JP5151072B2 - Method for recovering metal constituting electrode from lithium battery - Google Patents
Method for recovering metal constituting electrode from lithium battery Download PDFInfo
- Publication number
- JP5151072B2 JP5151072B2 JP2006150788A JP2006150788A JP5151072B2 JP 5151072 B2 JP5151072 B2 JP 5151072B2 JP 2006150788 A JP2006150788 A JP 2006150788A JP 2006150788 A JP2006150788 A JP 2006150788A JP 5151072 B2 JP5151072 B2 JP 5151072B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- impurity
- carbon
- transition metal
- lithium battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
Description
本発明は、リチウム電池の電極構成金属回収方法に関する。 The present invention relates to a method for recovering an electrode constituent metal of a lithium battery.
近年、地球環境保全、資源の有効活用等の見地から工業製品のリサイクルが世界規模で要望されており、リチウム電池にも同様の要望がある。特にリチウム電池は正極にニッケル、コバルト等の遷移金属を使用しているため、使用済みリチウム電池から貴重なニッケル、コバルト等の遷移金属を回収することは、経済的にも価値があり、種々の回収方法が提案されている。 In recent years, recycling of industrial products has been demanded on a global scale from the viewpoints of global environmental conservation, effective use of resources, etc., and there is a similar demand for lithium batteries. In particular, since lithium batteries use transition metals such as nickel and cobalt for the positive electrode, it is economically valuable to recover valuable transition metals such as nickel and cobalt from used lithium batteries. A collection method has been proposed.
例えば、特許文献1には、リチウムイオン二次電池用正極活物質または正極活物質の製造工程にて発生した活物質廃材を塩酸、硫酸及び王水の少なくとも1種の酸で溶解して金属溶解液を調整する溶解工程を備える電極構成金属を回収する方法が提案されている。 For example, in Patent Document 1, a positive electrode active material for a lithium ion secondary battery or an active material waste material generated in the manufacturing process of a positive electrode active material is dissolved in at least one acid of hydrochloric acid, sulfuric acid and aqua regia to dissolve a metal. There has been proposed a method for recovering an electrode constituent metal comprising a dissolving step for adjusting the liquid.
また、例えば、特許文献2には、リチウムイオン電池廃材を無機酸にて浸出し、不純物を除去して得た精製溶液に蓚酸を添加しpHを6〜10に調整してコバルト水酸化物又はコバルト炭酸塩を沈殿物として取得するリチウムイオン二次電池廃材からのコバルト化合物の回収方法が提案されている。 In addition, for example, in Patent Document 2, lithium ion battery waste material is leached with an inorganic acid, and oxalic acid is added to a purified solution obtained by removing impurities to adjust the pH to 6 to 10 to obtain cobalt hydroxide or A method of recovering a cobalt compound from a lithium ion secondary battery waste material that acquires cobalt carbonate as a precipitate has been proposed.
一方、リチウム電池ではないが、例えば、特許文献3には、ニッケル、コバルト溶解液に硫化アルカリもしくは硫化水素を添加して、溶液中の銅、カドミウムを硫化物として除去する廃ニッケル−水素二次電池からの有価物回収方法が提案されている。
On the other hand, although it is not a lithium battery, for example,
しかし、特許文献1〜3の方法では、多くの不純物金属(例えばFe,Al,Cu等)やカーボン等が存在する中からニッケル、コバルト等の遷移金属を高収率、高純度で回収する点において改善の余地がある。 However, in the methods of Patent Documents 1 to 3, transition metals such as nickel and cobalt are recovered with high yield and high purity from the presence of many impurity metals (for example, Fe, Al, Cu, etc.) and carbon. There is room for improvement.
本発明は、リチウム電池から遷移金属を高収率、高純度で回収することができるリチウム電池からの電極構成金属回収方法を提供する。 The present invention provides a method for recovering an electrode constituent metal from a lithium battery, which can recover a transition metal from the lithium battery with high yield and high purity.
本発明は、1種又は2種以上の遷移金属及びカーボンを含む正極を備えるリチウム電池からの電極構成金属回収方法であって、前記正極と蓚酸とを混合して前記正極から前記遷移金属と不純物金属とカーボンとを含む被処理材Aを分離する被処理材分離工程と、前記被処理材Aと王水とを混合し加熱して前記遷移金属と前記不純物金属とを溶出させて、前記遷移金属と前記不純物金属とを含む被処理材Bと前記カーボンとを分離するカーボン分離工程と、前記被処理材Bと酸性溶液とを混合し、硫化剤を導入して硫化物として前記遷移金属を溶出させて前記遷移金属と前記不純物金属とを分離する不純物金属分離工程と、を含む。 The present invention is a method for recovering an electrode constituent metal from a lithium battery comprising a positive electrode containing one or more transition metals and carbon, wherein the transition metal and impurities are mixed from the positive electrode by mixing the positive electrode and oxalic acid. A material separation step for separating the material A containing metal and carbon, and the material A and aqua regia are mixed and heated to elute the transition metal and the impurity metal, and the transition A carbon separation step for separating the material to be treated B containing the metal and the impurity metal and the carbon, and the material B to be treated and an acidic solution are mixed, and a sulfide is introduced to convert the transition metal as a sulfide. And an impurity metal separation step of separating the transition metal and the impurity metal by elution.
また、前記リチウム電池からの電極構成金属回収方法において、前記カーボン分離工程後に、前記被処理材Bとアルカリ性溶液とを混合するアルカリ混合工程を含むことが好ましい。 Moreover, the electrode constituent metal recovery method from the lithium battery preferably includes an alkali mixing step of mixing the material to be processed B and an alkaline solution after the carbon separation step.
また、前記リチウム電池からの電極構成金属回収方法において、前記アルカリ混合工程後に、前記被処理材Bと前記アルカリ性溶液より強アルカリ性のアルカリ性溶液とをさらに混合する強アルカリ混合工程を含むことが好ましい。 Moreover, the electrode constituent metal recovery method from the lithium battery preferably includes a strong alkali mixing step of further mixing the material to be treated B and an alkaline solution stronger than the alkaline solution after the alkali mixing step.
また、前記リチウム電池からの電極構成金属回収方法において、前記不純物金属分離工程後に、前記遷移金属と前記アルカリ性溶液より強アルカリ性のアルカリ性溶液とを混合する強アルカリ混合工程を含むことが好ましい。 Moreover, the electrode constituent metal recovery method from the lithium battery preferably includes a strong alkali mixing step of mixing the transition metal and an alkaline solution stronger than the alkaline solution after the impurity metal separation step.
また、前記リチウム電池からの電極構成金属回収方法において、前記被処理材分離工程後に、前記被処理材Aを加熱して灰化する灰化処理工程を含むことが好ましい。 Moreover, the electrode constituent metal recovery method from the lithium battery preferably includes an ashing treatment step of heating and ashing the material A to be treated after the material separation step.
本発明に係るリチウム電池からの電極構成金属回収方法では、リチウム電池から遷移金属を高収率、高純度で回収することができる。 In the method for recovering an electrode constituent metal from a lithium battery according to the present invention, a transition metal can be recovered from the lithium battery with high yield and high purity.
本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.
本発明の実施形態に係るリチウム二次電池の電極構成金属回収方法は、(a)正極と蓚酸とを混合して正極から遷移金属と不純物金属とカーボンとを含む被処理材Aを分離する被処理材分離工程と、(b)被処理材Aと王水とを混合し加熱して遷移金属と不純物金属とを溶出させて、遷移金属と不純物金属とを含む被処理材Bとカーボンとを分離するカーボン分離工程と、(c)被処理材Bとアルカリ性溶液とを混合するアルカリ混合工程と、(d)被処理材Bと酸性溶液とを混合し、硫化剤を導入して硫化物として遷移金属を溶出させて遷移金属と不純物金属とを分離する不純物金属分離工程と、(e)遷移金属とアルカリ混合工程に用いられるアルカリ性溶液より強アルカリ性のアルカリ性溶液とを混合する強アルカリ混合工程と、を含むものである。 An electrode constituent metal recovery method for a lithium secondary battery according to an embodiment of the present invention includes: (a) a process for separating a material to be treated A containing a transition metal, an impurity metal, and carbon from a positive electrode by mixing the positive electrode and oxalic acid. A treatment material separation step; and (b) the treatment material A and aqua regia are mixed and heated to elute the transition metal and the impurity metal, and the treatment material B and the carbon containing the transition metal and the impurity metal. A carbon separation step of separating, (c) an alkali mixing step of mixing the material to be treated B and an alkaline solution, and (d) mixing the material to be treated B and an acidic solution, and introducing a sulfiding agent as a sulfide. An impurity metal separation step of eluting the transition metal to separate the transition metal and the impurity metal; and (e) a strong alkali mixing step of mixing the transition metal and an alkaline solution stronger than the alkaline solution used in the alkali mixing step; , Including It is intended.
<(a)被処理材分離工程>
正極と蓚酸とを混合することにより、正極から遷移金属と不純物金属とカーボンとを含む被処理材Aを分離させることができる。正極から分離した遷移金属及び不純物金属は炭酸塩又は蓚酸塩として沈殿し、また、カーボンは蓚酸に不溶であるため、そのままの状態で沈殿物として残る。
<(A) Material separation process>
By mixing the positive electrode and oxalic acid, the material A to be treated containing transition metal, impurity metal, and carbon can be separated from the positive electrode. The transition metal and impurity metal separated from the positive electrode are precipitated as carbonates or oxalates, and carbon is insoluble in oxalic acid, and therefore remains as a precipitate as it is.
リチウム電池は、正極、負極、セパレータ、電解液、電池ケース等の構成材料を有する。従って、正極と蓚酸とを混合する場合、正極以外の構成材料をなるべく取り除いた状態であることが好ましい。リチウム電池から正極を取り出すには、一般的に使用済みリチウム電池を真空加熱処理(加熱温度300℃〜800℃)し、電解液を構成する電解質及び有機溶媒を分解又は揮発させた後、電池ケースを切断して電極(正極及び負極)を取り出し、電極から正極を分別する。 A lithium battery has constituent materials such as a positive electrode, a negative electrode, a separator, an electrolytic solution, and a battery case. Therefore, when mixing the positive electrode and oxalic acid, it is preferable that the constituent materials other than the positive electrode are removed as much as possible. In order to take out the positive electrode from the lithium battery, generally a used lithium battery is subjected to a vacuum heat treatment (heating temperature: 300 ° C. to 800 ° C.), and the electrolyte and organic solvent constituting the electrolytic solution are decomposed or volatilized. The electrode (positive electrode and negative electrode) is taken out and the positive electrode is separated from the electrode.
一般的に正極は、正極集電体としてのアルミニウム箔に正極材料と導電材としてのカーボンとを付着させたものである。正極材料は、一種又二種以上の遷移金属を含むものであり、その遷移金属とリチウムとの複合酸化物である。そのような複合酸化物としての正極材料は、例えば一般式LiA1−XBXO2で表すことができる。A,Bは遷移金属を表すものであって、例えば、Ni,Co,Mn,Fe,Nb等から選択される金属元素である。本実施形態において、A,Bは、Ni(ニッケル)、Co(コバルト)であることが好適である。なお、X=0〜1の範囲である。 In general, the positive electrode is obtained by adhering a positive electrode material and carbon as a conductive material to an aluminum foil as a positive electrode current collector. The positive electrode material contains one or more transition metals and is a composite oxide of the transition metal and lithium. The positive electrode material as such a complex oxide can be represented by, for example, the general formula LiA 1-X B X O 2 . A and B represent transition metals and are metal elements selected from, for example, Ni, Co, Mn, Fe, and Nb. In the present embodiment, A and B are preferably Ni (nickel) or Co (cobalt). Note that X = 0 to 1.
不純物金属とは、リチウム電池から回収することを目的としていない金属を指す。例えば、正極材料中の遷移金属としてNi又はCoの少なくとも一方の回収を目的とする場合、リチウム電池から正極を分別する際に混入するCu(例えば負極集電体),Fe(例えば電池ケース),Al(例えば電池ケース、正極集電体)や、正極材料にもともと含有されているLi等が不純物金属となる。また、正極材料中の遷移金属としてNiのみの回収を目的とする場合、上記Coは不純物金属となる。 An impurity metal refers to a metal that is not intended to be recovered from a lithium battery. For example, when the purpose is to collect at least one of Ni and Co as a transition metal in the positive electrode material, Cu (for example, a negative electrode current collector), Fe (for example, a battery case) mixed when the positive electrode is separated from a lithium battery, Al (for example, battery case, positive electrode current collector), Li originally contained in the positive electrode material, and the like are impurity metals. When the purpose is to recover only Ni as a transition metal in the positive electrode material, the Co becomes an impurity metal.
カーボンとは、リチウム電池から正極を分別する際に混入するものや、正極材料にもともと含有されているものであり、例えば、負極材料のグラファイトカーボン、導電材としてのカーボンブラック等が挙げられる。 Carbon is one that is mixed when the positive electrode is separated from the lithium battery, or one that is originally contained in the positive electrode material. Examples thereof include graphite carbon as a negative electrode material, carbon black as a conductive material, and the like.
蓚酸の濃度、添加時間、温度等は、特に制限されるものではない。 The concentration of oxalic acid, addition time, temperature, etc. are not particularly limited.
上記被処理材分離工程後に、被処理材Aを加熱して灰化する灰化処理工程を含むことが好ましい。 It is preferable that after the said to-be-processed material isolation | separation process, the to-be-processed material A is heated and it incinerates and incinerates.
灰化処理は、600℃〜800℃の範囲で、30〜100分被処理材Aを加熱して灰化させるものがよい。これにより大部分のカーボンを完全に分解することができるため、その後のカーボン分離工程において、被処理材Aからカーボンを容易に分離させることができる。 The ashing treatment is preferably performed by heating the material A to be ashed for 30 to 100 minutes in the range of 600 ° C to 800 ° C. As a result, most of the carbon can be completely decomposed, so that the carbon can be easily separated from the material to be treated A in the subsequent carbon separation step.
<(b)カーボン分離工程>
被処理材Aと王水を混合し加熱することによって、遷移金属及び不純物金属をイオン化させ溶出させることができるため、遷移金属と不純物金属とを含む被処理材Bとカーボン(グラファイトカーボン及びカーボンブラック)とを分離させることができる。従来、上記被処理材分離工程後、塩酸により被処理材Aから大半の不純物金属を除去し、硫酸により遷移金属を溶解させ、カーボンを分離していた。しかし、硫酸による溶解(又は加熱溶解)はカーボンに対し脱水素引き抜き反応を起こすため、カーボンを完全に分解することが困難である。また、硫酸濃度を高くし粘性が高い状態で加熱処理した場合、カーボンの粒子表面が少しずつ溶解(分解)又は物理的衝撃(加熱による溶液の煮沸のため)によりカーボン粒子が微細化する。このため、ろ紙やフィルタによってカーボンを分離することは困難となり、溶出した遷移金属等のろ液中にカーボンが不純物として混入する。しかし、王水は、硫酸に比べ沸点及び粘性が低く、また、カーボンの脱水素反応を引き起こすことがないため、カーボン粒子の溶解又は微細化を引き起こすことがないため、被処理材Bとカーボンとを分離することができる。
<(B) Carbon separation step>
By mixing and heating the material to be treated A and aqua regia, the transition metal and the impurity metal can be ionized and eluted, so the material to be treated B containing the transition metal and the impurity metal and carbon (graphite carbon and carbon black) ) Can be separated. Conventionally, most of the impurity metals are removed from the material A to be treated with hydrochloric acid after the process of separating the material to be treated, and the transition metal is dissolved with sulfuric acid to separate the carbon. However, dissolution by sulfuric acid (or dissolution by heating) causes dehydrogenation abstraction reaction with respect to carbon, and it is difficult to completely decompose carbon. Further, when heat treatment is performed in a state where the sulfuric acid concentration is increased and the viscosity is high, the carbon particle surface is gradually refined by dissolution (decomposition) or physical impact (due to boiling of the solution by heating). For this reason, it becomes difficult to separate the carbon with a filter paper or a filter, and carbon is mixed as an impurity in the filtrate of the eluted transition metal or the like. However, since aqua regia has a lower boiling point and viscosity than sulfuric acid and does not cause dehydrogenation of carbon, it does not cause dissolution or refinement of carbon particles. Can be separated.
王水は、塩酸と硝酸の混合溶液であれば特に制限されるものではない。一般的に用いられる塩酸と硝酸の体積混合比が3:1の王水を使用してもよいし、塩酸と硝酸の体積混合比が1〜1.5:2.5〜3.0の逆王水を使用することもできる。上記述べたようにリチウム電池から正極を取り出す際に、リチウム電池は真空加熱炉で加熱されるが、この加熱(例えば400℃)によって、正極材料の一部が難溶性の炭化物や複雑組成の化合物を形成する。従来の硫酸を使用した場合には、上記難溶性の炭化物や複雑組成の化合物を溶解させることはできず、難溶性塩類が生成されるため、難溶性塩類に含まれる遷移金属はカーボンと共に被処理材Bと分離する。しかし、王水又は逆王水ではこれらを好適に溶解させることができる。 The aqua regia is not particularly limited as long as it is a mixed solution of hydrochloric acid and nitric acid. Common aqua regia with a volumetric mixture ratio of hydrochloric acid and nitric acid of 3: 1 may be used, or the volumetric mixture ratio of hydrochloric acid and nitric acid is 1 to 1.5: 2.5 to 3.0. Aqua regia can also be used. As described above, when the positive electrode is taken out from the lithium battery, the lithium battery is heated in a vacuum heating furnace. By this heating (for example, 400 ° C.), a part of the positive electrode material is hardly soluble carbide or a compound having a complicated composition. Form. When conventional sulfuric acid is used, the above-mentioned hardly soluble carbides and complex compounds cannot be dissolved, and hardly soluble salts are produced. Therefore, transition metals contained in hardly soluble salts are treated together with carbon. Separated from material B. However, these can be suitably dissolved in aqua regia or reverse aqua regia.
王水による加熱処理は、特に制限されるものではないが、例えば50℃〜100℃の範囲で、被処理材Aから気泡がほとんど発生しなくなるまで加熱することが好ましい。被処理材Aから発生する気泡は、上記蓚酸により沈殿した遷移金属及び不純物金属の炭酸塩から発生するものであるから、気泡の消滅によって、遷移金属及び不純物金属がイオン化して溶出されたことを示す。 The heat treatment with aqua regia is not particularly limited, but for example, it is preferable to heat the material to be treated A until almost no bubbles are generated in the range of 50 ° C to 100 ° C. The bubbles generated from the material A to be processed are those generated from the carbonate of the transition metal and the impurity metal precipitated by the oxalic acid, so that the transition metal and the impurity metal are ionized and eluted by the disappearance of the bubble. Show.
<(c)アルカリ混合工程>
被処理材B(遷移金属と不純物金属とを含む)とアルカリ性溶液とを混合する工程を含むことが好ましい。被処理材Bは、遷移金属と不純物金属とを含むものである。例えば、不純物金属が、鉄、銅、アルミニウム等を含む場合に、アルカリ性溶液を加えることによって、鉄、銅、アルミニウムを含む不純物を水酸化物として沈殿させることができ、遷移金属を安定なアンミン錯体として溶出させることができる。アルカリ混合工程は、特に鉄を効果的に水酸化物として沈殿させることができる。
<(C) Alkali mixing step>
It is preferable to include a step of mixing the material to be treated B (including a transition metal and an impurity metal) and an alkaline solution. The material B to be processed contains a transition metal and an impurity metal. For example, when the impurity metal contains iron, copper, aluminum, etc., an impurity containing iron, copper, aluminum can be precipitated as a hydroxide by adding an alkaline solution, and the transition metal can be stabilized as an ammine complex. Can be eluted. The alkali mixing step can particularly effectively precipitate iron as a hydroxide.
アルカリ性溶液の添加は、カーボンを分離した被処理材BのpHが約5.0〜6.0の弱酸性となるまで行われるものが良い。pHが5.0より低いと水酸化物沈殿不生成となる場合があり、pHが6.0より高いと水酸化物沈殿が析出し、吸着される場合がある。アルカリ性溶液の濃度は、5〜15重量%の範囲であることが好ましい。15重量%より高いと、遷移金属の一部を水酸化物とて沈殿させてしまう場合がある。アルカリ性溶液の種類は、例えば10重量%のNH4OH水溶液、塩化アンモニウムにアンモニアを溶解させたもの等を用いることができるが、これらに限定されるものではない。 The addition of the alkaline solution is preferably performed until the pH of the material to be treated B from which the carbon has been separated becomes weakly acidic at about 5.0 to 6.0. When the pH is lower than 5.0, hydroxide precipitates may not be generated. When the pH is higher than 6.0, hydroxide precipitates may be deposited and adsorbed. The concentration of the alkaline solution is preferably in the range of 5 to 15% by weight. If it is higher than 15% by weight, a part of the transition metal may be precipitated as a hydroxide. Examples of the alkaline solution include, but are not limited to, a 10 wt% NH 4 OH aqueous solution, ammonium chloride dissolved in ammonium chloride, and the like.
<(d)不純物金属分離工程>
被処理材Bと酸性溶液とを混合し、硫化剤を導入することによって、被処理材Bから遷移金属を溶出させ、不純物金属を分離させることができる。
<(D) Impurity metal separation step>
By mixing the material to be processed B and the acidic solution and introducing a sulfiding agent, the transition metal can be eluted from the material to be processed B and the impurity metal can be separated.
酸性溶液は、特に制限されるものではなく、例えば、硫酸、塩酸、硝酸等を使用することができる。好ましくは、1N〜4Nの希硫酸を使用することがよい。濃硫酸等の濃度の高い硫酸を使用することも可能であるが、遷移金属(遷移金属の硫化物)が析出しやすく、不純物金属と分離することが困難となり遷移金属の回収率が低下する場合がある。また、酸性溶液の添加は、被処理材BのpHが1.5〜3.0となるまで行われる(調整される)ことが好ましい。pHが3.0より高いと、硫化剤を導入しても遷移金属を溶出させ、不純物金属を分離させることが困難となる場合がある。 The acidic solution is not particularly limited, and for example, sulfuric acid, hydrochloric acid, nitric acid and the like can be used. Preferably, 1N to 4N dilute sulfuric acid is used. Although it is possible to use sulfuric acid with a high concentration such as concentrated sulfuric acid, transition metal (sulfide of transition metal) is likely to precipitate, and it is difficult to separate it from impurity metals, resulting in a decrease in transition metal recovery rate. There is. Further, the addition of the acidic solution is preferably performed (adjusted) until the pH of the material to be treated B becomes 1.5 to 3.0. If the pH is higher than 3.0, it may be difficult to elute the transition metal and separate the impurity metal even if a sulfiding agent is introduced.
硫化剤は、遷移金属を硫化物として溶出させることができるものであれば、特に制限されるものではなく、例えば、硫化水素ガス、硫化アルカリ(硫化ナトリウム、硫化カリウム等)等の酸性溶液から発生する硫化水素ガス等を使用することができる。好ましくは、硫化水素ガスを使用することがよい。硫化ガスを導入することにより、不純物金属を硫化物として沈殿させ、遷移金属を硫酸溶液(ろ液)として分離させることができる。特に銅を効果的に硫化銅として沈殿させることができる。 The sulfiding agent is not particularly limited as long as it can elute transition metals as sulfides. For example, it is generated from an acidic solution such as hydrogen sulfide gas or alkali sulfide (sodium sulfide, potassium sulfide, etc.). Hydrogen sulfide gas or the like can be used. Preferably, hydrogen sulfide gas is used. By introducing the sulfurized gas, the impurity metal can be precipitated as a sulfide and the transition metal can be separated as a sulfuric acid solution (filtrate). In particular, copper can be effectively precipitated as copper sulfide.
硫化ガスの導入時間、ガス濃度、ガス流量は特に制限されるものではないが、硫化ガスの導入時間は5分〜30分、ガス濃度は5〜20%(in Air)、ガス流量は2〜8L/minの範囲であることが好ましい。 The introduction time, gas concentration, and gas flow rate of the sulfide gas are not particularly limited, but the introduction time of the sulfide gas is 5 minutes to 30 minutes, the gas concentration is 5 to 20% (in Air), and the gas flow rate is 2 to 2 minutes. The range is preferably 8 L / min.
従来、不純物金属を分離させるためには水酸化ナトリウム水溶液を加えることによって、不純物金属を水酸化物として沈殿させていた。この場合、反応温度やpH設定等の調整によっては、不純物金属を水酸化物として析出させることが困難となり(不純物金属の水酸化物の溶解度が大きくなるため)、不純物金属を分離させることが困難となる一方で、遷移金属の水酸化物沈殿の生成を伴いやすい。本実施形態では、(c)のアルカリ混合工程、(d)の不純物金属分離工程、特に不純物金属分離工程を有することにより、不純物金属と共に遷移金属を水酸化物として沈殿させることを防止することができ、不純物金属のみを水酸化物として容易に沈殿させることができる。 Conventionally, in order to separate the impurity metal, the impurity metal is precipitated as a hydroxide by adding an aqueous sodium hydroxide solution. In this case, depending on the adjustment of reaction temperature, pH setting, etc., it becomes difficult to precipitate the impurity metal as a hydroxide (because the solubility of the impurity metal hydroxide increases), and it is difficult to separate the impurity metal. On the other hand, it tends to be accompanied by the formation of transition metal hydroxide precipitates. In this embodiment, by having the alkali mixing step (c) and the impurity metal separation step (d), particularly the impurity metal separation step, it is possible to prevent the transition metal from being precipitated as a hydroxide together with the impurity metal. In addition, only the impurity metal can be easily precipitated as a hydroxide.
<(e)強アルカリ混合工程>
遷移金属と上記工程(c)に使用したアルカリ性溶液(例えば、アンモニア水溶液)より強アルカリ性のアルカリ性溶液とを混合する工程を含むことが好ましい。これによって、遷移金属を水酸化物として沈殿させることができる。また、上記(d)不純物金属分離工程で分離できない不純物金属が存在している場合、それを水酸化物の溶液として溶出させることができる。例えば、特にLi、Al等を効果的に水酸化物の溶液として溶出させることができる。
<(E) Strong alkali mixing step>
It is preferable to include a step of mixing the transition metal with a stronger alkaline solution than the alkaline solution (for example, aqueous ammonia solution) used in the step (c). Thereby, the transition metal can be precipitated as a hydroxide. Moreover, when the impurity metal which cannot be isolate | separated by said (d) impurity metal isolation | separation process exists, it can be eluted as a solution of a hydroxide. For example, in particular, Li, Al, etc. can be effectively eluted as a hydroxide solution.
上記強アルカリ性のアルカリ性溶液との混合は、遷移金属のpHが約9.5〜12となるまで行われるものが良い。pHが9.5より低いと遷移金属を水酸化物として沈殿させることが困難となる場合があり、pHが12より高いと遷移金属の水酸化物沈殿と共に不純物金属も水酸化物として沈殿する場合がある。 The mixing with the strongly alkaline alkaline solution is preferably performed until the pH of the transition metal is about 9.5-12. If the pH is lower than 9.5, it may be difficult to precipitate the transition metal as a hydroxide. If the pH is higher than 12, the transition metal hydroxide precipitates together with the impurity metal as a hydroxide. There is.
強アルカリ性溶液は、上記アルカリ混合工程により用いられるアルカリ性溶液より強アルカリ性を有すれば、特に制限されるものではない。強アルカリ性のアルカリ性溶液とは、例えば、濃度が10〜20重量%の範囲である水酸化ナトリウム、水酸化カリウム等の水溶液が挙げられるが、これらに限定されるものではない。 The strong alkaline solution is not particularly limited as long as it has stronger alkalinity than the alkaline solution used in the alkali mixing step. Examples of the strong alkaline alkaline solution include, but are not limited to, an aqueous solution of sodium hydroxide, potassium hydroxide and the like whose concentration is in the range of 10 to 20% by weight.
図1は、本実施形態に係るリチウム電池からの電極構成金属回収方法の一例を示すフロー図である。ここで、リチウム電池は、LiNi1−XCoXO2の複合酸化物を正極材料とする使用済みリチウムイオン二次電池を例とする。なお、X=0〜1である。 FIG. 1 is a flowchart showing an example of a method for recovering an electrode constituent metal from a lithium battery according to the present embodiment. Here, as the lithium battery, a used lithium ion secondary battery using a composite oxide of LiNi 1-X Co X O 2 as a positive electrode material is taken as an example. Note that X = 0 to 1.
ステップS10では、使用済みリチウムイオン二次電池を用意し、ステップS12では、リチウムイオン二次電池から正極を取り出す(分別する)。ステップS14では、正極を蓚酸溶液中に添加し、正極から遷移金属、不純物金属、及びカーボンを含む被処理材Aを分離させ、ステップS16では、蓚酸添加溶液をろ過分離し(S14,S16:(a)被処理材分離工程)、分離した被処理材A(残渣)とろ液とを得る。ここで、不純物金属を例えば、Cu(負極集電体から混入),Al(正極集電体から混入)、Fe(使用済みリチウムイオンに持電池の外装等から混入)、Li(正極材料から混入)として、以下説明する。また、ろ液は例えば、正極中のAl(アルミ集電体)、Li(正極材料中のLi及び電解液中のLi等)、Ni(回収する遷移金属の一部のNi)等を含むものである。ステップS22では、被処理材Aを水洗し、一部ろ液として取り除けなかった不純物、例えばリチウム等をろ液として除去する。ステップS26では、遷移金属(Ni,Co)、不純物金属(Cu,Fe,Al,(一部残存するLi)等)、及びカーボンを加熱して灰化する灰化処理を行い、カーボンを分解する。ステップS28では、灰化処理した遷移金属、不純物金属、及びカーボンに王水を添加し、遷移金属及び不純物金属を溶出させ、ステップS30では、王水添加溶液をろ過分離し(S28,S30:(b)カーボン分離工程)、溶出させた遷移金属及び不純物金属を含む被処理材Bをろ液として、カーボンを残渣として得る。ステップS36では、ろ液にアルカリ性溶液、例えばアンモニア水溶液を添加し、不純物金属(Fe(一部のCu及びAl)等)を水酸化物として沈殿させ、ステップS38では、アンモニア水溶液添加溶液をろ過分離し(S36,S38:(c)アルカリ混合工程)、遷移金属(アンミン錯体)及び不純物金属(Cu,Al,(Li)等)をろ液として、不純物金属(Fe(一部のAl及びCu)等)の水酸化物を残渣として得る。ステップS44では、酸性溶液、例えば4Nの希硫酸によってろ液のpHを調整し、ステップS46では、pH調整したろ液に硫化ガス、例えば硫化水素ガスを導入して、不純物金属(Cu等)を硫化物として沈殿させ、ステップS48では、硫化水素ガス導入後の溶液をろ過分離し(S44〜S48:(e)不純物金属分離工程)、遷移金属及び不純物金属(Al,(Li)等)をろ液として、不純物金属(Cu等)の硫化物を残渣として得る。ステップS54では、ろ液にステップS36で用いたアルカリ性水溶液より強アルカリ性のアルカリ性溶液、例えば水酸化ナトリウム水溶液を添加して、遷移金属を水酸化物として沈殿させ、ステップS56では、水酸化ナトリウム添加溶液をろ過分離し(S54,S56:強アルカリ混合工程)、不純物金属(Al,Li等)をろ液として、遷移金属の水酸化物を残渣として回収する。 In step S10, a used lithium ion secondary battery is prepared, and in step S12, the positive electrode is taken out (separated) from the lithium ion secondary battery. In step S14, the positive electrode is added to the oxalic acid solution, and the material A to be treated containing transition metal, impurity metal, and carbon is separated from the positive electrode. In step S16, the oxalic acid-added solution is separated by filtration (S14, S16 :( a) Material separation step), the separated material A (residue) and the filtrate are obtained. Here, for example, Cu (mixed from the negative electrode current collector), Al (mixed from the positive electrode current collector), Fe (mixed into the used lithium ion from the exterior of the battery), Li (mixed from the positive electrode material) ) Will be described below. The filtrate contains, for example, Al (aluminum current collector) in the positive electrode, Li (Li in the positive electrode material, Li in the electrolytic solution, etc.), Ni (Ni which is part of the transition metal to be recovered), and the like. . In step S22, the material A to be treated is washed with water, and impurities that have not been partially removed as a filtrate, such as lithium, are removed as a filtrate. In step S26, the transition metal (Ni, Co), the impurity metal (Cu, Fe, Al, (partially remaining Li), etc.), and the carbon are incinerated by heating and ashing to decompose the carbon. . In step S28, aqua regia is added to the ashed transition metal, impurity metal, and carbon to elute the transition metal and impurity metal. In step S30, the aqua regia addition solution is separated by filtration (S28, S30: ( b) Carbon separation step), to-be-treated material B containing the eluted transition metal and impurity metal is used as a filtrate, and carbon is obtained as a residue. In step S36, an alkaline solution, for example, an aqueous ammonia solution is added to the filtrate to precipitate impurity metals (Fe (partial Cu and Al), etc.) as hydroxides. In step S38, the aqueous ammonia solution is separated by filtration. (S36, S38: (c) alkali mixing step), transition metal (ammine complex) and impurity metal (Cu, Al, (Li), etc.) are used as filtrate, and impurity metal (Fe (partial Al and Cu)) Etc.) as a residue. In step S44, the pH of the filtrate is adjusted with an acidic solution, for example, 4N dilute sulfuric acid. In step S46, a sulfide gas, such as hydrogen sulfide gas, is introduced into the filtrate whose pH has been adjusted, and impurity metals (Cu, etc.) are introduced. In step S48, the solution after introduction of hydrogen sulfide gas is separated by filtration (S44 to S48: (e) impurity metal separation step), and transition metals and impurity metals (Al, (Li), etc.) are filtered. As a liquid, a sulfide of an impurity metal (Cu or the like) is obtained as a residue. In step S54, an alkaline solution stronger than the alkaline aqueous solution used in step S36, such as a sodium hydroxide aqueous solution, is added to the filtrate to precipitate the transition metal as a hydroxide. In step S56, a sodium hydroxide added solution is added. Are separated by filtration (S54, S56: strong alkali mixing step), and the transition metal hydroxide is recovered as a residue using impurity metals (Al, Li, etc.) as a filtrate.
以上、本発明の実施形態に係るリチウム電池からの電極構成金属回収方法では、高純度の遷移金属を高回収率で回収することができる。 As described above, in the electrode constituent metal recovery method from the lithium battery according to the embodiment of the present invention, a high-purity transition metal can be recovered with a high recovery rate.
次に、本発明の他の実施形態に係るリチウム電池からの電極構成金属回収方法について説明する。 Next, an electrode constituent metal recovery method from a lithium battery according to another embodiment of the present invention will be described.
本発明の他の実施形態に係るリチウム電池からの電極構成金属回収方法は、(1)正極と蓚酸とを混合して正極から遷移金属と不純物金属とカーボンとを含む被処理材Aを分離する被処理材分離工程と、(2)被処理材Aと王水とを混合し加熱して遷移金属と不純物金属とを溶出させて、遷移金属と不純物金属とを含む被処理材Bをとカーボンとを分離するカーボン分離工程と、(3)被処理材Bとアルカリ性溶液とを混合するアルカリ混合工程と、(4)被処理材Bとアルカリ混合工程に用いられるアルカリ性溶液より強アルカリ性のアルカリ性溶液とを混合する強アルカリ混合工程と(5)被処理材Bと酸性溶液とを混合し、硫化剤を導入して硫化物として遷移金属を溶出させて遷移金属と不純物金属とを分離する不純物金属分離工程と、を含むものである。 In the method for recovering an electrode constituent metal from a lithium battery according to another embodiment of the present invention, (1) a positive electrode and oxalic acid are mixed to separate a material A to be treated containing transition metal, impurity metal and carbon from the positive electrode. Processed material separation step; (2) Processed material A and aqua regia are mixed and heated to elute the transition metal and impurity metal, and process material B containing the transition metal and impurity metal is mixed with carbon. (3) an alkali mixing step for mixing the material B to be treated and an alkaline solution, and (4) an alkaline solution that is stronger than the alkaline solution used in the material B and the alkali mixing step. (5) Mixing the material B to be treated and an acidic solution, introducing a sulfurizing agent to elute the transition metal as a sulfide, and separating the transition metal from the impurity metal Separation process and It is intended to include.
(1)〜(3)の工程は、上記説明した(a)〜(c)の工程と同様である。 The steps (1) to (3) are the same as the steps (a) to (c) described above.
(4)の強アルカリ混合工程は、上記説明した(e)の強アルカリ混合工程と同様であるが、(5)の不純物金属分離工程前に、強アルカリ性のアルカリ性溶液を混合するものである。これによって、強アルカリ状態において水酸化物溶液として溶出しやすい不純物金属(例えばAl、Li)を先に溶出させることができる。一方、遷移金属を水酸化物沈殿として得ることができる。 The strong alkali mixing step (4) is the same as the strong alkali mixing step (e) described above, but a strong alkaline alkaline solution is mixed before the impurity metal separation step (5). Thereby, impurity metals (for example, Al, Li) that are easily eluted as a hydroxide solution in a strong alkali state can be eluted first. On the other hand, transition metals can be obtained as hydroxide precipitates.
(5)の工程は、上記説明した(d)の工程と同様である。但し、酸性溶液との混合は、pH調整だけでなく、上記水酸化物沈殿として得られる遷移金属を溶解させるために行う。また、硫化剤の導入によって、最終的に得られる遷移金属は硫化物溶液として得られるため、その後、硫化物溶液を濃縮する場合もある。 The step (5) is the same as the step (d) described above. However, mixing with the acidic solution is performed not only for pH adjustment but also for dissolving the transition metal obtained as the hydroxide precipitate. Moreover, since the transition metal finally obtained by introduction | transduction of a sulfurization agent is obtained as a sulfide solution, after that, a sulfide solution may be concentrated.
図2は、他の実施形態に係るリチウム電池からの電極構成金属回収方法の一例を示すフロー図である。ここで、リチウム電池は、LiNi1−XCoXO2の複合酸化物を正極材料とするリチウムイオン二次電池を例とする。なお、X=0〜1である。 FIG. 2 is a flow chart showing an example of a method for recovering an electrode constituent metal from a lithium battery according to another embodiment. Here, the lithium battery is exemplified by a lithium ion secondary battery using a composite oxide of LiNi 1-X Co X O 2 as a positive electrode material. Note that X = 0 to 1.
ステップS100では、使用済みリチウムイオン二次電池を用意し、ステップS102では、リチウムイオン二次電池から正極を取り出す(分別する)。ステップS104では、正極を蓚酸溶液中に添加し、正極から遷移金属、不純物金属、及びカーボンを含む被処理材Aを分離させ、ステップS106では、蓚酸添加溶液をろ過分離し(S104,S106:(1)被処理材分離工程)、分離した被処理材A(残渣)とろ液とを得る。ここで、不純物金属は上記と同様(Cu,Al,Fe,Li)であるとして以下説明する。また、ろ液も、上記述べたものと同様である。ステップS112では、被処理材Aを水洗し、一部ろ液として取り除けなかった不純物、例えばリチウム等を除去する。ステップS116では、遷移金属(Ni,Co)、不純物金属(Cu,Fe,Al,(一部残存するLi))、及びカーボンに王水を添加し、遷移金属及び不純物金属を溶出させる。また、王水を添加する前に、上記ステップS26と同様に灰化処理を行っても良いが本発明の他の実施形態では省略する。ステップS118では、王水添加溶液をろ過分離し(S116,S118:(2)カーボン分離工程)、溶出させた遷移金属及び不純物金属を含む被処理材Bをろ液として、カーボンを残渣として得る。ステップS124では、ろ液にアルカリ性溶液、例えばアンモニア水溶液を添加し、不純物金属(Fe,(一部のCu及びAl)等)を水酸化物として沈殿させ、ステップS126では、アンモニア水溶液添加溶液をろ過分離し(S124、S126:(3)アルカリ混合工程)、遷移金属(アンミン錯体)及び不純物金属(Cu、Al,(Li)等)をろ液として、不純物金属(Fe(一部のAl及びCu)等)の水酸化物を残渣として得る。ステップS132では、ろ液にステップS124で用いたアルカリ性溶液より強アルカリ性のアルカリ性溶液、例えば水酸化ナトリウム水溶液を添加して、遷移金属及び不純物金属(Cu等)を水酸化物として沈殿させ、ステップS134では、水酸化ナトリウム添加溶液をろ過分離し(S132、S134:(4)強アルカリ混合工程)、不純物金属(Al、Li等)の水酸化物溶液をろ液として、遷移金属及び不純物金属(Cu等)の水酸化物を残渣として得る。S140では、酸性溶液、例えば4Nの希硫酸を添加し、残渣を溶解させると共にpHを調整し、ステップS142では、pH調整した残渣が溶解されている溶液に硫化ガス、例えば硫化水素ガスを導入して、不純物金属(Cu等)を硫化物として沈殿させ、ステップS144では、硫化水素ガス導入後の溶液をろ過分離し(S140〜S144:(5)不純物金属分離工程)、遷移金属をろ液として、不純物金属(Cu等)の硫化物を残渣として得る。ステップ150では、ろ液を濃縮し、遷移金属を硫化物として回収する。 In step S100, a used lithium ion secondary battery is prepared, and in step S102, the positive electrode is taken out (separated) from the lithium ion secondary battery. In step S104, the positive electrode is added to the oxalic acid solution, and the material A to be treated containing transition metal, impurity metal, and carbon is separated from the positive electrode. In step S106, the oxalic acid-added solution is separated by filtration (S104, S106 :( 1) To-be-treated material separation step), the separated to-be-treated material A (residue) and the filtrate are obtained. Here, the following description will be made assuming that the impurity metal is the same as above (Cu, Al, Fe, Li). The filtrate is the same as described above. In step S112, the material A to be treated is washed with water to remove impurities that could not be partially removed as a filtrate, such as lithium. In step S116, aqua regia is added to transition metals (Ni, Co), impurity metals (Cu, Fe, Al, (partially remaining Li)), and carbon, and the transition metals and impurity metals are eluted. Moreover, before adding aqua regia, an ashing treatment may be performed in the same manner as in step S26, but it is omitted in other embodiments of the present invention. In step S118, the aqua regia added solution is separated by filtration (S116, S118: (2) carbon separation step), and the material B to be treated containing the eluted transition metal and impurity metal is used as a filtrate to obtain carbon as a residue. In step S124, an alkaline solution, for example, an aqueous ammonia solution is added to the filtrate to precipitate impurity metals (Fe, (some Cu and Al), etc.) as hydroxides. In step S126, the aqueous ammonia solution is filtered. Separating (S124, S126: (3) alkali mixing step), using transition metal (ammine complex) and impurity metal (Cu, Al, (Li), etc.) as filtrate, impurity metal (Fe (some Al and Cu) ) Etc.) as a residue. In step S132, an alkaline solution that is stronger than the alkaline solution used in step S124, such as an aqueous sodium hydroxide solution, is added to the filtrate to precipitate transition metals and impurity metals (such as Cu) as hydroxides, and step S134. Then, the sodium hydroxide added solution is separated by filtration (S132, S134: (4) strong alkali mixing step), and a transition metal and impurity metal (Cu) are obtained using a hydroxide solution of impurity metals (Al, Li, etc.) as a filtrate. Etc.) as a residue. In S140, an acidic solution, for example, 4N dilute sulfuric acid is added to dissolve the residue, and the pH is adjusted. In step S142, a sulfide gas, for example, hydrogen sulfide gas, is introduced into the solution in which the pH-adjusted residue is dissolved. In step S144, the solution after introducing the hydrogen sulfide gas is separated by filtration (S140 to S144: (5) impurity metal separation step), and the transition metal is used as a filtrate. Then, a sulfide of an impurity metal (Cu or the like) is obtained as a residue. In step 150, the filtrate is concentrated and the transition metal is recovered as a sulfide.
以上、本発明の他の実施形態に係るリチウム電池からの電極構成金属回収方法でも、高純度の遷移金属を高回収率で回収することができる。 As described above, even in the electrode constituent metal recovery method from the lithium battery according to another embodiment of the present invention, a high-purity transition metal can be recovered at a high recovery rate.
以下、実施例を挙げ、本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to a following example.
<実施例1:リチウム電池からの電極構成金属回収方法>
使用済みリチウムイオン二次電池を10個用意し(S10)、正極を分別した(S12)。次に、正極を5重量%の蓚酸浴中に浸漬させた(S14)。これにより、遷移金属、不純物金属、及びカーボンを正極から分離させ(S16)、遷移金属及び不純物金属の炭酸塩及びカーボンを約100g回収した。これを被処理材Aとし、被処理材A約100gを灰化処理した(S26)。灰化処理は、750℃で60分行った。次に、灰化後の被処理材Aに逆王水(塩酸1溶と硝酸3溶)200mlを徐々に加えて100℃で加熱溶解させ(S28)、80mlになるまで濃縮した(この際、被処理材Aから気泡が発生しているか確認し、気泡が発生している場合はさらに加熱する)。濃縮液を放冷後、蒸留水約200mlを加えて振り混ぜ、樹脂性容器中にろ過し(S30)、ろ紙上を蒸留水約50mlで2〜3回洗浄した。ろ紙はアドバンテック製No.5A、Φ400mmを使用した。以下すべてのろ過分離も同様のろ紙を使用した。次に、ろ液に濃度10重量%のアンモニア水溶液を添加し、pH計及びスターラを用いてろ液をpH5.0±2となるように調整し(S36)、不純物金属の一部を水酸化物として沈殿させ、ろ過分離し(S38)、ろ紙上を蒸留水約50mlで2〜3回洗浄し残渣を回収した。次に、ろ液に4Nの希硫酸を添加して、pH2.0±0.1となるように調整し(S44)、ガス濃度15%の硫化水素ガスを2〜3L/minで15分導入した(S46)後、不純物金属の一部を硫化物として沈殿させ、ろ過分離し(S48)、ろ紙上を蒸留水約50mlで2〜3回洗浄し残渣を回収した。次に、ろ液にアンモニア水溶液より強アルカリ性のアルカリ性溶液として濃度10重量%の水酸化ナトリウム水溶液添加して(S54)、遷移金属(Ni,Co)を水酸化物として沈殿させ、ろ過分離し(S56)、ろ紙上を蒸留水50mlで2〜3回洗浄し残渣及びろ液を回収した。
<Example 1: Method for recovering electrode-constituting metal from lithium battery>
Ten used lithium ion secondary batteries were prepared (S10), and the positive electrode was separated (S12). Next, the positive electrode was immersed in a 5% by weight oxalic acid bath (S14). Thereby, the transition metal, impurity metal, and carbon were separated from the positive electrode (S16), and about 100 g of carbonate and carbon of the transition metal and impurity metal were recovered. This was treated material A, and about 100 g of treated material A was incinerated (S26). Ashing treatment was performed at 750 ° C. for 60 minutes. Next, 200 ml of reverse aqua regia (hydrochloric acid 1 and nitric acid 3) was gradually added to the treated material A after ashing, and heated and dissolved at 100 ° C. (S28), and concentrated to 80 ml (in this case) It is confirmed whether or not bubbles are generated from the material A to be processed, and if bubbles are generated, they are further heated). After allowing the concentrate to cool, about 200 ml of distilled water was added, shaken and mixed, filtered into a resin container (S30), and the filter paper was washed with about 50 ml of distilled water 2-3 times. The filter paper is Advantech No. 5A, Φ400 mm was used. The same filter paper was used for all subsequent filtration separations. Next, an aqueous ammonia solution having a concentration of 10% by weight is added to the filtrate, and the filtrate is adjusted to pH 5.0 ± 2 using a pH meter and a stirrer (S36), and a part of the impurity metal is hydroxide. And filtered and separated (S38), and the filter paper was washed with about 50 ml of distilled water 2 to 3 times to recover the residue. Next, 4N dilute sulfuric acid is added to the filtrate to adjust to pH 2.0 ± 0.1 (S44), and hydrogen sulfide gas with a gas concentration of 15% is introduced at 2-3 L / min for 15 minutes. (S46), a part of the impurity metal was precipitated as sulfide, filtered and separated (S48), and the residue on the filter paper was washed with about 50 ml of distilled water 2 to 3 times. Next, a sodium hydroxide aqueous solution having a concentration of 10% by weight as an alkaline solution stronger than an aqueous ammonia solution is added to the filtrate (S54), and transition metals (Ni, Co) are precipitated as hydroxides and separated by filtration ( S56), the filter paper was washed 2 to 3 times with 50 ml of distilled water to recover the residue and filtrate.
<実施例2,3:リチウム電池からの電極構成金属回収方法>
実施例2は、上記S36において、ろ液に濃度10重量%のアンモニア水溶液を添加し、ろ液をpH5.5±0.2となるようにした(S36)ものであり、それ以外は上記実施例1と同様の方法で行った。さらに、実施例3は、上記S36において、ろ液に濃度10重量%のアンモニア水溶液を添加し、ろ液をpH6.0±0.2となるようにした(S36)ものであり、それ以外は上記実施例1と同様の方法で行った。
<Examples 2 and 3: Electrode constituent metal recovery method from lithium battery>
In Example 2 above, in S36, an aqueous ammonia solution having a concentration of 10% by weight was added to the filtrate so that the filtrate had a pH of 5.5 ± 0.2 (S36). The same method as in Example 1 was used. Furthermore, in Example 3, the aqueous ammonia solution having a concentration of 10% by weight was added to the filtrate in S36, and the filtrate was adjusted to pH 6.0 ± 0.2 (S36). The same method as in Example 1 was used.
実施例1〜3において、アンモニア水溶液添加(S36)後に得られた残渣(図1に示すI)、硫化水素ガス導入(S46)後に得られた残渣(図1に示すII)、水酸化ナトリウム水溶液添加(S54)後に得られたろ液(図1に示すIII)及び最終的に回収された遷移金属の残渣(図1に示すIV)のICP発光分光分析(島津社製のICPS2000型)の結果を表1〜3に示す。 In Examples 1 to 3, a residue (I shown in FIG. 1) obtained after addition of an aqueous ammonia solution (S36), a residue obtained after introduction of hydrogen sulfide gas (S46) (II shown in FIG. 1), an aqueous sodium hydroxide solution The results of the ICP emission spectroscopic analysis (ICPS2000 type manufactured by Shimadzu Corporation) of the filtrate (III shown in FIG. 1) obtained after the addition (S54) and the finally recovered transition metal residue (IV shown in FIG. 1) are shown. It shows in Tables 1-3.
表1〜3でわかるように、アンモニア水溶液を添加することによって、不純物金属を効果的に除去することができたが、pHを高くするにつれてNiの残渣量も増加(表には示さないがCoの残渣も増加)した。また、硫化水素ガスを導入することによりアンモニア水溶液の添加では取り除くことが困難な不純物金属(例えばCu)を除去することができた。さらに、水酸化ナトリウム水溶液を添加することによってろ液中に残る微量の不純物金属(例えばAl又は表には示さないがLi等)を除去することができたが、pHを高くするにつれてNiの残渣量も増加(表には示さないがCoの残渣量も増加)した。以上のことから、アンモニア水溶液を添加してpHを5.0〜5.5に調整した実施例1及び2は、各工程におけるNi及びCoの残渣量を抑える事ができたため、最終的に得られる遷移金属(Ni及びCo)の回収率は95%を超えるものであった。一方、pHを6.0に調整した実施例3は、各工程におけるNi及びCoの残渣量が多くなり、最終的に得られる遷移金属(Ni及びCo)の回収率は他の実施例には劣るが、最終的に回収された中に存在する不純物金属は、他の実施例より少なく高い純度の遷移金属(Ni及びCo)を回収することができた。結果として、回収率及び純度の両方の点を考慮すると、アンモニア水溶液を添加してpHを5.5に調整した実施例2が最適条件である。回収率(収率)は、(実際の収量mg/理論収量mg)×100で求めた。 As can be seen from Tables 1 to 3, the impurity metal could be effectively removed by adding an aqueous ammonia solution, but the amount of Ni residue also increased as the pH increased (not shown in the table, although not shown in the table). The residue also increased). Further, by introducing hydrogen sulfide gas, an impurity metal (for example, Cu) that is difficult to remove by adding an aqueous ammonia solution could be removed. Further, by adding an aqueous sodium hydroxide solution, trace amounts of impurity metals (for example, Al or Li not shown in the table, etc.) remaining in the filtrate could be removed. The amount also increased (not shown in the table, but the amount of Co residue also increased). From the above, Examples 1 and 2 in which an aqueous ammonia solution was added to adjust the pH to 5.0 to 5.5 were finally obtained because the amount of Ni and Co residues in each step could be suppressed. The recovery rate of the transition metals (Ni and Co) obtained was over 95%. On the other hand, in Example 3 in which the pH was adjusted to 6.0, the amount of Ni and Co residues in each step increased, and the recovery rate of the transition metal (Ni and Co) finally obtained is different from that in other examples. Although it is inferior, the impurity metals present in the final recovery were less than those of the other examples, and high-purity transition metals (Ni and Co) could be recovered. As a result, considering both the recovery rate and the purity, Example 2 in which the pH was adjusted to 5.5 by adding an aqueous ammonia solution is the optimum condition. The recovery rate (yield) was determined by (actual yield mg / theoretical yield mg) × 100.
<実施例4:リチウム電池からの電極構成金属回収方法>
使用済みリチウムイオン二次電池を10個用意し(S100)、正極を分別した(S102)。次に、正極を5重量%の蓚酸浴中に浸漬させた(S104)。これにより、遷移金属、不純物金属、及びカーボンを正極から分離させ(S106)、遷移金属及び不純物金属の炭酸塩及びカーボンを約100g回収した。これを被処理材Aとし、王水(塩酸3溶と硝酸1溶)400mlを徐々に加えて100℃で加熱溶解させ(S116)、80mlになるまで濃縮した(この際、被処理材Aから気泡が発生しているか確認し、気泡が発生している場合はさらに加熱する)。濃縮液を放冷後、蒸留水約200mlを加えて振り混ぜ、樹脂性容器中にろ過し(S118)、ろ紙上を蒸留水約50mlで2〜3回洗浄したろ過後の残渣を回収した。ろ紙はアドバンテック製No.5A、Φ400mmを使用した。以下すべてのろ過分離も同様のろ紙を使用した。次に、ろ液に濃度10重量%のアンモニア水溶液を添加し、pH計及びスターラを用いてろ液をpH6.0±0.1となるよう調整し(S124)、不純物金属の一部を水酸化物として沈殿させ、ろ過分離し(S126)、ろ紙上を蒸留水約50mlで2〜3回洗浄し残渣を回収した。次に、ろ液にアンモニア水溶液より強アルカリ性のアルカリ性溶液として濃度10重量%の水酸化ナトリウム水溶液を添加し、pH11.5±0.2に調整し(S132)、遷移金属を水酸化物として沈殿させ、不純物金属の一部を溶出させろ過分離し(S134)、ろ紙上をpH10〜11の水酸化ナトリウム水溶液約50mlで2〜3回洗浄し、引き続き蒸留水約50mlで2〜3回洗浄したろ液を回収した。次に、沈殿物を蒸留水約400mlを入れた樹脂製ビーカに移しいれた後、4Nの希硫酸を徐々に添加して、沈殿物を溶解させながらpH1.5〜2.5となるように調整し(S140)、pH調整した溶液にガス濃度10%の硫化水素ガスを2〜3L/minで15分導入し(S142)、不純物金属の一部を硫化物として沈殿させた。その後、空気を2〜3L/minで30分導入し、その溶液をろ過分離し(S144)、ろ紙上を蒸留水約50mlで1〜2回洗浄し残渣を回収した。次に、ろ液を約100mlになるまで濃縮し(S150)、遷移金属(Ni,Co)を回収した。
<Example 4: Method for recovering metal constituting electrode from lithium battery>
Ten used lithium ion secondary batteries were prepared (S100), and the positive electrode was separated (S102). Next, the positive electrode was immersed in a 5% by weight oxalic acid bath (S104). Thereby, the transition metal, impurity metal, and carbon were separated from the positive electrode (S106), and about 100 g of carbonate and carbon of the transition metal and impurity metal were recovered. This is treated material A, and 400 ml of aqua regia (
実施例4において、アンモニア水溶液添加(S124)後に得られた残渣(図2に示すVI)、水酸化ナトリウム水溶液添加(S132)後に得られたろ液(図2に示すVII)、硫化水素ガス導入(S142)後に得られた残渣(図2に示すVIII)及び最終的に回収された遷移金属(Ni,Co)の濃縮液(図2に示すIX)の原子吸光分析(島津社製のAA6700F型)の結果と王水添加後の残渣(図2に示すV)の結果を表4に示す。王水添加後の残渣量は、残渣を乾燥灰化して求めた灼熱減量である。 In Example 4, the residue (VI shown in FIG. 2) obtained after the addition of the aqueous ammonia solution (S124), the filtrate (VII shown in FIG. 2) obtained after the addition of the aqueous sodium hydroxide solution (S132), introduction of hydrogen sulfide gas ( S142) Atomic absorption analysis of the residue (VIII shown in FIG. 2) and the finally recovered transition metal (Ni, Co) concentrate (IX shown in FIG. 2) (AA6700F type, manufactured by Shimadzu Corp.) Table 4 shows the results and the results of the residue after addition of aqua regia (V shown in FIG. 2). The amount of residue after the addition of aqua regia is the loss on ignition determined by dry ashing the residue.
実施例4の方法から、王水を添加することにより、試料中に含まれるほとんど全てのカーボンを取り除くことができた。また、実施例4では、水酸化ナトリウム水溶液の添加をアンモニア水溶液の添加後に行っているが、実施例1〜3と同様に不純物金属を効果的に除去することができた。さらに、硫化水素ガスを導入することにより上記では分離することができなかった不純物金属を分離することができた。これにより、最終的に得られる遷移金属(Ni及びCo)の回収率は90%を超えるものであった。 From the method of Example 4, almost all the carbon contained in the sample could be removed by adding aqua regia. Further, in Example 4, the addition of the aqueous sodium hydroxide solution was performed after the addition of the aqueous ammonia solution, but the impurity metals could be effectively removed as in Examples 1 to 3. Furthermore, by introducing hydrogen sulfide gas, impurity metals that could not be separated in the above could be separated. Thereby, the recovery rate of the finally obtained transition metals (Ni and Co) exceeded 90%.
<王水添加による効果>
(実施例5)
使用済みリチウムイオン二次電池を5個用意し(S100)、正極を分別した(S102)。次に、正極を5重量%の蓚酸浴中に浸漬させた(S104)。これにより、遷移金属、不純物金属、及びカーボンを正極から分離させ(S106)、遷移金属及び不純物金属の炭酸塩及びカーボンを約50g回収した。これを被処理材Aとし、王水(塩酸3溶と硝酸1溶)300mlを徐々に加えて100℃で加熱溶解させ(S116)、80mlになるまで濃縮した(この際、被処理材Aから気泡が発生しているか確認し、気泡が発生している場合はさらに加熱する)。濃縮液を放冷後、蒸留水約200mlを加えて振り混ぜ、樹脂性容器中にろ過し(S118)、蒸留水約50mlで2〜3回洗浄し残渣(図2に示すV)を回収した。これを実施例5とした。
<Effects of adding aqua regia>
(Example 5)
Five used lithium ion secondary batteries were prepared (S100), and the positive electrode was separated (S102). Next, the positive electrode was immersed in a 5% by weight oxalic acid bath (S104). Thereby, the transition metal, impurity metal, and carbon were separated from the positive electrode (S106), and about 50 g of carbonate and carbon of the transition metal and impurity metal were recovered. This is treated material A, and 300 ml of aqua regia (3 dissolved hydrochloric acid and 1 dissolved nitric acid) is gradually added and dissolved by heating at 100 ° C. (S 116), and concentrated to 80 ml (at this time, from treated material A Check if bubbles are generated. If bubbles are generated, heat further.) After allowing the concentrate to cool, about 200 ml of distilled water was added, shaken and mixed, filtered into a resinous container (S118), and washed with about 50 ml of distilled water 2-3 times to recover the residue (V shown in FIG. 2). . This was designated as Example 5.
上記実施例5の王水300ml添加に代えて、塩酸300ml、硝酸300ml、硫酸300mlを添加したものを比較例1,2,3とした。 Comparative Examples 1, 2 and 3 were prepared by adding 300 ml of hydrochloric acid, 300 ml of nitric acid and 300 ml of sulfuric acid instead of adding 300 ml of aqua regia in Example 5 above.
実施例5及び比較例1〜3によって得られた残渣を蛍光X線分析(島津社製のXRF−1700型)により求めた結果を表5に示す。 Table 5 shows the results obtained by the residue obtained by Example 5 and Comparative Examples 1 to 3 by fluorescent X-ray analysis (XRF-1700 type, manufactured by Shimadzu Corporation).
表5の結果から、王水を添加した実施例5は、他の酸を添加した比較例1,2,3より残渣量が少ないことがわかった。残渣量が少ないほど、添加する酸により被処理材A中のカーボン以外のものをイオン化し溶出したことを示しているため、王水を添加した実施例5は、比較例1〜3より最終的に得られる遷移金属の収率を高めることができる。 From the results of Table 5, it was found that Example 5 to which aqua regia was added had less residue than Comparative Examples 1, 2, and 3 to which other acids were added. Since the smaller the amount of the residue, the more acid other than carbon in the material A to be treated was ionized and eluted by the acid to be added, so that Example 5 to which aqua regia was added was more final than Comparative Examples 1 to 3. The yield of the transition metal obtained can be increased.
<王水及び逆王水の添加量による効果>
使用済みリチウムイオン二次電池を5個用意し(S10)、正極を分別した(S12)。次に、正極を5重量%の蓚酸浴中に浸漬させた(S14)。これにより、遷移金属、不純物金属、及びカーボンを正極から分離させ(S16)、遷移金属及び不純物金属の炭酸塩及びカーボンを約50g回収した。これを被処理材Aとし、被処理材A約50gを灰化処理した(S26)。灰化処理は、750℃で60分行った。次に、灰化後の被処理材Aに王水(塩酸3溶と硝酸1溶)100mlを徐々に加えて100℃で加熱溶解させ(S28)、80mlになるまで濃縮した(この際、被処理材Aから気泡が発生しているか確認し、気泡が発生している場合はさらに加熱する)。濃縮液を放冷後、蒸留水約200mlを加えて振り混ぜ、樹脂性容器中にろ過し(S30)、ろ紙上を蒸留水約50mlで2〜3回洗浄し残渣を回収した(図1に示すX)。これを実施例6とした。また、実施例7,8,9は、実施例6の王水(塩酸3溶と硝酸1溶)100mlに代えて、王水を140ml,180ml,220ml徐々に加えたものであり、その他実施例6と同様の方法で行った。さらに、実施例10,11,12は実施例6の王水100mlに代えて、逆王水(塩酸1溶と硝酸3溶)を100ml,180ml,220mlを徐々に加えたものであり、その他実施例6と同様の方法で行った。実施例6〜12によって得られた沈殿物を蛍光X分析(島津社製のXRF−1700型)により求めた結果を表6に示す。
<Effects of addition amount of aqua regia and reverse aqua regia>
Five used lithium ion secondary batteries were prepared (S10), and the positive electrode was separated (S12). Next, the positive electrode was immersed in a 5% by weight oxalic acid bath (S14). Thereby, the transition metal, impurity metal, and carbon were separated from the positive electrode (S16), and about 50 g of carbonate and carbon of the transition metal and impurity metal were recovered. This was treated material A, and about 50 g of treated material A was incinerated (S26). Ashing treatment was performed at 750 ° C. for 60 minutes. Next, 100 ml of aqua regia (
残渣量が全体的に少ないのは灰化処理を行ったためであるが、王水又は逆王水を220ml添加した実施例9及び実施例12は残渣量を1%以下にすることができた。残渣量が低いほど、被処理材A中のカーボン以外のものをイオン化し溶出したことを示している。また、実施例9及び実施例12は、残渣中のNi及びCoの量も最も低い結果となった。さらに、僅かではあるが王水を添加するより逆王水を添加するほうが残渣量を少なくすることができ、実施例12が最も残渣量を抑え、残渣中のNi及びCoの量を抑える事ができるとわかった。 Although the amount of residue was generally small because of the ashing treatment, in Examples 9 and 12 to which 220 ml of aqua regia or reverse aqua regia was added, the amount of residue could be reduced to 1% or less. The lower the amount of residue, the more ionized and eluted than carbon in the material A to be treated. In Examples 9 and 12, the amount of Ni and Co in the residue was the lowest. Furthermore, the amount of residue can be reduced by adding reverse aqua regia rather than adding aqua regia, but Example 12 is the least amount of residue, and the amount of Ni and Co in the residue can be suppressed. I knew it was possible.
Claims (5)
前記正極と蓚酸とを混合して前記正極から前記遷移金属と不純物金属とカーボンとを含む被処理材Aを分離する被処理材分離工程と、
前記被処理材Aと王水とを混合し加熱して前記遷移金属と前記不純物金属とを溶出させて、前記遷移金属と前記不純物金属とを含む被処理材Bと前記カーボンとを分離するカーボン分離工程と、
前記被処理材Bと酸性溶液とを混合し、硫化剤を導入して硫化物として前記遷移金属を溶出させて前記遷移金属と前記不純物金属とを分離する不純物金属分離工程と、
を含むことを特徴とするリチウム電池からの電極構成金属回収方法。 An electrode constituent metal recovery method from a lithium battery comprising a positive electrode containing one or more transition metals and carbon,
A material separation step of mixing the positive electrode and oxalic acid to separate the material A to be processed containing the transition metal, impurity metal and carbon from the positive electrode;
Carbon that separates the carbon to be treated B and the carbon to be treated by mixing the material to be treated A and aqua regia and heating to elute the transition metal and the impurity metal and the transition metal and the impurity metal. A separation process;
An impurity metal separation step of mixing the material to be treated B and an acidic solution, introducing a sulfiding agent to elute the transition metal as a sulfide and separating the transition metal and the impurity metal;
A method for recovering an electrode constituent metal from a lithium battery.
2. The method for recovering metal constituting an electrode from a lithium battery according to claim 1, further comprising an ashing treatment step of heating and ashing the material A after the material separation step. A method for recovering an electrode constituent metal from a battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006150788A JP5151072B2 (en) | 2006-05-31 | 2006-05-31 | Method for recovering metal constituting electrode from lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006150788A JP5151072B2 (en) | 2006-05-31 | 2006-05-31 | Method for recovering metal constituting electrode from lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007323868A JP2007323868A (en) | 2007-12-13 |
JP5151072B2 true JP5151072B2 (en) | 2013-02-27 |
Family
ID=38856503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006150788A Expired - Fee Related JP5151072B2 (en) | 2006-05-31 | 2006-05-31 | Method for recovering metal constituting electrode from lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5151072B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106618A1 (en) * | 2009-03-16 | 2010-09-23 | トヨタ自動車株式会社 | Method for treating battery member |
KR101178768B1 (en) | 2010-09-27 | 2012-09-10 | 주식회사 세화엔스텍 | Method of recovery of lithium from cathodic active material of lithium battery |
JP6897466B2 (en) * | 2017-09-29 | 2021-06-30 | 住友金属鉱山株式会社 | How to separate copper from nickel and cobalt |
JP6519628B2 (en) * | 2017-10-23 | 2019-05-29 | 住友金属鉱山株式会社 | Separation method of copper and nickel and cobalt |
JP6915497B2 (en) * | 2017-10-23 | 2021-08-04 | 住友金属鉱山株式会社 | How to separate copper from nickel and cobalt |
JP6939506B2 (en) * | 2017-12-18 | 2021-09-22 | 住友金属鉱山株式会社 | How to separate copper from nickel and cobalt |
DE102018102026A1 (en) | 2018-01-30 | 2019-08-01 | Duesenfeld Gmbh | Process for recycling lithium batteries |
JP7090877B2 (en) * | 2018-02-07 | 2022-06-27 | 上田石灰製造株式会社 | How to recover valuable metals |
KR102686288B1 (en) * | 2019-01-18 | 2024-07-19 | 주식회사 엘지에너지솔루션 | Analysis method of cathod |
IL290073A (en) * | 2019-07-26 | 2022-07-01 | Duesenfeld Gmbh | Method for recycling lithium batteries |
CN115244195B (en) * | 2020-03-09 | 2024-08-20 | 笹仓机械工程有限公司 | Cobalt recovery method |
JP7321531B2 (en) * | 2020-03-09 | 2023-08-07 | 株式会社ササクラ | Cobalt recovery method |
JP7350318B2 (en) * | 2020-03-09 | 2023-09-26 | 株式会社ササクラ | Cobalt recovery method |
CN111807359B (en) * | 2020-06-01 | 2022-03-15 | 广东邦普循环科技有限公司 | Graphite purification and lattice reconstruction method in power battery |
CN115020854A (en) * | 2022-06-16 | 2022-09-06 | 华中科技大学 | Method for accelerating separation of battery electrode material and current collector |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0822846A (en) * | 1994-07-05 | 1996-01-23 | Fuji Photo Film Co Ltd | Treating method for nonaqueous secondary battery waste |
JPH0982371A (en) * | 1995-09-18 | 1997-03-28 | Mitsui Mining & Smelting Co Ltd | Valuable material recovering method from waste nickel-hydrogen secondary battery |
ZA987219B (en) * | 1997-08-15 | 2000-02-14 | Cominco Eng Services | Chloride assisted hydrometallurgical extraction of metal. |
JP2002198103A (en) * | 2000-12-22 | 2002-07-12 | Toshiba Electronic Engineering Corp | Recovery method of electrode-constituting metals |
JP4492222B2 (en) * | 2004-06-21 | 2010-06-30 | トヨタ自動車株式会社 | Lithium battery treatment method |
-
2006
- 2006-05-31 JP JP2006150788A patent/JP5151072B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007323868A (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151072B2 (en) | Method for recovering metal constituting electrode from lithium battery | |
EP3904546B1 (en) | Process for recovering components from alkaline batteries | |
RU2486266C2 (en) | Lead wastes processing | |
CN1055971C (en) | Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulfide minerals | |
KR20200065503A (en) | Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery | |
JP7300115B2 (en) | Method for producing nickel- and cobalt-containing solutions from nickel- and cobalt-containing hydroxides | |
JP6290633B2 (en) | Lithium ion battery waste treatment method and metal recovery method using the same | |
JP4846677B2 (en) | Arsenic-containing solution processing method | |
US20240213562A1 (en) | Extraction of metals from lithium-ion battery material | |
JP5262627B2 (en) | Method for recovering nickel concentrate from used nickel metal hydride batteries | |
JP6986997B2 (en) | Lithium carbonate manufacturing method and lithium carbonate | |
JP6996723B1 (en) | Metal recovery method from lithium-ion batteries | |
KR20240049385A (en) | Method and equipment for recovering metal from black mass | |
JP5568977B2 (en) | Method for recovering manganese from batteries | |
JP4215547B2 (en) | Cobalt recovery method | |
KR102324910B1 (en) | Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery | |
JP2004182533A (en) | Method of recovering cobalt | |
JP2006316293A (en) | Method for removing manganese from cobalt sulfate solution | |
US20230275280A1 (en) | Eco-friendly method for regenerating cathode active material of waste secondary battery using lactic acid | |
TWI849893B (en) | Method for producing manganese(ⅱ) sulfate monohydrate from by-product of zinc refining process | |
JP7453727B1 (en) | How to extract aluminum | |
JP2001097716A (en) | METHOD FOR SEPARATING AND CONCENTRATING Ga | |
KR102641601B1 (en) | Methods for recovering cobalt and nickel | |
JP5962487B2 (en) | Method for separating rare earth elements contained in nickel metal hydride battery and method for recovering valuable metals from nickel metal hydride battery | |
KR20230039891A (en) | Recovery method of aluminium, cupper and nickel-cobalt-manganese precursor from secondary battery waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5151072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |