JP5157222B2 - Electrode and electrochemical device - Google Patents
Electrode and electrochemical device Download PDFInfo
- Publication number
- JP5157222B2 JP5157222B2 JP2007092867A JP2007092867A JP5157222B2 JP 5157222 B2 JP5157222 B2 JP 5157222B2 JP 2007092867 A JP2007092867 A JP 2007092867A JP 2007092867 A JP2007092867 A JP 2007092867A JP 5157222 B2 JP5157222 B2 JP 5157222B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon particles
- electrode
- carbon
- active material
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 claims description 152
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 110
- 229910052799 carbon Inorganic materials 0.000 claims description 96
- 239000011149 active material Substances 0.000 claims description 35
- 238000005087 graphitization Methods 0.000 claims description 22
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 22
- 239000011230 binding agent Substances 0.000 description 10
- -1 polytetrafluoroethylene Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000002482 conductive additive Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000007600 charging Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 235000019241 carbon black Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910021382 natural graphite Inorganic materials 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910013733 LiCo Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910015727 LiMn0.33Ni0.33Co0.34O2 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、電極及び電気化学デバイスに関する。 The present invention relates to an electrode and an electrochemical device.
リチウム二次電池等の電気化学デバイスの電極としては、集電体上に活物質含有層が設けられたものが知られている。このような電極は、集電体上に、活物質粒子、バインダー、導電助剤及び溶剤を含むペーストを塗布し、溶剤を乾燥させ、その後塗布膜をプレスして製造される。このプレスの目的のひとつは、電極の体積エネルギー密度を高めることである。
ところで、近年ではより一層の体積エネルギーの向上と、充電時間の短縮とが求められている。電極の活物質の密度を上げるためには、天然黒鉛等の黒鉛化度の高い粒子を用い、ロールプレスで十分に高圧でプレスする方法が考えられる。ところが、天然黒鉛は軟らかいためか細孔が閉塞しやすく、このような方法により電極の活物質の密度は高くなるが、電解液の浸透性が悪化して充電に長時間を要することとなる。 Incidentally, in recent years, further improvement in volume energy and reduction in charging time have been demanded. In order to increase the density of the active material of the electrode, a method of using particles having a high degree of graphitization such as natural graphite and pressing with a roll press at a sufficiently high pressure can be considered. However, since natural graphite is soft, pores are likely to be clogged, and the density of the active material of the electrode is increased by such a method.
一方、特許文献12に記載されているように、黒鉛の小粒子と大粒子とを混合して充填率を高めることも考えられる。しかしながら、この場合、黒鉛の表面積の増大により、サイクル特性の悪化やレート特性を十分に高められないという問題がある。 On the other hand, as described in Patent Document 12, it is conceivable to increase the filling rate by mixing small particles and large particles of graphite. However, in this case, there is a problem that cycle characteristics are deteriorated and rate characteristics cannot be sufficiently improved due to an increase in the surface area of graphite.
本発明は上記課題に鑑みてなされたものであり、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極及びこれを用いた電気化学デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an electrode capable of rapid charging and having excellent cycle characteristics while sufficiently increasing the density of the electrode, and an electrochemical device using the same. .
本発明に係る電極は、集電体と、集電体上に設けられた活物質含有層と、を備える。活物質含有層は、第一炭素粒子、及び、第一炭素粒子よりも平均粒径が小さい第二炭素粒子を含む。また、第一炭素粒子の平均粒径が7〜25μmであり、第二炭素粒子の平均粒径が0.08〜0.3μmである。さらに、各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)を各炭素粒子の黒鉛化度としたときに、第一炭素粒子の黒鉛化度が1.5〜3.1であり、第二炭素粒子の黒鉛化度が0.5〜0.8である。 The electrode according to the present invention includes a current collector and an active material-containing layer provided on the current collector. The active material-containing layer includes first carbon particles and second carbon particles having an average particle size smaller than that of the first carbon particles. Moreover, the average particle diameter of the first carbon particles is 7 to 25 μm, and the average particle diameter of the second carbon particles is 0.08 to 0.3 μm. Furthermore, when the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle is defined as the graphitization degree of each carbon particle, The graphitization degree of one carbon particle is 1.5 to 3.1, and the graphitization degree of the second carbon particle is 0.5 to 0.8.
異なる粒径の炭素粒子を混合することにより電極の活物質の充填密度を上げられる。第一炭素粒子の平均粒径が7μmよりも小さい場合、第一炭素粒子の表面で電解液の分解が生じやすくなる傾向がある。第一炭素粒子の平均粒径が25μmよりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。また、第二炭素粒子の平均粒径が0.08μmよりも小さい場合、第二炭素粒子の表面で電解液の分解が生じやすくなる傾向がある。第二炭素粒子の平均粒径が0.3μmよりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。また、黒鉛化度の小さい粒子は硬いためか、プレスしても電解液の浸透に適した微細な細孔が第二炭素粒子間に形成されるため、電解液が浸透しやすい。さらに、平均粒径の小さい炭素材料を用いると表面積が大きくなって電解液の分解が顕著となるが、粒径の小さい炭素粒子として黒鉛化度の小さい粒子を使用しているので、電解液の分解を起こしにくい。また、第二炭素粒子の黒鉛化度が0でないことから、第二炭素粒子も電解質イオンの十分な吸蔵放出を行うことができる。特に、黒鉛化度が上記の範囲にある2種の炭素粒子を用いることによって、リチウムイオンの挿入脱離反応を低減させることなく、また、電解液の分解反応を生じさせることなく、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極を得ることができる。 The packing density of the active material of the electrode can be increased by mixing carbon particles having different particle diameters. When the average particle diameter of the first carbon particles is smaller than 7 μm, the electrolytic solution tends to be decomposed on the surface of the first carbon particles. When the average particle diameter of the first carbon particles is larger than 25 μm, the voids of the electrodes become large and the electrode density tends to decrease. Moreover, when the average particle diameter of the second carbon particles is smaller than 0.08 μm, the electrolytic solution tends to be decomposed on the surface of the second carbon particles. When the average particle diameter of the second carbon particles is larger than 0.3 μm, the gap between the electrodes becomes large and the electrode density tends to decrease. In addition, the particles having a low graphitization degree are hard, or even when pressed, fine pores suitable for the penetration of the electrolytic solution are formed between the second carbon particles, so that the electrolytic solution is likely to penetrate. Furthermore, when a carbon material having a small average particle diameter is used, the surface area becomes large and decomposition of the electrolytic solution becomes remarkable, but since particles having a low graphitization degree are used as carbon particles having a small particle diameter, It is difficult to cause decomposition. Further, since the graphitization degree of the second carbon particles is not 0, the second carbon particles can also perform sufficient occlusion / release of electrolyte ions. In particular, by using two types of carbon particles having a graphitization degree in the above range, the density of the electrode can be reduced without reducing the lithium ion insertion / desorption reaction and without causing the decomposition reaction of the electrolytic solution. It is possible to obtain an electrode that can be rapidly charged and has excellent cycle characteristics while sufficiently increasing the resistance.
ここで黒鉛化度は、X線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)により定義されるものであり、この(P101/P100)が大きいほど黒鉛化度が高いことを意味する。 Here, the degree of graphitization is defined by the ratio (P101 / P100) of the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern, and this (P101 / P100 ) Means that the degree of graphitization is higher.
また、第一炭素粒子の平均粒径を1とした時に、第二炭素粒子の平均粒径が0.002〜0.05であることが好ましい。第二炭素粒子の平均粒径が0.002よりも小さい場合、第二炭素粒子の表面積が大きくなるため電解液の分解反応が生じやすくなる傾向がある。また、0.05よりも大きい場合、電極の空隙が大きくなって電極密度が低下する傾向がある。 Further, when the average particle diameter of the first carbon particles is 1, it is preferable that the average particle diameter of the second carbon particles is 0.002 to 0.05. When the average particle diameter of the second carbon particles is smaller than 0.002, the surface area of the second carbon particles increases, so that the decomposition reaction of the electrolytic solution tends to occur. Moreover, when larger than 0.05, the space | gap of an electrode becomes large and there exists a tendency for an electrode density to fall.
また、第一炭素粒子は鱗片状黒鉛を含むことが好ましい。鱗片状黒鉛を用いることで、第一炭素粒子における充放電効率を向上させることができる。 Moreover, it is preferable that a 1st carbon particle contains scaly graphite. By using scaly graphite, the charge / discharge efficiency of the first carbon particles can be improved.
また、第二炭素粒子の形状は球状であることが好ましい。第二炭素粒子の形状を球状とすることで、第一炭素粒子の隙間に第二炭素粒子が入りやすくなるため、電極密度を向上させることができる。 The shape of the second carbon particles is preferably spherical. By making the shape of the second carbon particles spherical, the second carbon particles can easily enter the gaps between the first carbon particles, so that the electrode density can be improved.
また、第一粒子を100重量部としたときに第二炭素粒子を5〜200重量部含むことが好ましい。第二炭素粒子が5重量部よりも少ない場合、第一炭素粒子が形成する空隙の充填が不十分となるため、電極の空隙が大きくなって電極密度が低下する傾向がある。第二炭素粒子が200重量部よりも多い場合、電解液分解の要因が増大するため電解液の分解が生じやすくなる傾向がある。 Moreover, it is preferable that 5-200 weight part of 2nd carbon particles are included when a 1st particle is 100 weight part. When the amount of the second carbon particles is less than 5 parts by weight, the filling of the voids formed by the first carbon particles becomes insufficient, so that the voids of the electrodes become large and the electrode density tends to decrease. When the amount of the second carbon particles is more than 200 parts by weight, there is a tendency that the electrolytic solution is easily decomposed because the factor of the electrolytic solution decomposition increases.
また、本発明に係る電気化学デバイスは、上述の電極を備える電気化学デバイスである。 Moreover, the electrochemical device which concerns on this invention is an electrochemical device provided with the above-mentioned electrode.
本発明によれば、電極の密度を十分に高めつつ、急速充電が可能かつサイクル特性に優れた電極及びこれを用いた電気化学デバイスを提供できる。 According to the present invention, it is possible to provide an electrode capable of rapid charging and having excellent cycle characteristics while sufficiently increasing the density of the electrode and an electrochemical device using the electrode.
以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratio in each drawing does not necessarily match the actual dimensional ratio.
(電極)
まず、図1を参照して本実施形態にかかる電極について説明する。電極10は、集電体12上に活物質含有層14が設けられた物である。
(electrode)
First, the electrode according to the present embodiment will be described with reference to FIG. The electrode 10 is a product in which an active material-containing layer 14 is provided on a current collector 12.
集電体12としては、例えば、銅箔、ニッケル箔等を使用できる。 As the current collector 12, for example, a copper foil, a nickel foil, or the like can be used.
活物質含有層14は、活物質粒子、バインダー(不図示)、及び必要に応じて配合される導電助剤(不図示)を含む層である。 The active material-containing layer 14 is a layer containing active material particles, a binder (not shown), and a conductive additive (not shown) blended as necessary.
本実施形態において、活物質粒子として、第一炭素粒子5、及び、第一炭素粒子5よりも平均粒径が小さい第二炭素粒子6を含む。第一炭素粒子5の黒鉛化度が1.5〜3.1であり、第二炭素粒子6の黒鉛化度が0.5〜0.8である。 In the present embodiment, the active material particles include the first carbon particles 5 and the second carbon particles 6 having an average particle size smaller than that of the first carbon particles 5. The first carbon particles 5 have a graphitization degree of 1.5 to 3.1, and the second carbon particles 6 have a graphitization degree of 0.5 to 0.8.
ここで、黒鉛化度は、各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)により定義される。この(P101/P100)が大きいほど黒鉛化度が高いことを意味する。 Here, the degree of graphitization is defined by the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle. The larger this (P101 / P100), the higher the degree of graphitization.
平均粒径は、例えば、体積基準粒径分布における50%径であるD50として定義できる。粒径分布はレーザー回折散乱法等により容易に取得することができる。 An average particle diameter can be defined as D50 which is a 50% diameter in a volume reference | standard particle size distribution, for example. The particle size distribution can be easily obtained by a laser diffraction scattering method or the like.
第一炭素粒子5としては、具体的には、人造黒鉛粒子、天然黒鉛粒子が挙げられる。特に、鱗片状構造を有する天然黒鉛粒子が好ましい。第一炭素粒子の平均粒径としては、7〜25μmが好ましい。 Specific examples of the first carbon particles 5 include artificial graphite particles and natural graphite particles. In particular, natural graphite particles having a scaly structure are preferred. The average particle diameter of the first carbon particles is preferably 7 to 25 μm.
第二炭素粒子6としては、未黒鉛化炭素粉末と呼ばれる炭素粉末をもちいることが好ましい。第二炭素粒子6の平均粒径(D50)としては、0.08〜0.3μmが好ましい。特に、第二炭素粒子6は、平均粒径D50が0.3μm以下、Lc<30nm、La<50nm、3.365<d002<3.395、BET面積が20m2/g以下であることが好ましい。このような炭素粉末は、例えば、トルエン等の炭化水素ガスを水素ガスと共に熱分解することにより得ることができる。 As the second carbon particles 6, it is preferable to use carbon powder called non-graphitized carbon powder. The average particle diameter (D50) of the second carbon particles 6 is preferably 0.08 to 0.3 μm. In particular, the second carbon particles 6 have an average particle diameter D50 of 0.3 μm or less, Lc <30 nm, La <50 nm, 3.365 <d 002 <3.395, and a BET area of 20 m 2 / g or less. preferable. Such carbon powder can be obtained, for example, by thermally decomposing hydrocarbon gas such as toluene together with hydrogen gas.
このような第二炭素粒子6の外形形状は、略球状であることが好ましい。また、第一炭素粒子5の平均粒径を1とした時に、第二炭素粒子6の平均粒径が0.002〜0.05であることが好ましい。さらに、第一炭素粒子5を100重量部としたときに第二炭素粒子6を5〜200重量含むことが好ましい。 The outer shape of the second carbon particles 6 is preferably substantially spherical. Moreover, when the average particle diameter of the first carbon particles 5 is 1, the average particle diameter of the second carbon particles 6 is preferably 0.002 to 0.05. Furthermore, when the first carbon particles 5 are 100 parts by weight, the second carbon particles 6 are preferably included in an amount of 5 to 200 parts by weight.
図1に示すように、活物質含有層14において、第一炭素粒子5の周りを第二炭素粒子6が取り囲んでいる。第二炭素粒子6が充填された部分においては、第二炭素粒子はそれほど緻密化されておらず、微細な細孔が形成されている。 As shown in FIG. 1, in the active material containing layer 14, the second carbon particles 6 surround the first carbon particles 5. In the portion filled with the second carbon particles 6, the second carbon particles are not so dense, and fine pores are formed.
バインダーは、上記の活物質粒子と導電助剤とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、スチレン−ブタジエンゴム(SBR)と水溶性高分子(カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸ナトリウム、デキストリン、グルテンなど)との混合物等が挙げられる。 The binder is not particularly limited as long as it can bind the active material particles and the conductive additive to the current collector, and a known binder can be used. For example, fluororesin such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR) and water-soluble polymers (carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, dextrin, gluten, etc. ) And the like.
導電助剤としては、例えば、カーボンブラック類、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。導電助剤は、活物質含有層14の電子伝導性を高めるために添加される材料である。導電助剤としては、アセチレンブラックあるいはカーボンブラックを好適に用いることができる。これらは、アグリゲートあるいはストラクチャと称される炭素凝集体が数珠状に連結した外観を有しており、30m2/g以上の大きな比表面積を有する。これらのアセチレンブラックあるいはカーボンブラックは、黒鉛化度がほぼゼロであることから、本発明にいう第二炭素粒子とは明確に区別される。また、アセチレンブラックあるいはカーボンブラックは、実質的に充放電特性を有しないという点も異なる。したがって、本発明においては、通常のカーボンブラックやアセチレンブラックを第二炭素粒子として用いることは困難である。 Examples of the conductive assistant include carbon blacks, fine metal powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and fine metal powders, and conductive oxides such as ITO. The conductive assistant is a material added to increase the electronic conductivity of the active material-containing layer 14. As the conductive assistant, acetylene black or carbon black can be suitably used. These have the appearance that carbon aggregates called aggregates or structures are connected in a beaded manner, and have a large specific surface area of 30 m 2 / g or more. Since these acetylene blacks or carbon blacks have almost zero graphitization degree, they are clearly distinguished from the second carbon particles referred to in the present invention. Another difference is that acetylene black or carbon black has substantially no charge / discharge characteristics. Therefore, in the present invention, it is difficult to use ordinary carbon black or acetylene black as the second carbon particles.
活物質含有層10の厚みは特に限定されないが、30〜100μmであることが好ましい。 Although the thickness of the active material content layer 10 is not specifically limited, It is preferable that it is 30-100 micrometers.
(電極の製造方法)
このような電極は、以下のようにして製造できる。まず、活物質粒子混合物、バインダー、及び必要な量の導電助剤を、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、集電体12の表面に塗布し、乾燥させる。ここでは、活物質粒子混合物として、上述の第一炭素粒子5及び第二炭素粒子6を供給するのである。乾燥後、活物質含有層が形成された電極をロールプレス等のプレス機でプレスする。プレス時の線圧は例えば、100〜1000kgf/cmとすることができる。
(作用・効果)
(Method for manufacturing electrode)
Such an electrode can be manufactured as follows. First, a slurry in which an active material particle mixture, a binder, and a necessary amount of a conductive additive are added to a solvent such as N-methyl-2-pyrrolidone or N, N-dimethylformamide is applied to the surface of the current collector 12. And dry. Here, the above-mentioned first carbon particles 5 and second carbon particles 6 are supplied as the active material particle mixture. After drying, the electrode on which the active material-containing layer is formed is pressed with a press such as a roll press. The linear pressure during pressing can be set to 100 to 1000 kgf / cm, for example.
(Action / Effect)
本実施形態によれば、活物質含有層14におい第一炭素粒子5、及び、第一炭素粒子5よりも平均粒径が小さくかつ黒鉛化度が小さい第二炭素粒子6を含んでいる。異なる粒径の炭素粒子を混合することにより電極の活物質含有層14における活物質の充填密度を上げられる。また、黒鉛化度の小さい粒子は硬いためか、プレスしても電解液の浸透に適した微細な細孔が第二炭素粒子6間に形成されるため、電解液が浸透しやすい。さらに、平均粒径の小さい第二炭素粒子を用いると表面積が大きくなって電解液の分解が顕著となるが、粒径の小さい第二炭素粒子として黒鉛化度の小さい粒子を使用しているので、電解液の分解を起こしにくい。 According to the present embodiment, the active material-containing layer 14 includes the first carbon particles 5 and the second carbon particles 6 having an average particle size smaller than that of the first carbon particles 5 and having a lower graphitization degree. By mixing carbon particles having different particle diameters, the packing density of the active material in the active material-containing layer 14 of the electrode can be increased. In addition, the particles having a low graphitization degree are hard, or even if pressed, fine pores suitable for the penetration of the electrolyte solution are formed between the second carbon particles 6, so that the electrolyte solution easily penetrates. Furthermore, when the second carbon particles having a small average particle diameter are used, the surface area becomes large and the decomposition of the electrolytic solution becomes remarkable. However, since the second carbon particles having a small particle diameter use particles having a low degree of graphitization. It is difficult for the electrolyte to decompose.
(電気化学デバイス)
続いて、本発明にかかる電気化学デバイスの一例を説明する。図2は、リチウムイオン二次電池の一例である。
(Electrochemical device)
Then, an example of the electrochemical device concerning this invention is demonstrated. FIG. 2 is an example of a lithium ion secondary battery.
このリチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。 The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.
積層体30は、一対の電極10、20がセパレータ18を挟んで対向配置されたものである。各活物質含有層14がセパレータ18の両側にそれぞれ接触している。集電体12の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。一方の電極10が負極となり、他方の電極20が正極となる。負極10は、上述の電極である。 The laminated body 30 is configured such that a pair of electrodes 10 and 20 are arranged to face each other with the separator 18 interposed therebetween. Each active material-containing layer 14 is in contact with both sides of the separator 18. Leads 60 and 62 are connected to the ends of the current collector 12, and the ends of the leads 60 and 62 extend to the outside of the case 50. One electrode 10 becomes a negative electrode and the other electrode 20 becomes a positive electrode. The negative electrode 10 is the electrode described above.
正極20は、集電体22上に活物質含有層24が設けられた物である。活物質含有層24は、活物質粒子、バインダー(不図示)、及び必要に応じて配合される導電助剤(不図示)を含む層である。 The positive electrode 20 is a product in which an active material containing layer 24 is provided on a current collector 22. The active material-containing layer 24 is a layer containing active material particles, a binder (not shown), and a conductive additive (not shown) blended as necessary.
正極活物質粒子としては、例えば、LiMO2(Mは、Co、Ni又はMnを示す)、LiCoxNi1−xO2、LiMn2O4、LiCoxNiyMn1−x−yO2(ここで、x、yは0を超え1未満である)等のCo、Ni及びMnからなる群から選択される少なくとも1つの金属を含むリチウム酸化物が上げられ、特に、LiCoxNiyMn1−x−yO2が一層好ましい。 Examples of the positive electrode active material particles include LiMO 2 (M represents Co, Ni, or Mn), LiCo x Ni 1-x O 2 , LiMn 2 O 4 , LiCo x Ni y Mn 1-xy O 2. Lithium oxide containing at least one metal selected from the group consisting of Co, Ni and Mn, such as (where x and y are greater than 0 and less than 1), such as LiCo x Ni y Mn 1-xy O 2 is more preferred.
これら活物質粒子の粒径Raは特に限定されないが、例えば、通常0.05〜20μmとすることができる。
活物質粒子以外のバインダーや導電助剤は、負極10と同様のものを使用できる。
Although the particle size Ra of these active material particles is not particularly limited, for example, it can usually be 0.05 to 20 μm.
As the binder and the conductive additive other than the active material particles, the same materials as those of the negative electrode 10 can be used.
電解質溶液は、各活物質含有層14、24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、CF2SO3、LiC(CF3SO2)3、LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO2)、LiN(CF3CF2CO)2、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte solution is contained in each of the active material-containing layers 14 and 24 and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.
また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。 Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.
なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。 In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.
また、セパレータ18も、電気絶縁性の多孔体から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。 The separator 18 may be formed of an electrically insulating porous material, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.
ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。 The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.
リード60,62は、アルミ等の導電材料から形成されている。 The leads 60 and 62 are made of a conductive material such as aluminum.
なお、本発明に係る電極は、リチウムイオン2次電池に限らず、例えば、電気化学キャパシタの電極としても適用できる。例えば、炭素粒子を用いる電気二重層キャパシタの電極として好適に利用することができる。 The electrode according to the present invention is not limited to a lithium ion secondary battery, and can be applied as an electrode of an electrochemical capacitor, for example. For example, it can be suitably used as an electrode of an electric double layer capacitor using carbon particles.
(実施例1)
第一炭素粒子としてのアモルファスカーボンコート天然黒鉛(平均粒径20μm、(P101/P100)=2.66、45重量部)、第二炭素粒子としての未黒鉛化球状炭素粉末(平均粒径D50=0.2μm、(P101/P100)=0.63、45重量部)と、セバインダとしてのPVDF(8重量部)と、導電助剤としてのアセチレンブラック(2重量部)と、溶媒としてのN−メチル−2−ピロリドン(NMP)とを2軸混錬機により混合した。ここでは、60rpm/minにおいて7kgmのトルクがかかるように溶媒の量を調節し、1時間混練した。その後、さらに、溶媒を加えて粘度を調整してスラリーとし、ドクターブレード法により負極集電体としての銅箔(厚さ:10μm)上に塗布し、乾燥させて活物質含有層を形成した。乾燥後の電極厚みが37μmとなるように塗布量を調整した。その後、負極を、熱ロールでプレスすることにより正極を製造した。
Example 1
Amorphous carbon coated natural graphite (average particle size 20 μm, (P101 / P100) = 2.66, 45 parts by weight) as first carbon particles, ungraphitized spherical carbon powder (average particle size D50 = 0.2 μm, (P101 / P100) = 0.63, 45 parts by weight), PVDF as a binder (8 parts by weight), acetylene black (2 parts by weight) as a conductive auxiliary agent, and N− as a solvent Methyl-2-pyrrolidone (NMP) was mixed with a biaxial kneader. Here, the amount of the solvent was adjusted so that a torque of 7 kgm was applied at 60 rpm / min, and the mixture was kneaded for 1 hour. Thereafter, a solvent was further added to adjust the viscosity to form a slurry, which was applied onto a copper foil (thickness: 10 μm) as a negative electrode current collector by a doctor blade method and dried to form an active material-containing layer. The coating amount was adjusted so that the electrode thickness after drying was 37 μm. Then, the positive electrode was manufactured by pressing the negative electrode with a hot roll.
LiMn0.33Ni0.33Co0.34O2(但し、式中の数字は原子比である。)を92重量部、導電助剤であるアセチレンブラックを2重量部、バインダーとしてポリフッ化ビニリデン(PVdF)を3重量部、プラネタリーミキサによってNMP中に混合し、スラリー状の塗布液を得た。得られた塗布液を、集電体であるアルミニウム箔(15μm)の上にドクターブレード法により塗布して乾燥させた。その後ロールプレスして、活物質の担持量が3.2g/cm3と成るように調製した。 92 parts by weight of LiMn 0.33 Ni 0.33 Co 0.34 O 2 (wherein the numbers are atomic ratios), 2 parts by weight of acetylene black as a conductive aid, and polyvinylidene fluoride as a binder 3 parts by weight of (PVdF) was mixed into NMP by a planetary mixer to obtain a slurry-like coating solution. The obtained coating solution was applied onto an aluminum foil (15 μm) as a current collector by a doctor blade method and dried. Thereafter, it was roll-pressed so that the amount of the active material supported was 3.2 g / cm 3 .
セパレータとして、ポリエチレン製の多孔シートを用い、電解液として、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ジエチルカーボネート(DEC)の体積比2対1対7を溶媒とし、LiPF6を1.5mol dm-3の割合で溶質とした非水電解液と、アルミラミネートフィルムをケースとして用い、図2に示すようなリチウムイオン二次電池を作成した。 The separator is a polyethylene porous sheet, and the electrolyte is propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) in a volume ratio of 2 to 1: 7, and 1.5 mol of LiPF 6 A lithium ion secondary battery as shown in FIG. 2 was prepared using a nonaqueous electrolyte solution soluted at a ratio of dm −3 and an aluminum laminate film as a case.
(実施例2)
第一炭素粒子を60重量部とし、第二炭素粒子を30重量部とする以外は実施例1と同様にして電池を製造した。
(Example 2)
A battery was produced in the same manner as in Example 1 except that the first carbon particles were 60 parts by weight and the second carbon particles were 30 parts by weight.
(実施例3)
第一炭素粒子を70重量部とし、第二炭素粒子を20重量部とする以外は実施例1と同様にして電極を製造した。
(Example 3)
An electrode was produced in the same manner as in Example 1 except that 70 parts by weight of the first carbon particles and 20 parts by weight of the second carbon particles were used.
(比較例1)
第一炭素粒子を90重量部とし、第二炭素粒子を用いない以外は実施例1と同様にして電極を製造した。
(Comparative Example 1)
An electrode was produced in the same manner as in Example 1 except that the first carbon particle was 90 parts by weight and the second carbon particle was not used.
(比較例2)
第一炭素粒子を用いず、第二炭素粒子を90重量部用いる以外は実施例1と同様にして電極を製造した。
(比較例3〜5)
第一炭素粒子の平均粒径を40μm、第二炭素粒子の平均粒径を0.5μm、黒鉛化度(P101/P100)を1.5とした以外は実施例1から3と同様にして電極を製造した。
(Comparative Example 2)
An electrode was produced in the same manner as in Example 1 except that 90 parts by weight of the second carbon particles were used without using the first carbon particles.
(Comparative Examples 3-5)
The electrodes were the same as in Examples 1 to 3, except that the average particle diameter of the first carbon particles was 40 μm, the average particle diameter of the second carbon particles was 0.5 μm, and the degree of graphitization (P101 / P100) was 1.5. Manufactured.
〔特性の測定〕
電極密度は、マイクロメーターによって測定した電極厚みと電極重量とから算出した。なお、この電極密度には、導電助剤と、バインダーとが含まれている。充電時間は、30Cの定電流定電圧充電(CCCV)によって4.2Vまで充電をおこない、定格容量の80%まで充電するために要した時間として求めた。サイクル特性は、10CのCCCV充電と、10CのCC放電とを500回繰り返し、カットオフ電圧を4.2V−2.5Vとして測定した。結果を図3に示す。
[Measurement of characteristics]
The electrode density was calculated from the electrode thickness and electrode weight measured with a micrometer. Note that the electrode density includes a conductive additive and a binder. The charging time was determined as the time required to charge up to 4.2 V by 30 C constant current constant voltage charging (CCCV) and to charge up to 80% of the rated capacity. The cycle characteristics were measured by repeating 10 C CCCV charge and 10 C CC discharge 500 times and setting the cut-off voltage to 4.2 V-2.5 V. The results are shown in FIG.
実施例では、電極の高密度化と、充電時間の短縮化と、サイクル特性の向上とをバランスよく実現できた。 In the example, the high density of the electrode, the shortening of the charging time, and the improvement of the cycle characteristics were realized in a balanced manner.
実施例1の負極のSEM写真を図4に、図4の活物質含有層の拡大SEM写真を図5に示す。 FIG. 4 shows an SEM photograph of the negative electrode of Example 1, and FIG. 5 shows an enlarged SEM photograph of the active material-containing layer of FIG.
5…第一炭素粒子、6…第二炭素粒子、10…電極(負極)、14…活物質含有層、100…リチウムイオン二次電池。 5 ... 1st carbon particle, 6 ... 2nd carbon particle, 10 ... Electrode (negative electrode), 14 ... Active material content layer, 100 ... Lithium ion secondary battery.
Claims (6)
前記集電体上に設けられた活物質含有層と、を備え、
前記活物質含有層は、第一炭素粒子、及び、前記第一炭素粒子よりも平均粒径が小さい第二炭素粒子を含み、
前記第一炭素粒子の平均粒径が7〜25μmであり、
前記第二炭素粒子の平均粒径が0.08〜0.3μmであり、
前記各炭素粒子のX線回折パターンにおける(101)面のピーク強度P101と(100)面のピーク強度P100との比(P101/P100)をそれぞれ前記各炭素粒子の黒鉛化度としたときに、
前記第一炭素粒子の黒鉛化度が1.5〜3.1であり、
前記第二炭素粒子の黒鉛化度が0.5〜0.8である電極。 A current collector,
An active material-containing layer provided on the current collector,
The active material-containing layer includes first carbon particles and second carbon particles having an average particle size smaller than that of the first carbon particles,
The average particle diameter of the first carbon particles is 7 to 25 μm,
The second carbon particles have an average particle size of 0.08 to 0.3 μm;
When the ratio (P101 / P100) between the peak intensity P101 of the (101) plane and the peak intensity P100 of the (100) plane in the X-ray diffraction pattern of each carbon particle is the degree of graphitization of each carbon particle,
The degree of graphitization of the first carbon particles is 1.5 to 3.1,
An electrode in which the second carbon particles have a graphitization degree of 0.5 to 0.8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007092867A JP5157222B2 (en) | 2007-03-30 | 2007-03-30 | Electrode and electrochemical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007092867A JP5157222B2 (en) | 2007-03-30 | 2007-03-30 | Electrode and electrochemical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008251403A JP2008251403A (en) | 2008-10-16 |
JP5157222B2 true JP5157222B2 (en) | 2013-03-06 |
Family
ID=39976101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007092867A Active JP5157222B2 (en) | 2007-03-30 | 2007-03-30 | Electrode and electrochemical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5157222B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5685793B2 (en) * | 2010-12-17 | 2015-03-18 | エリーパワー株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5644022B2 (en) * | 2010-12-17 | 2014-12-24 | エリーパワー株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
US20130266849A1 (en) * | 2010-12-17 | 2013-10-10 | Eliiy Power Co., Ltd. | Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery |
JP5685794B2 (en) * | 2010-12-17 | 2015-03-18 | エリーパワー株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5685792B2 (en) * | 2010-12-17 | 2015-03-18 | エリーパワー株式会社 | Non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing negative electrode for non-aqueous electrolyte secondary battery |
WO2012133611A1 (en) * | 2011-03-29 | 2012-10-04 | 三菱化学株式会社 | Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery |
JP5586550B2 (en) | 2011-09-16 | 2014-09-10 | 株式会社東芝 | Battery electrode, non-aqueous electrolyte battery, and battery pack |
JP5802513B2 (en) * | 2011-10-14 | 2015-10-28 | 株式会社日立製作所 | Secondary battery negative electrode, non-aqueous electrolyte secondary battery using secondary battery negative electrode |
JP5699951B2 (en) * | 2012-02-01 | 2015-04-15 | トヨタ自動車株式会社 | Manufacturing method of secondary battery |
US9991561B2 (en) | 2013-09-12 | 2018-06-05 | Nec Corporation | Lithium ion secondary battery |
JP2017103322A (en) * | 2015-12-01 | 2017-06-08 | 積水化学工業株式会社 | Electrode sheet and electric double layer capacitor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3512549B2 (en) * | 1995-01-25 | 2004-03-29 | 株式会社リコー | Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode |
JPH09161778A (en) * | 1995-12-06 | 1997-06-20 | Hitachi Maxell Ltd | Organic electrolyte secondary battery |
JP2002008655A (en) * | 2000-06-20 | 2002-01-11 | Sony Corp | Negative electrode and non-aqueous electrolyte cell |
GB0024347D0 (en) * | 2000-10-05 | 2000-11-22 | Aea Technology Plc | Electrolyte for a secondary cell |
JP4215202B2 (en) * | 2003-07-07 | 2009-01-28 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery |
-
2007
- 2007-03-30 JP JP2007092867A patent/JP5157222B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008251403A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5157222B2 (en) | Electrode and electrochemical device | |
JP4513822B2 (en) | Electrode and electrochemical device | |
CN101276900B (en) | Anode and lithium-ion secondary battery | |
JP4466674B2 (en) | Electrode and electrochemical device | |
US20180294514A1 (en) | Lithium ion secondary battery and method for manufacturing the same | |
JP2009004139A (en) | Lithium secondary battery | |
KR20130129110A (en) | Electrode active material, electrode and electrical storage device | |
JP2008251250A (en) | Anode and lithium ion secondary battery | |
JP2011175739A (en) | Lithium secondary battery, and manufacturing method therefor | |
JP6615785B2 (en) | Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5359444B2 (en) | Lithium ion secondary battery | |
KR20130070651A (en) | Secondary battery | |
JP5302646B2 (en) | Pre-doping power storage device | |
JP2011192543A (en) | Lithium ion secondary battery | |
WO2022085694A1 (en) | Nonaqueous alkali metal power storage element and positive electrode coating liquid | |
JP6609946B2 (en) | Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery | |
JP2019164967A (en) | Negative electrode active material, negative electrode abd lithium ion secondary battery | |
JP2018170113A (en) | Positive electrode and lithium ion secondary battery | |
JP5418828B2 (en) | Lithium secondary battery and manufacturing method thereof | |
CN113097447A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2018170142A (en) | Lithium ion secondary battery | |
JP2017188424A (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery | |
JP7003775B2 (en) | Lithium ion secondary battery | |
JP2001196095A (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
CN107431190A (en) | Non-aqueous secondary batteries negative pole and the non-aqueous secondary batteries using the negative pole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5157222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |