン発生剤は、導電材料を光硬化させるための光カチオン発生剤として用いるのではなく、導電材料を熱硬化させるための熱カチオン発生剤として用いることが好ましい。上記カチオン発生剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Curing agent)
The conductive material includes a curing agent. The curing agent may be a thermosetting agent or a photocuring initiator. The curing agent includes a cation generator. Conventionally known cation generators can be used as the cation generator. In the present invention, the cation generator is preferably used as a thermal cation generator for at least thermally curing the conductive material, not as a photo cation generator for only photocuring the conductive material. Furthermore, in the present invention, the cation generator is preferably used as a thermal cation generator for thermosetting the conductive material, not as a photo cation generator for photocuring the conductive material. As for the said cation generator, only 1 type may be used and 2 or more types may be used together.

上記カチオン発生剤として、ヨードニウム塩及びスルフォニウム塩が好適に用いられる。例えば、上記カチオン発生剤の市販品としては、三新化学社製のサンエイドSI−45L、SI−60L、SI−80L、SI−100L、SI−110L、SI−150L、楠本化成社製のK−PURE、並びにADEKA社製のアデカオプトマーSP−150、SP−170等が挙げられる。   As the cation generator, iodonium salts and sulfonium salts are preferably used. For example, as a commercial item of the above cation generator, San-Aid SI-45L, SI-60L, SI-80L, SI-100L, SI-110L, SI-150L manufactured by Sanshin Chemical Co., Ltd., K- manufactured by Enomoto Kasei Co., Ltd. PURE, Adeka optomer SP-150, SP-170 manufactured by ADEKA, and the like can be mentioned.

好ましいカチオン発生剤のアニオン部分としては、PF、BF、及びB(Cが挙げられる。Preferred anion moieties of the cation generator include PF 6 , BF 4 , and B (C 6 F 5 ) 4 .

また、上記カチオン発生剤の他の具体例としては、2−ブテニルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、2−ブテニルジメチルスルフォニウムテトラフルオロボレート、2−ブテニルジメチルスルフォニウムヘキサフルオロホスフェート、2−ブテニルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、2−ブテニルテトラメチレンスルフォニウムテトラフルオロボレート、2−ブテニルテトラメチレンスルフォニウムヘキサフルオロホスフェート、3−メチル−2−ブテニルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、3−メチル−2−ブテニルジメチルスルフォニウムテトラフルオロボレート、3−メチル−2−ブテニルジメチルスルフォニウムヘキサフルオロホスフェート、3−メチル−2−ブテニルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、3−メチル−2−ブテニルテトラメチレンスルフォニウムテトラフルオロボレート、3−メチル−2−ブテニルテトラメチレンスルフォニウムヘキサフルオロホスフェート、4−ヒドロキシフェニルシンナミルメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、4−ヒドロキシフェニルシンナミルメチルスルフォニウムテトラフルオロボレート、4−ヒドロキシフェニルシンナミルメチルスルフォニウムヘキサフルオロホスフェート、α−ナフチルメチルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、α−ナフチルメチルテトラメチレンスルフォニウムテトラフルオロボレート、α−ナフチルメチルテトラメチレンスルフォニウムヘキサフルオロホスフェート、シンナミルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、シンナミルジメチルスルフォニウムテトラフルオロボレート、シンナミルジメチルスルフォニウムヘキサフルオロホスフェート、シンナミルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、シンナミルテトラメチレンスルフォニウムテトラフルオロボレート、シンナミルテトラメチレンスルフォニウムヘキサフルオロホスフェート、ビフェニルメチルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、ビフェニルメチルジメチルスルフォニウムテトラフルオロボレート、ビフェニルメチルジメチルスルフォニウムヘキサフルオロホスフェート、ビフェニルメチルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、ビフェニルメチルテトラメチレンスルフォニウムテトラフルオロボレート、ビフェニルメチルテトラメチレンスルフォニウムヘキサフルオロホスフェート、フェニルメチルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルメチルジメチルスルフォニウムテトラフルオロボレート、フェニルメチルジメチルスルフォニウムヘキサフルオロホスフェート、フェニルメチルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、フェニルメチルテトラメチレンスルフォニウムテトラフルオロボレート、フェニルメチルテトラメチレンスルフォニウムヘキサフルオロホスフェート、フルオレニルメチルジメチルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、フルオレニルメチルジメチルスルフォニウムテトラフルオロボレート、フルオレニルメチルジメチルスルフォニウムヘキサフルオロホスフェート、フルオレニルメチルテトラメチレンスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、フルオレニルメチルテトラメチレンスルフォニウムテトラフルオロボレート、及びフルオレニルメチルテトラメチレンスルフォニウムヘキサフルオロホスフェート等が挙げられる。   Other specific examples of the cation generator include 2-butenyldimethylsulfonium tetrakis (pentafluorophenyl) borate, 2-butenyldimethylsulfonium tetrafluoroborate, 2-butenyldimethylsulfonium. Hexafluorophosphate, 2-butenyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, 2-butenyltetramethylenesulfonium tetrafluoroborate, 2-butenyltetramethylenesulfonium hexafluorophosphate, 3-methyl 2-butenyldimethylsulfonium tetrakis (pentafluorophenyl) borate, 3-methyl-2-butenyldimethylsulfonium tetrafluoroborate, 3-methyl-2-butenyldimethylsulfo Um hexafluorophosphate, 3-methyl-2-butenyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, 3-methyl-2-butenyltetramethylenesulfonium tetrafluoroborate, 3-methyl-2-but Tenenyltetramethylenesulfonium hexafluorophosphate, 4-hydroxyphenylcinnamylmethylsulfonium tetrakis (pentafluorophenyl) borate, 4-hydroxyphenylcinnamylmethylsulfonium tetrafluoroborate, 4-hydroxyphenylcinnamylmethylsulfate Phonium hexafluorophosphate, α-naphthylmethyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, α-naphthylmethyltetramethylenes Phonium tetrafluoroborate, α-naphthylmethyltetramethylenesulfonium hexafluorophosphate, cinnamyldimethylsulfonium tetrakis (pentafluorophenyl) borate, cinnamyldimethylsulfonium tetrafluoroborate, cinnamyldimethylsulfonium hexa Fluorophosphate, cinnamyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, cinnamyltetramethylenesulfonium tetrafluoroborate, cinnamyltetramethylenesulfonium hexafluorophosphate, biphenylmethyldimethylsulfonium tetrakis (pentafluoro) Phenyl) borate, biphenylmethyldimethylsulfonium tetrafluoroborate, biphe Nylmethyldimethylsulfonium hexafluorophosphate, biphenylmethyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, biphenylmethyltetramethylenesulfonium tetrafluoroborate, biphenylmethyltetramethylenesulfonium hexafluorophosphate, phenylmethyldimethyl Sulfonium tetrakis (pentafluorophenyl) borate, phenylmethyldimethylsulfonium tetrafluoroborate, phenylmethyldimethylsulfonium hexafluorophosphate, phenylmethyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, phenylmethyltetramethylene Sulfonium tetrafluoroborate, phenyl methyl ester Ramethylene sulfonium hexafluorophosphate, fluorenylmethyldimethylsulfonium tetrakis (pentafluorophenyl) borate, fluorenylmethyldimethylsulfonium tetrafluoroborate, fluorenylmethyldimethylsulfonium hexafluorophosphate, full Examples include oleenylmethyltetramethylenesulfonium tetrakis (pentafluorophenyl) borate, fluorenylmethyltetramethylenesulfonium tetrafluoroborate, and fluorenylmethyltetramethylenesulfonium hexafluorophosphate.

上記カチオン発生剤は、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出することが好ましい。上記カチオン発生剤は、加熱により無機酸イオンを放出する成分であることが好ましく、加熱によりホウ素原子を含む有機酸イオンを放出する成分であることも好ましい。   It is preferable that the cation generator release inorganic acid ions by heating or release organic acid ions containing boron atoms by heating. The cation generator is preferably a component that releases inorganic acid ions by heating, and is also preferably a component that releases organic acid ions containing boron atoms by heating.

加熱により無機酸イオンを放出するカチオン発生剤は、アニオン部分としてSbF6−又はPF6−を有する化合物であることが好ましい。上記カチオン発生剤は、アニオン部分としてSbF6−を有する化合物であることが好ましく、アニオン部分としてPF6−を有する化合物であることも好ましい。The cation generator that releases inorganic acid ions by heating is preferably a compound having SbF 6− or PF 6− as the anion moiety. The cation generator is preferably a compound having SbF 6− as the anion moiety, and is preferably a compound having PF 6− as the anion moiety.

上記カチオン発生剤のアニオン部分がB(C で表されることが好ましい。ホウ素原子を含む有機酸イオンを放出するカチオン発生剤は、下記式(1)で表されるアニオン部分を有する化合物であることが好ましい。Anionic portion of the cation generator is B (C 6 X 5) 4 - is preferably represented by. The cation generator that releases an organic acid ion containing a boron atom is preferably a compound having an anion moiety represented by the following formula (1).

Figure 0005162728
Figure 0005162728

上記式(1)中、Xはハロゲン原子を表す。上記式(1)中のXは、塩素原子、臭素原子又はフッ素原子であることが好ましく、フッ素原子であることがより好ましい。   In the above formula (1), X represents a halogen atom. X in the formula (1) is preferably a chlorine atom, a bromine atom or a fluorine atom, and more preferably a fluorine atom.

上記カチオン発生剤のアニオン部分がB(C で表されることが好ましい。上記ホウ素原子を含む有機酸イオンを放出するカチオン発生剤は、下記式(1A)で表されるアニオン部分を有する化合物であることがより好ましい。It is preferable that the anion portion of the cation generator is represented by B (C 6 F 5 ) 4 . The cation generator that releases an organic acid ion containing a boron atom is more preferably a compound having an anion moiety represented by the following formula (1A).

Figure 0005162728
Figure 0005162728

上記カチオン発生剤の含有量は特に限定されない。上記硬化性化合物100重量部に対して、上記カチオン発生剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、更に好ましくは5重量部以上、特に好ましくは10重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下、更に好ましくは20重量部以下である。上記硬化性化合物に対する上記カチオン発生剤の含有量が上記下限以上及び上記上限以下であると、導電材料が充分に硬化する。   The content of the cation generator is not particularly limited. The content of the cation generator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, still more preferably 5 parts by weight or more, particularly preferably 100 parts by weight of the curable compound. It is 10 parts by weight or more, preferably 40 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 20 parts by weight or less. When the content of the cation generator relative to the curable compound is not less than the above lower limit and not more than the above upper limit, the conductive material is sufficiently cured.

上記加熱により硬化可能な硬化性化合物100重量部に対して、上記カチオン発生剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、更に好ましくは5重量部以上、特に好ましくは10重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下、更に好ましくは20重量部以下である。上記加熱により硬化可能な硬化性化合物に対する上記カチオン発生剤の含有量が上記下限以上及び上記上限以下であると、導電材料が充分に熱硬化する。   The content of the cation generator is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and still more preferably 5 parts by weight with respect to 100 parts by weight of the curable compound curable by heating. Above, particularly preferably 10 parts by weight or more, preferably 40 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 20 parts by weight or less. When the content of the cation generator relative to the curable compound curable by heating is not less than the above lower limit and not more than the above upper limit, the conductive material is sufficiently thermally cured.

電極間の導通信頼性及び接続構造体の高湿下での接続信頼性をより一層高める観点からは、上記導電材料は、上記カチオン発生剤と、熱ラジカル発生剤との双方を含むことが好ましい。上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤として、従来公知の熱ラジカル発生剤を用いることができる。上記熱ラジカル発生剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。ここで、「熱ラジカル発生剤」とは、加熱によってラジカル種を生成する化合物を意味する。   From the viewpoint of further improving the connection reliability between the electrodes and the connection reliability under high humidity of the connection structure, the conductive material preferably includes both the cation generator and the thermal radical generator. . The thermal radical generator is not particularly limited. As the thermal radical generator, a conventionally known thermal radical generator can be used. As for the said thermal radical generator, only 1 type may be used and 2 or more types may be used together. Here, the “thermal radical generator” means a compound that generates radical species by heating.

上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び過酸化物等が挙げられる。上記過酸化物としては、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、パーオキシジカーボネート化合物、パーオキシケタール化合物、ジアルキルパーオキサイド化合物、及びケトンパーオキサイド化合物等が挙げられる。   The thermal radical generator is not particularly limited, and examples thereof include azo compounds and peroxides. Examples of the peroxide include diacyl peroxide compounds, peroxyester compounds, hydroperoxide compounds, peroxydicarbonate compounds, peroxyketal compounds, dialkyl peroxide compounds, and ketone peroxide compounds.

上記アゾ化合物としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビス−1−シクロヘキサンカルボニトリル、ジメチル−2,2’−アゾビスイソブチレート、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、ジメチル−1,1’−アゾビス(1−シクロヘキサンカルボキシレート)、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2−tert−ブチルアゾ−2−シアノプロパン、2,2’−アゾビス(2−メチルプロピオンアミド)二水和物、及び2,2’−アゾビス(2,4,4−トリメチルペンタン)等が挙げられる。   Examples of the azo compound include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), and 2,2′-azobis (2,4-dimethylvaleronitrile). 1,1′-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2′-azobisisobutyrate, dimethyl-2,2′-azobis (2-methylpropionate), dimethyl-1,1 ′ -Azobis (1-cyclohexanecarboxylate), 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2-amidinopropane) dihydrochloride, 2-tert-butylazo-2-cyanopropane 2,2′-azobis (2-methylpropionamide) dihydrate, 2,2′-azobis (2,4,4-trimethylpentane), and the like.

上記ジアシルパーオキサイド化合物としては、過酸化ベンゾイル、ジイソブチリルパーオキサイド、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、及びDisuccinic acid peroxide等が挙げられる。上記パーオキシエステル化合物としては、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、tert−ヘキシルパーオキシネオデカノエート、tert−ブチルパーオキシネオデカノエート、tert−ブチルパーオキシネオヘプタノエート、tert−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5―ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、tert−ヘキシルパーオキシ−2−エチルヘキサノエート、tert−ブチルパーオキシピバレート、tert−ブチルパーオキシ−2−エチルヘキサノエート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシラウレート、tert−ブチルパーオキシイソフタレート、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシオクトエート及びtert−ブチルパーオキシベンゾエート等が挙げられる。上記ハイドロパーオキサイド化合物としては、キュメンハイドロパーオキサイド、p−メンタンハイドロパーオキサイド等が挙げられる。上記パーオキシジカーボネート化合物としては、ジ−sec−ブチルパーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシカーボネート、及びジ(2−エチルヘキシル)パーオキシカーボネート等が挙げられる。また、上記過酸化物の他の例としては、メチルエチルケトンパーオキサイド、カリウムパーサルフェイト、及び1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン等が挙げられる。   Examples of the diacyl peroxide compound include benzoyl peroxide, diisobutyryl peroxide, di (3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, and disuccinic acid peroxide. Examples of the peroxyester compound include cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, tert-hexylperoxyneodecanoate, and tert-butylperoxyneo. Decanoate, tert-butylperoxyneoheptanoate, tert-hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2 , 5-di (2-ethylhexanoylperoxy) hexane, tert-hexylperoxy-2-ethylhexanoate, tert-butylperoxypivalate, tert-butylperoxy-2-ethylhexanoate, tert -Butyl peroxyisobutyrate, tert-butyl per Kishiraureto, tert- butylperoxy isophthalate, tert- butylperoxy acetate, tert- butylperoxy octoate and tert- butyl peroxybenzoate, and the like. Examples of the hydroperoxide compound include cumene hydroperoxide and p-menthane hydroperoxide. Examples of the peroxydicarbonate compound include di-sec-butyl peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, and di- (2-ethylhexyl) peroxycarbonate and the like. Other examples of the peroxide include methyl ethyl ketone peroxide, potassium persulfate, and 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane.

上記熱ラジカル発生剤の10時間半減期を得るための分解温度は、好ましくは30℃以上、より好ましくは40℃以上、好ましくは90℃以下、より好ましくは80℃以下、更に好ましくは70℃以下である。上記熱ラジカル発生剤の10時間半減期を得るための分解温度が、30℃未満であると、導電材料の貯蔵安定性が低下する傾向があり、90℃を超えると、上記熱ラジカル発生剤の作用によって導電材料を充分に熱硬化させることが困難になる傾向がある。   The decomposition temperature for obtaining the 10-hour half-life of the thermal radical generator is preferably 30 ° C or higher, more preferably 40 ° C or higher, preferably 90 ° C or lower, more preferably 80 ° C or lower, still more preferably 70 ° C or lower. It is. If the decomposition temperature for obtaining the 10-hour half-life of the thermal radical generator is less than 30 ° C., the storage stability of the conductive material tends to be reduced, and if it exceeds 90 ° C., The action tends to make it difficult to sufficiently cure the conductive material.

上記熱硬化剤の含有量は特に限定されない。上記硬化性化合物中の上記加熱により硬化可能な硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、更に好ましくは5重量部以上、特に好ましくは10重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下、更に好ましくは20重量部以下である。上記熱硬化剤の含有量が上記下限以上及び上記上限以下であると、導電材料を充分に熱硬化させることができる。上記熱硬化剤の含有量は、上記熱硬化剤がカチオン発生剤のみである場合には、カチオン発生剤の含有量を示し、上記熱硬化剤がカチオン発生剤と他の熱硬化剤(熱ラジカル発生剤など)との双方を含む場合には、カチオン発生剤と他の熱硬化剤との合計の含有量を示す。   The content of the thermosetting agent is not particularly limited. The content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, with respect to 100 parts by weight of the curable compound curable by heating in the curable compound. More preferably 5 parts by weight or more, particularly preferably 10 parts by weight or more, preferably 40 parts by weight or less, more preferably 30 parts by weight or less, still more preferably 20 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the conductive material can be sufficiently thermoset. When the thermosetting agent is only a cation generator, the content of the thermosetting agent indicates the content of the cation generator, and the thermosetting agent is a cation generator and other thermosetting agents (thermal radicals). In the case of including both of the generator and the like, the total content of the cation generator and the other thermosetting agent is shown.

上記硬化剤が熱ラジカル発生剤を含む場合に、上記硬化性化合物中の上記加熱により硬化可能な硬化性化合物100重量部に対して、上記熱ラジカル発生剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。上記熱ラジカル発生剤の含有量が上記下限以上及び上記上限以下であると、導電材料を充分に熱硬化させることができる。   When the curing agent contains a thermal radical generator, the content of the thermal radical generator is preferably 0.01 with respect to 100 parts by weight of the curable compound curable by heating in the curable compound. Part by weight or more, more preferably 0.05 part by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When the content of the thermal radical generator is not less than the above lower limit and not more than the above upper limit, the conductive material can be sufficiently thermoset.

上記導電材料は、上記硬化剤として、光硬化開始剤を含んでいてもよい。光硬化開始剤には、上述した光カチオン発生剤(光カチオン発生剤、又は光及び熱カチオン発生剤)が含まれる。上記光硬化開始剤は特に限定されない。上記光硬化開始剤として、従来公知の光硬化開始剤を用いることができる。電極間の導通信頼性及び接続構造体の接続信頼性をより一層高める観点からは、上記導電材料は、光ラジカル発生剤を含むことが好ましい。上記光硬化開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The conductive material may contain a photocuring initiator as the curing agent. The photocuring initiator includes the above-described photocation generator (photocation generator or light and thermal cation generator). The photocuring initiator is not particularly limited. A conventionally known photocuring initiator can be used as the photocuring initiator. From the viewpoint of further enhancing the conduction reliability between the electrodes and the connection reliability of the connection structure, the conductive material preferably contains a photoradical generator. As for the said photocuring initiator, only 1 type may be used and 2 or more types may be used together.

上記カチオン発生剤以外の他の光硬化開始剤としては、特に限定されず、アセトフェノン光硬化開始剤(アセトフェノン光ラジカル発生剤)、ベンゾフェノン光硬化開始剤(ベンゾフェノン光ラジカル発生剤)、チオキサントン、ケタール光硬化開始剤(ケタール光ラジカル発生剤)、ハロゲン化ケトン、アシルホスフィノキシド及びアシルホスフォナート等が挙げられる。   The photocuring initiator other than the cation generator is not particularly limited, and is not limited to acetophenone photocuring initiator (acetophenone photoradical generator), benzophenone photocuring initiator (benzophenone photoradical generator), thioxanthone, ketal light. Examples thereof include a curing initiator (ketal photo radical generator), halogenated ketone, acyl phosphinoxide, and acyl phosphonate.

上記アセトフェノン光硬化開始剤の具体例としては、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、メトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、及び2−ヒドロキシ−2−シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光硬化開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。   Specific examples of the acetophenone photocuring initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone. Specific examples of the ketal photocuring initiator include benzyldimethyl ketal.

上記光硬化開始剤の含有量は特に限定されない。上記硬化性化合物中の上記光の照射により硬化可能な硬化性化合物100重量部に対して、上記光硬化開始剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。上記光硬化開始剤の含有量が上記下限以上及び上記上限以下であると、導電材料を適度に光硬化させることができる。導電材料に光を照射し、Bステージ化することにより、導電材料の流動を抑制できる。上記光硬化開始剤の含有量は、上記光硬化開始剤がカチオン発生剤のみである場合には、カチオン発生剤の含有量を示し、上記光硬化開始剤がカチオン発生剤と他の光硬化開始剤との双方を含む場合には、カチオン発生剤と他の光硬化開始剤との合計の含有量を示す。   The content of the photocuring initiator is not particularly limited. The content of the photocuring initiator is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight with respect to 100 parts by weight of the curable compound that can be cured by light irradiation in the curable compound. Part or more, preferably 2 parts by weight or less, more preferably 1 part by weight or less. When the content of the photocuring initiator is not less than the above lower limit and not more than the above upper limit, the conductive material can be appropriately photocured. By irradiating the conductive material with light and forming a B-stage, the flow of the conductive material can be suppressed. When the photocuring initiator is only a cation generator, the content of the photocuring initiator indicates the content of the cation generating agent, and the photocuring initiator is a cation generator and another photocuring initiator. When both are included, the total content of the cation generator and the other photocuring initiator is shown.

(イオン交換体)
上記導電材料に含まれている陽イオン交換体及び陰イオン交換体は特に限定されない。上記陽イオン交換体は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記陰イオン交換体は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Ion exchanger)
The cation exchanger and the anion exchanger contained in the conductive material are not particularly limited. As for the said cation exchanger, only 1 type may be used and 2 or more types may be used together. As for the said anion exchanger, only 1 type may be used and 2 or more types may be used together.

上記陽イオン交換体としては、Zr系陽イオン交換体及びSb系陽イオン交換体等が挙げられる。接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体は、Zr系陽イオン交換体であることが好ましく、ジルコニウム原子を含むことが好ましい。   Examples of the cation exchanger include Zr-based cation exchangers and Sb-based cation exchangers. From the viewpoint of further suppressing migration in the connection structure and further improving the insulation reliability, the cation exchanger is preferably a Zr-based cation exchanger, and preferably contains a zirconium atom.

上記陽イオン交換体の市販品としては、IXE−100及びIXE−300(以上いずれも東亞合成社製)等が挙げられる。   Examples of commercially available products of the cation exchanger include IXE-100 and IXE-300 (all of which are manufactured by Toagosei Co., Ltd.).

上記陰イオン交換体としては、Bi系陰イオン交換体、Mg−Al系陰イオン交換体及びZr系陰イオン交換体等が挙げられる。接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高める観点からは、上記陽イオン交換体は、Mg−Al系陰イオン交換体であることが好ましく、マグネシウム原子とアルミニウム原子とを含むことが好ましい。   Examples of the anion exchanger include Bi-based anion exchangers, Mg-Al-based anion exchangers, and Zr-based anion exchangers. From the viewpoint of further suppressing the migration in the connection structure and further improving the insulation reliability, the cation exchanger is preferably an Mg-Al anion exchanger, and includes a magnesium atom and an aluminum atom. It is preferable to include.

上記陰イオン交換体の市販品としては、IXE−500、IXE−530及びIXE−550、IXE−700F及びIXE−800(以上いずれも東亞合成社製)等が挙げられる。   Examples of the commercial product of the anion exchanger include IXE-500, IXE-530, IXE-550, IXE-700F, and IXE-800 (all of which are manufactured by Toagosei Co., Ltd.).

上記陽イオン交換体の中性交換容量は、好ましくは1meq/g以上、より好ましくは2meq/g以上、好ましくは10meq/g以下、より好ましくは4meq/g以下である。上記陽イオン交換体の中性交換容量が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The neutral exchange capacity of the cation exchanger is preferably 1 meq / g or more, more preferably 2 meq / g or more, preferably 10 meq / g or less, more preferably 4 meq / g or less. When the neutral exchange capacity of the cation exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記陰イオン交換体の中性交換容量は、好ましくは0.1meq/g以上、より好ましくは1meq/g以上、好ましくは10meq/g以下、より好ましくは5meq/g以下である。上記陰イオン交換体の中性交換容量が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The neutral exchange capacity of the anion exchanger is preferably 0.1 meq / g or more, more preferably 1 meq / g or more, preferably 10 meq / g or less, more preferably 5 meq / g or less. When the neutral exchange capacity of the anion exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記陽イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、好ましくは10μm以下、より好ましくは3μm以下である。上記陽イオン交換体のメディアン径が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The median diameter of the cation exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 10 μm or less, more preferably 3 μm or less. When the median diameter of the cation exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記陰イオン交換体のメディアン径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、好ましくは10μm以下、より好ましくは3μm以下である。上記陰イオン交換体のメディアン径が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The median diameter of the anion exchanger is preferably 0.1 μm or more, more preferably 0.5 μm or more, preferably 10 μm or less, more preferably 3 μm or less. When the median diameter of the anion exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記硬化性化合物100重量部に対して、上記陽イオン交換体の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは5量部以下、より好ましくは4重量部以下である。上記陽イオン交換体の含有量が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The content of the cation exchanger is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 5 parts by weight or less, more preferably 100 parts by weight of the curable compound. 4 parts by weight or less. When the content of the cation exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記硬化性化合物100重量部に対して、上記陰イオン交換体の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは5重量部以下、より好ましくは4重量部以下である。上記陰イオン交換体の含有量が上記下限以上及び上記上限以下であると、接続構造体におけるマイグレーションをより一層抑制し、絶縁信頼性をより一層高めることができる。   The content of the anion exchanger is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 5 parts by weight or less, more preferably 100 parts by weight of the curable compound. 4 parts by weight or less. When the content of the anion exchanger is not less than the above lower limit and not more than the above upper limit, migration in the connection structure can be further suppressed, and insulation reliability can be further enhanced.

上記導電材料は、上記陽イオン交換体と陰イオン交換体とを重量比で、9:1〜1:9で含むことが好ましく、8:2〜2:8で含むことがより好ましく、6:4〜4:6で含むことが更に好ましい。   The conductive material preferably contains the cation exchanger and the anion exchanger in a weight ratio of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8, and 6: More preferably, it is included at 4 to 4: 6.

(導電性粒子)
上記導電材料に含まれている導電性粒子は、例えば、第1,第2の接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電性を有する粒子であれば特に限定されない。上記導電性粒子は、導電部を導電性の表面に有していればよい。導電性粒子の導電部の表面が絶縁層により被覆されていてもよい。導電性粒子の導電部の表面が、絶縁性粒子により被覆されていてもよい。これらの場合には、接続対象部材の接続時に、導電部と電極との間の絶縁層又は絶縁性粒子が排除される。
(Conductive particles)
The conductive particles contained in the conductive material electrically connect the electrodes of the first and second connection target members, for example. The conductive particles are not particularly limited as long as they are conductive particles. The said electroconductive particle should just have an electroconductive part on the electroconductive surface. The surface of the conductive part of the conductive particles may be covered with an insulating layer. The surface of the conductive part of the conductive particles may be covered with insulating particles. In these cases, the insulating layer or insulating particles between the conductive portion and the electrode are excluded when the connection target member is connected.

上記導電性粒子としては、例えば、有機粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子もしくは金属粒子等の表面を導電層(金属層)で被覆した導電性粒子、並びに実質的に金属のみで構成される金属粒子等が挙げられる。上記導電性粒子は、有機粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子の表面を導電層で被覆した導電性粒子であることが好ましい。   Examples of the conductive particles include organic particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, or metal particles whose surfaces are covered with a conductive layer (metal layer), and substantially only metal. Examples thereof include metal particles. The conductive particles are preferably conductive particles in which the surfaces of inorganic particles or organic-inorganic hybrid particles excluding organic particles, metal particles, and the like are coated with a conductive layer.

上記導電部及び上記金属層は特に限定されない。上記導電部を構成する金属としては、金、銀、銅、ニッケル、パラジウム及び錫等が挙げられる。上記金属層としては、金層、銀層、銅層、ニッケル層、パラジウム層及び錫を含有する金属層等が挙げられる。   The conductive part and the metal layer are not particularly limited. Gold, silver, copper, nickel, palladium, tin, etc. are mentioned as a metal which comprises the said electroconductive part. Examples of the metal layer include a gold layer, a silver layer, a copper layer, a nickel layer, a palladium layer, and a metal layer containing tin.

電極と導電性粒子との接触面積を大きくし、電極間の導通信頼性をより一層高める観点からは、上記導電性粒子は、樹脂粒子と、該樹脂粒子の表面上に配置された導電層(第1の導電層)とを有することが好ましい。電極間の導通信頼性をより一層高める観点からは、上記導電性粒子は、少なくとも導電性の外側の表面が低融点金属である導電性粒子であることが好ましい。上記導電性粒子は、樹脂粒子と、該樹脂粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外側の表面が、低融点金属層であることがより好ましい。   From the viewpoint of increasing the contact area between the electrode and the conductive particle and further enhancing the conduction reliability between the electrodes, the conductive particle is composed of a resin particle and a conductive layer (on the surface of the resin particle ( First conductive layer). From the viewpoint of further improving the reliability of conduction between the electrodes, the conductive particles are preferably conductive particles having at least a conductive outer surface made of a low melting point metal. More preferably, the conductive particles include resin particles and a conductive layer disposed on the surface of the resin particles, and at least the outer surface of the conductive layer is a low melting point metal layer.

上記低融点金属層は、低融点金属を含む層である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記低融点金属は錫を含むことが好ましい。低融点金属又は低融点金属層に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記錫の含有量が上記下限以上であると、低融点金属と電極との接続信頼性がより一層高くなる。なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。   The low melting point metal layer is a layer containing a low melting point metal. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. The low melting point metal preferably contains tin. In 100% by weight of the low melting point metal or the metal contained in the low melting point metal layer, the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, particularly preferably 90% by weight. % Or more. When the content of tin is not less than the above lower limit, the connection reliability between the low melting point metal and the electrode is further enhanced. The tin content is determined using a high frequency inductively coupled plasma optical emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.

導電部の外側の表面が低融点金属である場合には、低融点金属が溶融して電極に接合し、低融点金属が電極間を導通させる。例えば、低融点金属と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、少なくとも導電性の外側の表面が低融点金属である導電性粒子の使用により、低融点金属と電極との接合強度が高くなる結果、低融点金属と電極との剥離がより一層生じ難くなり、耐湿熱性がより一層高くなる。   When the outer surface of the conductive portion is a low melting point metal, the low melting point metal is melted and joined to the electrodes, and the low melting point metal conducts between the electrodes. For example, since the low melting point metal and the electrode are not in point contact but in surface contact, the connection resistance is low. In addition, the use of conductive particles having at least a conductive outer surface made of a low-melting-point metal increases the bonding strength between the low-melting-point metal and the electrode. Further, the moisture and heat resistance is further enhanced.

上記低融点金属層を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金が挙げられる。なかでも、電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましく、錫−ビスマス合金、錫−インジウム合金であることがより好ましい。   The low melting point metal which comprises the said low melting metal layer is not specifically limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. Among them, the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because it has excellent wettability with respect to the electrode. More preferably, the alloy is a tin-indium alloy.

また、上記低融点金属は、はんだであることが好ましい。上記低融点金属層は、はんだ層であることが好ましい。該はんだを構成する材料は特に限定されないが、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。   The low melting point metal is preferably solder. The low melting point metal layer is preferably a solder layer. Although the material which comprises this solder is not specifically limited, Based on JISZ3001: welding terminology, it is preferable that it is a filler material whose liquidus is 450 degrees C or less. Examples of the solder composition include metal compositions containing zinc, gold, lead, copper, tin, bismuth, indium and the like. Among them, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.

上記低融点金属と電極との接合強度をより一層高めるために、上記低融点金属は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。低融点金属と電極との接合強度をさらに一層高める観点からは、上記低融点金属は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。低融点金属と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、低融点金属又は低融点金属層に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。   In order to further increase the bonding strength between the low melting point metal and the electrode, the low melting point metal is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. Further, it may contain a metal such as chromium, molybdenum and palladium. From the viewpoint of further increasing the bonding strength between the low melting point metal and the electrode, the low melting point metal preferably contains nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the low melting point metal and the electrode, the content of these metals for increasing the bonding strength is preferably 100% by weight of the metal contained in the low melting point metal or the low melting point metal layer. It is 0.0001% by weight or more, preferably 1% by weight or less.

上記導電性粒子は、樹脂粒子と、該樹脂粒子の表面上に配置された導電層とを有し、該導電層の外側の表面が低融点金属層であり、上記樹脂粒子と上記低融点金属層(はんだ層など)との間に、上記低融点金属層とは別に第2の導電層を有することが好ましい。この場合に、上記低融点金属層は上記導電層全体の一部であり、上記第2の導電層は上記導電層全体の一部である。この導電性粒子を用いる場合には、電極に第2の導電層を接触させることが好ましい。   The conductive particles include resin particles and a conductive layer disposed on the surface of the resin particles, and the outer surface of the conductive layer is a low-melting metal layer, and the resin particles and the low-melting metal In addition to the low melting point metal layer, it is preferable to have a second conductive layer between the layers (such as solder layers). In this case, the low melting point metal layer is a part of the entire conductive layer, and the second conductive layer is a part of the entire conductive layer. In the case of using the conductive particles, it is preferable to bring the second conductive layer into contact with the electrode.

上記低融点金属層とは別の上記第2の導電層は、金属を含むことが好ましい。該第2の導電層を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。   The second conductive layer different from the low melting point metal layer preferably contains a metal. The metal constituting the second conductive layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.

上記第2の導電層は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電層を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電層の表面には、低融点金属層をより一層容易に形成できる。なお、上記第2の導電層は、はんだ層などの低融点金属層であってもよい。導電性粒子は、複数層の低融点金属層を有していてもよい。   The second conductive layer is preferably a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer. By using the conductive particles having these preferable conductive layers for the connection between the electrodes, the connection resistance between the electrodes is further reduced. In addition, a low melting point metal layer can be more easily formed on the surface of these preferable conductive layers. The second conductive layer may be a low melting point metal layer such as a solder layer. The conductive particles may have a plurality of low melting point metal layers.

上記低融点金属層の厚みは、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上、好ましくは50μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは3μm以下である。上記低融点金属層の厚みが上記下限以上であると、導電性が十分に高くなる。上記低融点金属層の厚みが上記上限以下であると、樹脂粒子と低融点金属層との熱膨張率の差が小さくなり、低融点金属層の剥離が生じ難くなる。   The thickness of the low melting point metal layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, still more preferably 1 μm or more, preferably 50 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less, particularly preferably. 3 μm or less. When the thickness of the low melting point metal layer is not less than the above lower limit, the conductivity is sufficiently high. When the thickness of the low melting point metal layer is not more than the above upper limit, the difference in thermal expansion coefficient between the resin particles and the low melting point metal layer becomes small, and the low melting point metal layer is hardly peeled off.

導電層が低融点金属層以外の導電層である場合、又は導電層が多層構造を有する場合には、導電層の全体厚みは、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上、好ましくは50μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは3μm以下である。   When the conductive layer is a conductive layer other than the low melting point metal layer, or when the conductive layer has a multilayer structure, the total thickness of the conductive layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, Preferably it is 1 micrometer or more, Preferably it is 50 micrometers or less, More preferably, it is 10 micrometers or less, More preferably, it is 5 micrometers or less, Most preferably, it is 3 micrometers or less.

異方性導電材料における導電性粒子に適した大きさであり、かつ電極間の間隔をより一層小さくすることができるので、上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは15μm以下、特に好ましくは10μm以下、最も好ましくは5μm未満である。   Since the size is suitable for the conductive particles in the anisotropic conductive material and the distance between the electrodes can be further reduced, the average particle diameter of the conductive particles is preferably 0.5 μm or more, more It is preferably 1 μm or more, preferably 100 μm or less, more preferably 20 μm or less, still more preferably 15 μm or less, particularly preferably 10 μm or less, and most preferably less than 5 μm.

上記導電性粒子の平均粒子径は、1μm以上、5μm未満であることが最も好ましい。本発明に係る導電材料の使用により、導電性粒子の平均粒子径が5μm未満であって、導電性粒子が小さくても、接続構造体の接続信頼性を十分に高めることができる。   The average particle diameter of the conductive particles is most preferably 1 μm or more and less than 5 μm. By using the conductive material according to the present invention, even when the average particle diameter of the conductive particles is less than 5 μm and the conductive particles are small, the connection reliability of the connection structure can be sufficiently increased.

また、上記樹脂粒子は、実装する基板の電極サイズ又はランド径によって使い分けることができる。   Further, the resin particles can be properly used according to the electrode size or land diameter of the substrate to be mounted.

上下の電極間をより一層確実に接続し、かつ横方向に隣接する電極間の短絡をより一層抑制する観点からは、導電性粒子の平均粒子径Cの樹脂粒子の平均粒子径Aに対する比(C/A)は、1.0を超え、好ましくは3.0以下である。また、上記樹脂粒子と上記はんだ層との間に上記第2の導電層がある場合に、はんだ層を除く導電性粒子部分の平均粒子径Bに対する樹脂粒子の平均粒子径Aに対する比(B/A)は、1.0を超え、好ましくは2.0以下である。さらに、上記樹脂粒子と上記はんだ層との間に上記第2の導電層がある場合に、はんだ層を含む導電性粒子の平均粒子径Cのはんだ層を除く導電性粒子部分の平均粒子径Bに対する比(C/B)は、1.0を超え、好ましくは2.0以下である。上記比(B/A)が上記範囲内であったり、上記比(C/B)が上記範囲内であったりすると、上下の電極間をより一層確実に接続し、かつ横方向に隣接する電極間の短絡をより一層抑制できる。   From the viewpoint of more reliably connecting the upper and lower electrodes and further suppressing the short circuit between the electrodes adjacent in the lateral direction, the ratio of the average particle diameter C of the conductive particles to the average particle diameter A of the resin particles ( C / A) is more than 1.0, preferably 3.0 or less. In addition, when the second conductive layer is present between the resin particles and the solder layer, the ratio of the resin particles to the average particle size B with respect to the average particle size B of the conductive particle portion excluding the solder layer (B / A) is greater than 1.0, preferably 2.0 or less. Further, when there is the second conductive layer between the resin particles and the solder layer, the average particle diameter B of the conductive particle portion excluding the solder layer having the average particle diameter C of the conductive particles including the solder layer. The ratio (C / B) to is more than 1.0, preferably 2.0 or less. When the ratio (B / A) is within the above range or the ratio (C / B) is within the above range, electrodes that are more reliably connected between the upper and lower electrodes and that are adjacent in the lateral direction The short circuit between them can be further suppressed.

FOB及びFOF用途向け導電材料(異方性導電材料):
上記導電材料は、フレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))との接続、又はフレキシブルプリント基板とフレキシブルプリント基板との接続(FOF(Film on Film))に好適に用いられる。
Conductive materials for FOB and FOF applications (anisotropic conductive materials):
The conductive material is preferably used for connection between a flexible printed board and a glass epoxy board (FOB (Film on Board)) or between a flexible printed board and a flexible printed board (FOF (Film on Film)). It is done.

FOB及びFOF用途では、電極がある部分(ライン)と電極がない部分(スペース)との寸法であるL&Sは、一般に100〜500μmである。FOB及びFOF用途で用いる樹脂粒子の平均粒子径は10〜100μmであることが好ましい。樹脂粒子の平均粒子径が10μm以上であると、電極間に配置される導電材料及び接続部の厚みが十分に厚くなり、接着力がより一層高くなる。樹脂粒子の平均粒子径が100μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。   In FOB and FOF applications, L & S, which is the size of a portion (line) with an electrode and a portion (space) without an electrode, is generally 100 to 500 μm. The average particle diameter of the resin particles used for FOB and FOF applications is preferably 10 to 100 μm. When the average particle diameter of the resin particles is 10 μm or more, the thickness of the conductive material and the connection portion disposed between the electrodes is sufficiently increased, and the adhesive force is further increased. When the average particle diameter of the resin particles is 100 μm or less, a short circuit is more unlikely to occur between adjacent electrodes.

フリップチップ用途向け導電材料(異方性導電材料):
上記導電材料は、フリップチップ用途に好適に用いられる。
Conductive materials for flip chip applications (anisotropic conductive materials):
The conductive material is suitably used for flip chip applications.

フリップチップ用途では、一般にランド径が15〜80μmである。フリップチップ用途で用いる樹脂粒子の平均粒子径は1〜15μmであることが好ましい。樹脂粒子の平均粒子径が1μm以上であると、該樹脂粒子の表面上に配置されるはんだ層の厚みを十分に厚くすることができ、電極間をより一層確実に電気的に接続することができる。樹脂粒子の平均粒子径が10μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。   For flip chip applications, the land diameter is generally 15-80 μm. The average particle size of the resin particles used for flip chip applications is preferably 1 to 15 μm. When the average particle diameter of the resin particles is 1 μm or more, the thickness of the solder layer disposed on the surface of the resin particles can be sufficiently increased, and the electrodes can be more reliably electrically connected. it can. When the average particle diameter of the resin particles is 10 μm or less, a short circuit is more unlikely to occur between adjacent electrodes.

COF向け導電材料(異方性導電材料):
上記導電材料は、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))に好適に用いられる。
Conductive material for COF (anisotropic conductive material):
The conductive material is preferably used for connection between a semiconductor chip and a flexible printed board (COF (Chip on Film)).

COF用途では、電極がある部分(ライン)と電極がない部分(スペース)との寸法であるL&Sは、一般に10〜50μmである。COF用途で用いる樹脂粒子の平均粒子径は1〜10μmであることが好ましい。樹脂粒子の平均粒子径が1μm以上であると、該樹脂粒子の表面上に配置されるはんだ層の厚みを十分に厚くすることができ、電極間をより一層確実に電気的に接続することができる。樹脂粒子の平均粒子径が10μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。   In a COF application, L & S, which is a dimension between a portion (line) with an electrode and a portion (space) without an electrode (space), is generally 10 to 50 μm. The average particle diameter of the resin particles used for COF applications is preferably 1 to 10 μm. When the average particle diameter of the resin particles is 1 μm or more, the thickness of the solder layer disposed on the surface of the resin particles can be sufficiently increased, and the electrodes can be more reliably electrically connected. it can. When the average particle diameter of the resin particles is 10 μm or less, a short circuit is more unlikely to occur between adjacent electrodes.

上記導電性粒子及び上記樹脂粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。   The “average particle diameter” of the conductive particles and the resin particles indicates a number average particle diameter. The average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.

上記導電性粒子における導電部の表面は、絶縁性材料、絶縁性粒子、フラックス等により絶縁処理されていてもよい。絶縁性材料、絶縁性粒子、フラックス等は、接続時の熱により軟化、流動することで接続部から排除されることが好ましい。これにより、電極間での短絡を抑制することができる。   The surface of the conductive portion in the conductive particles may be insulated with an insulating material, insulating particles, flux, or the like. It is preferable that the insulating material, the insulating particles, the flux, and the like are removed from the connection portion by being softened and flowed by heat at the time of connection. Thereby, the short circuit between electrodes can be suppressed.

上記導電性粒子の含有量は特に限定されない。上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、更に好ましくは1重量%以上、好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは19重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、接続されるべき上下の電極間に導電性粒子を容易に配置できる。さらに、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続され難くなる。すなわち、隣り合う電極間の短絡をより一層防止できる。   The content of the conductive particles is not particularly limited. The content of the conductive particles in 100% by weight of the conductive material is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, still more preferably 1% by weight or more, preferably 40% by weight or less. More preferably, it is 30 weight% or less, More preferably, it is 19 weight% or less. A conductive particle can be easily arrange | positioned between the upper and lower electrodes which should be connected as content of the said electroconductive particle is more than the said minimum and below the said upper limit. Furthermore, it becomes difficult to electrically connect adjacent electrodes that should not be connected via a plurality of conductive particles. That is, a short circuit between adjacent electrodes can be further prevented.

(フラックス)
上記導電材料はフラックスを含んでいてもよい。該フラックスの使用により、電極表面に形成された酸化膜を効果的に除去できる。この結果、接続構造体における導通信頼性がより一層高くなる。なお、上記導電材料は、フラックスを必ずしも含んでいなくてもよい。
(flux)
The conductive material may contain a flux. By using the flux, the oxide film formed on the electrode surface can be effectively removed. As a result, the conduction reliability in the connection structure is further increased. Note that the conductive material does not necessarily include a flux.

上記フラックスは特に限定されない。該フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。   The flux is not particularly limited. As the flux, a flux generally used for soldering or the like can be used. Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.

上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸及びグルタミン酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、松脂であることが好ましい。松脂の使用により、電極間の接続抵抗がより一層低くなる。   Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, and glutamic acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably rosin. By using rosin, the connection resistance between the electrodes is further reduced.

上記松脂はアビエチン酸を主成分とするロジン類である。上記フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の接続抵抗がより一層低くなる。   The rosin is a rosin composed mainly of abietic acid. The flux is preferably a rosin, and more preferably abietic acid. By using this preferable flux, the connection resistance between the electrodes is further reduced.

上記フラックスは、バインダー樹脂中に分散されていてもよく、上記導電性粒子の表面上に付着していてもよい。   The flux may be dispersed in the binder resin, or may be attached on the surface of the conductive particles.

上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記フラックスの含有量が上記下限以上及び上記上限以下であると、電極表面に形成された酸化膜をより一層効果的に除去できる。また、上記フラックスの含有量が上記下限以上であると、フラックスの添加効果がより一層効果的に発現する。上記フラックスの含有量が上記上限以下であると、硬化物の吸湿性がより一層低くなり、接続構造体の信頼性がより一層高くなる。   The content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less. When the content of the flux is not less than the above lower limit and not more than the above upper limit, the oxide film formed on the electrode surface can be more effectively removed. Further, when the content of the flux is equal to or more than the lower limit, the effect of adding the flux is more effectively expressed. When the content of the flux is not more than the above upper limit, the hygroscopic property of the cured product is further lowered, and the reliability of the connection structure is further enhanced.

(他の成分)
上記導電材料は、フィラーを含むことが好ましい。フィラーの使用により、導電材料の硬化物の熱線膨張率を抑制できる。上記フィラーの具体例としては、シリカ、窒化アルミニウム、アルミナ、ガラス、窒化ボロン、窒化ケイ素、シリコーン、カーボン、グラファイト、グラフェン及びタルク等が挙げられる。フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。熱伝導率が高いフィラーを用いると、本硬化時間が短くなる。
(Other ingredients)
The conductive material preferably contains a filler. By using the filler, the thermal expansion coefficient of the cured material of the conductive material can be suppressed. Specific examples of the filler include silica, aluminum nitride, alumina, glass, boron nitride, silicon nitride, silicone, carbon, graphite, graphene, and talc. As for a filler, only 1 type may be used and 2 or more types may be used together. When a filler having a high thermal conductivity is used, the main curing time is shortened.

上記導電材料は、溶剤を含んでいてもよい。該溶剤の使用により、導電材料の粘度を容易に調整できる。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n−ヘキサン、テトラヒドロフラン及びジエチルエーテル等が挙げられる。   The conductive material may contain a solvent. By using the solvent, the viscosity of the conductive material can be easily adjusted. Examples of the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran, and diethyl ether.

(導電材料の詳細及び用途)
本発明に係る導電材料は、異方性導電材料であることが好ましい。本発明に係る導電材料は、電極の電気的な接続に用いられる導電材料であることが好ましい。本発明に係る導電材料は、有機エレクトロルミネッセンス表示素子における電極の電気的な接続に用いられる導電材料であることも好ましい。本発明に係る導電材料は、ペースト状又はフィルム状の導電材料であり、ペースト状の導電材料であることが好ましい。ペースト状の導電材料は、導電ペーストである。フィルム状の導電材料は、導電フィルムである。導電材料が導電フィルムである場合、該導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
(Details and applications of conductive materials)
The conductive material according to the present invention is preferably an anisotropic conductive material. The conductive material according to the present invention is preferably a conductive material used for electrical connection of electrodes. The conductive material according to the present invention is also preferably a conductive material used for electrical connection of electrodes in an organic electroluminescence display element. The conductive material according to the present invention is a paste-like or film-like conductive material, and is preferably a paste-like conductive material. The paste-like conductive material is a conductive paste. The film-like conductive material is a conductive film. When the conductive material is a conductive film, a film that does not include conductive particles may be laminated on the conductive film that includes the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.

本発明に係る導電材料は、導電ペーストであって、ペースト状の状態で接続対象部材上に塗布される導電ペーストであることが好ましい。   The conductive material according to the present invention is a conductive paste, and is preferably a conductive paste applied on a connection target member in a paste state.

上記導電ペーストの25℃での粘度は、好ましくは20Pa・s以上、より好ましくは100Pa・s以上、好ましくは1000Pa・s以下、より好ましくは700Pa・s以下、更に好ましくは600Pa・s以下である。上記粘度が上記下限以上であると、導電ペースト中での導電性粒子の沈降を抑制できる。上記粘度が上記上限以下であると、導電性粒子の分散性がより一層高くなる。塗布前の上記導電ペーストの上記粘度が上記範囲内であれば、第1の接続対象部材上に導電ペーストを塗布した後に、硬化前の導電ペーストの流動をより一層抑制でき、さらにボイドがより一層生じ難くなる。上記導電ペーストの25℃での粘度は、300Pa・s以下であってもよい。なお、ペースト状には液状も含まれる。   The viscosity of the conductive paste at 25 ° C. is preferably 20 Pa · s or more, more preferably 100 Pa · s or more, preferably 1000 Pa · s or less, more preferably 700 Pa · s or less, and further preferably 600 Pa · s or less. . When the viscosity is equal to or higher than the lower limit, sedimentation of conductive particles in the conductive paste can be suppressed. When the viscosity is equal to or lower than the upper limit, the dispersibility of the conductive particles is further increased. If the viscosity of the conductive paste before coating is within the above range, after applying the conductive paste on the first connection target member, the flow of the conductive paste before curing can be further suppressed, and the voids are further reduced. It becomes difficult to occur. The viscosity of the conductive paste at 25 ° C. may be 300 Pa · s or less. The paste form includes liquid.

本発明に係る導電材料は、銅電極を有する接続対象部材を接続するために用いられる導電材料であることが好ましい。導電材料を用いて、銅電極を有する接続対象部材を接続した場合には、接続構造体における銅電極に起因してマイグレーションが生じやすいという問題がある。これに対して、本発明に係る導電材料の使用により、銅電極を有する接続対象部材を接続したとしても、接続構造体におけるマイグレーションを効果的に抑制でき、絶縁信頼性を効果的に高めることができる。   The conductive material according to the present invention is preferably a conductive material used for connecting a connection target member having a copper electrode. When a connection target member having a copper electrode is connected using a conductive material, there is a problem that migration is likely to occur due to the copper electrode in the connection structure. On the other hand, by using the conductive material according to the present invention, even if a connection target member having a copper electrode is connected, migration in the connection structure can be effectively suppressed, and insulation reliability can be effectively increased. it can.

本発明に係る導電材料は、様々な接続対象部材を接着するために使用できる。上記導電材料は、第1,第2の接続対象部材が電気的に接続されている接続構造体を得るために好適に用いられる。上記導電材料は、第1,第2の接続対象部材の電極間が電気的に接続されている接続構造体を得るためにより好適に用いられる。   The conductive material according to the present invention can be used for bonding various connection target members. The conductive material is preferably used for obtaining a connection structure in which the first and second connection target members are electrically connected. The conductive material is more preferably used to obtain a connection structure in which the electrodes of the first and second connection target members are electrically connected.

図1に、本発明の一実施形態に係る導電材料を用いた接続構造体の一例を模式的に正面断面図で示す。   FIG. 1 is a front sectional view schematically showing an example of a connection structure using a conductive material according to an embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材4と、第1,第2の接続対象部材2,4を電気的に接続している接続部3とを備える。接続部3は、硬化物層であり、導電性粒子5を含む導電材料を硬化させることにより形成されている。接続部3は、異方性導電材料を硬化させることにより形成されていることが好ましい。   A connection structure 1 shown in FIG. 1 includes a first connection target member 2, a second connection target member 4, and a connection portion that electrically connects the first and second connection target members 2 and 4. 3. The connecting portion 3 is a cured product layer and is formed by curing a conductive material including the conductive particles 5. The connecting portion 3 is preferably formed by curing an anisotropic conductive material.

第1の接続対象部材2は表面2a(上面)に、複数の第1の電極2bを有する。第2の接続対象部材4は表面4a(下面)に、複数の第2の電極4bを有する。第1の電極2bと第2の電極4bとが、1つ又は複数の導電性粒子5により電気的に接続されている。従って、第1,第2の接続対象部材2,4が導電性粒子5により電気的に接続されている。   The first connection target member 2 has a plurality of first electrodes 2b on the surface 2a (upper surface). The second connection target member 4 has a plurality of second electrodes 4b on the surface 4a (lower surface). The first electrode 2 b and the second electrode 4 b are electrically connected by one or a plurality of conductive particles 5. Therefore, the first and second connection target members 2 and 4 are electrically connected by the conductive particles 5.

第1,第2の電極2b,4b間の接続は、通常、第1の接続対象部材2と第2の接続対象部材4とを導電材料を介して第1,第2の電極2b,4b同士が対向するように重ね合わせた後に、導電材料を硬化させる際に、加圧することにより行われる。加圧により、一般に導電性粒子5は圧縮される。   The connection between the first and second electrodes 2b and 4b is usually made by connecting the first connection target member 2 and the second connection target member 4 with the first and second electrodes 2b and 4b through a conductive material. Is carried out by applying pressure when the conductive material is cured after being overlapped so as to face each other. Generally, the conductive particles 5 are compressed by pressurization.

第1,第2の接続対象部材は、特に限定されない。第1,第2の接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料は、電子部品の接続に用いられる導電材料であることが好ましい。   The first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, and glass boards. . The conductive material is preferably a conductive material used for connecting electronic components.

図1に示す接続構造体1は、例えば、図2(a)〜(c)に示す状態を経て、以下のようにして得ることができる。   The connection structure 1 shown in FIG. 1 can be obtained as follows, for example, through the states shown in FIGS.

図2(a)に示すように、第1の電極2bを表面2a(上面)に有する第1の接続対象部材2を用意する。次に、第1の接続対象部材2の表面2aに、複数の導電性粒子5を含む導電材料を配置し、第1の接続対象部材2の表面2aに導電材料層3Aを形成する。このとき、第1の電極2b上に、1つ又は複数の導電性粒子5が配置されていることが好ましい。   As shown in FIG. 2A, the first connection target member 2 having the first electrode 2b on the surface 2a (upper surface) is prepared. Next, a conductive material including a plurality of conductive particles 5 is disposed on the surface 2 a of the first connection target member 2, and the conductive material layer 3 </ b> A is formed on the surface 2 a of the first connection target member 2. At this time, it is preferable that one or a plurality of conductive particles 5 be arranged on the first electrode 2b.

次に、導電材料層3Aに光を照射することにより、導電材料層3Aの硬化を進行させる。図2(a)〜(c)では、導電材料層3Aに光を照射して、導電材料層3Aの硬化を進行させて、導電材料層3AをBステージ化している。すなわち、図2(b)に示すように、第1の接続対象部材2の表面2aに、Bステージ化された導電材料層3Bを形成している。Bステージ化により、第1の接続対象部材2とBステージ化された導電材料層3Bとが仮接着される。Bステージ化された導電材料層3Bは、半硬化状態にある半硬化物である。Bステージ化された導電材料層3Bは、完全に硬化しておらず、熱硬化がさらに進行され得る。但し、導電材料層3AをBステージ化せずに、導電材料層3Aに光を照射して又は導電材料層3Aを加熱して、導電材料層3Aを一度に硬化させてもよい。   Next, the conductive material layer 3A is cured by irradiating the conductive material layer 3A with light. 2A to 2C, the conductive material layer 3A is B-staged by irradiating the conductive material layer 3A with light to advance the curing of the conductive material layer 3A. That is, as shown in FIG. 2B, the B-staged conductive material layer 3B is formed on the surface 2a of the first connection target member 2. By the B-stage, the first connection target member 2 and the B-staged conductive material layer 3B are temporarily bonded. The B-staged conductive material layer 3B is a semi-cured product in a semi-cured state. The B-staged conductive material layer 3B is not completely cured, and thermal curing can be further advanced. However, the conductive material layer 3A may be cured at one time by irradiating the conductive material layer 3A with light or heating the conductive material layer 3A without making the conductive material layer 3A B-staged.

導電材料層3Aの硬化を効果的に進行させるために、光を照射する際の光照射強度は0.1〜8000mW/cmの範囲内であることが好ましい。積算光量は、0.1〜20000J/cmであることが好ましい。光を照射する際に用いる光源は特に限定されない。該光源としては、例えば、波長420nm以下に充分な発光分布を有する光源等が挙げられる。また、光源の具体例としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ及びLEDランプ等が挙げられる。In order to effectively advance the curing of the conductive material layer 3A, the light irradiation intensity when irradiating with light is preferably in the range of 0.1 to 8000 mW / cm 2 . The integrated light quantity is preferably 0.1 to 20000 J / cm 2 . The light source used when irradiating light is not specifically limited. Examples of the light source include a light source having a sufficient light emission distribution at a wavelength of 420 nm or less. Specific examples of the light source include, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, and an LED lamp.

次に、図2(c)に示すように、Bステージ化された導電材料層3Bの上面3aに、第2の接続対象部材4を積層する。第1の接続対象部材2の表面2aの第1の電極2bと、第2の接続対象部材4の表面4aの第2の電極4bとが対向するように、第2の接続対象部材4を積層する。   Next, as illustrated in FIG. 2C, the second connection target member 4 is laminated on the upper surface 3 a of the conductive material layer 3 </ b> B that has been B-staged. The second connection target member 4 is laminated so that the first electrode 2b on the surface 2a of the first connection target member 2 and the second electrode 4b on the surface 4a of the second connection target member 4 face each other. To do.

さらに、第2の接続対象部材4の積層の際に、Bステージ化された導電材料層3Bを加熱することにより、Bステージ化された導電材料層3Bをさらに硬化させ、接続部3を形成する。ただし、第2の接続対象部材4の積層の前に、Bステージ化された導電材料層3Bを加熱してもよい。さらに、第2の接続対象部材4の積層の後にBステージ化された導電材料層3Bを加熱してもよい。   Further, when the second connection target member 4 is laminated, the conductive material layer 3 </ b> B that has been B-staged is heated to further cure the conductive material layer 3 </ b> B that has been B-staged to form the connection portion 3. . However, the B-staged conductive material layer 3B may be heated before the second connection target member 4 is laminated. Furthermore, you may heat the conductive material layer 3B made into B stage after the lamination | stacking of the 2nd connection object member 4. FIG.

加熱により導電材料層3A又はBステージ化された導電材料層3Bを硬化させる際の加熱温度は、好ましくは50℃以上、より好ましくは80℃以上、より一層好ましくは100℃以上、更に好ましくは140℃以上、特に好ましくは160℃以上、好ましくは250℃以下、より好ましくは200℃以下である。本発明に係る導電材料が、有機エレクトロルミネッセンス表示素子における電極の電気的な接続に用いられる場合には、上記導電材料層3A又はBステージ化された導電材料層3Bを硬化させる際に、加熱温度は120℃以下であってもよい。   The heating temperature for curing the conductive material layer 3A or the B-staged conductive material layer 3B by heating is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, even more preferably 100 ° C. or higher, and still more preferably 140. More preferably, it is 160 ° C. or more, preferably 250 ° C. or less, more preferably 200 ° C. or less. When the conductive material according to the present invention is used for electrical connection of electrodes in an organic electroluminescence display element, when the conductive material layer 3A or the B-staged conductive material layer 3B is cured, the heating temperature May be 120 ° C. or lower.

Bステージ化された導電材料層3Bを硬化させる際に、加圧することが好ましい。加圧によって第1の電極2bと第2の電極4bとで導電性粒子5を圧縮することにより、第1,第2の電極2b,4bと導電性粒子5との接触面積を大きくすることができる。このため、導通信頼性を高めることができる。さらに、導電性粒子5を圧縮することで、第1,第2の電極2b,4b間の距離が拡がっても、この拡がりに追従するように導電性粒子5の粒子径が大きくなる。   It is preferable to apply pressure when the B-staged conductive material layer 3B is cured. By compressing the conductive particles 5 with the first electrode 2b and the second electrode 4b by pressurization, the contact area between the first and second electrodes 2b, 4b and the conductive particles 5 can be increased. it can. For this reason, conduction reliability can be improved. Further, by compressing the conductive particles 5, even if the distance between the first and second electrodes 2b and 4b increases, the particle diameter of the conductive particles 5 increases so as to follow this expansion.

Bステージ化された導電材料層3Bを硬化させることにより、第1の接続対象部材2と第2の接続対象部材4とが、接続部3を介して接続される。また、第1の電極2bと第2の電極4bとが、導電性粒子5を介して電気的に接続される。このようにして、導電材料を用いた図1に示す接続構造体1を得ることができる。ここでは、光硬化と熱硬化とが併用されているため、導電材料を短時間で硬化させることができる。   By curing the B-staged conductive material layer 3 </ b> B, the first connection target member 2 and the second connection target member 4 are connected via the connection portion 3. Further, the first electrode 2 b and the second electrode 4 b are electrically connected through the conductive particles 5. In this way, the connection structure 1 shown in FIG. 1 using a conductive material can be obtained. Here, since photocuring and thermosetting are used in combination, the conductive material can be cured in a short time.

本発明に係る導電材料は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、又はフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用できる。なかでも、上記導電材料は、FOG用途又はCOG用途に好適であり、COG用途により好適である。本発明に係る導電材料は、フレキシブルプリント基板とガラス基板との接続、又は半導体チップとガラス基板との接続に用いられる導電材料であることが好ましく、フレキシブルプリント基板とガラス基板との接続に用いられる導電材料であることがより好ましい。   The conductive material according to the present invention includes, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip and glass. It can be used for connection to a substrate (COG (Chip on Glass)) or connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)). Especially, the said electrically-conductive material is suitable for a FOG use or a COG use, and is more suitable for a COG use. The conductive material according to the present invention is preferably a conductive material used for connection between a flexible printed circuit board and a glass substrate or a connection between a semiconductor chip and a glass substrate, and is used for connection between the flexible printed circuit board and the glass substrate. More preferably, it is a conductive material.

本発明に係る接続構造体では、上記第2の接続対象部材と上記第1の接続対象部材とが、フレキシブルプリント基板とガラス基板とであるか、又は半導体チップとガラス基板とであることが好ましく、フレキシブルプリント基板とガラス基板とであることがより好ましい。   In the connection structure according to the present invention, it is preferable that the second connection target member and the first connection target member are a flexible printed circuit board and a glass substrate, or a semiconductor chip and a glass substrate. More preferably, they are a flexible printed circuit board and a glass substrate.

また、本発明に係る接続構造体は、有機エレクトロルミネッセンス表示素子であることも好ましい。上記有機エレクトロルミネッセンス表示素子における電極が、上記導電材料に含まれる導電性粒子により電気的に接続されていてもよい。   The connection structure according to the present invention is preferably an organic electroluminescence display element. The electrodes in the organic electroluminescence display element may be electrically connected by conductive particles contained in the conductive material.

上記第1の電極及び上記第2の電極の内の少なくとも一方が、銅電極であることが好ましい。上記第1の電極及び上記第2の電極の双方が、銅電極であることが好ましい。この場合には、本発明に係る導電材料によるマイグレーションの抑制効果がより一層得られ、接続構造体における絶縁信頼性がより一層高くなる。   It is preferable that at least one of the first electrode and the second electrode is a copper electrode. Both the first electrode and the second electrode are preferably copper electrodes. In this case, the effect of suppressing migration by the conductive material according to the present invention is further obtained, and the insulation reliability in the connection structure is further increased.

電極幅(第1の電極幅及び第2の電極幅)は、好ましくは5μm以上、より好ましくは10μm以上、好ましくは500μm以下、より好ましくは300μm以下である。電極間幅(第1の電極間幅及び第2の電極間幅)は、好ましくは3μm以上、より好ましくは10μm以上、好ましくは500μm以下、より好ましくは300μm以下である。また、電極幅/電極間幅であるL/S(ライン/スペース)は、好ましくは5μm/5μm以上、より好ましくは10μm/10μm以上、好ましくは500μm/500μm以下、より好ましくは300μm/300μm以下である。   The electrode width (first electrode width and second electrode width) is preferably 5 μm or more, more preferably 10 μm or more, preferably 500 μm or less, more preferably 300 μm or less. The inter-electrode width (the first inter-electrode width and the second inter-electrode width) is preferably 3 μm or more, more preferably 10 μm or more, preferably 500 μm or less, more preferably 300 μm or less. Further, L / S (line / space) as electrode width / interelectrode width is preferably 5 μm / 5 μm or more, more preferably 10 μm / 10 μm or more, preferably 500 μm / 500 μm or less, more preferably 300 μm / 300 μm or less. is there.

なお、近年、上記接続構造体における電極幅/電極間幅であるL/S(ライン/スペース)がより一層小さくなってきている。上記接続構造体における電極のL/Sが小さいほど、マイグレーションが生じたときに、絶縁不良が生じやすい。これに対して、本発明に係る導電材料の使用により、微細な電極を接続したとしても、絶縁不良の発生を効果的に抑制でき、絶縁信頼性を十分に確保できる。   In recent years, L / S (line / space) which is the electrode width / interelectrode width in the connection structure has been further reduced. The smaller the L / S of the electrode in the connection structure is, the easier it is to cause insulation failure when migration occurs. On the other hand, by using the conductive material according to the present invention, even if a fine electrode is connected, the occurrence of insulation failure can be effectively suppressed, and insulation reliability can be sufficiently secured.

以下、本発明について、実施例、比較例及び参考例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples, Comparative Examples, and Reference Examples. The present invention is not limited only to the following examples.

実施例及び比較例では、以下の材料を用いた。   In the examples and comparative examples, the following materials were used.

(イオン交換体)
(1)IXE−100(Zr系陽イオン交換体、中性交換容量3.3meq/g、東亞合成社製)
(2)IXE−700F(Mg−Al系陰イオン交換体、中性交換容量4.5meq/g、東亞合成社製)
(3)IXE−300(Sb系陽イオン交換体、中性交換容量2.3meq/g、東亞合成社製)
(4)IXE−500(Bi系陰イオン交換体、中性交換容量1.8meq/g、東亞合成社製)
(5)IXE−530(Bi系陰イオン交換体、中性交換容量1.8meq/g、東亞合成社製)
(6)IXE−633(Sb,Bi系両イオン交換体、中性交換容量1.8meq/g、東亞合成社製)
(Ion exchanger)
(1) IXE-100 (Zr-based cation exchanger, neutral exchange capacity 3.3 meq / g, manufactured by Toagosei Co., Ltd.)
(2) IXE-700F (Mg-Al anion exchanger, neutral exchange capacity 4.5 meq / g, manufactured by Toagosei Co., Ltd.)
(3) IXE-300 (Sb cation exchanger, neutral exchange capacity 2.3 meq / g, manufactured by Toagosei Co., Ltd.)
(4) IXE-500 (Bi-based anion exchanger, neutral exchange capacity 1.8 meq / g, manufactured by Toagosei Co., Ltd.)
(5) IXE-530 (Bi-based anion exchanger, neutral exchange capacity 1.8 meq / g, manufactured by Toagosei Co., Ltd.)
(6) IXE-633 (Sb, Bi-based ion exchanger, neutral exchange capacity 1.8 meq / g, manufactured by Toagosei Co., Ltd.)

(実施例1)
(1)異方性導電材料の調製:
ビスフェノールA変性エポキシ樹脂(DIC社製「EPICLON EXA−4850−150」)40重量部、及びビスフェノールFエポキシ樹脂(DIC社製「EXA−835LV」)30重量部に、カチオン発生剤であるSI−60L(三新化学社製のサンエイド)3重量部と、光硬化性化合物であるエポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)20重量部と、光硬化開始剤であるアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)1重量部と、フィラーである平均粒子径0.25μmのシリカ10重量部と、平均粒子径10μmの導電性粒子A4重量部と、イオン交換体である上記(1)IXE−100(東亞合成社製)1重量部と、上記(2)IXE−700F(東亞合成社製)1重量部とを添加し、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、異方性導電ペーストを得た。なお、用いた導電性粒子Aは、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。
Example 1
(1) Preparation of anisotropic conductive material:
SI-60L which is a cation generator is added to 40 parts by weight of a bisphenol A-modified epoxy resin (“EPICLON EXA-4850-150” manufactured by DIC) and 30 parts by weight of a bisphenol F epoxy resin (“EXA-835LV” manufactured by DIC). 3 parts by weight (Sun Aid manufactured by Sanshin Chemical Co., Ltd.), 20 parts by weight of epoxy acrylate (“EBECRYL 3702” manufactured by Daicel Cytec Co., Ltd.) which is a photocurable compound, and acylphosphine oxide compound (Ciba) which is a photocuring initiator -"DAROCUR TPO" manufactured by Japan Co., Ltd.) 1 part by weight, 10 parts by weight of silica having an average particle diameter of 0.25 μm as filler, 4 parts by weight of conductive particles A having an average particle diameter of 10 μm, and the above (ion exchanger) 1) 1 part by weight of IXE-100 (manufactured by Toagosei Co., Ltd.) and (2) IXE-70 F was added and (Toagosei Co., Ltd.) 1 part by weight, by stirring for 5 minutes at 2000rpm using a planetary stirrer to obtain an anisotropic conductive paste. The conductive particles A used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. is there.

(2)接続構造体(FOG)の作製:
L/Sが50μm/50μm、長さ1mmのアルミニウム電極パターンが上面に形成されたガラス基板(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、長さ2mmの金メッキされたCu電極パターンが下面に形成されたフレキシブルプリント基板(第2の接続対象部材)を用意した。
(2) Fabrication of connection structure (FOG):
A glass substrate (first connection target member) having an L / S of 50 μm / 50 μm and a 1 mm long aluminum electrode pattern formed on the upper surface was prepared. In addition, a flexible printed circuit board (second connection target member) having a gold-plated Cu electrode pattern with a L / S of 50 μm / 50 μm and a length of 2 mm formed on the lower surface was prepared.

上記ガラス基板上に、作製直後の異方性導電ペーストを幅1.5mm、厚さ40μmとなるようにディスペンサーを用いて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記フレキシブルプリント基板を、電極同士が対向するように積層した。365nmの紫外線を光照射強度が3000mW/cmとなるように3秒間照射し、光重合によって異方性導電ペースト層を半硬化させ、Bステージ化した。その後、大橋製作所社製「BD−02」を用い、異方性導電ペースト層の温度が170℃(本圧着温度)となるように加熱圧着ヘッドの温度を調整しながら、フレキシブルプリント基板の上面に加圧圧着ヘッドを載せ、1MPaの圧力をかけて170℃で5秒間異方性導電ペースト層を硬化させ、接続構造体を得た。On the said glass substrate, the anisotropic conductive paste immediately after preparation was applied using a dispenser so that it might become width 1.5mm and thickness 40 micrometers, and the anisotropic conductive paste layer was formed. Next, the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes face each other. A 365 nm ultraviolet ray was irradiated for 3 seconds so that the light irradiation intensity was 3000 mW / cm 2, and the anisotropic conductive paste layer was semi-cured by photopolymerization to form a B stage. Then, using “BD-02” manufactured by Ohashi Manufacturing Co., Ltd., adjusting the temperature of the thermocompression bonding head so that the temperature of the anisotropic conductive paste layer is 170 ° C. (the main pressure bonding temperature). A pressure-bonding head was placed and the anisotropic conductive paste layer was cured at 170 ° C. for 5 seconds under a pressure of 1 MPa to obtain a connection structure.

(実施例2)
上記(1)IXE−100の配合量を0.01重量部に変更したこと、並びに上記(2)IXE−700Fの配合量を0.01重量部へ変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Example 2)
Example 1 except that the amount of (1) IXE-100 was changed to 0.01 parts by weight and the amount of (2) IXE-700F was changed to 0.01 parts by weight. Thus, an anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(実施例3)
上記(1)IXE−100の配合量を5重量部に変更したこと、並びに上記(2)IXE−700Fの配合量を5重量部へ変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Example 3)
Anisotropic as in Example 1, except that the amount of (1) IXE-100 was changed to 5 parts by weight and that the amount of (2) IXE-700F was changed to 5 parts by weight. Conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(実施例4)
上記(2)IXE−700Fを上記(4)IXE−500(東亞合成社製)に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
Example 4
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that (2) IXE-700F was changed to (4) IXE-500 (manufactured by Toagosei Co., Ltd.). Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(実施例5)
上記(1)IXE−100を上記(3)IXE−300(東亞合成社製)に変更したこと、並びに上記(2)IXE−700Fを上記(4)IXE−500(東亞合成社製)に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Example 5)
(1) IXE-100 was changed to (3) IXE-300 (manufactured by Toagosei Co., Ltd.) and (2) IXE-700F was changed to (4) IXE-500 (manufactured by Toagosei Co., Ltd.) Except that, an anisotropic conductive paste was obtained in the same manner as in Example 1. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(実施例6)
上記(1)IXE−100を上記(3)IXE−300(東亞合成社製)に変更したこと、並びに上記(2)IXE−700Fを上記(5)IXE−530(東亞合成社製)に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Example 6)
(1) IXE-100 was changed to (3) IXE-300 (made by Toagosei Co., Ltd.) and (2) IXE-700F was changed to (5) IXE-530 (made by Toagosei Co., Ltd.) Except that, an anisotropic conductive paste was obtained in the same manner as in Example 1. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(比較例1)
上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加しなかったこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Comparative Example 1)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that both (1) IXE-100 and (2) IXE-700F were not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(比較例2)
上記(1)IXE−100を添加しなかったこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Comparative Example 2)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that (1) IXE-100 was not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(比較例3)
上記(2)IXE−700Fを添加しなかったこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Comparative Example 3)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that (2) IXE-700F was not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(比較例4)
上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加せずに、IXE−633(東亞合成社製)2重量部を添加したこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Comparative Example 4)
Except for adding 2 parts by weight of IXE-633 (manufactured by Toagosei Co., Ltd.) without adding both (1) IXE-100 and (2) IXE-700F, the same procedure as in Example 1 was performed. An anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(参考例1)
カチオン発生剤であるSI−60Lを添加せずに、熱硬化剤(イミダゾール化合物、四国化成工業社製「2P−4MZ」)10重量部を添加したこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Reference Example 1)
In the same manner as in Example 1 except that 10 parts by weight of a thermosetting agent (imidazole compound, “2P-4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added without adding SI-60L as a cation generator. An anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(参考例2)
カチオン発生剤であるSI−60Lを添加せずに、熱硬化剤(イミダゾール化合物、四国化成工業社製「2P−4MZ」)10重量部を添加したこと、並びに上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加しなかったこと以外は、実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例1と同様にして、接続構造体を得た。
(Reference Example 2)
Without adding SI-60L which is a cation generator, 10 parts by weight of a thermosetting agent (imidazole compound, “2P-4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) and (1) IXE-100, and An anisotropic conductive paste was obtained in the same manner as in Example 1 except that both (2) IXE-700F were not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 1.

(実施例1〜6、比較例1〜4及び参考例1,2の評価)
(1)導通信頼性(接続抵抗値)
得られた接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。100箇所の接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。得られた接続構造体の導通信頼性を下記の基準で判定した。
(Evaluation of Examples 1 to 6, Comparative Examples 1 to 4 and Reference Examples 1 and 2)
(1) Conduction reliability (connection resistance value)
The connection resistance between the upper and lower electrodes of the obtained connection structure was measured by a four-terminal method. The average value of the connection resistance at 100 locations was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability of the obtained connection structure was determined according to the following criteria.

[導通信頼性の判定基準]
○○:3Ω未満
○:3Ω以上、5Ω未満
×:5Ω以上
[Judgment criteria for conduction reliability]
○○: Less than 3Ω ○: 3Ω or more, less than 5Ω ×: 5Ω or more

(2)耐湿絶縁信頼性
得られた接続構造体の互いに絶縁された測定用端子間に20Vの電圧を印加した状態で、85℃及び85%RHの雰囲気下にて500時間暴露し、この間、測定用端子間の抵抗値変化を測定した。抵抗値が10Ω以下となった場合を絶縁不良と判断した。耐湿絶縁信頼性を下記基準で判定した。
(2) Moisture-resistant insulation reliability With a voltage of 20 V applied between the measurement terminals insulated from each other of the obtained connection structure, exposure was performed in an atmosphere of 85 ° C. and 85% RH for 500 hours, The change in resistance value between the measuring terminals was measured. The case where the resistance value was 10 5 Ω or less was judged as an insulation failure. Moisture resistance insulation reliability was judged according to the following criteria.

[耐湿絶縁信頼性の判定基準]
○○:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上
○:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上、10Ω未満
△:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上、10Ω未満
×:10個の接続構造体のうち、絶縁不良が生じている接続構造体が1個以上ある
[Criteria for moisture-resistant insulation reliability]
◯: Of the 10 connection structures, there is no connection structure in which insulation failure occurs, and the average resistance value after the moisture-proof insulation reliability test is 10 7 Ω or more. ◯: Of the 10 connection structures There is no connection structure in which insulation failure has occurred, and the average resistance value after the moisture-proof insulation reliability test is 10 6 Ω or more and less than 10 7 Ω Δ: Among 10 connection structures, insulation failure has occurred There is no connection structure, and the average resistance value after the moisture-proof insulation reliability test is 10 5 Ω or more and less than 10 6 Ω x: Of the 10 connection structures, 1 is the connection structure in which insulation failure occurs There are more than

結果を下記の表1に示す。   The results are shown in Table 1 below.

Figure 0005162728
Figure 0005162728

(実施例7)
(1)導電性粒子の作製:
平均粒子径10μmのジビニルベンゼン樹脂粒子(積水化学工業社製、ミクロパールSP−210)を無電解ニッケルめっきし、樹脂粒子の表面上に厚さ0.1μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された樹脂粒子を電解銅めっきし、厚さ1μmの銅層を形成した。更に、錫及びビスマスを含有する電解めっき液を用いて、電解めっきし、厚さ1μmのはんだ層を形成した。このようにして、樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み1μmのはんだ層(錫:ビスマス=43重量%:57重量%)が形成されている導電性粒子Bを作製した。
(Example 7)
(1) Production of conductive particles:
Electroless nickel plating was performed on divinylbenzene resin particles having an average particle diameter of 10 μm (manufactured by Sekisui Chemical Co., Ltd., Micropearl SP-210) to form a base nickel plating layer having a thickness of 0.1 μm on the surface of the resin particles. Next, the resin particles on which the base nickel plating layer was formed were subjected to electrolytic copper plating to form a 1 μm thick copper layer. Furthermore, electrolytic plating was performed using an electrolytic plating solution containing tin and bismuth to form a solder layer having a thickness of 1 μm. Thus, a 1 μm thick copper layer is formed on the surface of the resin particles, and a 1 μm thick solder layer (tin: bismuth = 43 wt%: 57 wt%) is formed on the surface of the copper layer. Conductive particles B were prepared.

(2)異方性導電材料の調製:
ビスフェノールA変性エポキシ樹脂(DIC社製「EPICLON EXA−4850−150」)40重量部、及びビスフェノールFエポキシ樹脂(DIC社製「EXA−835LV」)30重量部に、カチオン発生剤であるSI−60L(三新化学社製のサンエイド)3重量部と、光硬化性化合物であるエポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)20重量部と、光硬化開始剤であるアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)1重量部と、フィラーである平均粒子径0.25μmのシリカ10重量部と、フラックスであるロジン3重量部と、得られた導電性粒子B4重量部と、イオン交換体である上記(1)IXE−100(東亞合成社製)1重量部と、上記(2)IXE−700F(東亞合成社製)1重量部とを添加し、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、異方性導電ペーストを得た。
(2) Preparation of anisotropic conductive material:
SI-60L which is a cation generator is added to 40 parts by weight of a bisphenol A-modified epoxy resin (“EPICLON EXA-4850-150” manufactured by DIC) and 30 parts by weight of a bisphenol F epoxy resin (“EXA-835LV” manufactured by DIC). 3 parts by weight (Sun Aid manufactured by Sanshin Chemical Co., Ltd.), 20 parts by weight of epoxy acrylate (“EBECRYL 3702” manufactured by Daicel Cytec Co., Ltd.) which is a photocurable compound, and acylphosphine oxide compound (Ciba) which is a photocuring initiator -"DAROCUR TPO" manufactured by Japan Co., Ltd.) 1 part by weight, 10 parts by weight of silica having an average particle diameter of 0.25 μm as a filler, 3 parts by weight of rosin as a flux, and 4 parts by weight of the obtained conductive particles B 1 part by weight of (1) IXE-100 (manufactured by Toagosei Co., Ltd.), which is an ion exchanger, An anisotropic conductive paste was obtained by adding 1 part by weight of (2) IXE-700F (manufactured by Toagosei Co., Ltd.) and stirring for 5 minutes at 2000 rpm using a planetary stirrer.

(2)接続構造体(FOB)の作製
L/Sが100μm/100μm、長さ4mmの金メッキされたCu電極パターンが上面に形成されたガラスエポキシ基板(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、長さ4mmの金メッキされたCu電極パターンが下面に形成されたフレキシブルプリント基板(第2の接続対象部材)を用意した。
(2) Production of Connection Structure (FOB) A glass epoxy substrate (first connection target member) having a gold-plated Cu electrode pattern with an L / S of 100 μm / 100 μm and a length of 4 mm formed on the upper surface was prepared. In addition, a flexible printed circuit board (second connection target member) having a gold-plated Cu electrode pattern having a L / S of 100 μm / 100 μm and a length of 4 mm formed on the lower surface was prepared.

上記ガラス基板上に、作製直後の異方性導電ペーストを幅1.5mm、厚さ40μmとなるようにディスペンサーを用いて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記フレキシブルプリント基板を、電極同士が対向するように積層した。365nmの紫外線を光照射強度が3000mW/cmとなるように3秒間照射し、光重合によって異方性導電ペースト層を半硬化させ、Bステージ化した。その後、大橋製作所社製「BD−02」を用い、異方性導電ペースト層の温度が170℃(本圧着温度)となるように加熱圧着ヘッドの温度を調整しながら、フレキシブルプリント基板の上面に加圧圧着ヘッドを載せ、1MPaの圧力をかけて170℃で5秒間異方性導電ペースト層を硬化させ、接続構造体を得た。On the said glass substrate, the anisotropic conductive paste immediately after preparation was applied using a dispenser so that it might become width 1.5mm and thickness 40 micrometers, and the anisotropic conductive paste layer was formed. Next, the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes face each other. A 365 nm ultraviolet ray was irradiated for 3 seconds so that the light irradiation intensity was 3000 mW / cm 2, and the anisotropic conductive paste layer was semi-cured by photopolymerization to form a B stage. Then, using “BD-02” manufactured by Ohashi Manufacturing Co., Ltd., adjusting the temperature of the thermocompression bonding head so that the temperature of the anisotropic conductive paste layer is 170 ° C. (the main pressure bonding temperature). A pressure-bonding head was placed and the anisotropic conductive paste layer was cured at 170 ° C. for 5 seconds under a pressure of 1 MPa to obtain a connection structure.

(実施例8)
上記(1)IXE−100の配合量を0.01重量部に変更したこと、並びに上記(2)IXE−700Fの配合量を0.01重量部へ変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 8)
Example 1 except that the amount of (1) IXE-100 was changed to 0.01 parts by weight and the amount of (2) IXE-700F was changed to 0.01 parts by weight. Thus, an anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例9)
上記(1)IXE−100の配合量を5重量部に変更したこと、並びに上記(2)IXE−700Fの配合量を5重量部へ変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
Example 9
Similar to Example 7, except that the blending amount of (1) IXE-100 was changed to 5 parts by weight and that the blending amount of (2) IXE-700F was changed to 5 parts by weight. Conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例10)
上記(2)IXE−700Fを上記(4)IXE−500(東亞合成社製)に変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 10)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that (2) IXE-700F was changed to (4) IXE-500 (manufactured by Toagosei Co., Ltd.). Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例11)
上記(1)IXE−100を上記(3)IXE−300(東亞合成社製)に変更したこと、並びに上記(2)IXE−700Fを上記(4)IXE−500(東亞合成社製)に変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 11)
(1) IXE-100 was changed to (3) IXE-300 (manufactured by Toagosei Co., Ltd.) and (2) IXE-700F was changed to (4) IXE-500 (manufactured by Toagosei Co., Ltd.) Except that, an anisotropic conductive paste was obtained in the same manner as in Example 7. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例12)
上記(1)IXE−100を上記(3)IXE−300(東亞合成社製)に変更したこと、並びに上記(2)IXE−700Fを上記(5)IXE−530(東亞合成社製)に変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 12)
(1) IXE-100 was changed to (3) IXE-300 (made by Toagosei Co., Ltd.) and (2) IXE-700F was changed to (5) IXE-530 (made by Toagosei Co., Ltd.) Except that, an anisotropic conductive paste was obtained in the same manner as in Example 7. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例13)
フラックスであるロジンを配合しなかったこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 13)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that rosin as a flux was not blended. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例14)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 14)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that the conductive particle B was changed to the conductive particle A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例15)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例8と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 15)
An anisotropic conductive paste was obtained in the same manner as in Example 8 except that the conductive particle B was changed to the conductive particle A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例16)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例9と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 16)
An anisotropic conductive paste was obtained in the same manner as in Example 9 except that the conductive particle B was changed to the conductive particle A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例17)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例10と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 17)
An anisotropic conductive paste was obtained in the same manner as in Example 10 except that the conductive particles B were changed to the conductive particles A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例18)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例11と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 18)
An anisotropic conductive paste was obtained in the same manner as in Example 11 except that the conductive particle B was changed to the conductive particle A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例19)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は実施例12と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 19)
An anisotropic conductive paste was obtained in the same manner as in Example 12 except that the conductive particles B were changed to the conductive particles A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例20)
熱硬化性化合物の種類及び配合量を、ビスフェノールA変性エポキシ樹脂(DIC社製「EPICLON EXA−4850−150」)40重量部、及びビスフェノールFエポキシ樹脂(DIC社製「EXA−835LV」)30重量部から、ビスフェノールEエポキシ樹脂(プリンテック社製「R1710」)70重量部に変更したこと、並びに上記導電性粒子Bを上記導電性粒子Aに変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 20)
The type and amount of the thermosetting compound are 40 parts by weight of bisphenol A-modified epoxy resin (DIC Corporation "EPICLON EXA-4850-150") and bisphenol F epoxy resin (DIC Corporation "EXA-835LV") 30 weights. Parts, except that the bisphenol E epoxy resin ("R1710" manufactured by Printec Co., Ltd.) was changed to 70 parts by weight, and the conductive particles B were changed to the conductive particles A in the same manner as in Example 7, An anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例21)
カチオン発生剤の種類を、SI−60L(三新化学社製のサンエイド)から、CXC−1612(楠本化成社製のK−PURE)に変更したこと、並びに上記導電性粒子Bを上記導電性粒子Aに変更したこと以外は実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Example 21)
The type of cation generator was changed from SI-60L (Sun Shin Aid made by Sanshin Chemical Co., Ltd.) to CXC-1612 (K-PURE made by Enomoto Kasei Co., Ltd.), and the conductive particles B were changed to the conductive particles. An anisotropic conductive paste was obtained in the same manner as Example 7 except for changing to A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例5)
上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加しなかったこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 5)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that both (1) IXE-100 and (2) IXE-700F were not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例6)
上記(1)IXE−100を添加しなかったこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 6)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that (1) IXE-100 was not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例7)
上記(2)IXE−700Fを添加しなかったこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 7)
An anisotropic conductive paste was obtained in the same manner as in Example 7 except that (2) IXE-700F was not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例8)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は、比較例5と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 8)
An anisotropic conductive paste was obtained in the same manner as in Comparative Example 5 except that the conductive particles B were changed to the conductive particles A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例9)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は、比較例6と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 9)
An anisotropic conductive paste was obtained in the same manner as in Comparative Example 6 except that the conductive particles B were changed to the conductive particles A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例10)
上記導電性粒子Bを上記導電性粒子Aへ変更したこと以外は、比較例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 10)
An anisotropic conductive paste was obtained in the same manner as in Comparative Example 7 except that the conductive particles B were changed to the conductive particles A. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(比較例11)
上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加せずに、IXE−633(東亞合成社製)2重量部を添加したこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Comparative Example 11)
Except for adding 2 parts by weight of IXE-633 (manufactured by Toagosei Co., Ltd.) without adding both (1) IXE-100 and (2) IXE-700F, the same procedure as in Example 7 was performed. An anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(参考例3)
カチオン発生剤であるSI−60Lを添加せずに、熱硬化剤(イミダゾール化合物、四国化成工業社製「2P−4MZ」)10重量部を添加したこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Reference Example 3)
In the same manner as in Example 7 except that 10 parts by weight of a thermosetting agent (imidazole compound, “2P-4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added without adding SI-60L as a cation generator. An anisotropic conductive paste was obtained. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(参考例4)
カチオン発生剤であるSI−60Lを添加せずに、熱硬化剤(イミダゾール化合物、四国化成工業社製「2P−4MZ」)10重量部を添加したこと、並びに上記(1)IXE−100、及び上記(2)IXE−700Fの双方を添加しなかったこと以外は、実施例7と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いて、実施例7と同様にして、接続構造体を得た。
(Reference Example 4)
Without adding SI-60L which is a cation generator, 10 parts by weight of a thermosetting agent (imidazole compound, “2P-4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) and (1) IXE-100, and An anisotropic conductive paste was obtained in the same manner as in Example 7 except that both (2) IXE-700F were not added. Using the obtained anisotropic conductive paste, a connection structure was obtained in the same manner as in Example 7.

(実施例7〜21、比較例5〜11及び参考例3,4の評価)
(1)導通信頼性(接続抵抗値)
得られた接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。10個の接続構造体の接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。得られた接続構造体の導通信頼性を下記の基準で判定した。
(Evaluation of Examples 7 to 21, Comparative Examples 5 to 11 and Reference Examples 3 and 4)
(1) Conduction reliability (connection resistance value)
The connection resistance between the upper and lower electrodes of the obtained connection structure was measured by a four-terminal method. The average connection resistance of 10 connection structures was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability of the obtained connection structure was determined according to the following criteria.

[導通信頼性の判定基準]
○○:8Ω未満
○:8Ω以上、10Ω未満
×:10Ω以上
[Judgment criteria for conduction reliability]
○○: Less than 8Ω ○: 8Ω or more, less than 10Ω ×: 10Ω or more

(2)耐湿絶縁信頼性
得られた接続構造体の互いに絶縁された測定用端子間に15Vの電圧を印加した状態で、85℃及び85%RHの雰囲気下にて500時間暴露し、この間、測定用端子間の抵抗値変化を測定した。抵抗値が10Ω以下となった場合を絶縁不良と判断した。耐湿絶縁信頼性を下記基準で判定した。
(2) Moisture-resistant insulation reliability With a voltage of 15 V applied between the measurement terminals insulated from each other of the obtained connection structure, it was exposed in an atmosphere of 85 ° C. and 85% RH for 500 hours, The change in resistance value between the measuring terminals was measured. The case where the resistance value was 10 5 Ω or less was judged as an insulation failure. Moisture resistance insulation reliability was judged according to the following criteria.

[耐湿絶縁信頼性の判定基準]
○○:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上
○:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上、10Ω未満
△:10個の接続構造体のうち、絶縁不良が生じている接続構造体がなく、かつ耐湿絶縁信頼性試験後の平均抵抗値が10Ω以上、10Ω未満
×:10個の接続構造体のうち、絶縁不良が生じている接続構造体が1個以上ある
[Criteria for moisture-resistant insulation reliability]
◯: Of the 10 connection structures, there is no connection structure in which insulation failure occurs, and the average resistance value after the moisture-proof insulation reliability test is 10 7 Ω or more. ◯: Of the 10 connection structures There is no connection structure in which insulation failure has occurred, and the average resistance value after the moisture-proof insulation reliability test is 10 6 Ω or more and less than 10 7 Ω Δ: Among 10 connection structures, insulation failure has occurred There is no connection structure, and the average resistance value after the moisture-proof insulation reliability test is 10 5 Ω or more and less than 10 6 Ω x: Of the 10 connection structures, 1 is the connection structure in which insulation failure occurs There are more than

結果を下記の表2に示す。なお、導電性粒子Bを用いた実施例、比較例及び参考例の接続構造体では、接続構造体の作製時に導電性粒子Bのはんだ層は溶融した後に固化しており、接続構造体における電極に導電性粒子Bの銅層が接触していた。   The results are shown in Table 2 below. In the connection structures of Examples, Comparative Examples, and Reference Examples using the conductive particles B, the solder layer of the conductive particles B is solidified after melting at the time of manufacturing the connection structures, and the electrodes in the connection structures The copper layer of the electroconductive particle B was contacting.

Figure 0005162728
Figure 0005162728

なお、実施例3,16と参考例1〜4との導通信頼性の評価結果は共に「○」であった。但し、実施例3,16の導通信頼性の評価における接続抵抗の値は、参考例1〜4の接続抵抗の値よりも低かった。   In addition, the evaluation result of conduction | electrical_connection reliability of Example 3, 16 and Reference Examples 1-4 was both "(circle)". However, the value of the connection resistance in the evaluation of the conduction reliability in Examples 3 and 16 was lower than the value of the connection resistance in Reference Examples 1 to 4.

なお、実施例7と実施例14との導通信頼性の評価結果は共に「○○」であり、実施例8と実施例15との導通信頼性の評価結果は共に「○○」であり、実施例10と実施例17との導通信頼性の評価結果は共に「○○」であり、実施例11と実施例18との導通信頼性の評価結果は共に「○○」であり、実施例12と実施例19との導通信頼性の評価結果は共に「○○」であった。   It should be noted that the conduction reliability evaluation results of Example 7 and Example 14 are both “◯◯”, and the conduction reliability evaluation results of Example 8 and Example 15 are both “◯◯”. The evaluation results of conduction reliability between Example 10 and Example 17 are both “◯◯”, and the evaluation results of conduction reliability between Example 11 and Example 18 are both “◯◯”. 12 and the evaluation result of the conduction reliability of Example 19 were both “◯◯”.

但し、実施例7の導通信頼性の評価における接続抵抗は実施例14の導通信頼性の評価における接続抵抗よりも0.7Ω低く、実施例8の導通信頼性の評価における接続抵抗は実施例15の導通信頼性の評価における接続抵抗よりも0.9Ω低く、実施例10の導通信頼性の評価における接続抵抗は実施例17の導通信頼性の評価における接続抵抗よりも0.8Ω低く、実施例11の導通信頼性の評価における接続抵抗は実施例18の導通信頼性の評価における接続抵抗よりも0.8Ω低く、実施例12の導通信頼性の評価における接続抵抗は実施例19の導通信頼性の評価における接続抵抗よりも0.7Ω低かった。   However, the connection resistance in the conduction reliability evaluation of Example 7 is 0.7Ω lower than the connection resistance in the conduction reliability evaluation of Example 14, and the connection resistance in the conduction reliability evaluation of Example 8 is Example 15. The connection resistance in the evaluation of conduction reliability of Example 10 is 0.8Ω lower than the connection resistance in the evaluation of conduction reliability of Example 17, 11 is 0.8 Ω lower than the connection resistance in the conduction reliability evaluation in Example 18, and the connection resistance in the conduction reliability evaluation in Example 12 is the conduction reliability in Example 19. It was 0.7Ω lower than the connection resistance in the evaluation.

なお、実施例、比較例及び参考例の異方性導電材料を接続構造体(FOG又はFOB)に用いた評価結果のみを示した。実施例、比較例及び参考例の異方性導電材料を、評価しなかった他の接続構造体(FOB、FOG、COF及びCOGなど)に用いた場合であっても、更に実施例、比較例及び参考例の異方性導電材料を導電材料として用いて、有機エレクトロルミネッセンス表示素子における電極を電気的に接続した場合であっても、(1)導通信頼性及び(2)耐湿絶縁信頼性の評価結果は、上述した実施例、比較例及び参考例の評価結果と同様の傾向を示すことを確認した。   In addition, only the evaluation result which used the anisotropic conductive material of the Example, the comparative example, and the reference example for the connection structure (FOG or FOB) was shown. Even when the anisotropic conductive materials of Examples, Comparative Examples and Reference Examples are used for other connection structures not evaluated (FOB, FOG, COF, COG, etc.), Examples and Comparative Examples are further included. Even when the electrodes of the organic electroluminescence display element are electrically connected using the anisotropic conductive material of the reference example as a conductive material, (1) conduction reliability and (2) moisture resistance insulation reliability The evaluation result confirmed that the tendency similar to the evaluation result of the Example mentioned above, a comparative example, and a reference example was shown.

1…接続構造体
2…第1の接続対象部材
2a…表面
2b…第1の電極
3…接続部
3a…上面
3A…導電材料層
3B…Bステージ化された導電材料層
4…第2の接続対象部材
4a…表面
4b…第2の電極
5…導電性粒子
DESCRIPTION OF SYMBOLS 1 ... Connection structure 2 ... 1st connection object member 2a ... Surface 2b ... 1st electrode 3 ... Connection part 3a ... Upper surface 3A ... Conductive material layer 3B ... B-staged conductive material layer 4 ... 2nd connection Target member 4a ... surface 4b ... second electrode 5 ... conductive particles

Claims (10)

硬化性成分と、陽イオン交換体と、陰イオン交換体と、導電性粒子とを含み、
前記硬化性成分が、硬化性化合物と、カチオン発生剤とを含有し、
前記陽イオン交換体の中性交換容量が1meq/g以上であり、かつ前記陰イオン交換体の中性交換容量が0.1meq/g以上であり、
前記硬化性化合物100重量部に対して、前記陽イオン交換体の含有量が0.01重量部以上、5重量部以下であり、かつ前記陰イオン交換体の含有量が0.01重量部以上、5重量部以下である、導電材料。
Including a curable component, a cation exchanger, an anion exchanger, and conductive particles;
The curable component contains a curable compound and a cation generator ,
The neutral exchange capacity of the cation exchanger is 1 meq / g or more, and the neutral exchange capacity of the anion exchanger is 0.1 meq / g or more,
The content of the cation exchanger is 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the curable compound, and the content of the anion exchanger is 0.01 parts by weight or more. , Ru der than 5 parts by weight, the conductive material.
前記陽イオン交換体の中性交換容量が2meq/g以上であり、かつ前記陰イオン交換体の中性交換容量が1meq/g以上である、請求項1に記載の導電材料。  2. The conductive material according to claim 1, wherein a neutral exchange capacity of the cation exchanger is 2 meq / g or more and a neutral exchange capacity of the anion exchanger is 1 meq / g or more. 前記陽イオン交換体がジルコニウム原子を含む、請求項1又は2に記載の導電材料。  The conductive material according to claim 1, wherein the cation exchanger includes a zirconium atom. 前記陰イオン交換体が、マグネシウム原子とアルミニウム原子とを含む、請求項1〜3のいずれか1項に記載の導電材料。  The conductive material according to claim 1, wherein the anion exchanger includes a magnesium atom and an aluminum atom. 前記導電性粒子が、樹脂粒子と、前記樹脂粒子の表面上に配置された導電層とを有し、
前記導電層の少なくとも外側の表面が、融点が450℃以下である低融点金属層である、請求項1〜のいずれか1項に記載の導電材料。
The conductive particles have resin particles and a conductive layer disposed on the surface of the resin particles,
At least the outer surface, having a melting point of low melting point metal layer is 450 ° C. or less, a conductive material according to any one of claims 1 to 4 in the conductive layer.
フラックスをさらに含む、請求項1〜のいずれか1項に記載の導電材料。Further comprising a flux, conductive material according to any one of claims 1-5. 銅電極を有する接続対象部材を接続するために用いられる導電材料である、請求項1〜のいずれか1項に記載の導電材料。The conductive material according to any one of claims 1 to 6 , which is a conductive material used for connecting a connection target member having a copper electrode. 異方性導電材料である、請求項1〜のいずれか1項に記載の導電材料。An anisotropic conductive material, the conductive material according to any one of claims 1-7. 第1の接続対象部材と、第2の接続対象部材と、前記第1,第2の接続対象部材を電気的に接続している接続部とを備え、
前記接続部が、請求項1〜のいずれか1項に記載の導電材料により形成されている、接続構造体。
A first connection target member, a second connection target member, and a connection portion that electrically connects the first and second connection target members;
The connection structure in which the said connection part is formed with the electrically-conductive material of any one of Claims 1-8 .
前記第1の接続対象部材が表面に第1の電極を有し、
前記第2の接続対象部材が表面に第2の電極を有し、
前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されており、
前記第1の電極及び前記第2の電極の内の少なくとも一方が、銅電極である、請求項に記載の接続構造体。
The first connection object member has a first electrode on a surface;
The second connection object member has a second electrode on the surface,
The first electrode and the second electrode are electrically connected by the conductive particles;
The connection structure according to claim 9 , wherein at least one of the first electrode and the second electrode is a copper electrode.
JP2012537045A 2011-08-05 2012-08-01 Conductive material and connection structure Expired - Fee Related JP5162728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012537045A JP5162728B1 (en) 2011-08-05 2012-08-01 Conductive material and connection structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011171760 2011-08-05
JP2011171760 2011-08-05
JP2011249888 2011-11-15
JP2011249888 2011-11-15
JP2012537045A JP5162728B1 (en) 2011-08-05 2012-08-01 Conductive material and connection structure
PCT/JP2012/069587 WO2013021895A1 (en) 2011-08-05 2012-08-01 Conductive material and connection structure

Publications (2)

Publication Number Publication Date
JP5162728B1 true JP5162728B1 (en) 2013-03-13
JPWO2013021895A1 JPWO2013021895A1 (en) 2015-03-05

Family

ID=47668405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012537045A Expired - Fee Related JP5162728B1 (en) 2011-08-05 2012-08-01 Conductive material and connection structure

Country Status (5)

Country Link
JP (1) JP5162728B1 (en)
KR (1) KR101774624B1 (en)
CN (1) CN103718253B (en)
TW (1) TWI528383B (en)
WO (1) WO2013021895A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168803A (en) * 2014-03-10 2015-09-28 日立化成株式会社 Conductive adhesive composition, connection body, solar cell module and method of producing the same
KR102489187B1 (en) * 2014-10-28 2023-01-17 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
JP6458503B2 (en) * 2015-01-13 2019-01-30 デクセリアルズ株式会社 Anisotropic conductive film, method for producing the same, and connection structure
US10756119B2 (en) 2016-04-20 2020-08-25 Samsung Display Co., Ltd. Display device and method for manufacturing same
WO2018181694A1 (en) * 2017-03-30 2018-10-04 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
CN109727701A (en) * 2017-10-27 2019-05-07 玮锋科技股份有限公司 Eutectic formula anisotropic conductive film and production method
JP2018178125A (en) * 2018-06-26 2018-11-15 日立化成株式会社 Conductive adhesive composition, connection body, solar cell module and method for producing the same
KR20200054747A (en) 2018-11-12 2020-05-20 삼성전자주식회사 Display module, display apparatus including the same and method of manufacturing display module
CN116419959A (en) * 2020-07-31 2023-07-11 株式会社力森诺科 Adhesive film for circuit connection, adhesive composition for circuit connection, circuit connection structure, and method for producing same
WO2022107511A1 (en) * 2020-11-20 2022-05-27 信越化学工業株式会社 Phenol compound, electroconductive paste composition, method for producing electroconductive paste composition, and electroconductive wiring line and production method therefor
CN112552854A (en) * 2020-12-18 2021-03-26 山东万圣博化工有限公司 Conductive adhesive and preparation method thereof
TW202432672A (en) * 2022-11-08 2024-08-16 日商富士軟片股份有限公司 Resin composition, cured product, laminate, cured product manufacturing method, laminate manufacturing method, semiconductor device manufacturing method, and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543866A (en) * 1991-08-20 1993-02-23 Sony Chem Corp Adhesive for liquid crystal sealing material
JPH10245528A (en) * 1997-03-03 1998-09-14 Hitachi Chem Co Ltd Anisotropically conductive joint member
JPH1160899A (en) * 1997-08-19 1999-03-05 Minnesota Mining & Mfg Co <3M> Conductive epoxy resin composition, anisotropic conductive adhesive film, and electrical connection method
JP2000297204A (en) * 1999-04-16 2000-10-24 Toshiba Corp Epoxy resin composition, rotating electric machine coil, casting resin composition and rotating electric machine
JP2001237006A (en) * 2000-02-22 2001-08-31 Sony Chem Corp Connection material
JP2006274120A (en) * 2005-03-30 2006-10-12 Sony Chemical & Information Device Corp Thermosetting anisotropically conductive adhesive
JP2007016088A (en) * 2005-07-06 2007-01-25 Asahi Kasei Electronics Co Ltd Anisotropically electrically conductive adhesive sheet and fine-connected structure
WO2011062137A1 (en) * 2009-11-19 2011-05-26 東洋紡績株式会社 Urethane modified polyimide based flame retardant resin composition
JP2012084518A (en) * 2010-09-14 2012-04-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100518939C (en) * 2004-12-16 2009-07-29 东亚合成株式会社 Anion exchanger and resin composition for electronic part sealing utilizing the same
JP5124808B2 (en) * 2005-08-05 2013-01-23 信越化学工業株式会社 Epoxy resin composition and semiconductor device
TWI481565B (en) * 2006-11-20 2015-04-21 Toagosei Co Ltd An inorganic anion exchanger for bismuth compound and a resin composition for packaging an electronic component using the compound
JP2010129960A (en) * 2008-12-01 2010-06-10 Sony Chemical & Information Device Corp Connecting film, bonding laminate, and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543866A (en) * 1991-08-20 1993-02-23 Sony Chem Corp Adhesive for liquid crystal sealing material
JPH10245528A (en) * 1997-03-03 1998-09-14 Hitachi Chem Co Ltd Anisotropically conductive joint member
JPH1160899A (en) * 1997-08-19 1999-03-05 Minnesota Mining & Mfg Co <3M> Conductive epoxy resin composition, anisotropic conductive adhesive film, and electrical connection method
JP2000297204A (en) * 1999-04-16 2000-10-24 Toshiba Corp Epoxy resin composition, rotating electric machine coil, casting resin composition and rotating electric machine
JP2001237006A (en) * 2000-02-22 2001-08-31 Sony Chem Corp Connection material
JP2006274120A (en) * 2005-03-30 2006-10-12 Sony Chemical & Information Device Corp Thermosetting anisotropically conductive adhesive
JP2007016088A (en) * 2005-07-06 2007-01-25 Asahi Kasei Electronics Co Ltd Anisotropically electrically conductive adhesive sheet and fine-connected structure
WO2011062137A1 (en) * 2009-11-19 2011-05-26 東洋紡績株式会社 Urethane modified polyimide based flame retardant resin composition
JP2012084518A (en) * 2010-09-14 2012-04-26 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure

Also Published As

Publication number Publication date
KR20140052931A (en) 2014-05-07
WO2013021895A1 (en) 2013-02-14
TW201314707A (en) 2013-04-01
JPWO2013021895A1 (en) 2015-03-05
KR101774624B1 (en) 2017-09-04
TWI528383B (en) 2016-04-01
CN103718253A (en) 2014-04-09
CN103718253B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5162728B1 (en) Conductive material and connection structure
JP5320523B1 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP2013152867A (en) Conductive particle, anisotropic conductive material, and connection structure
JP5953131B2 (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP2013143292A (en) Anisotropic conductive film material, connection structure, and method for manufacturing connection structure
JP5966101B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP5966102B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP5883679B2 (en) Method for manufacturing connection structure, anisotropic conductive material, and connection structure
JP2013054851A (en) Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP5946978B1 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6218354B2 (en) Insulating material, multilayer film manufacturing method, laminate manufacturing method, connection structure, and connection structure manufacturing method
JP5965666B2 (en) Method for manufacturing connection structure and anisotropic conductive material
JP2016127010A (en) Anisotropic conductive material, connection structure and method for producing connection structure
JP2016126878A (en) Conductive paste, connection structure and method for producing connection structure
JP6047437B2 (en) Conductive material, connection structure, and manufacturing method of connection structure
JP2016126877A (en) Conductive paste, connection structure and method for producing connection structure
JP5508480B2 (en) Anisotropic conductive paste, connection structure, and manufacturing method of connection structure
JP6002500B2 (en) Method for manufacturing connection structure
JP2013016473A (en) Anisotropic conductive material and connection structure
JP5850674B2 (en) Anisotropic conductive material, method for manufacturing the same, and connection structure
JP2012199544A (en) Anisotropic conductive paste, connection structure and manufacturing method of connection structure
JP2013054852A (en) Conductive particle, method of manufacturing conductive particle, anisotropic conductive material and connection structure
JP2016058389A (en) Manufacturing method of connection structure
JP2013142127A (en) Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP6533427B2 (en) Conductive material and connection structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5162728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees