JP5149918B2 - Vehicle periphery monitoring device - Google Patents
Vehicle periphery monitoring device Download PDFInfo
- Publication number
- JP5149918B2 JP5149918B2 JP2010015136A JP2010015136A JP5149918B2 JP 5149918 B2 JP5149918 B2 JP 5149918B2 JP 2010015136 A JP2010015136 A JP 2010015136A JP 2010015136 A JP2010015136 A JP 2010015136A JP 5149918 B2 JP5149918 B2 JP 5149918B2
- Authority
- JP
- Japan
- Prior art keywords
- outside air
- temperature
- air temperature
- difference
- luminance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Description
この発明は、赤外線カメラによって得られる撮像画像を用いて車両の周辺を監視するための装置に関し、より具体的には、該撮像画像の2値化処理によって対象物の抽出を行う車両周辺監視装置に関する。 The present invention relates to an apparatus for monitoring the periphery of a vehicle using a captured image obtained by an infrared camera, and more specifically, a vehicle periphery monitoring apparatus that extracts an object by binarization processing of the captured image. About.
従来、赤外線カメラを車両に搭載し、該カメラにより撮像された車両周辺の撮像画像を2値化して、歩行者や動物等の高温の対象物を抽出する装置が提案されている。下記の特許文献1では、赤外線カメラを用いて得られた撮像画像の輝度値ヒストグラムを作成し、該輝度値ヒストグラムに基づいて、背景画像と対象物画像とに二分する閾値を決定する手法が提案されている。このような閾値を用いた2値化処理により、高温対象物を背景と区別して抽出する。
2. Description of the Related Art Conventionally, there has been proposed an apparatus that mounts an infrared camera on a vehicle, binarizes a captured image captured around the vehicle, and extracts a high-temperature object such as a pedestrian or animal. In
車両の周辺には、歩行者や動物等の生体の他に、電柱や壁等の人工の構造物が様々に存在しうる。歩行者や動物等の生体を、高温の対象物として背景から分離して抽出するためには、2値化処理において、このような人工構造物は背景に分類されるのが望ましい。しかしながら、人工構造物の種類やその配置、および周辺の温度等の車両の周辺環境に依存して、人工構造物は、それ以外の背景部分よりも高温なことがあり、結果として、上記のような従来の手法を採用しても、人工構造物を高温対象物として分類してしまうおそれがある。 したがって、車両の周辺環境に依存することなく、所望の対象物を、2値化処理においてより良好な精度で背景から分離して抽出することのできる手法が望まれている。 In addition to living bodies such as pedestrians and animals, various artificial structures such as utility poles and walls can exist around the vehicle. In order to extract a living body such as a pedestrian or an animal from a background as a high-temperature object, it is desirable that such an artificial structure is classified as a background in the binarization process. However, depending on the type of man-made structure and its arrangement, and the surrounding environment of the vehicle such as the temperature around it, the man-made structure may be hotter than other background parts. Even if such a conventional method is employed, the artificial structure may be classified as a high-temperature object. Therefore, there is a demand for a technique that can extract a desired object from the background with better accuracy in the binarization process without depending on the surrounding environment of the vehicle.
この発明の一つの側面によると、車両に搭載された赤外線カメラによって得られる撮像画像を用いて車両の周辺を監視する車両周辺監視装置は、車両の外気温を検出する外気温検出手段と、外気温に基づいて推定された対象物の表面温度と前記外気温との温度差を求める温度差算出手段と、撮像画像における背景の輝度値および前記温度差に対応する輝度差に基づいて、該撮像画像における該対象物の輝度値を算出する対象物輝度値算出手段と、該対象物の輝度値を閾値として、前記赤外線カメラによって得られた撮像画像を2値化し、対象物を抽出する対象物抽出手段と、を備える。 According to one aspect of the present invention, a vehicle periphery monitoring device that monitors the periphery of a vehicle using a captured image obtained by an infrared camera mounted on the vehicle includes an outside air temperature detecting unit that detects the outside air temperature of the vehicle, Temperature difference calculating means for obtaining a temperature difference between the surface temperature of the object estimated based on the temperature and the outside air temperature, and the imaging based on the luminance value of the background in the captured image and the luminance difference corresponding to the temperature difference Object luminance value calculating means for calculating the luminance value of the object in the image, and an object for extracting the object by binarizing the captured image obtained by the infrared camera using the luminance value of the object as a threshold value Extraction means.
対象物の表面温度と外気温との間の関係は予め決まっており、外気温から該表面温度を推定することができる。この発明は、この知見に基づいてなされたものであり、検出された外気温に基づいて推定された対象物の表面温度と、外気温との温度差を算出する。背景の輝度値は外気温に対応すると考えられるので、該背景の輝度値と、該温度差に対応する輝度差とに基づいて、対象物に対応する輝度値を算出することができる。該算出された輝度値を閾値として2値化することにより、対象物を、該対象物以外の背景部分から良好に分離して抽出することができる。したがって、たとえば歩行者を対象物とする場合には、歩行者の表面温度と外気温との間の関係を予め決めておくことにより、人工構造物などを対象物として誤って抽出するのを防止することができる。 The relationship between the surface temperature of the object and the outside air temperature is determined in advance, and the surface temperature can be estimated from the outside air temperature. This invention is made based on this knowledge, and calculates the temperature difference between the surface temperature of the object estimated based on the detected outside air temperature and the outside air temperature. Since the luminance value of the background is considered to correspond to the outside air temperature, the luminance value corresponding to the object can be calculated based on the luminance value of the background and the luminance difference corresponding to the temperature difference. By binarizing the calculated luminance value as a threshold value, it is possible to extract the object separately from the background portion other than the object. Therefore, for example, when a pedestrian is used as an object, by predetermining the relationship between the surface temperature of the pedestrian and the outside air temperature, it is possible to prevent an artificial structure or the like from being erroneously extracted as the object. can do.
本発明のその他の特徴及び利点については、以下の詳細な説明から明らかである。 Other features and advantages of the present invention will be apparent from the detailed description that follows.
次に図面を参照してこの発明の実施の形態を説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
図1は、この発明の一実施形態に従う、車両の周辺監視装置の構成を示すブロック図である。該装置は、車両に搭載され、遠赤外線を検出可能な2つの赤外線カメラ1Rおよび1Lと、車両周辺の外気の温度(外気温)を検出するセンサ5と、カメラ1Rおよび1Lによって得られる画像データに基づいて車両前方の対象物を検出するための画像処理ユニット2と、該検出結果に基づいて音声で警報を発生するスピーカ3と、カメラ1Rまたは1Lによって得られる画像を表示すると共に、運転者に車両前方の対象物を認識させるための表示を行うヘッドアップディスプレイ(以下、HUDと呼ぶ)4とを備えている。
FIG. 1 is a block diagram showing a configuration of a vehicle periphery monitoring device according to an embodiment of the present invention. The device is mounted on a vehicle and can detect two far-
図2に示すように、カメラ1Rおよび1Lは、車両10の前部に、車幅の中心を通る中心軸に対して対称な位置に配置されている。2つのカメラ1Rおよび1Lは、両者の光軸が互いに平行となり、両者の路面からの高さが等しくなるように車両に固定されている。赤外線カメラ1Rおよび1Lは、背景の温度よりも対象物の温度が高いほど、その出力信号のレベルが高くなる(すなわち、撮像画像における輝度値が大きくなる)特性を有している。
As shown in FIG. 2, the
画像処理ユニット2は、入力アナログ信号をデジタル信号に変換するA/D変換回路、デジタル化した画像信号を記憶する画像メモリ、各種演算処理を行う中央演算処理装置(CPU)、CPUが演算に際してデータを記憶するのに使用するRAM(ランダムアクセスメモリ)、CPUが実行するプログラムおよび用いるデータ(テーブル、マップを含む)を記憶するROM(リードオンリーメモリ)、スピーカ3に対する駆動信号およびHUD4に対する表示信号などを出力する出力回路を備えている。カメラ1Rおよび1Lの出力信号およびセンサ5の出力信号は、デジタル信号に変換されてCPUに入力されるよう構成されている。HUD4は、図2に示すように、車両10のフロントウィンドウの、運転者の前方位置に画面4aが表示されるように設けられている。こうして、運転者は、HUD4に表示される画面を視認することができる。
The image processing unit 2 includes an A / D conversion circuit that converts an input analog signal into a digital signal, an image memory that stores a digitized image signal, a central processing unit (CPU) that performs various arithmetic processing, and a data RAM (Random Access Memory) used to store data, ROM (Read Only Memory) that stores programs executed by the CPU and data used (including tables and maps), driving signals for the speaker 3, display signals for the
図3は、画像処理ユニット2によって実行されるプロセスを示すフローチャートである。該プロセスは、所定の時間間隔で実行されることができる。 FIG. 3 is a flowchart showing a process executed by the image processing unit 2. The process can be performed at predetermined time intervals.
ステップS11〜S13において、カメラ1Rおよび1Lの出力信号(すなわち、撮像画像のデータ)を入力として受け取り、これをA/D変換して、画像メモリに格納する。格納される画像データは、輝度情報を含んだグレースケール画像である。
In steps S11 to S13, the output signals of the
以下のステップS14〜S19は、2値化処理において、所望の対象物を、背景とは分離して抽出するための処理である。この実施例では、歩行者を、該所望の対象物として説明する。 The following steps S14 to S19 are processes for extracting a desired object separately from the background in the binarization process. In this embodiment, a pedestrian is described as the desired object.
ステップS14において、外気温センサ5によって検出された外気温i(℃)を取得する。ステップS15において、背景の輝度値Tbを決定する。
In step S14, the outside air temperature i (° C.) detected by the outside
背景の輝度値は、任意の手法で決定されることができる。この実施例では、グレースケール画像に基づいて輝度値ヒストグラムを作成し、最も度数の高い輝度値を、背景の輝度値Tbとして用いる。撮像画像においては、通常、背景の占める面積が最も大きいからである。 The luminance value of the background can be determined by an arbitrary method. In this embodiment, a luminance value histogram is created based on the grayscale image, and the highest luminance value is used as the background luminance value Tb. This is because the captured image usually has the largest area occupied by the background.
ステップS16において、検出された外気温iに基づいて、図4に示すようなマップを参照する。ここで、該マップを説明する。歩行者の頭部は、主にその顔面において皮膚が外気にさらされており、熱源を妨げるものが少ない部位である。したがって、外気にさらされている頭部表面に着目する。頭部表面の温度(以下、表面温度と呼ぶ)fa(℃)と外気温i(℃)との間の関係を、実験やシミュレーション等で調べた結果、両者の間には、図4に示すような関係があることが判明した。この図において、横軸は外気温i(℃)を示し、縦軸は表面温度fa(℃)を示す。この図に示すように、外気温iから、表面温度faを推定することができる。 In step S16, a map as shown in FIG. 4 is referred to based on the detected outside air temperature i. Here, the map will be described. The head of a pedestrian is a part where the skin is exposed to the outside air mainly on the face and there are few things that obstruct the heat source. Therefore, focus on the head surface exposed to the outside air. As a result of examining the relationship between the temperature of the head surface (hereinafter referred to as the surface temperature) fa (° C.) and the outside air temperature i (° C.) through experiments and simulations, the relationship between the two is shown in FIG. It turned out that there was such a relationship. In this figure, the horizontal axis indicates the outside air temperature i (° C.), and the vertical axis indicates the surface temperature fa (° C.). As shown in this figure, the surface temperature fa can be estimated from the outside air temperature i.
表面温度faは、外気温iに対して、曲線101に示すように推移し、外気温iが高くなるほど、表面温度faも高くなる。所与の外気温iにおいて、該外気温iに対する表面温度fa(i)の差が、曲線101と線103(これは、fa=iを表す直線である)の差によって表されており、これを、表面温度差と呼び、F(i)で表す。すなわち、F(i)=表面温度fa(i)― 外気温iである。図に示されるように、表面温度差F(i)は、外気温iが高くなるにつれて小さくなる傾向がある。
The surface temperature fa changes as indicated by the
対象物の抽出精度をより向上させるため、この実施例では、F(i)を中心として、所定の余裕範囲(マージン)T(℃)を設定する。該余裕範囲の上限が点線101Uよって示されており、該上限と外気温iとの差を、F(i)maxで表す。該余裕範囲の下限が点線101Lによって示されており、該下限と外気温iとの差を、F(i)minで表す。
In this embodiment, a predetermined margin range (margin) T (° C.) is set with F (i) as the center in order to further improve the object extraction accuracy. The upper limit of the margin range is indicated by a dotted
図4に示されるようなマップは、画像処理ユニット2のメモリに予め記憶される。画像処理ユニット2は、検出された外気温i(℃)に基づいて該マップを参照することにより、外気温iに対応する表面温度faを求め、該表面温度faと外気温iとの表面温度差F(i)を算出し、所定の余裕範囲Tを用いて、該表面温度差F(i)に対する上限値F(i)maxおよび下限値F(i)minを算出する。ここで、余裕範囲Tは、外気温iに従って変化させてもよいし、一定でもよい。 The map as shown in FIG. 4 is stored in advance in the memory of the image processing unit 2. The image processing unit 2 refers to the map based on the detected outside air temperature i (° C.) to obtain the surface temperature fa corresponding to the outside air temperature i, and the surface temperature between the surface temperature fa and the outside air temperature i. A difference F (i) is calculated, and an upper limit value F (i) max and a lower limit value F (i) min for the surface temperature difference F (i) are calculated using a predetermined margin range T. Here, the margin range T may be changed according to the outside air temperature i, or may be constant.
代替的に、各外気温iに対する表面温度差F(i)についての上限値F(i)maxおよび下限値F(i)minをメモリに記憶し、外気温iから表面温度faを求めることをスキップして、外気温iから直接上限値F(i)maxおよび下限値F(i)minを求めるようにしてもよい。 Alternatively, the upper limit value F (i) max and the lower limit value F (i) min for the surface temperature difference F (i) with respect to each outside air temperature i are stored in the memory, and the surface temperature fa is obtained from the outside air temperature i. The upper limit value F (i) max and the lower limit value F (i) min may be obtained directly from the outside air temperature i by skipping.
図3に戻り、ステップS17において、表面温度差F(i)の上限値F(i)maxおよび下限値F(i)minに対応する輝度差を算出する。遠赤外線カメラの仕様によって、温度変化に対する輝度値変化の割合は決まっており、これを、パラメータSiTFで表す。こうして、表面温度差F(i)の上限値F(i)maxおよび下限値F(i)minに対応して、以下の式(1)のように、輝度差の上限値dTmaxおよび下限値dTminがそれぞれ算出される。
dTmax=SiTF×F(i)max
dTmin=SiTF×F(i)min (1)
Returning to FIG. 3, in step S17, a luminance difference corresponding to the upper limit value F (i) max and the lower limit value F (i) min of the surface temperature difference F (i) is calculated. The ratio of the luminance value change with respect to the temperature change is determined by the specifications of the far-infrared camera, and this is represented by the parameter SiTF. Thus, in correspondence with the upper limit value F (i) max and the lower limit value F (i) min of the surface temperature difference F (i), the upper limit value dTmax and the lower limit value dTmin of the luminance difference are expressed by the following equation (1). Are calculated respectively.
dTmax = SiTF × F (i) max
dTmin = SiTF × F (i) min (1)
ステップS18において、2値化処理のための閾値を算出する。ここで図5を参照すると、ステップS13で取得されたグレースケール画像の輝度値ヒストグラムの一例が示されている。前述したように、ステップS15において、最も度数の高い輝度値(ピーク輝度値)が背景の輝度値Tbに設定されている。背景の輝度値Tbは、外気温iに対応すると考えることができる。したがって、以下の式(2)に示すように、外気温iに対して表面温度差の上限値F(i)maxを持つ表面温度の輝度値Tcmaxは、背景の輝度値Tbに対し、輝度差の上限値dTmaxを持つ。同様に、外気温iに対して表面温度差の上限値F(i)minを持つ表面温度の輝度値Tcminは、背景の輝度値Tbに対し、輝度差の下限値dTminを持つ。
Tcmax=Tb+dTmax
Tcmin=Tb+dTmin (2)
In step S18, a threshold for binarization processing is calculated. Referring now to FIG. 5, an example of the brightness value histogram of the grayscale image acquired in step S13 is shown. As described above, in step S15, the highest luminance value (peak luminance value) is set as the background luminance value Tb. It can be considered that the background luminance value Tb corresponds to the outside air temperature i. Therefore, as shown in the following formula (2), the luminance value Tcmax of the surface temperature having the upper limit value F (i) max of the surface temperature difference with respect to the outside air temperature i is different from the luminance value Tb of the background. Has an upper limit dTmax. Similarly, the brightness value Tcmin of the surface temperature having the upper limit value F (i) min of the surface temperature difference with respect to the outside air temperature i has the lower limit value dTmin of the brightness difference with respect to the background brightness value Tb.
Tcmax = Tb + dTmax
Tcmin = Tb + dTmin (2)
上限の輝度値Tcmaxおよび下限の輝度値Tcminは、2値化処理の閾値に設定される。これら2つの閾値によって画定される領域111が図5に示されており、該領域111が、抽出すべき対象物の輝度領域である。
The upper limit luminance value Tcmax and the lower limit luminance value Tcmin are set as threshold values for the binarization process. An
ステップS19において、ステップS18において設定された閾値を用いて、ステップS13で取得されたグレースケール画像(この実施例では、カメラ1Rで得られた撮像画像を用いるが、カメラ1Lで得られた撮像画像でもよい)に対し、2値化処理を行う。撮像画像の各画素について、該画素の輝度値が輝度領域111内にあるときには、抽出すべき対象物であると判定されて、該画素を値1の白領域とし、該画素の輝度値が輝度領域111外にあるときには、背景であると判定されて、該画素を値ゼロの黒領域とする。
In step S19, using the threshold value set in step S18, the grayscale image acquired in step S13 (in this embodiment, the captured image obtained by the
ここで、図6を参照すると、画像を模式的に表した図が示されている。(a)はグレースケール画像(撮像画像)を示し、図では、ハッチングの種類の違いによって階調の違いを表している。(b)は、従来の手法によって2値化された画像を示し、(c)は、上記ステップS14〜S19の手法によって2値化された画像を示す。図では、黒領域は、ハッチングされた領域で表している。 Here, referring to FIG. 6, a diagram schematically showing an image is shown. (A) shows a grayscale image (captured image), and in the figure, the difference in gradation is represented by the difference in the type of hatching. (B) shows the image binarized by the conventional method, and (c) shows the image binarized by the method of steps S14 to S19. In the figure, the black area is represented by a hatched area.
グレースケール画像には、歩行者121の他に、電柱125や自動車127のような人工構造物が撮像されている。従来は、2値化に用いる閾値に依存して、(b)に示すように、これら人工構造物125,127も、歩行者と同様の対象物として、すなわち白領域として抽出されることがあった。
In addition to the
それに対し、本願発明の上記手法によれば、外気温に対する対象物(この実施例では、歩行者)の表面温度が推定されて、該推定された表面温度の外気温に対する温度差に基づいて、対象物の輝度領域を設定するので、(c)の白領域131に示すように、歩行者121の頭部部分のみを抽出することができる(この領域を、以下、頭部領域と呼ぶ)。(a)に示されるように人工構造物125と歩行者121とが重なって撮像されていても、(c)の白領域131に示されるように歩行者121のみを容易に抽出することができる。このように、本願発明によれば、対象物を、該対象物以外の背景部分からより良好に分離して抽出することができる。
On the other hand, according to the above technique of the present invention, the surface temperature of the object (in this embodiment, a pedestrian) with respect to the outside air temperature is estimated, and based on the temperature difference between the estimated surface temperature and the outside air temperature, Since the luminance area of the object is set, only the head portion of the
図3に戻り、ステップS20において、抽出された頭部領域に基づいて、撮像画像における歩行者全身の大きさを推定する。推定は、任意の手法で実現されることができ、ここでは、その一例を具体的に説明する。 Returning to FIG. 3, in step S20, the size of the pedestrian whole body in the captured image is estimated based on the extracted head region. The estimation can be realized by an arbitrary method, and an example thereof will be specifically described here.
図7を参照すると、(a)には、2値画像において抽出された頭部領域が黒の領域で表されており、その幅がw(画素数により表される)により示されている。幅wは、たとえば頭部領域に外接する四角形を設定し、その幅を求めることにより算出されることができる。歩行者の頭部以外の部分は点線で示されているが、これはまだ抽出されていない部分である。ステップS20では、歩行者の撮像画像における高さh(画素数により表される)を推定することを目的とする。 Referring to FIG. 7, in (a), the head region extracted from the binary image is represented by a black region, and the width thereof is represented by w (represented by the number of pixels). The width w can be calculated, for example, by setting a rectangle circumscribing the head region and obtaining the width. Parts other than the pedestrian's head are shown by dotted lines, but this is the part that has not yet been extracted. In step S20, an object is to estimate the height h (expressed by the number of pixels) in the captured image of the pedestrian.
この推定のため、(b)に示すように、実空間における歩行者の一般的なサイズ、すなわち頭部の幅Waおよび身長Haが予め設定される。WaおよびHaには、たとえば、成人の平均値に基づく値を設定することができる(たとえば、Waは20(cm)、Haは、160〜170(cm)内の値)。 For this estimation, as shown in (b), a general size of a pedestrian in real space, that is, a head width Wa and a height Ha are set in advance. For example, a value based on the average value of adults can be set in Wa and Ha (for example, Wa is 20 (cm) and Ha is a value within 160 to 170 (cm)).
また、(c)は、カメラ1Rと対象物との配置の関係をXZ平面上に表した図であり、(d)は、カメラ1Rと対象物との配置の関係をYZ平面上に表した図である。ここで、Xは、車両10の車幅方向を示し、Yは、車両10の車高方向を示し、Zは、車両10から対象物への距離方向を示す。カメラ1Rは、撮像素子11Rおよびレンズ12Rを備えている。fは、レンズ12Rの焦点距離を示す。
Further, (c) is a diagram showing the arrangement relationship between the
(c)の図により、対象物までの距離をZ(cm)とすると、距離Zは、以下の式(3)のように算出される。ここで、pcwは、X方向の画素間隔すなわち1画素あたりの長さ(cm)を示す。
Z=Wa×f/(w×pcw) (3)
In the figure of (c), when the distance to the object is Z (cm), the distance Z is calculated as the following formula (3). Here, pcw indicates a pixel interval in the X direction, that is, a length (cm) per pixel.
Z = Wa * f / (w * pcw) (3)
(d)の図により、距離Zを用いて、歩行者の撮像画像における高さh(cm)を、以下の式(4)のように算出することができる。ここで、pchは、Y方向の画素間隔すなわち1画素あたりの長さ(cm)を示す。
h=(Ha/pch)×f/Z (4)
From the diagram of (d), using the distance Z, the height h (cm) in the captured image of the pedestrian can be calculated as in the following equation (4). Here, pch represents a pixel interval in the Y direction, that is, a length (cm) per pixel.
h = (Ha / pch) × f / Z (4)
こうして、撮像画像における歩行者の大きさは、幅wおよび高さhを持つと推定することができる。なお、頭部の幅よりも胴体の幅の方が一般的に広いことを考慮して、代替的に、頭部領域の幅wに所定の余裕値を加えた値を、上記の幅wの代わりに用いてもよい。 Thus, the size of the pedestrian in the captured image can be estimated to have the width w and the height h. In consideration of the fact that the width of the body is generally wider than the width of the head, alternatively, a value obtained by adding a predetermined margin value to the width w of the head region is set to the width w described above. It may be used instead.
図3に戻り、ステップS21において、ステップS20で推定された歩行者の大きさに従って、撮像画像(グレースケール画像でもよいし、2値画像でもよい)上に対象物領域を設定する。ここで図8(a)を参照すると、前述したように抽出された頭部領域131が示されている。太枠で示すように、該頭部領域131の幅wを持ち、頭部領域131の頂点(図では、y座標値がyu)から高さhの対象物領域141が設定される。こうして、撮像画像における対象物の位置が特定される。
Returning to FIG. 3, in step S <b> 21, an object region is set on the captured image (may be a grayscale image or a binary image) according to the size of the pedestrian estimated in step S <b> 20. Here, referring to FIG. 8A, the
図3に戻り、この実施例では、ステップS22を実行して、設定された対象物領域141に対して対象物判定処理を実行し、該対象物領域141内に撮像されている対象物が歩行者かどうかを判定する。たとえば、周知の形状マッチング手法を用いた任意の適切な対象物判定手法により、歩行者を判定することができる(たとえば、特開2007−264778号公報)。この処理は、グレースケール画像を用いて行われる。図8(b)には、こうして形状判定された歩行者151が示されている。
Returning to FIG. 3, in this embodiment, step S <b> 22 is executed to execute the object determination process for the
ステップS22において対象物が歩行者と判定されたならば、ステップS23に進んで警報判定処理を行う。この処理では、運転者に対し、警報を実際に出力するかどうかを判定し、この判定結果が肯定であれば、警報を出力する。 If it is determined in step S22 that the object is a pedestrian, the process proceeds to step S23 to perform an alarm determination process. In this process, it is determined whether or not an alarm is actually output to the driver. If the determination result is affirmative, an alarm is output.
たとえば、ブレーキセンサ(図示せず)の出力から、車両の運転者がブレーキ操作を行っているか否かを判別し、ブレーキ操作を行っていなければ、警報出力を行うことができる。警報出力は、スピーカ3を介して音声による警報を発するとともに、HUD4により、例えばカメラ1Rにより得られる画像を画面4aに表示し、歩行者を強調表示する。強調表示は任意の手法でよく、たとえば、色のついた枠で囲んで強調することができる。こうして、車両前方に存在する歩行者を、運転者はより確実に認識することができる。なお、警報および画像表示のいずれか一方を用いて警報出力を行ってもよい。
For example, it is determined from the output of a brake sensor (not shown) whether or not the driver of the vehicle is performing a brake operation. If the brake operation is not performed, an alarm output can be performed. In the alarm output, an audio alarm is issued through the speaker 3, and an image obtained by, for example, the
上記のステップS20の他の手法として、たとえば、頭部領域131の高さ(頭部領域131に外接する四角形の高さを用いることができ、画数で表される)と頭身数とから、撮像画像における歩行者の高さhを算出してもよい。たとえば、頭部領域131の高さがhbであり、成人の平均頭身数が7とすると、歩行者の高さhを、h=7×hbと推定することができる。
As another method of step S20 described above, for example, from the height of the head region 131 (the height of a rectangle circumscribing the
また、ステップS20およびS21のさらなる他の手法として、頭部領域131の下部領域の輝度値から路面を判定し、対象物領域141を特定する手法を採用してもよい。図9を参照してこの手法を簡単に説明すると、(a)はグレースケール画像(図では、頭部領域131以外のものは省略されている)であり、抽出された頭部領域131の下に、所定サイズのマスク161を設定し、該マスクによって覆われた領域内の輝度値の分散(代替的に、分散の平方根である標準偏差を用いてもよい)を算出する。路面は、輝度値がほぼ一様の画像領域として撮像されると考えられるので、分散が所定値より高ければ、該マスクが設定された領域は路面ではないと判定する。その場合、(b)に示すように、マスク161を下方に移動し、再び分散を算出する。この処理を、マスク161を下方に移動しながら繰り返す。マスク161によって覆われる領域が路面のみになると、分散は低い値を示す。(c)に示すように、分散が所定値より低くなったマスク161の位置が求められたならば、該マスク161の位置と、該マスク161の前回の位置(点線で表示)との間の境界(y座標値がyb)を、対象物領域141の底辺と判断することができる。こうして、幅wを持ち、頭部領域の頂部(y座標がyu)から該境界までの高さを持つ対象物領域141が抽出される。
Further, as yet another method of steps S20 and S21, a method of determining the road surface from the luminance value of the lower region of the
上記実施例では、輝度値ヒストグラムにおいて、最も度数の高い輝度値を背景の輝度値Tbに設定し、これを、外気温に対応づけた。代替的に、外気温と路面の温度とを区別して、以下のように背景の輝度値Tbを決定してもよい。すなわち、図2に示すように車両前方に配置したカメラの場合、撮像画像に占める路面の面積が大きいため、通常、最も度数の高い輝度値は、路面温度に対応づけることができる。したがって、路面温度と外気温の関係を予めマップ(図示せず)に規定してこれをメモリに記憶しておく。該関係は、実験やシミュレーション等によって得られることができる。 In the above-described embodiment, the highest luminance value is set as the background luminance value Tb in the luminance value histogram, and this is associated with the outside air temperature. Alternatively, the background brightness value Tb may be determined as follows by distinguishing between the outside air temperature and the road surface temperature. That is, in the case of a camera arranged in front of the vehicle as shown in FIG. 2, since the area of the road surface occupied in the captured image is large, usually the highest luminance value can be associated with the road surface temperature. Therefore, the relationship between the road surface temperature and the outside air temperature is previously defined in a map (not shown) and stored in the memory. This relationship can be obtained by experiment, simulation, or the like.
検出された外気温iに基づいて該マップを参照し、対応する路面の温度Rを求める。路面温度Rと外気温iの温度差を算出する。前述したパラメータSiTFを用いて、該温度差を輝度差dTiに変換する。ここで、図10を参照すると、図5と同様の輝度値ヒストグラムが示されている。最も度数の高い輝度値Trは、路面温度Rに対応づけられている。路面の温度Rは、通常、外気温iより高いため、算出された輝度差dTiの分だけ、路面の輝度値Trから減算して、外気温iに対応する輝度値を算出し、これを、図3のステップS15の背景輝度値Tbとする。なお、外気温iの方が路面温度Rより高い場合には、路面の輝度値Trに対して輝度差dTiを加算し、外気温に対応する輝度値Tiを求めればよい。背景の輝度値Tbに対し、輝度差dTmaxおよびdTminを持つ輝度値TcmaxおよびTcminにより、対象物の輝度領域111が特定される。こうして、外気温と路面温度とを区別することにより、背景の輝度値をより正確に求めることができる。したがって、2値化処理に用いる閾値をより適切に設定することができ、対象物を抽出する精度をより高めることができる。
Based on the detected outside air temperature i, the map is referred to and a corresponding road surface temperature R is obtained. The temperature difference between the road surface temperature R and the outside air temperature i is calculated. Using the parameter SiTF described above, the temperature difference is converted into a luminance difference dTi. Here, referring to FIG. 10, a luminance value histogram similar to FIG. 5 is shown. The luminance value Tr having the highest frequency is associated with the road surface temperature R. Since the road surface temperature R is usually higher than the outside air temperature i, the brightness value Tr corresponding to the outside air temperature i is calculated by subtracting it from the road surface brightness value Tr by the calculated brightness difference dTi. The background luminance value Tb in step S15 in FIG. When the outside air temperature i is higher than the road surface temperature R, the brightness difference Ti may be added to the road surface brightness value Tr to obtain the brightness value Ti corresponding to the outside air temperature. The
好ましくは、路面温度と外気温との間の温度差は、天候の状態(晴れているかどうか、風速、雨量等)や日没からの経過時間等の外部環境パラメータの値によって変動するおそれがあるので、予め設定された外部環境パラメータ値のそれぞれについてマップを作成して記憶し、その日の外部環境パラメータ値に応じたマップを用いるようにしてもよい。 Preferably, the temperature difference between the road surface temperature and the outside air temperature may fluctuate depending on the values of external environmental parameters such as weather conditions (whether it is sunny, wind speed, rainfall, etc.) and the elapsed time since sunset. Therefore, a map may be created and stored for each external environment parameter value set in advance, and a map corresponding to the external environment parameter value for the day may be used.
同様に、図4のマップも、天候の状態等の外部環境パラメータの値ごとに設定してメモリに記憶するようにしてもよい。たとえば、風速が所定値以上の日とそうでない日とでそれぞれマップを作成して記憶し、その日の風速に応じたマップを用いることができる。 Similarly, the map of FIG. 4 may be set for each value of an external environment parameter such as a weather condition and stored in the memory. For example, a map can be created and stored for each day on which the wind speed is greater than or equal to a predetermined value and another day on which the wind speed is not, and a map corresponding to the wind speed on that day can be used.
また、上記実施例では、図4を参照して説明したように、表面温度差F(i)について、余裕範囲Tを規定する上限値F(i)maxと下限値F(i)minを設定した。このような余裕範囲を設定することにより、より確実かつ良好な精度で対象物を抽出することができるように2値化処理の閾値を設定することができる。しかしながら、代替的に、このような余裕範囲Tを設定することなく、表面温度差F(i)に対応する輝度差dTを算出し、これを、背景の輝度値Tbに加算して、対象物の輝度値Tcを算出してもよい。輝度値Tcを閾値として2値化を行うことができる。たとえば、輝度値Tcに一致する輝度値を有する画素は、対象物であると判定して白領域に設定され、輝度値Tcに一致しない輝度値を有する画素は、対象物ではないと判定して黒領域に設定される。また、輝度値Tcを中心とした所定範囲を、対象物の輝度領域に設定してもよい。 In the above embodiment, as described with reference to FIG. 4, the upper limit value F (i) max and the lower limit value F (i) min that define the margin range T are set for the surface temperature difference F (i). did. By setting such a margin range, it is possible to set a threshold value for binarization processing so that an object can be extracted more reliably and with good accuracy. However, instead of setting such a margin range T, a luminance difference dT corresponding to the surface temperature difference F (i) is calculated, and this is added to the background luminance value Tb to obtain the object. The luminance value Tc may be calculated. Binarization can be performed using the luminance value Tc as a threshold. For example, a pixel having a luminance value that matches the luminance value Tc is determined to be an object and set in a white region, and a pixel having a luminance value that does not match the luminance value Tc is determined not to be an object. Set to black area. Further, a predetermined range centered on the luminance value Tc may be set in the luminance region of the target object.
さらに、上記実施例は、2値化処理において抽出すべき対象物が歩行者を例に説明している。代替的に、対象物は、動物等の他の生体でもよい。たとえば、所定の動物について、図3のようなマップを実験やシミュレーション等によって予め作成し、該マップを用いて、前述したような2値化処理の閾値を設定する。動物の場合には、ほぼ全身が外気にさらされていることが多いので、図3のステップS19の2値化処理において、その全身が抽出される。したがって、ステップS20およびS21をスキップし、ステップS22において、ステップS19で抽出された領域に対し、形状判定等を行って、対象物が動物であるかどうかを判定するようにしてもよい。動物と判定されたならば、ステップS23の警報判定が行われる。 Furthermore, the said Example demonstrates the target object which should be extracted in a binarization process to the example of a pedestrian. Alternatively, the object may be another living body such as an animal. For example, for a predetermined animal, a map as shown in FIG. 3 is created in advance by experiments, simulations, or the like, and the threshold for binarization processing as described above is set using the map. In the case of animals, the whole body is often exposed to the outside air. Therefore, the whole body is extracted in the binarization process in step S19 of FIG. Therefore, steps S20 and S21 may be skipped, and in step S22, shape determination or the like may be performed on the region extracted in step S19 to determine whether the object is an animal. If it is determined to be an animal, an alarm determination in step S23 is performed.
また、本願発明は、図3のマップに示されるように、外気温との関係を予め実験やシミュレーション等によって規定することができる表面温度を有する対象物について適用可能であり、よって、対象物は、人間および動物のような生体に必ずしも限定されるものではない。 Further, as shown in the map of FIG. 3, the present invention is applicable to an object having a surface temperature that can preliminarily define a relationship with the outside air temperature through experiments, simulations, and the like. However, it is not necessarily limited to living bodies such as humans and animals.
1R,1L 赤外線カメラ(撮像手段)
2 画像処理ユニット
3 スピーカ
4 ヘッドアップディスプレイ
1R, 1L infrared camera (imaging means)
2 Image processing unit 3
Claims (4)
前記車両の外気温を検出する外気温検出手段と、
前記外気温に基づいて推定された生体のうち外気にさらされている部分の表面温度と前記外気温との温度差を求める温度差算出手段と、
前記温度差から対応する輝度差を求め、前記撮像画像における背景の輝度値に、前記温度差に対応する輝度差を加算することにより、該撮像画像における該生体の輝度値を算出する生体輝度値算出手段と、
前記生体の輝度値を閾値として、前記赤外線カメラによって得られた撮像画像を2値化し、前記生体のうち外気にさらされている部分のみを抽出する対象物抽出手段と、
を備える、車両周辺監視装置。 A vehicle periphery monitoring device that monitors the periphery of a vehicle using a captured image obtained by an infrared camera mounted on the vehicle,
An outside air temperature detecting means for detecting the outside air temperature of the vehicle;
A temperature difference calculating means for obtaining a temperature difference between a surface temperature of a portion of the living body estimated based on the outside air temperature and the outside air temperature, which is exposed to the outside air; and
Obtains the luminance difference corresponding from the temperature difference, the brightness value of the background in the captured image, by adding the luminance difference corresponding to the temperature difference, the biological luminance values to calculate a luminance value of the living body in the captured image A calculation means ;
An object extraction means for binarizing a captured image obtained by the infrared camera using the luminance value of the living body as a threshold, and extracting only a portion of the living body exposed to the outside air ;
A vehicle periphery monitoring device comprising:
前記路面温度と前記外気温との温度差に対応する輝度差に基づいて、該外気温に対応する輝度値を求める外気温対応輝度値算出手段と、を備え、
前記外気温に対応する輝度値を、前記背景の輝度値に設定する、
請求項1に記載の車両周辺監視装置。 Road surface temperature estimating means for estimating a road surface temperature based on the outside air temperature;
An outside air temperature corresponding brightness value calculating means for obtaining a brightness value corresponding to the outside air temperature based on a brightness difference corresponding to a temperature difference between the road surface temperature and the outside air temperature,
A luminance value corresponding to the outside air temperature is set to the luminance value of the background;
The vehicle periphery monitoring apparatus according to claim 1.
請求項2に記載の車両周辺監視装置。 The outside air temperature corresponding brightness value calculating means corrects the brightness value having the highest frequency in the brightness value histogram of the captured image based on the brightness difference corresponding to the temperature difference between the road surface temperature and the outside air temperature. Obtaining a luminance value corresponding to the outside air temperature;
The vehicle periphery monitoring apparatus according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010015136A JP5149918B2 (en) | 2010-01-27 | 2010-01-27 | Vehicle periphery monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010015136A JP5149918B2 (en) | 2010-01-27 | 2010-01-27 | Vehicle periphery monitoring device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008274483A Division JP4482599B2 (en) | 2008-10-24 | 2008-10-24 | Vehicle periphery monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010119132A JP2010119132A (en) | 2010-05-27 |
JP5149918B2 true JP5149918B2 (en) | 2013-02-20 |
Family
ID=42306425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010015136A Expired - Fee Related JP5149918B2 (en) | 2010-01-27 | 2010-01-27 | Vehicle periphery monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5149918B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6042146B2 (en) * | 2012-09-18 | 2016-12-14 | 株式会社東芝 | Object detection apparatus and object detection method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009140A (en) * | 2001-06-26 | 2003-01-10 | Mitsubishi Motors Corp | Pedestrian detector |
JP4162868B2 (en) * | 2001-06-28 | 2008-10-08 | 本田技研工業株式会社 | Object extraction device |
JP3912358B2 (en) * | 2003-10-23 | 2007-05-09 | 日産自動車株式会社 | Threshold setting device and threshold setting method |
JP4734884B2 (en) * | 2004-09-30 | 2011-07-27 | 日産自動車株式会社 | Person detection apparatus and method |
JP4548181B2 (en) * | 2005-03-31 | 2010-09-22 | 日産自動車株式会社 | Obstacle detection device |
JP4793638B2 (en) * | 2006-03-27 | 2011-10-12 | マツダ株式会社 | Pedestrian detection device for vehicles |
-
2010
- 2010-01-27 JP JP2010015136A patent/JP5149918B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010119132A (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4482599B2 (en) | Vehicle periphery monitoring device | |
JP4203512B2 (en) | Vehicle periphery monitoring device | |
JP4173901B2 (en) | Vehicle periphery monitoring device | |
US8810653B2 (en) | Vehicle surroundings monitoring apparatus | |
US10565438B2 (en) | Vehicle periphery monitor device | |
JP5687702B2 (en) | Vehicle periphery monitoring device | |
JP4173902B2 (en) | Vehicle periphery monitoring device | |
JP4528283B2 (en) | Vehicle periphery monitoring device | |
JP5809751B2 (en) | Object recognition device | |
JP5760090B2 (en) | Biological recognition device | |
JPWO2011108218A1 (en) | Vehicle periphery monitoring device | |
JP2014085920A (en) | Vehicle surroundings monitoring device | |
JP5502149B2 (en) | Vehicle periphery monitoring device | |
JP2008077154A (en) | Vehicle periphery supervision unit | |
JP5149918B2 (en) | Vehicle periphery monitoring device | |
JP4765113B2 (en) | Vehicle periphery monitoring device, vehicle, vehicle periphery monitoring program, and vehicle periphery monitoring method | |
JP2011221630A (en) | Vehicle periphery monitoring device | |
JP2010092429A (en) | Vehicle surrounding monitoring device | |
JP4627305B2 (en) | Vehicle periphery monitoring device, vehicle periphery monitoring method, and vehicle periphery monitoring program | |
JP4937243B2 (en) | Vehicle periphery monitoring device | |
JP5383246B2 (en) | Vehicle periphery monitoring device | |
JP7192312B2 (en) | Image processing device | |
JPWO2011155152A1 (en) | Vehicle periphery monitoring device | |
JP5885640B2 (en) | Vehicle periphery monitoring device | |
JP5907849B2 (en) | Vehicle periphery monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5149918 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |