[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5141228B2 - Active filter device and power conversion device - Google Patents

Active filter device and power conversion device Download PDF

Info

Publication number
JP5141228B2
JP5141228B2 JP2007322054A JP2007322054A JP5141228B2 JP 5141228 B2 JP5141228 B2 JP 5141228B2 JP 2007322054 A JP2007322054 A JP 2007322054A JP 2007322054 A JP2007322054 A JP 2007322054A JP 5141228 B2 JP5141228 B2 JP 5141228B2
Authority
JP
Japan
Prior art keywords
power
common mode
line
mode current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007322054A
Other languages
Japanese (ja)
Other versions
JP2009148058A (en
Inventor
伸二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007322054A priority Critical patent/JP5141228B2/en
Publication of JP2009148058A publication Critical patent/JP2009148058A/en
Application granted granted Critical
Publication of JP5141228B2 publication Critical patent/JP5141228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、電力変換機器に設けるフィルタ装置に関し、特に、スイッチングに起因するコモンモード電流及びEMIノイズが交流系統に流れ出る量を低減するための能動フィルタ装置及び能動フィルタ装置を入力側に設けた電力変換装置に関する。   The present invention relates to a filter device provided in power conversion equipment, and in particular, an active filter device for reducing the amount of common mode current and EMI noise caused by switching flowing out to an AC system and power provided with an active filter device on the input side. The present invention relates to a conversion device.

電力用半導体素子の特性向上に伴い、スイッチング周波数の高周波化を実現できるようになってきた。無停電電源装置や通信用電源装置に代表される電力変換装置は、高速応答や低騒音への要求、フィルタの小型化要求などからPWM制御を用いた高周波スイッチング方式が広く用いられる。   With the improvement of characteristics of power semiconductor elements, it has become possible to increase the switching frequency. A power converter represented by an uninterruptible power supply and a communication power supply is widely used a high-frequency switching method using PWM control because of demands for high-speed response, low noise, a request for downsizing a filter, and the like.

スイッチング周波数の高周波化が進むに連れて、直流リンク部やケーブルを介して、大地に流れる高周波漏れ電流が大きくなってきている。この高周波漏れ電流は、交流系統に流れ込みノイズとなって、交流系統に接続された他の装置に対して悪影響を与え社会的な問題となってきている。例えば、無停電電源装置において特に直流側に大容量の蓄電池をフローティングで接続する場合、長くなった直流ケーブルから大きな高周波漏れ電流が大地に流れる傾向にあり、この高周波漏れ電流が交流系統に流れ込む。   As the switching frequency becomes higher, the high-frequency leakage current that flows to the ground via the DC link portion and the cable is increasing. This high-frequency leakage current flows into the AC system and becomes noise, which adversely affects other devices connected to the AC system and has become a social problem. For example, when a large-capacity storage battery is connected in a floating state especially in the uninterruptible power supply, a large high-frequency leakage current tends to flow from the long DC cable to the ground, and this high-frequency leakage current flows into the AC system.

交流系統に流出する高周波漏れ電流を低減する方法として、例えば、特許文献1に記載された能動フィルタ装置が知られている。図11は特許文献1の図17に示す従来のノイズ低減装置及び電力変換装置の構成図である。この電力変換装置は、ノイズフィルタ部51、整流平滑回路部52、電力変換回路部53、漏れ電流検出器54、増幅回路55とを備える。   As a method for reducing the high-frequency leakage current flowing out to the AC system, for example, an active filter device described in Patent Document 1 is known. FIG. 11 is a configuration diagram of the conventional noise reduction device and power conversion device shown in FIG. The power converter includes a noise filter unit 51, a rectifying / smoothing circuit unit 52, a power conversion circuit unit 53, a leakage current detector 54, and an amplifier circuit 55.

ノイズフィルタ部51は、電力変換回路部53のスイッチング素子で発生するスイッチングノイズが交流電源56側に流出するのを低減する。整流平滑回路部52は、4つのダイオードD61〜D64からなるブリッジ整流回路と、コンデンサC64とからなる。電力変換回路部53は、インバータ又はスイッチングレギュレータ等を備え、直流電力を所定の交流電力又は直流電力に変換し、モータ等の負荷R60に供給する。漏れ電流検出器54は、主電源線と検出線をトロイダルコアに貫通させた零相変流器によって構成され、主電源線に流れる漏れ電流を電流の差として検出する。増幅回路55は、漏れ電流検出器54が検出した電流の差を増幅する。   The noise filter unit 51 reduces the switching noise generated by the switching element of the power conversion circuit unit 53 from flowing out to the AC power source 56 side. The rectifying / smoothing circuit unit 52 includes a bridge rectifier circuit including four diodes D61 to D64 and a capacitor C64. The power conversion circuit unit 53 includes an inverter, a switching regulator, or the like, converts DC power into predetermined AC power or DC power, and supplies it to a load R60 such as a motor. Leakage current detector 54 is constituted by a zero-phase current transformer in which a main power supply line and a detection line are passed through a toroidal core, and detects a leakage current flowing through the main power supply line as a current difference. The amplifier circuit 55 amplifies the difference in current detected by the leakage current detector 54.

このような構成によれば、モータ等の負荷R60は、対地間容量を有し、負荷R60から漏れた漏れ電流は、負荷R60の対地間容量(図示せず)を介して接地ラインへと流れる。この漏れ電流は、交流電源56、ノイズフィルタ部51、漏れ電流検出器54、電力変換回路部53を経て負荷R60に戻る。   According to such a configuration, the load R60 such as a motor has a ground-to-ground capacity, and the leakage current leaked from the load R60 flows to the ground line via the ground-to-ground capacity (not shown) of the load R60. . This leakage current returns to the load R60 via the AC power supply 56, the noise filter unit 51, the leakage current detector 54, and the power conversion circuit unit 53.

漏れ電流検出器54は、漏れ電流(以下、コモンモード電流と称する。)を主電源線に流れる電流の差として検出し、増幅回路55は、電流の差を増幅し、コモンモード電流を相殺するための補償電流を、低周波分離コンデンサC65を介して接地ラインに供給する。   The leakage current detector 54 detects a leakage current (hereinafter referred to as a common mode current) as a difference between currents flowing through the main power supply line, and the amplifier circuit 55 amplifies the difference between the currents to cancel the common mode current. Is supplied to the ground line through the low-frequency separation capacitor C65.

しかし、図11に示す電力変換装置では、補償電流に対して、検出される漏れ電流が小さいため、主電源線に流れる電流の差を高い増幅率で増幅しなければならない。負荷R60の対地間容量が大きければ大きい程、コンデンサC65を介して接地ラインに流れるコモンモード電流は大きくなる。   However, in the power conversion device shown in FIG. 11, since the detected leakage current is small with respect to the compensation current, the difference in current flowing through the main power supply line must be amplified with a high amplification factor. The larger the capacitance between the load R60 and the ground, the larger the common mode current flowing through the capacitor C65 to the ground line.

しかし、図11に示すフィードバック方式では、増幅回路55の増幅率を大きくすると、位相補償を正確に行わなければ、発振し易くなり、回路の動作が不安定になるという課題を有していた。   However, the feedback method shown in FIG. 11 has a problem that if the amplification factor of the amplifier circuit 55 is increased, oscillation is likely to occur unless the phase compensation is accurately performed, and the operation of the circuit becomes unstable.

そこで、この課題を解決したものとして、図12に示すものがある。図12は特許文献1の図1に示す従来のノイズ低減装置及び電力変換装置の他の一例の構成図である。この電力変換装置は、ノイズフィルタ部101、整流平滑回路部102、電力変換回路部103、ノイズ低減回路部104を備える。   Therefore, as a solution to this problem, there is one shown in FIG. FIG. 12 is a configuration diagram of another example of the conventional noise reduction device and power conversion device shown in FIG. The power conversion apparatus includes a noise filter unit 101, a rectifying / smoothing circuit unit 102, a power conversion circuit unit 103, and a noise reduction circuit unit 104.

ノイズ低減回路部104は、零相変流器121、増幅回路122、定電圧回路123を備える。零相変流器121は、コアに巻回された主電源線と検出線の巻数比を1:1に設定し、コモンモード電流を検出比1で検出する。検出電流は零相変流器121の検出線に誘起され、増幅回路122は、検出された電流を増幅率1で増幅する。ノイズ低減回路部104は、この電流を補償電流として、コモンモード電流を相殺するためにコモンモード電流とは逆向きに、コンデンサC6を介して接地ラインに供給する。   The noise reduction circuit unit 104 includes a zero-phase current transformer 121, an amplifier circuit 122, and a constant voltage circuit 123. The zero-phase current transformer 121 sets the turns ratio of the main power source wire and the detection wire wound around the core to 1: 1, and detects the common mode current with the detection ratio of 1. The detected current is induced on the detection line of the zero-phase current transformer 121, and the amplifier circuit 122 amplifies the detected current with an amplification factor of 1. The noise reduction circuit unit 104 supplies this current as a compensation current to the ground line via the capacitor C6 in the opposite direction to the common mode current in order to cancel the common mode current.

即ち、コモンモード電流を増幅率が1で検出し、コモンモード電流を増幅率が1で交流系統105に戻すことで、交流系統105に流出するコモンモード電流を低減できる。また、増幅回路122の増幅率が1であるので、発振等は発生しなくなる。さらに、このフィードフォワード方式では、図11と比較して増幅回路122を小型化できる。
特開2003−174777号公報(図1、図17)
That is, by detecting the common mode current with an amplification factor of 1 and returning the common mode current to the AC system 105 with an amplification factor of 1, the common mode current flowing out to the AC system 105 can be reduced. Further, since the amplification factor of the amplifier circuit 122 is 1, oscillation or the like does not occur. Furthermore, in this feedforward method, the amplifier circuit 122 can be downsized as compared with FIG.
JP 2003-174777 A (FIGS. 1 and 17)

しかしながら、コモンモード電流を相殺する方式においては、検出した電流を増幅率1で増幅し、電源線に逆向きの電流を流す。このとき、検出誤差や増幅誤差がある場合には、コモンモード電流をうまく相殺できず、交流電源側にコモンモード電流が流出する。   However, in the method of canceling the common mode current, the detected current is amplified with an amplification factor of 1, and a reverse current is passed through the power supply line. At this time, if there is a detection error or an amplification error, the common mode current cannot be canceled well, and the common mode current flows out to the AC power supply side.

このため、高感度の電流検出器と高速応答の増幅器が必要であった。一般に、電流検出器の感度と測定範囲にはトレードオフの関係があり、増幅器の応答速度と出力容量にもトレードオフの関係がある。このため、それらが両立するためには、装置が大型になるという問題があった。   For this reason, a highly sensitive current detector and a fast response amplifier are required. In general, there is a trade-off relationship between the sensitivity of the current detector and the measurement range, and there is also a trade-off relationship between the response speed of the amplifier and the output capacity. For this reason, in order to make them compatible, there existed a problem that an apparatus became large.

本発明は、発生するノイズを低減し、安価で且つ小型化を図ることができる能動フィルタ装置及び電力変換装置を提供することにある。   An object of the present invention is to provide an active filter device and a power conversion device that can reduce generated noise, are inexpensive, and can be downsized.

前記課題を解決するために、請求項1の発明は、3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段とを有することを特徴とする。   In order to solve the above-mentioned problems, the invention of claim 1 provides a three-phase AC power source having one of the three power source lines as a ground phase, and a predetermined amount of AC power supplied from the three-phase AC power source. An active filter device that is provided between a power conversion device that converts AC power or DC power into a load and supplies the load and has a ground terminal in a housing, and reduces noise caused by a common mode current flowing in the power line. First power detection means for inserting the power supply line and the first detection line, detecting the common mode current with a detection ratio of gain 1 by the first detection line, and outputting a first common mode current detection signal; A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the ground phase power line and ground via a first capacitor; and the power line and second detection A line and an output of the first amplifying means; Second current detection means that is inserted, detects a difference between the common mode current and the output current of the first amplifying means by the second detection line with a detection ratio of gain 1, and outputs a second common mode current detection signal. And a second amplifying means for amplifying the second common mode current detection signal with an amplification factor of 1 and flowing between the power supply line of the ground phase and the ground through a second capacitor. .

請求項2の発明は、3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度N1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度N2で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段とを有することを特徴とする。   The invention of claim 2 converts a three-phase AC power source using one of the three power source lines as a ground phase and AC power supplied from the three-phase AC power source into predetermined AC power or DC power. An active filter device that is provided between a power conversion device that supplies a load and has a ground terminal in a housing and that reduces noise due to a common mode current flowing in the power supply line, wherein the power supply line and the first detection device A first current detection means for detecting the common mode current with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line and outputting a first common mode current detection signal; A first amplifying means for amplifying the first common mode current detection signal with an amplification factor N1 and flowing the power between the ground phase power line and the ground via a first capacitor; the power line and the second detection line And the output of the first amplifying means are inserted. The second detection line detects a difference between the common mode current and the output current of the first amplifying means with a detection ratio of gain 1 / N2 (N2 ≧ 2), and outputs a second common mode current detection signal. And a second amplifying means for amplifying the second common mode current detection signal with an amplification factor N2 and flowing between the ground phase power line and the ground via a second capacitor. It is characterized by having.

請求項3の発明は、3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、前記第1コンデンサの(N1−1)倍のアドミタンスを有し、前記第1増幅手段と略同電位の端子から、前記接地相の電源線又は接地に電流を流す第3コンデンサと、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段と、前記第2コンデンサの(N2−1)倍のアドミタンスを有し、前記第2増幅手段と略同電位の端子から、前記接地相の電源線又は接地に電流を流す第4コンデンサとを有することを特徴とする。   According to a third aspect of the present invention, a three-phase AC power source having one of the three power source lines as a ground phase and AC power supplied from the three-phase AC power source are converted into predetermined AC power or DC power. An active filter device that is provided between a power conversion device that supplies a load and has a ground terminal in a housing and that reduces noise due to a common mode current flowing in the power supply line, wherein the power supply line and the first detection device A first current detection means for detecting the common mode current with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line and outputting a first common mode current detection signal; A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and passing the first common mode current detection signal between the power line of the ground phase and the ground via a first capacitor; 1) have double admittance, A third capacitor for passing a current to the ground-phase power line or ground, a power line, a second detection line, and an output of the first amplifying means are inserted from a terminal having substantially the same potential as the first amplifying means. The second detection line detects a difference between the common mode current and the output current of the first amplifying means with a detection ratio of gain 1 / N2 (N2 ≧ 2), and outputs a second common mode current detection signal. A second current detecting means; a second amplifying means for amplifying the second common mode current detection signal at an amplification factor of 1 and flowing between the ground phase power line and ground through a second capacitor; And a fourth capacitor having an admittance (N2-1) times that of the second capacitor and flowing a current from a terminal having substantially the same potential as that of the second amplifying means to the power line or ground of the ground phase. And

請求項4の発明は、3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段とを有することを特徴とする。   According to a fourth aspect of the present invention, a three-phase AC power source to which three power supply lines are connected and AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to a load, and a housing Is an active filter device that reduces noise due to a common mode current flowing in the power line, and is obtained by dividing the three-phase AC power source with a capacitor. The power line and the first detection line are inserted, and the first detection line detects the common mode current with a detection ratio of gain 1, and outputs a first common mode current detection signal. A first current detecting means; a first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the virtual neutral point and ground via a first capacitor; and the power supply Line, second detection line and said first The output of the amplifying means is inserted, and the second detection line detects the difference between the common mode current and the output current of the first amplifying means with a detection ratio of gain 1, and outputs a second common mode current detection signal. And a second amplifying unit that amplifies the second common mode current detection signal with an amplification factor of 1 and passes the signal between the virtual neutral point and the ground via a second capacitor. It is characterized by that.

請求項5の発明は、3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度N1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度N2で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段とを有することを特徴とする。   The invention according to claim 5 is a three-phase AC power source to which three power supply lines are connected, and AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to a load, and a housing Is an active filter device that reduces noise due to a common mode current flowing in the power line, and is obtained by dividing the three-phase AC power source with a capacitor. A common potential is detected, and the first detection line detects the common mode current with a detection ratio of gain 1 / N1 (N1 ≧ 2). A first current detection means for outputting a mode current detection signal; and a first common mode current detection signal amplified by an amplification factor N1 and passed between the virtual neutral point and ground via a first capacitor. 1 amplifying means and the power line The second detection line and the output of the first amplifying means are inserted, and the difference between the common mode current and the output current of the first amplifying means is gained by a gain of 1 / N2 (N2 ≧ 2). A second current detecting means for detecting a detection ratio and outputting a second common mode current detection signal; and amplifying the second common mode current detection signal with an amplification factor N2 and passing through the second capacitor to the virtual neutral It has the 2nd amplification means to flow between a point and grounding, It is characterized by the above-mentioned.

請求項6の発明は、3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、前記第1コンデンサの(N1−1)倍のアドミタンスを有し、前記第1増幅手段と略同電位の端子から、前記仮想中性点又は接地に電流を流す第3コンデンサと、前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段と、前記第2コンデンサの(N2−1)倍のアドミタンスを有し、前記第2増幅手段と略同電位の端子から、前記仮想中性点又は接地に電流を流す第4コンデンサとを有することを特徴とする。   The invention of claim 6 converts a three-phase AC power source to which three power supply lines are connected and an AC power supplied from the three-phase AC power source into a predetermined AC power or DC power and supplies it to a load, and a housing. Is an active filter device that reduces noise due to a common mode current flowing in the power line, and is obtained by dividing the three-phase AC power source with a capacitor. A common potential is detected, and the first detection line detects the common mode current with a detection ratio of gain 1 / N1 (N1 ≧ 2). A first current detecting means for outputting a mode current detection signal; and a first common mode current detection signal amplified by an amplification factor of 1 and passed between the virtual neutral point and ground via a first capacitor. 1 amplifying means and the first controller A third capacitor having an admittance (N1-1) times that of the sensor and flowing a current from the terminal having substantially the same potential as the first amplifying means to the virtual neutral point or ground, the power supply line, and the second detection Line and the output of the first amplifying means are inserted, and the difference between the common mode current and the output current of the first amplifying means is detected by a detection ratio of gain 1 / N2 (N2 ≧ 2) by the second detection line. A second current detecting means for detecting and outputting a second common mode current detection signal; and amplifying the second common mode current detection signal at an amplification factor of 1 and grounding the virtual neutral point via a second capacitor A second amplifying means flowing between the second amplifying means and an admittance (N2-1) times that of the second capacitor, and a current from a terminal having substantially the same potential as the second amplifying means to the virtual neutral point or ground. And a fourth capacitor.

請求項7の発明は、請求項1乃至請求項6のいずれか1項記載の能動フィルタ装置において、前記第1電流検出手段及び前記第2電流検出手段よりも前記三相交流電源側で交流電源電圧を入力し、整流平滑して所定の直流電圧を生成し、前記第1増幅手段及び前記第2増幅手段に供給する直流電源を備えることを特徴とする。   According to a seventh aspect of the present invention, in the active filter device according to any one of the first to sixth aspects, an AC power source is closer to the three-phase AC power source than the first current detecting means and the second current detecting means. A DC power supply is provided, which receives voltage, rectifies and smoothes to generate a predetermined DC voltage, and supplies the DC voltage to the first amplifying unit and the second amplifying unit.

請求項8の発明は、請求項7記載の能動フィルタ装置において、前記直流電源の負極又は正極が前記接地相の電源線又は前記仮想中性点に接続されることを特徴とする。   According to an eighth aspect of the present invention, in the active filter device according to the seventh aspect, a negative electrode or a positive electrode of the DC power supply is connected to the power line of the ground phase or the virtual neutral point.

請求項9の発明は、三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給する電力変換装置において、請求項1乃至請求項8のいずれか1項に記載の能動フィルタ装置を入力側に設けたことを特徴とする。   The invention according to claim 9 is the power converter according to any one of claims 1 to 8, wherein the AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to the load. The active filter device described in 1 is provided on the input side.

本発明によれば、第1電流検出手段がコモンモード電流をゲイン1の検出比で検出し、第1増幅手段は、検出された第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して接地相の電源線と接地との間に流すことで、コモンモード電流をほぼ相殺する。第2電流検出手段は、第1電流検出手段で相殺することができなかった残留コモンモード電流を検出し、第2増幅手段は、検出された第2コモンモード電流検出信号を増幅度1で増幅し、第2コンデンサを介して接地相の電源線と接地との間に流すことで、残留コモンモード電流を相殺する。   According to the present invention, the first current detecting means detects the common mode current with a detection ratio of gain 1, and the first amplifying means amplifies the detected first common mode current detection signal with an amplification factor of 1, The common mode current is almost canceled by flowing between the ground phase power line and the ground via the first capacitor. The second current detection means detects a residual common mode current that could not be canceled by the first current detection means, and the second amplification means amplifies the detected second common mode current detection signal with an amplification factor of 1. The residual common mode current is canceled by flowing between the ground phase power line and the ground via the second capacitor.

即ち、第1増幅手段でコモンモード電流を大まかに除去し、第2増幅手段を用いて、第1増幅手段で除去できなかったコモンモード電流を除去する。交流電源(交流系統)に流出するコモンモード電流は、第2フィルタの感度で決定される。このため、第1フィルタに高感度の電流検出器及び高速応答の増幅器を必要とせず、検出感度の広い電流検出器及び大容量の増幅器を使用できる。第2フィルタは、第1フィルタを通過したコモンモード電流を除去するため、検出範囲の広い電流検出器及び大容量の増幅器を必要としない。   That is, the common mode current is roughly removed by the first amplifying means, and the common mode current that could not be removed by the first amplifying means is removed by using the second amplifying means. The common mode current flowing out to the AC power supply (AC system) is determined by the sensitivity of the second filter. Therefore, a high-sensitivity current detector and a high-speed response amplifier are not required for the first filter, and a current detector with a wide detection sensitivity and a large-capacity amplifier can be used. Since the second filter removes the common mode current that has passed through the first filter, a current detector with a wide detection range and a large-capacity amplifier are not required.

また、それぞれの電流検出器に対して両立が難しい検出精度と検出範囲を必要とせず、それぞれの増幅器に対して両立が難しい大容量と高速応答を必要としない。このため、発生するノイズを低減し、装置を安価で且つ小型化を図ることができる。   Further, the detection accuracy and the detection range that are difficult to be compatible with each current detector are not required, and the large capacity and the high-speed response that are difficult to be compatible with each amplifier are not required. For this reason, the noise which generate | occur | produces can be reduced and an apparatus can be achieved at low cost and size reduction.

以下、本発明の能動フィルタ装置及び電力変換装置の実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of an active filter device and a power conversion device of the present invention will be described in detail with reference to the drawings.

図1は実施例1の能動フィルタ装置及び電力変換装置の構成図である。図1において、三相交流電源1と、電力変換装置3と、負荷5と、三相交流電源1及び電力変換装置3間に設けられた能動フィルタ装置7が備えられている。   FIG. 1 is a configuration diagram of an active filter device and a power conversion device according to the first embodiment. In FIG. 1, a three-phase AC power source 1, a power conversion device 3, a load 5, and an active filter device 7 provided between the three-phase AC power source 1 and the power conversion device 3 are provided.

三相交流電源1には、R相用の電源線1aとS相用の電源線1bとT相用の電源線1cとが接続され、S相用の電源線1bは接地相の電源線であり、接地されている。電力変換装置3の筐体(フレーム)3aは、接地端子Eに接続されて接地されている。電力変換装置3と筐体3aとの間には、構造上いたるところに対地間容量を有するが、これ等をまとめて、電力変換装置3のコンデンサC0の負極と接地端子Eとの間の対地間容量4で示すことにする。   The three-phase AC power supply 1 is connected to an R-phase power supply line 1a, an S-phase power supply line 1b, and a T-phase power supply line 1c. The S-phase power supply line 1b is a ground-phase power supply line. Yes, grounded. A casing (frame) 3a of the power conversion device 3 is connected to the ground terminal E and grounded. Between the power conversion device 3 and the housing 3a, there are ground-to-ground capacities everywhere in the structure, but these are collectively put together and the ground between the negative electrode of the capacitor C0 of the power conversion device 3 and the ground terminal E This is indicated by an interspace 4.

R相用,S相用,T相用電源線1a〜1cは、能動フィルタ装置7の端子R1,S1,T1のそれぞれに接続されている。能動フィルタ装置7は、電流トランス10(第1電流検出手段)と、電流トランス20(第2電流検出手段)と、NPNからなるトランジスタ11aとPNPからなるトランジスタ11bからなる増幅器11(第1増幅手段)と、NPNからなるトランジスタ21aとPNPからなるトランジスタ21bからなる増幅器21(第2増幅手段)と、低周波分離コンデンサ12a(第1コンデンサ)と、低周波分離コンデンサ22a(第2コンデンサ)と、直流電源30(増幅器11,12の動作電源)とを有している。   The R-phase, S-phase, and T-phase power lines 1a to 1c are connected to the terminals R1, S1, and T1 of the active filter device 7, respectively. The active filter device 7 includes a current transformer 10 (first current detecting means), a current transformer 20 (second current detecting means), and an amplifier 11 (first amplifying means) comprising a transistor 11a made of NPN and a transistor 11b made of PNP. ), An amplifier 21 (second amplification means) composed of a transistor 21a made of NPN and a transistor 21b made of PNP, a low frequency separation capacitor 12a (first capacitor), and a low frequency separation capacitor 22a (second capacitor), DC power supply 30 (operating power supply for amplifiers 11 and 12).

電流トランス10は、トロイダルコアに主電源線であるR相用,S相用,T相用電源線1a〜1c及び検出線10aがそれぞれ1T(ターン)巻回されている。電流トランス20は、トロイダルコアに主電源線であるR相用,S相用,T相用電源線1a〜1c、検出線20a及び増幅器11の出力線11eがそれぞれ1T(ターン)巻回されている。直流電源30の負極は、接地相の電源線1bに接続されている。   In the current transformer 10, R-phase, S-phase, T-phase power lines 1 a to 1 c and a detection line 10 a which are main power lines are wound around the toroidal core by 1T (turn). In the current transformer 20, the R-phase, S-phase, and T-phase power lines 1a to 1c, the detection line 20a, and the output line 11e of the amplifier 11 are wound around the toroidal core by 1T (turn). Yes. The negative electrode of the DC power supply 30 is connected to the ground phase power supply line 1b.

トランジスタ11aのコレクタは、直流電源30の正極に接続され、トランジスタ11aのベースは、トランジスタ11bのベースと検出線10aの一端と低周波分離コンデンサ12aの一端に接続され、低周波分離コンデンサ12aの他端は、電流トランス20を介して接地端子Eに接続されている。   The collector of the transistor 11a is connected to the positive electrode of the DC power supply 30, and the base of the transistor 11a is connected to the base of the transistor 11b, one end of the detection line 10a, and one end of the low frequency separation capacitor 12a. The end is connected to the ground terminal E through the current transformer 20.

トランジスタ11aのエミッタは、トランジスタ11bのエミッタと検出線10aの他端とに接続されている。トランジスタ11bのコレクタは、直流電源30の負極に接続されている。   The emitter of the transistor 11a is connected to the emitter of the transistor 11b and the other end of the detection line 10a. The collector of the transistor 11 b is connected to the negative electrode of the DC power supply 30.

トランジスタ21aのコレクタは、直流電源30の正極に接続され、トランジスタ21aのベースは、トランジスタ21bのベースと検出線20aの一端と低周波分離コンデンサ22aの一端に接続され、低周波分離コンデンサ22aの他端は、接地端子Eに接続されている。   The collector of the transistor 21a is connected to the positive electrode of the DC power supply 30, and the base of the transistor 21a is connected to the base of the transistor 21b, one end of the detection line 20a, and one end of the low frequency separation capacitor 22a. The end is connected to the ground terminal E.

トランジスタ21aのエミッタは、トランジスタ21bのエミッタと検出線20aの他端とに接続されている。トランジスタ21bのコレクタは、直流電源30の負極に接続されている。   The emitter of the transistor 21a is connected to the emitter of the transistor 21b and the other end of the detection line 20a. The collector of the transistor 21 b is connected to the negative electrode of the DC power supply 30.

また、電流トランス10,20を挿通した電源線1a,1b,1cには、それぞれ対応してチョークコイルL1,L2,L3が直列に接続されている。電力変換装置3は、チョークコイルL1,L2,L3と、6個のダイオードD1〜D6と、6個のIGBTからなるスイッチング素子Q1〜Q6と、コンデンサC0とを有する。スイッチング素子Q1とスイッチング素子Q2との直列回路の両端と、スイッチング素子Q3とスイッチング素子Q4との直列回路の両端と、スイッチング素子Q5とスイッチング素子Q6との直列回路の両端とは、コンデンサC0の両端及び負荷5の両端に接続されている。   In addition, choke coils L1, L2, and L3 are connected in series to the power supply lines 1a, 1b, and 1c inserted through the current transformers 10 and 20, respectively. The power conversion device 3 includes choke coils L1, L2, and L3, six diodes D1 to D6, switching elements Q1 to Q6 including six IGBTs, and a capacitor C0. Both ends of the series circuit of switching element Q1 and switching element Q2, both ends of the series circuit of switching element Q3 and switching element Q4, and both ends of the series circuit of switching element Q5 and switching element Q6 are both ends of capacitor C0. And connected to both ends of the load 5.

スイッチング素子Q1〜Q6のコレクタ−エミッタ間には、それぞれ対応してダイオードD1〜D6が接続されている。ダイオードD1とダイオードD2との接続点にはチョークコイルL1が接続され、ダイオードD3とダイオードD4との接続点にはチョークコイルL2が接続され、ダイオードD5とダイオードD6との接続点にはチョークコイルL3が接続されている。スイッチング素子Q1〜Q6の各々のゲート端子は、図示しない制御回路に接続され、この制御回路によりスイッチング素子Q1〜Q6のオン/オフが制御され、電力変換装置3は、三相交流電源1から供給された交流電力を所定の直流電力に変換して負荷5に供給するコンバータ(交流直流変換装置)として動作する。   Corresponding diodes D1 to D6 are connected between the collectors and emitters of the switching elements Q1 to Q6, respectively. A choke coil L1 is connected to a connection point between the diode D1 and the diode D2, a choke coil L2 is connected to a connection point between the diode D3 and the diode D4, and a choke coil L3 is connected to a connection point between the diode D5 and the diode D6. Is connected. The gate terminals of the switching elements Q1 to Q6 are connected to a control circuit (not shown). The control circuit controls on / off of the switching elements Q1 to Q6, and the power conversion device 3 is supplied from the three-phase AC power source 1. It operates as a converter (AC / DC converter) that converts the supplied AC power into predetermined DC power and supplies it to the load 5.

なお、電力変換装置3としては、三相交流電源1から供給された交流電力を所定の交流電力に変換して負荷5に供給するインバータ(交流交流変換装置)を用いても良い。   Note that an inverter (AC / AC converter) that converts AC power supplied from the three-phase AC power source 1 into predetermined AC power and supplies the AC power to the load 5 may be used as the power converter 3.

図2は実施例1の能動フィルタ装置に設けられる増幅器の変形例を示す構成図である。図2において、トランジスタ11aのコレクタとベースとの間に抵抗13aが接続され、トランジスタ11bのコレクタとベースとの間に抵抗13bが接続されている。トランジスタ11aのベースとトランジスタ11bのベースとの間にはコンデンサ14aとコンデンサ14bとの直列回路が接続されている。コンデンサ14aには並列にダイオード15aが接続され、コンデンサ14bには並列にダイオード15bが接続されている。なお、ダイオード15a,15bは、トランジスタ11a,11bの寄生ダイオードであっても良い。   FIG. 2 is a configuration diagram illustrating a modification of the amplifier provided in the active filter device according to the first embodiment. In FIG. 2, a resistor 13a is connected between the collector and base of the transistor 11a, and a resistor 13b is connected between the collector and base of the transistor 11b. A series circuit of a capacitor 14a and a capacitor 14b is connected between the base of the transistor 11a and the base of the transistor 11b. A diode 15a is connected in parallel to the capacitor 14a, and a diode 15b is connected in parallel to the capacitor 14b. The diodes 15a and 15b may be parasitic diodes of the transistors 11a and 11b.

このような構成によれば、コンデンサ14a,14bは抵抗13a,13bにより充電され、充電された電圧は、ダイオード15a,15bの順方向電圧となる。   According to such a configuration, the capacitors 14a and 14b are charged by the resistors 13a and 13b, and the charged voltage becomes the forward voltage of the diodes 15a and 15b.

コンデンサ14a,14bによりトランジスタ11a,11bのベース電位を上乗せすることにより、増幅器11の不感帯を低減し、入力がゼロ付近の増幅器11の線形性を改善できる。なお、増幅器21も増幅器11の変形例と同様に構成できる。   By adding the base potential of the transistors 11a and 11b by the capacitors 14a and 14b, the dead zone of the amplifier 11 can be reduced, and the linearity of the amplifier 11 whose input is near zero can be improved. The amplifier 21 can be configured in the same manner as the modification of the amplifier 11.

次に、図1を参照しながら実施例1の能動フィルタ装置の動作を説明する。電流トランス10は、電力変換装置3から発生するコモンモード電流を検出し、コモンモード電流検出信号i10aを出力する。   Next, the operation of the active filter device according to the first embodiment will be described with reference to FIG. The current transformer 10 detects a common mode current generated from the power converter 3, and outputs a common mode current detection signal i10a.

増幅器11は、1Tの検出線10aで検出したコモンモード電流検出信号i10aを増幅度1で増幅して、得られた電流i10bを低周波分離コンデンサ12a、電流トランス20を介して接地に流す。   The amplifier 11 amplifies the common mode current detection signal i10a detected by the 1T detection line 10a with an amplification factor of 1, and passes the obtained current i10b to the ground via the low frequency separation capacitor 12a and the current transformer 20.

電流トランス20は、電力変換装置3から発生するコモンモード電流と電流i10bとの差を検出し、コモンモード電流検出信号i20aを出力する。   The current transformer 20 detects the difference between the common mode current generated from the power converter 3 and the current i10b, and outputs a common mode current detection signal i20a.

増幅器21は、1Tの検出線20aで検出したコモンモード電流検出信号i20aを増幅度1で増幅して、得られた電流i20bを低周波分離コンデンサ22aを介して接地に流す。   The amplifier 21 amplifies the common mode current detection signal i20a detected by the 1T detection line 20a with an amplification factor of 1, and passes the obtained current i20b to the ground via the low frequency separation capacitor 22a.

増幅器11,21の電流i10b,i20bは、接地相の電源線1bを介して接地に流れるため、三相交流電源1に流出するコモンモード電流は、電力変換装置3から発生するコモンモード電流から、電流i10bと電流i20bとの合計電流を引いた値になる。   Since the currents i10b and i20b of the amplifiers 11 and 21 flow to the ground via the ground phase power line 1b, the common mode current flowing out to the three-phase AC power source 1 is derived from the common mode current generated from the power converter 3. A value obtained by subtracting the total current of the current i10b and the current i20b.

実施例1において、電力変換装置3から発生するコモンモード電流が電流i10bと等しい場合には、電流トランス20で検出するコモンモード電流はゼロになる。   In the first embodiment, when the common mode current generated from the power converter 3 is equal to the current i10b, the common mode current detected by the current transformer 20 becomes zero.

しかし、実際には、電流トランス10の検出誤差と増幅器11の増幅誤差により除去できないコモンモード電流成分がある。この電流成分を電流トランス20で検出し、増幅器21を介して除去することにより、三相交流電源1に流出するコモンモード電流を大幅に低減できる。   However, in practice, there is a common mode current component that cannot be removed due to the detection error of the current transformer 10 and the amplification error of the amplifier 11. By detecting this current component with the current transformer 20 and removing it through the amplifier 21, the common mode current flowing out to the three-phase AC power source 1 can be greatly reduced.

即ち、増幅器11でコモンモード電流を大まかに除去し、増幅器21を用いて、増幅器11で除去できなかったコモンモード電流を除去する。三相交流電源1に流出するコモンモード電流は、第2フィルタの感度で決定される。このため、第1フィルタ(電力変換装置側の電流トランス10と増幅器11と低周波分離コンデンサ12a)に高感度の電流トランス及び高速応答の増幅器を必要とせず、検出感度の広い電流トランス及び大容量の増幅器を使用できる。第2フィルタ(三相交流電源側の電流トランス20と増幅器21と低周波分離コンデンサ22a)は、第1フィルタを通過したコモンモード電流を除去するため、検出範囲の広い電流トランス及び大容量の増幅器を必要としない。   That is, the common mode current is roughly removed by the amplifier 11, and the common mode current that cannot be removed by the amplifier 11 is removed by using the amplifier 21. The common mode current flowing out to the three-phase AC power source 1 is determined by the sensitivity of the second filter. For this reason, the first filter (current transformer 10 on the power converter side, amplifier 11 and low frequency separation capacitor 12a) does not require a highly sensitive current transformer and a fast response amplifier, and has a wide detection sensitivity and a large capacity. Can be used. The second filter (current transformer 20, amplifier 21 and low frequency separation capacitor 22a on the three-phase AC power supply side) removes the common mode current that has passed through the first filter. Do not need.

また、それぞれの電流トランス10,20に対して両立が難しい検出精度と検出範囲を必要とせず、それぞれの増幅器11,21に対して両立が難しい大容量と高速応答を必要としない。このため、発生するノイズを低減し、装置を安価で且つ小型化を図ることができる。   Further, it is not necessary to have a detection accuracy and a detection range that are difficult to achieve for each of the current transformers 10 and 20, and a large capacity and a high-speed response that are difficult to achieve for each of the amplifiers 11 and 21 are not required. For this reason, the noise which generate | occur | produces can be reduced and an apparatus can be achieved at low cost and size reduction.

なお、実施例1の能動フィルタ装置及び電力変換装置の等価回路図を図3に示す。図3において、電流i10bが流れる電流源CC1は、増幅器11に対応する。電流i20bが流れる電流源CC2は増幅器21に対応する。電流源CC1は、電流トランス20を介して電流源CC2及び接地相の電源線1bに接続されている。なお、電流i10aと電流源CC1の電流i10bとは等しい。また、電流i20aと電流源CC2の電流i20bとは等しい。   FIG. 3 shows an equivalent circuit diagram of the active filter device and the power conversion device according to the first embodiment. In FIG. 3, the current source CC <b> 1 through which the current i <b> 10 b flows corresponds to the amplifier 11. The current source CC2 through which the current i20b flows corresponds to the amplifier 21. The current source CC1 is connected to the current source CC2 and the ground-phase power line 1b via the current transformer 20. The current i10a and the current i10b of the current source CC1 are equal. The current i20a is equal to the current i20b of the current source CC2.

図4は実施例2の能動フィルタ装置及び電力変換装置の構成図である。図4に示す実施例2において、電流トランス30には、検出線30aがN1回(N1≧2、ここでは10T)巻回されている。電流トランス30は、検出線30aによりコモンモード電流をゲイン1/N1の検出比で検出し、第1コモンモード電流検出信号を出力する。   FIG. 4 is a configuration diagram of the active filter device and the power conversion device according to the second embodiment. In the second embodiment shown in FIG. 4, the detection line 30 a is wound N1 times (N1 ≧ 2, here 10T) around the current transformer 30. The current transformer 30 detects the common mode current with the detection ratio of gain 1 / N1 by the detection line 30a, and outputs a first common mode current detection signal.

電流源CC3は、第1コモンモード電流検出信号を増幅度N1(ここでは10)で増幅して、電流トランス40と第1コンデンサ(図示せず)を介して接地相の電源線1bと接地との間に流す。   The current source CC3 amplifies the first common mode current detection signal with an amplification factor N1 (here, 10), and connects the ground phase power line 1b and the ground via the current transformer 40 and the first capacitor (not shown). Run between.

電流源CC3は、電流トランス40を介して電流源CC4及び接地相の電源線1bに接続されている。電流トランス40には、検出線40aがN2回(N2≧2、ここでは10T)巻回されている。電流トランス40は、検出線40aによりコモンモード電流と電流源CC3の出力電流との差をゲイン1/N2の検出比で検出し、第2コモンモード電流検出信号を出力する。   The current source CC3 is connected to the current source CC4 and the ground phase power line 1b via the current transformer 40. A detection line 40a is wound around the current transformer 40 N2 times (N2 ≧ 2, here 10T). The current transformer 40 detects the difference between the common mode current and the output current of the current source CC3 by the detection line 40a with a detection ratio of gain 1 / N2, and outputs a second common mode current detection signal.

電流源CC4は、第2コモンモード電流検出信号を増幅度N2(ここでは10)で増幅して、第2コンデンサ(図示せず)を介して接地相の電源線1bと接地との間に流す。   The current source CC4 amplifies the second common mode current detection signal with an amplification factor N2 (here, 10), and passes the signal between the ground phase power line 1b and the ground via a second capacitor (not shown). .

即ち、電流源CC3でコモンモード電流を大まかに除去し、電流源CC4を用いて、電流源CC3で除去できなかったコモンモード電流を除去する。このため、実施例2においても、実施例1の効果と同様な効果が得られる。   That is, the common mode current is roughly removed by the current source CC3, and the common mode current that cannot be removed by the current source CC3 is removed by using the current source CC4. For this reason, also in Example 2, the effect similar to the effect of Example 1 is acquired.

図5は実施例3の能動フィルタ装置及び電力変換装置の構成図である。図5に示す実施例3は、図1に示す実施例1に対して、以下の点が異なる。   FIG. 5 is a configuration diagram of the active filter device and the power conversion device according to the third embodiment. Example 3 shown in FIG. 5 differs from Example 1 shown in FIG. 1 in the following points.

電流トランス30には、検出線30aがN1回(ここでは10T)巻回されている。電流トランス40には、検出線40aがN2回(ここでは10T)巻回されている。   A detection line 30a is wound around the current transformer 30 N1 times (here, 10T). A detection line 40a is wound N2 times (here, 10T) around the current transformer 40.

トランジスタ11aのエミッタとトランジスタ11bのエミッタとの接続点には低周波分離コンデンサ12bの一端が接続され、低周波分離コンデンサ12bの他端は、低周波分離コンデンサ12aの他端に接続されている。   One end of the low frequency separation capacitor 12b is connected to the connection point between the emitter of the transistor 11a and the emitter of the transistor 11b, and the other end of the low frequency separation capacitor 12b is connected to the other end of the low frequency separation capacitor 12a.

低周波分離コンデンサ12bは、低周波分離コンデンサ12aの(N1−1)倍のアドミタンスを有する(ここでは9倍)。即ち、低周波分離コンデンサ12bは、低周波分離コンデンサ12aの容量の9倍の容量値を持つ。   The low frequency separation capacitor 12b has an admittance (N1-1) times that of the low frequency separation capacitor 12a (9 times here). That is, the low frequency separation capacitor 12b has a capacitance value that is nine times the capacitance of the low frequency separation capacitor 12a.

トランジスタ21aのエミッタとトランジスタ21bのエミッタとの接続点には低周波分離コンデンサ22bの一端が接続され、低周波分離コンデンサ22bの他端は、低周波分離コンデンサ22aの他端に接続されている。   One end of the low frequency separation capacitor 22b is connected to a connection point between the emitter of the transistor 21a and the emitter of the transistor 21b, and the other end of the low frequency separation capacitor 22b is connected to the other end of the low frequency separation capacitor 22a.

低周波分離コンデンサ22bは、低周波分離コンデンサ22aの(N2−1)倍のアドミタンスを有する(ここでは9倍)。即ち、低周波分離コンデンサ22bは、低周波分離コンデンサ22aの容量の9倍の容量値を持つ。   The low frequency separation capacitor 22b has an admittance (N2-1) times that of the low frequency separation capacitor 22a (9 times here). That is, the low frequency separation capacitor 22b has a capacitance value nine times that of the low frequency separation capacitor 22a.

このような構成によれば、電流トランス30において、1Tの電源線1a〜1cにコモンモード電流iが流れると、10Tの検出線30aには、コモンモード電流iの10分の1の電流i30a=i/10が流れる。   According to such a configuration, when the common mode current i flows through the 1T power supply lines 1a to 1c in the current transformer 30, the current i30a = 1/10 of the common mode current i is applied to the 10T detection line 30a. i / 10 flows.

増幅器11は、検出線30aで検出した電流i/10を増幅度1で増幅して、低周波分離コンデンサ12a及び電流トランス40を介して接地に流す。また、増幅器11は、低周波分離コンデンサ12aに流れる電流i/10の9倍の電流9i/10を低周波分離コンデンサ12b及び電流トランス40を介して接地に電流を流す。   The amplifier 11 amplifies the current i / 10 detected by the detection line 30a with an amplification factor of 1 and passes it to the ground via the low frequency separation capacitor 12a and the current transformer 40. In addition, the amplifier 11 causes a current 9i / 10, which is nine times the current i / 10 flowing in the low frequency separation capacitor 12a, to flow to the ground via the low frequency separation capacitor 12b and the current transformer 40.

従って、低周波分離コンデンサ12aに流れる電流i/10と低周波分離コンデンサ12bに流れる電流9i/10との合計電流iが電流トランス40を介して接地に流れる。即ち、接地には、コモンモード電流iと同一値の電流が流れるので、三相交流電源1に流出するコモンモード電流を低減できる。このため、発生するノイズを低減し、安価で且つ小型化を図ることができる。なお、電流トランス40側についても、電流トランス30側と同様に動作し、同様な効果が得られる。   Therefore, the total current i of the current i / 10 flowing through the low frequency separation capacitor 12a and the current 9i / 10 flowing through the low frequency separation capacitor 12b flows to the ground via the current transformer 40. That is, since a current having the same value as the common mode current i flows through the ground, the common mode current flowing out to the three-phase AC power source 1 can be reduced. For this reason, the noise which generate | occur | produces can be reduced, and it can achieve low cost and size reduction. The current transformer 40 side operates in the same manner as the current transformer 30 side, and the same effect can be obtained.

また、実施例3では、実施例1に比較して、電流トランス30,40をより小型化できるとともに、電流検出信号を改善できる。   Further, in the third embodiment, the current transformers 30 and 40 can be further downsized and the current detection signal can be improved as compared with the first embodiment.

図6は実施例4の能動フィルタ装置及び電力変換装置の構成図である。実施例4は、三相交流電源1の交流電圧の正の1/2電圧を半波整流し平滑して得られた直流電圧を増幅器11,21に供給したものである。   FIG. 6 is a configuration diagram of the active filter device and the power conversion device according to the fourth embodiment. In the fourth embodiment, a DC voltage obtained by half-wave rectifying and smoothing a positive half voltage of the AC voltage of the three-phase AC power source 1 is supplied to the amplifiers 11 and 21.

図6において、R相用の電源線1aと接地相の電源線1bとの間には、ダイオードD7とコンデンサC6とダイオードD8とコンデンサC5との直列回路が接続されている。ダイオードD7のカソードとコンデンサC6との接続点にはトランジスタQ7のエミッタが接続され、トランジスタQ7のコレクタはトランジスタ11a,21aのコレクタに接続されている。トランジスタQ7のベースは抵抗13Cを介してダイオードD7のアノードに接続されている。   In FIG. 6, a series circuit of a diode D7, a capacitor C6, a diode D8, and a capacitor C5 is connected between the R-phase power line 1a and the ground-phase power line 1b. The connection point between the cathode of the diode D7 and the capacitor C6 is connected to the emitter of the transistor Q7, and the collector of the transistor Q7 is connected to the collectors of the transistors 11a and 21a. The base of the transistor Q7 is connected to the anode of the diode D7 via the resistor 13C.

コンデンサC6とダイオードD8のアノードとの接続点にはダイオードD9のカソードが接続され、ダイオードD9のアノードは接地相の電源線1bとトランジスタ11b,21bのコレクタに接続されている。ダイオードD8のカソードとコンデンサC5との接続点はトランジスタ11a,21aのコレクタに接続されている。コンデンサC5と並列にコンデンサC4が接続されている。   The cathode of the diode D9 is connected to the connection point between the capacitor C6 and the anode of the diode D8, and the anode of the diode D9 is connected to the ground-phase power line 1b and the collectors of the transistors 11b and 21b. The connection point between the cathode of the diode D8 and the capacitor C5 is connected to the collectors of the transistors 11a and 21a. A capacitor C4 is connected in parallel with the capacitor C5.

このような構成によれば、交流電圧が印加された後、正の電圧の時にはD7→C6→D8→C5の経路で電流が流れ、コンデンサC5、C6が充電される。交流電源電圧が正のピークから減少し始めると、
交流電源電圧<(C5の両端電圧+C6の両端電圧)
となり、ダイオードD7は逆バイアスされトランジスタQ7がオンとなる。この場合、C6→Q7→C5→D9の電流経路が形成される。コンデンサC5の両端電圧には交流電源電圧の正のピーク値の約1/2電圧が常時充電される。コンデンサC5の両端電圧を増幅器11,21の直流電源(動作電源)として利用できる。
According to such a configuration, after an AC voltage is applied, when a positive voltage is applied, a current flows through a path of D7 → C6 → D8 → C5, and the capacitors C5 and C6 are charged. When the AC power supply voltage starts to decrease from the positive peak,
AC power supply voltage <(voltage across C5 + voltage across C6)
The diode D7 is reverse-biased and the transistor Q7 is turned on. In this case, a current path of C6 → Q7 → C5 → D9 is formed. The voltage across the capacitor C5 is always charged with about ½ voltage of the positive peak value of the AC power supply voltage. The voltage across the capacitor C5 can be used as a DC power source (operating power source) for the amplifiers 11 and 21.

実施例4では、交流電圧の正の1/2電圧を半波整流しているが、本発明は、任意の電圧を持つ整流電圧を生成しても良い。   Although the positive half voltage of the alternating voltage is half-wave rectified in the fourth embodiment, the present invention may generate a rectified voltage having an arbitrary voltage.

図7は実施例5の能動フィルタ装置及び電力変換装置の構成図である。図7に示す実施例5は、図5に示す実施例3に対して、トランジスタ11a,11bに対応してトランジスタ11c,11dを設け、トランジスタ21a,21bに対応してトランジスタ21c,21dを設けて、各々の増幅器を2段構成としたことを特徴とする。   FIG. 7 is a configuration diagram of the active filter device and the power conversion device according to the fifth embodiment. The fifth embodiment shown in FIG. 7 is different from the third embodiment shown in FIG. 5 in that transistors 11c and 11d are provided corresponding to the transistors 11a and 11b, and transistors 21c and 21d are provided corresponding to the transistors 21a and 21b. Each amplifier has a two-stage configuration.

トランジスタ11aのコレクタにはトランジスタ11cのコレクタが接続され、トランジスタ11aのエミッタとトランジスタ11bのエミッタとトランジスタ11cのベースとトランジスタ11dのベースとは検出線30aの他端に接続されている。トランジスタ11cのエミッタとトランジスタ11dのエミッタとは低周波分離コンデンサ12bの一端に接続され、低周波分離コンデンサ12bの他端は、低周波分離コンデンサ12aの他端に接続されている。   The collector of the transistor 11a is connected to the collector of the transistor 11c, and the emitter of the transistor 11a, the emitter of the transistor 11b, the base of the transistor 11c, and the base of the transistor 11d are connected to the other end of the detection line 30a. The emitter of the transistor 11c and the emitter of the transistor 11d are connected to one end of the low frequency separation capacitor 12b, and the other end of the low frequency separation capacitor 12b is connected to the other end of the low frequency separation capacitor 12a.

トランジスタ21aのコレクタにはトランジスタ21cのコレクタが接続され、トランジスタ21aのエミッタとトランジスタ21bのエミッタとトランジスタ21cのベースとトランジスタ21dのベースとは検出線40aの他端に接続されている。トランジスタ21cのエミッタとトランジスタ21dのエミッタとは低周波分離コンデンサ22bの一端に接続され、低周波分離コンデンサ22bの他端は、低周波分離コンデンサ22aの他端に接続されている。   The collector of the transistor 21a is connected to the collector of the transistor 21c, and the emitter of the transistor 21a, the emitter of the transistor 21b, the base of the transistor 21c, and the base of the transistor 21d are connected to the other end of the detection line 40a. The emitter of the transistor 21c and the emitter of the transistor 21d are connected to one end of the low frequency separation capacitor 22b, and the other end of the low frequency separation capacitor 22b is connected to the other end of the low frequency separation capacitor 22a.

このような構成によれば、各々の増幅器が2段構成になっているので、トランジスタ11a,11bとトランジスタ21a,21bに対して、増幅率hfeの小さいトランジスタを使用できるとともに、これらの電流容量を小さくすることができる。また、電流容量の小さなトランジスタを使用することにより周波数応答精度を改善できる。   According to such a configuration, since each amplifier has a two-stage configuration, a transistor having a small amplification factor hfe can be used for the transistors 11a and 11b and the transistors 21a and 21b, and the current capacity thereof can be increased. Can be small. Further, the frequency response accuracy can be improved by using a transistor having a small current capacity.

図8は実施例6の能動フィルタ装置及び電力変換装置の構成図である。図8に示す実施例6は、図1に示す実施例1に対して以下の構成が異なる。   FIG. 8 is a configuration diagram of an active filter device and a power conversion device according to the sixth embodiment. The sixth embodiment shown in FIG. 8 differs from the first embodiment shown in FIG. 1 in the following configuration.

電源線1bは接地相に接続されていない。電源線1aとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC1が接続されている。電源線1bとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC2が接続されている。電源線1cとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC3が接続されている。コンデンサC1の容量値とコンデンサC2の容量値とコンデンサC3の容量値とは全て同じである。   The power supply line 1b is not connected to the ground phase. A capacitor C1 is connected between the power supply line 1a and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. A capacitor C2 is connected between the power supply line 1b and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. A capacitor C3 is connected between the power supply line 1c and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. The capacitance value of the capacitor C1, the capacitance value of the capacitor C2, and the capacitance value of the capacitor C3 are all the same.

このような構成によれば、コンデンサC1とコンデンサC2とコンデンサC3とが共通に接続される点(トランジスタ11b,21bのコレクタ及び直流電源30の負極が接続される点)を、仮想中性点とすると、接地相ではなく、コンデンサC1,C2,C3で分圧された仮想中性点に電流を流すことができる。このため、実施例6は、接地相を有しない三相交流電源1、あるいは、接地相が不明な交流系統に対して、効果が大である。   According to such a configuration, the point at which the capacitor C1, the capacitor C2, and the capacitor C3 are connected in common (the point at which the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30 are connected) is defined as the virtual neutral point. As a result, current can flow through the virtual neutral point that is divided by the capacitors C1, C2, and C3 instead of the ground phase. For this reason, Example 6 has a great effect on the three-phase AC power source 1 that does not have a ground phase or an AC system in which the ground phase is unknown.

図9は実施例7の能動フィルタ装置及び電力変換装置の構成図である。図9に示す実施例7は、図5に示す実施例3に対して以下の構成が異なる。   FIG. 9 is a configuration diagram of the active filter device and the power conversion device according to the seventh embodiment. The seventh embodiment shown in FIG. 9 differs from the third embodiment shown in FIG. 5 in the following configuration.

電源線1bは接地相に接続されていない。電源線1aとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC1が接続されている。電源線1bとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC2が接続されている。電源線1cとトランジスタ11b,21bのコレクタ及び直流電源30の負極との間にはコンデンサC3が接続されている。コンデンサC1の容量値とコンデンサC2の容量値とコンデンサC3の容量値とは全て同じである。   The power supply line 1b is not connected to the ground phase. A capacitor C1 is connected between the power supply line 1a and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. A capacitor C2 is connected between the power supply line 1b and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. A capacitor C3 is connected between the power supply line 1c and the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30. The capacitance value of the capacitor C1, the capacitance value of the capacitor C2, and the capacitance value of the capacitor C3 are all the same.

このような構成によれば、コンデンサC1とコンデンサC2とコンデンサC3とが共通に接続される点(トランジスタ11b,21bのコレクタ及び直流電源30の負極が接続される点)を、仮想中性点とすると、接地相ではなく、コンデンサC1,C2,C3で分圧された仮想中性点に電流を流すことができる。このため、実施例7は、接地相を有しない三相交流電源1、あるいは、接地相が不明な交流系統に対して、効果が大である。   According to such a configuration, the point at which the capacitor C1, the capacitor C2, and the capacitor C3 are connected in common (the point at which the collectors of the transistors 11b and 21b and the negative electrode of the DC power supply 30 are connected) is defined as the virtual neutral point. As a result, current can flow through the virtual neutral point that is divided by the capacitors C1, C2, and C3 instead of the ground phase. For this reason, Example 7 has a great effect on the three-phase AC power source 1 having no ground phase or an AC system in which the ground phase is unknown.

また、図7に示す実施例5に対して、図9に示すような、コンデンサC1,C2,C3を設け、コンデンサC1とコンデンサC2とコンデンサC3とが共通に接続される点(トランジスタ11b,11d,21b,21dのコレクタ及び直流電源30の負極が接続される点)を、仮想中性点とし、接地相ではなく、コンデンサC1,C2,C3で分圧された仮想中性点に電流を流しても良い。この場合にも、実施例7の効果と同様な効果が得られる。   7 is provided with capacitors C1, C2, and C3 as shown in FIG. 9, and the capacitors C1, C2, and C3 are connected in common (transistors 11b, 11d). , 21b and 21d and the negative electrode of the DC power source 30 are connected to each other as a virtual neutral point, and a current is passed through the virtual neutral point divided by the capacitors C1, C2, and C3 instead of the ground phase. May be. In this case, the same effect as that of the seventh embodiment can be obtained.

なお、本発明は上述した実施例1乃至7の能動フィルタ装置に限定されるものではない。実施例1乃至7の能動フィルタ装置では、トランジスタ11a,11bのベースと接地相の電源線1bの間に低周波分離コンデンサ12aを接続し、トランジスタ11a,11bのエミッタと接地との間に低周波分離コンデンサ12bを接続したが、例えば、トランジスタ11a,11bのベースと接地との間にコンデンサ12aと抵抗Ra(アドミタンスが1/R)との直列回路を接続し、トランジスタ11a,11bのエミッタと接地との間にコンデンサ12bと抵抗Rb(アドミタンスが(N1−1)/R)との直列回路を接続しても良い。トランジスタ21a,21bについてもトランジスタ11a,11bと同様に構成できる。   In addition, this invention is not limited to the active filter apparatus of the Examples 1 thru | or 7 mentioned above. In the active filter devices of the first to seventh embodiments, a low frequency separation capacitor 12a is connected between the bases of the transistors 11a and 11b and the ground phase power line 1b, and a low frequency is connected between the emitters of the transistors 11a and 11b and the ground. The separation capacitor 12b is connected. For example, a series circuit of a capacitor 12a and a resistor Ra (admittance is 1 / R) is connected between the bases of the transistors 11a and 11b and the ground, and the emitters of the transistors 11a and 11b are grounded. A series circuit of a capacitor 12b and a resistor Rb (admittance is (N1-1) / R) may be connected between the two. The transistors 21a and 21b can be configured similarly to the transistors 11a and 11b.

また、負の1/2電圧半波整流や、1/3電圧半波整流などにより得られた直流電圧を増幅器11,21の動作電源としても良い。   Further, a DC voltage obtained by negative half voltage half-wave rectification or one-third voltage half-wave rectification may be used as an operating power source for the amplifiers 11 and 21.

また、実施例1乃至7では、1つの電流トランス10(又は30)、1つの電流トランス20(又は40)を設けたが、例えば、複数からなる電流トランス10(又は30)、複数からなる電流トランス20(又は40)を設けても良く、この場合には、複数からなる電流トランス10(又は30)に対応して複数からなる増幅器11を設けるとともに、複数からなる電流トランス20(又は40)に対応して複数からなる増幅器21を設ければ良い。   In the first to seventh embodiments, one current transformer 10 (or 30) and one current transformer 20 (or 40) are provided. For example, a plurality of current transformers 10 (or 30) and a plurality of currents are provided. A transformer 20 (or 40) may be provided. In this case, a plurality of amplifiers 11 are provided corresponding to the plurality of current transformers 10 (or 30), and a plurality of current transformers 20 (or 40) are provided. A plurality of amplifiers 21 may be provided corresponding to the above.

また、図1に示す実施例1の能動フィルタ装置に代えて、図10に示すような変形例を用いることもできる。図10において、能動フィルタ装置7´は、電流トランス10´(第1電流検出手段)と、電流トランス20´(第2電流検出手段)と、NPNからなるトランジスタ11aとPNPからなるトランジスタ11bからなる増幅器11(第1増幅手段)と、NPNからなるトランジスタ21aとPNPからなるトランジスタ21bからなる増幅器21(第2増幅手段)と、低周波分離コンデンサ12a(第1コンデンサ)と、低周波分離コンデンサ22a(第2コンデンサ)と、直流電源30(増幅器11,12の動作電源)とを有している。   Moreover, it can replace with the active filter apparatus of Example 1 shown in FIG. 1, and a modification as shown in FIG. 10 can also be used. In FIG. 10, an active filter device 7 'includes a current transformer 10' (first current detection means), a current transformer 20 '(second current detection means), a transistor 11a made of NPN, and a transistor 11b made of PNP. An amplifier 11 (first amplification means), an amplifier 21 (second amplification means) comprising a transistor 21a made of NPN and a transistor 21b made of PNP (second amplification means), a low frequency separation capacitor 12a (first capacitor), and a low frequency separation capacitor 22a (Second capacitor) and a DC power source 30 (operating power source for the amplifiers 11 and 12).

電流トランス10´は、トロイダルコアに主電源線であるR相用,S相用,T相用電源線1a〜1c及び検出線10´aがそれぞれ1T(ターン)巻回されている。電流トランス20´は、トロイダルコアに主電源線であるR相用,S相用,T相用電源線1a〜1c、検出線20´a及び増幅器11の出力線11eがそれぞれ1T(ターン)巻回されている。直流電源30の負極は、接地されている。   In the current transformer 10 ′, R-phase, S-phase, T-phase power lines 1 a to 1 c and a detection line 10 ′, which are main power lines, are wound around the toroidal core by 1T (turn). In the current transformer 20 ′, the main power supply lines for the R-phase, S-phase, and T-phase power supply lines 1a to 1c, the detection line 20′a, and the output line 11e of the amplifier 11 are each wound by 1T (turn). It has been turned. The negative electrode of the DC power supply 30 is grounded.

図10の検出線10´aは、図1の検出線10aの巻回方向と逆であり、図10の検出線20´aは、図1の検出線20aの巻回方向と逆である。   The detection line 10′a in FIG. 10 is opposite to the winding direction of the detection line 10a in FIG. 1, and the detection line 20′a in FIG. 10 is opposite to the winding direction of the detection line 20a in FIG.

トランジスタ11aのコレクタは、直流電源30の正極に接続され、トランジスタ11aのベースは、トランジスタ11bのベースと検出線10´aの一端と低周波分離コンデンサ12aの一端に接続され、低周波分離コンデンサ12aの他端は、電流トランス20´を介して接地相の電源線1bに接続されている。   The collector of the transistor 11a is connected to the positive electrode of the DC power supply 30, and the base of the transistor 11a is connected to the base of the transistor 11b, one end of the detection line 10'a, and one end of the low frequency separation capacitor 12a. Is connected to the ground phase power line 1b via a current transformer 20 '.

トランジスタ11aのエミッタは、トランジスタ11bのエミッタと検出線10´aの他端とに接続されている。トランジスタ11bのコレクタは、直流電源30の負極及び接地端子Eに接続されている。   The emitter of the transistor 11a is connected to the emitter of the transistor 11b and the other end of the detection line 10′a. The collector of the transistor 11 b is connected to the negative electrode of the DC power supply 30 and the ground terminal E.

トランジスタ21aのコレクタは、直流電源30の正極に接続され、トランジスタ21aのベースは、トランジスタ21bのベースと検出線20´aの一端と低周波分離コンデンサ22aの一端に接続され、低周波分離コンデンサ22aの他端は、接地相の電源線1bに接続されている。   The collector of the transistor 21a is connected to the positive electrode of the DC power supply 30, and the base of the transistor 21a is connected to the base of the transistor 21b, one end of the detection line 20′a, and one end of the low frequency separation capacitor 22a. Is connected to the ground phase power line 1b.

トランジスタ21aのエミッタは、トランジスタ21bのエミッタと検出線20´aの他端に接続されている。トランジスタ21bのコレクタは、直流電源30の負極及び接地端子Eに接続されている。   The emitter of the transistor 21a is connected to the emitter of the transistor 21b and the other end of the detection line 20′a. The collector of the transistor 21b is connected to the negative electrode of the DC power supply 30 and the ground terminal E.

このような変形例の構成によれば、実施例1の動作と同様に動作し、同様な効果が得られる。   According to the configuration of such a modification, the operation is the same as that of the first embodiment, and the same effect can be obtained.

本発明は、無停電電源装置や通信用電源装置に代表される電力変換装置に利用可能である。   The present invention can be used for a power converter represented by an uninterruptible power supply and a communication power supply.

実施例1の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 1. 実施例1の能動フィルタ装置に設けられる増幅器の変形例を示す構成図である。FIG. 6 is a configuration diagram illustrating a modification of an amplifier provided in the active filter device according to the first embodiment. 図1の実施例1の能動フィルタ装置及び電力変換装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the active filter device and the power conversion device according to the first embodiment of FIG. 1. 実施例2の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 2. 実施例3の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 3. 実施例4の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 4. 実施例5の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 5. 実施例6の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 6. 実施例7の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of Example 7. 実施例1の変形例の能動フィルタ装置及び電力変換装置の構成図である。It is a block diagram of the active filter apparatus and power converter device of the modification of Example 1. FIG. 従来のノイズ低減装置及び電力変換装置の構成図である。It is a block diagram of the conventional noise reduction apparatus and power converter device. 従来のノイズ低減装置及び電力変換装置の他の一例の構成図である。It is a block diagram of the other example of the conventional noise reduction apparatus and power converter device.

符号の説明Explanation of symbols

1 三相交流電源
1a R相用電源線
1b S相用電源線
1c T相用電源線
3 電力変換装置
4 対地間容量
5 負荷
7,7a〜7e,7´ 能動フィルタ装置
10,10´,20,20´,30,40 電流トランス
10a,10´a,20a,20´a,30a,40a 検出線
11a,11b,11c,11d,21a,21b,21c,21d トランジスタ
12a,22a,12b,22b 低周波分離コンデンサ
C0〜C3 コンデンサ
Q1〜Q6 スイッチング素子
Q7 トランジスタ
D1〜D9 ダイオード
L1〜L3 チョークコイル
30 直流電源
1 Three-phase AC power supply 1a R-phase power supply line 1b S-phase power supply line 1c T-phase power supply line 3 Power converter
4 Ground-to-ground capacity 5 Loads 7, 7a to 7e, 7 'Active filter device 10, 10', 20, 20 ', 30, 40 Current transformer 10a, 10'a, 20a, 20'a, 30a, 40a Detection line 11a , 11b, 11c, 11d, 21a, 21b, 21c, 21d Transistors 12a, 22a, 12b, 22b Low frequency separation capacitors C0 to C3 Capacitors Q1 to Q6 Switching elements Q7 Transistors D1 to D9 Diodes L1 to L3 Choke coil 30 DC power supply

Claims (9)

3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段と、
を有することを特徴とする能動フィルタ装置。
A three-phase AC power supply having one of the three power supply lines as a ground phase, and AC power supplied from the three-phase AC power supply is converted into predetermined AC power or DC power, supplied to a load, and a housing. An active filter device provided between a power conversion device having a ground terminal in a body and reducing noise due to a common mode current flowing in the power line,
First power detection means for inserting the power supply line and the first detection line, detecting the common mode current with a detection ratio of gain 1 by the first detection line, and outputting a first common mode current detection signal;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the ground phase power line and ground via a first capacitor;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is detected by a detection ratio of gain 1 by the second detection line. Second current detection means for detecting and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor of 1 and flowing between the ground phase power line and ground via a second capacitor;
An active filter device comprising:
3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度N1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度N2で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段と、
を有することを特徴とする能動フィルタ装置。
A three-phase AC power supply having one of the three power supply lines as a ground phase, and AC power supplied from the three-phase AC power supply is converted into predetermined AC power or DC power, supplied to a load, and a housing. An active filter device provided between a power conversion device having a ground terminal in a body and reducing noise due to a common mode current flowing in the power line,
The power supply line and the first detection line are inserted, and the common mode current is detected with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line, and a first common mode current detection signal is output. First current detection means;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor N1 and flowing between the ground phase power line and the ground via a first capacitor;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is gained by a gain 1 / N2 (N2) by the second detection line. Second current detection means for detecting at a detection ratio of ≧ 2) and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor N2 and flowing between the ground phase power line and ground via a second capacitor;
An active filter device comprising:
3つの電源線の内の1つの電源線を接地相とする三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記接地相の電源線と接地との間に流す第1増幅手段と、
前記第1コンデンサの(N1−1)倍のアドミタンスを有し、前記第1増幅手段と略同電位の端子から、前記接地相の電源線又は接地に電流を流す第3コンデンサと、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記接地相の電源線と接地との間に流す第2増幅手段と、
前記第2コンデンサの(N2−1)倍のアドミタンスを有し、前記第2増幅手段と略同電位の端子から、前記接地相の電源線又は接地に電流を流す第4コンデンサと、
を有することを特徴とする能動フィルタ装置。
A three-phase AC power supply having one of the three power supply lines as a ground phase, and AC power supplied from the three-phase AC power supply is converted into predetermined AC power or DC power, supplied to a load, and a housing. An active filter device provided between a power conversion device having a ground terminal in a body and reducing noise due to a common mode current flowing in the power line,
The power supply line and the first detection line are inserted, and the common mode current is detected with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line, and a first common mode current detection signal is output. First current detection means;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the ground phase power line and ground via a first capacitor;
A third capacitor having an admittance (N1-1) times that of the first capacitor and flowing a current from a terminal having substantially the same potential as the first amplifying means to the power line or ground of the ground phase;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is gained by a gain 1 / N2 (N2) by the second detection line. Second current detection means for detecting at a detection ratio of ≧ 2) and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor of 1 and flowing between the ground phase power line and ground via a second capacitor;
A fourth capacitor having an admittance (N2-1) times that of the second capacitor and flowing a current from a terminal having substantially the same potential as the second amplifying means to the ground-phase power line or ground;
An active filter device comprising:
3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段と、
を有することを特徴とする能動フィルタ装置。
Three-phase AC power source to which three power lines are connected, and AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to the load, and power conversion having a ground terminal in the housing An active filter device provided between the device and reducing noise due to a common mode current flowing in the power line,
Having a virtual neutral point potential obtained by dividing the three-phase AC power supply with a capacitor;
First power detection means for inserting the power supply line and the first detection line, detecting the common mode current with a detection ratio of gain 1 by the first detection line, and outputting a first common mode current detection signal;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the virtual neutral point and ground via a first capacitor;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is detected by a detection ratio of gain 1 by the second detection line. Second current detection means for detecting and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor of 1 and flowing between the virtual neutral point and ground via a second capacitor;
An active filter device comprising:
3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度N1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度N2で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段と、
を有することを特徴とする能動フィルタ装置。
Three-phase AC power source to which three power lines are connected, and AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to the load, and power conversion having a ground terminal in the housing An active filter device provided between the device and reducing noise due to a common mode current flowing in the power line,
Having a virtual neutral point potential obtained by dividing the three-phase AC power supply with a capacitor;
The power supply line and the first detection line are inserted, and the common mode current is detected with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line, and a first common mode current detection signal is output. First current detection means;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor N1 and flowing between the virtual neutral point and ground via a first capacitor;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is gained by a gain 1 / N2 (N2) by the second detection line. Second current detection means for detecting at a detection ratio of ≧ 2) and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor N2 and flowing between the virtual neutral point and ground via a second capacitor;
An active filter device comprising:
3つの電源線が接続される三相交流電源と前記三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給し且つ筐体に接地端子を有する電力変換装置との間に設けられ、前記電源線に流れるコモンモード電流によるノイズを低減する能動フィルタ装置であって、
前記三相交流電源をコンデンサで分圧して得られる仮想中性点電位を有し、
前記電源線と第1検出線とが挿通され、前記第1検出線により前記コモンモード電流をゲイン1/N1(N1≧2)の検出比で検出し、第1コモンモード電流検出信号を出力する第1電流検出手段と、
前記第1コモンモード電流検出信号を増幅度1で増幅して、第1コンデンサを介して前記仮想中性点と接地との間に流す第1増幅手段と、
前記第1コンデンサの(N1−1)倍のアドミタンスを有し、前記第1増幅手段と略同電位の端子から、前記仮想中性点又は接地に電流を流す第3コンデンサと、
前記電源線と第2検出線と前記第1増幅手段の出力とが挿通され、前記第2検出線により前記コモンモード電流と前記第1増幅手段の出力電流との差をゲイン1/N2(N2≧2)の検出比で検出し、第2コモンモード電流検出信号を出力する第2電流検出手段と、
前記第2コモンモード電流検出信号を増幅度1で増幅して、第2コンデンサを介して前記仮想中性点と接地との間に流す第2増幅手段と、
前記第2コンデンサの(N2−1)倍のアドミタンスを有し、前記第2増幅手段と略同電位の端子から、前記仮想中性点又は接地に電流を流す第4コンデンサと、
を有することを特徴とする能動フィルタ装置。
Three-phase AC power source to which three power lines are connected, and AC power supplied from the three-phase AC power source is converted into predetermined AC power or DC power and supplied to the load, and power conversion having a ground terminal in the housing An active filter device provided between the device and reducing noise due to a common mode current flowing in the power line,
Having a virtual neutral point potential obtained by dividing the three-phase AC power supply with a capacitor;
The power supply line and the first detection line are inserted, and the common mode current is detected with a detection ratio of gain 1 / N1 (N1 ≧ 2) by the first detection line, and a first common mode current detection signal is output. First current detection means;
A first amplifying means for amplifying the first common mode current detection signal with an amplification factor of 1 and flowing between the virtual neutral point and ground via a first capacitor;
A third capacitor having an admittance (N1-1) times that of the first capacitor, and causing a current to flow from the terminal having substantially the same potential as the first amplification means to the virtual neutral point or ground;
The power supply line, the second detection line, and the output of the first amplifying unit are inserted, and the difference between the common mode current and the output current of the first amplifying unit is gained by a gain 1 / N2 (N2) by the second detection line. Second current detection means for detecting at a detection ratio of ≧ 2) and outputting a second common mode current detection signal;
A second amplifying means for amplifying the second common mode current detection signal at an amplification factor of 1 and flowing between the virtual neutral point and ground via a second capacitor;
A fourth capacitor having an admittance (N2-1) times that of the second capacitor, and causing a current to flow from the terminal having substantially the same potential as the second amplification means to the virtual neutral point or ground;
An active filter device comprising:
前記第1電流検出手段及び前記第2電流検出手段よりも前記三相交流電源側で交流電源電圧を入力し、整流平滑して所定の直流電圧を生成し、前記第1増幅手段及び前記第2増幅手段に供給する直流電源を備えることを特徴とする請求項1乃至請求項6のいずれか1項記載の能動フィルタ装置。   An AC power supply voltage is input on the three-phase AC power supply side from the first current detection means and the second current detection means, and rectified and smoothed to generate a predetermined DC voltage. The first amplification means and the second current supply The active filter device according to any one of claims 1 to 6, further comprising a DC power supply for supplying to the amplifying means. 前記直流電源の負極又は正極が前記接地相の電源線又は前記仮想中性点に接続されることを特徴とする請求項7記載の能動フィルタ装置。   8. The active filter device according to claim 7, wherein a negative electrode or a positive electrode of the DC power supply is connected to the power line of the ground phase or the virtual neutral point. 三相交流電源から供給された交流電力を所定の交流電力又は直流電力に変換して負荷に供給する電力変換装置において、請求項1乃至請求項8のいずれか1項に記載の能動フィルタ装置を入力側に設けたことを特徴とする電力変換装置。   9. The power conversion device according to claim 1, wherein AC power supplied from a three-phase AC power source is converted into predetermined AC power or DC power and supplied to a load. A power converter provided on the input side.
JP2007322054A 2007-12-13 2007-12-13 Active filter device and power conversion device Expired - Fee Related JP5141228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322054A JP5141228B2 (en) 2007-12-13 2007-12-13 Active filter device and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322054A JP5141228B2 (en) 2007-12-13 2007-12-13 Active filter device and power conversion device

Publications (2)

Publication Number Publication Date
JP2009148058A JP2009148058A (en) 2009-07-02
JP5141228B2 true JP5141228B2 (en) 2013-02-13

Family

ID=40918039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322054A Expired - Fee Related JP5141228B2 (en) 2007-12-13 2007-12-13 Active filter device and power conversion device

Country Status (1)

Country Link
JP (1) JP5141228B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382539B2 (en) * 2010-04-16 2014-01-08 富士電機株式会社 Common mode transformer
KR102133498B1 (en) * 2020-03-17 2020-07-13 울산과학기술원 Active compensation device for using parallel aplifier
CN113162382B (en) * 2021-04-21 2023-06-06 广州金升阳科技有限公司 Surge current suppression circuit
EP4407858A1 (en) * 2023-01-25 2024-07-31 Siemens Aktiengesellschaft Power converter arrangement

Also Published As

Publication number Publication date
JP2009148058A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5347688B2 (en) Active filter device and power conversion device
US8649193B2 (en) Leakage current reducing apparatus
CN104901521B (en) Noise filter
US11088614B2 (en) Conductive noise suppressor, power converter, and motor device
JP6568743B2 (en) Conductive noise suppression circuit and inverter device
JP2005124339A (en) Noise reducer and power converter
JP5141216B2 (en) Active filter device and power conversion device
JP5218029B2 (en) Active filter device and power conversion device
JP5141228B2 (en) Active filter device and power conversion device
JP2021108514A (en) Noise filter device and power system
JP5070929B2 (en) Active filter device and power conversion device
JP5119824B2 (en) Active filter device and power conversion device
US9606151B2 (en) Capacitive current sensing using a current feedback amplifier
JP2003174777A (en) Noise reducing device and power conversion device
US12095434B2 (en) Current distortion reduction apparatus
JP3937869B2 (en) Amplifier circuit, noise reduction device, and power conversion device
JP3468262B2 (en) Three-phase voltage source inverter
JP7315862B2 (en) Power conversion equipment and refrigeration equipment
JP2006136037A (en) Circuit for detecting dc component of inverter output voltage
JPH1093366A (en) Power amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees