JP5037002B2 - Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water - Google Patents
Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water Download PDFInfo
- Publication number
- JP5037002B2 JP5037002B2 JP2005335510A JP2005335510A JP5037002B2 JP 5037002 B2 JP5037002 B2 JP 5037002B2 JP 2005335510 A JP2005335510 A JP 2005335510A JP 2005335510 A JP2005335510 A JP 2005335510A JP 5037002 B2 JP5037002 B2 JP 5037002B2
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- sludge
- flocculants
- polymer
- polymer flocculant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims description 121
- 239000010802 sludge Substances 0.000 title claims description 120
- 239000002351 wastewater Substances 0.000 title claims description 68
- 238000000034 method Methods 0.000 title claims description 47
- 238000005345 coagulation Methods 0.000 title claims description 18
- 230000015271 coagulation Effects 0.000 title claims description 18
- 239000000701 coagulant Substances 0.000 title description 20
- 238000004062 sedimentation Methods 0.000 title description 17
- 239000008394 flocculating agent Substances 0.000 claims description 59
- 238000002156 mixing Methods 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 238000004090 dissolution Methods 0.000 claims description 33
- 239000007864 aqueous solution Substances 0.000 claims description 31
- 229920006317 cationic polymer Polymers 0.000 claims description 28
- 239000006185 dispersion Substances 0.000 claims description 24
- 238000001914 filtration Methods 0.000 claims description 23
- 238000003860 storage Methods 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 20
- 230000001112 coagulating effect Effects 0.000 claims description 11
- 229920006318 anionic polymer Polymers 0.000 claims description 10
- 150000001409 amidines Chemical class 0.000 claims description 7
- 230000001376 precipitating effect Effects 0.000 claims description 6
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 24
- 208000005156 Dehydration Diseases 0.000 description 19
- 230000018044 dehydration Effects 0.000 description 19
- 238000006297 dehydration reaction Methods 0.000 description 19
- 229920001577 copolymer Polymers 0.000 description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000005189 flocculation Methods 0.000 description 4
- 230000016615 flocculation Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- FZGFBJMPSHGTRQ-UHFFFAOYSA-M trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCOC(=O)C=C FZGFBJMPSHGTRQ-UHFFFAOYSA-M 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 description 3
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 2
- 239000004908 Emulsion polymer Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- -1 methacryloyl Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 229940047670 sodium acrylate Drugs 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- GFFFHOCUTJBSHB-UHFFFAOYSA-M [Cl-].NC(=O)C=C.OC(=O)C=C.C[N+](C)(C)CCOC(=O)C=C Chemical compound [Cl-].NC(=O)C=C.OC(=O)C=C.C[N+](C)(C)CCOC(=O)C=C GFFFHOCUTJBSHB-UHFFFAOYSA-M 0.000 description 1
- 229940048053 acrylate Drugs 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- ZGCZDEVLEULNLJ-UHFFFAOYSA-M benzyl-dimethyl-(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C=CC(=O)OCC[N+](C)(C)CC1=CC=CC=C1 ZGCZDEVLEULNLJ-UHFFFAOYSA-M 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法に関する。 The present invention relates to a method for coagulating and dewatering sludge using a polymer flocculant and a method for coagulating and precipitating wastewater.
従来、廃水に高分子凝集剤を添加し固形分を凝集沈殿させる処理方法が広く用いられている。
また、廃水処理の際に生じる汚泥については、通常、高分子凝集剤でその固形分を凝集させて脱水する凝集脱水処理が行われている。
これらの処理方法においては、高分子凝集剤の希薄水溶液を廃水または汚泥に添加する方法が広く採られている。
高分子凝集剤は、その分子量やイオン性等が異なる様々な種類のものがあり、通常、処理する汚泥の性状(たとえば固形分濃度、汚泥粒子の表面荷電量、有機成分の含量等)に応じて最適なものが選択して用いられている。また、高分子凝集剤は、粉末もしくはW/O型エマルション等の形態で販売されているが、粉末型の方が製品の安定性や輸送方法の容易さ等の点で優れており製品としても広く使われている。
Conventionally, a treatment method in which a polymer flocculant is added to wastewater to coagulate and precipitate a solid content has been widely used.
In addition, sludge generated during wastewater treatment is usually subjected to agglomeration dehydration treatment in which the solid content is agglomerated with a polymer flocculant for dehydration.
In these treatment methods, a method of adding a dilute aqueous solution of a polymer flocculant to waste water or sludge is widely employed.
There are various types of polymer flocculants with different molecular weights and ionic properties, etc., usually depending on the nature of the sludge to be treated (eg solid content concentration, surface charge amount of sludge particles, organic component content, etc.) The most suitable one is selected and used. Polymer flocculants are sold in the form of powder or W / O emulsion, but the powder type is superior in terms of product stability and ease of transportation, etc. Widely used.
一方、汚泥の性状は、その元となっている廃水の種類や処理方法等によって千差万別である。また、汚泥の性状は、腐敗等のため時間に応じて変動することが知られている。さらに、汚泥は、2種以上の汚泥を集めて処理する場合にも、上記と同様、汚泥の混合比率の変化に応じて性状変動の問題に直面する。たとえば、都市下水の処理等では、初沈汚泥と余剰汚泥とを混合し、混合生汚泥として処理することが通常行われているが、その場合、それら2種の汚泥の混合比率が変わることで汚泥性状が大きく変動する。また、廃水の凝集沈殿処理においても廃水の性状が大きく変化する。 On the other hand, the properties of sludge vary widely depending on the type of wastewater and the treatment method. In addition, it is known that the properties of sludge vary with time due to rot and the like. Furthermore, even when two or more types of sludge are collected and processed, the sludge faces the problem of property variation according to the change in the mixing ratio of the sludge, as described above. For example, in the treatment of municipal sewage, etc., primary sludge and surplus sludge are usually mixed and treated as mixed raw sludge. In that case, the mixing ratio of these two types of sludge changes. Sludge properties vary greatly. In addition, the wastewater properties greatly change in the coagulation sedimentation treatment of the wastewater.
そのため、汚泥または廃水の性状変動に応じて、処理に最適な高分子凝集剤の種類や添加量を調節する必要がある。しかし、高分子凝集剤は、通常、粉末の高分子凝集剤を溶解して貯留しておき、水溶液の形態で汚泥または廃水に添加されるが、粉末の高分子凝集剤を溶解するには時間がかかるため、水溶液の添加量の調節はまだしも、凝集剤の種類の調節は困難である。
たとえば、特許文献1には、原水に無機凝集剤を添加し、次いで高分子凝集剤を添加してフロックを形成させた後濾過処理する水処理方法として、フロック形成後の原水の濾過特性に応じて凝集剤の添加量を制御する処理方法が示されており、この方法を汚泥処理に適用することが考えられる。しかし、この処理方法で調節するのは凝集剤の添加量のみであり、凝集剤の添加量調節のみでは、性状変動の大きい汚泥処理に対応することは困難である。
For this reason, it is necessary to adjust the type and amount of the polymer flocculant that is optimal for the treatment in accordance with changes in the properties of sludge or wastewater. However, the polymer flocculant is usually dissolved and stored in a powdered polymer flocculant and added to sludge or wastewater in the form of an aqueous solution. However, it takes time to dissolve the powdered polymer flocculant. Therefore, it is difficult to adjust the type of the flocculant even though the addition amount of the aqueous solution is not adjusted yet.
For example, in Patent Document 1, as a water treatment method in which an inorganic flocculant is added to raw water and then a polymer flocculant is added to form a floc and then subjected to filtration treatment, according to the filtration characteristics of the raw water after floc formation Thus, a treatment method for controlling the addition amount of the flocculant is shown, and this method can be applied to sludge treatment. However, only the addition amount of the flocculant is adjusted by this treatment method, and it is difficult to cope with the sludge treatment with large property fluctuations only by adjusting the addition amount of the flocculant.
このような問題に対応するために、各種の方法が提案されている。
たとえば特許文献2,3には、カチオン凝集剤と両性凝集剤をブレンドした凝集剤を用いて汚泥を脱水する方法が示されている。また、特許文献4には、イオン当量の異なる2種以上の両性高分子からなる凝集剤を用いて汚泥を脱水する方法が示されている。これらの方法は、それぞれ単独の凝集剤を使用している場合に比較し、幅広く各種の汚泥に対応できる可能性がある。
また、特許文献5には、カチオン度の異なる2種のカチオン性凝集剤を別々に溶解し、各溶解液を、汚泥の凝集に適したカチオン度になるような割合で添加する方法が示されている。
For example, Patent Documents 2 and 3 disclose a method of dewatering sludge using a flocculant obtained by blending a cationic flocculant and an amphoteric flocculant. Patent Document 4 discloses a method of dewatering sludge using a flocculant composed of two or more amphoteric polymers having different ion equivalents. These methods may be applicable to a wide variety of sludges compared to the case where a single flocculant is used.
しかし、特許文献2〜4に記載の方法においては、あらかじめ複数の凝集剤を特定比率でブレンドした凝集剤を用いるため、汚泥の性状変動に充分に対応できない。そのため、汚泥の性状変動に対応するためには、結局、各種のブレンド比率の凝集剤を用意しておき、性状変動に応じて使うことが必要となり、実用性が低い。
また、特許文献5に記載の方法では、溶解液の使用比率によっては両凝集剤の使用量が異なるため、使用量が少ない凝集剤の溶解液の保持時間が延び、凝集剤の性能が劣化する問題がある。そのため、各溶解液の使用比率を極端に変えることは難しく、汚泥の性状変動への対応に限界がある。また、それぞれの凝集剤を溶解し、保持するための溶解槽が2基必要であることなど、設備が大がかりになる問題もあり、実用的ではない。
本発明は、前記事情を鑑みてなされたものであり、汚泥または廃水の性状変動に幅広く対応でき、凝集剤の劣化が少なく、実用性に優れた汚泥の凝集脱水処理方法および廃水の凝集沈殿処理方法を提供することを目的とする。
However, in the methods described in Patent Documents 2 to 4, a flocculant obtained by blending a plurality of flocculants at a specific ratio in advance is used, so that it cannot sufficiently cope with fluctuations in sludge properties. Therefore, in order to cope with the sludge property variation, it is necessary to prepare flocculants having various blend ratios and use them according to the property variation.
Further, in the method described in
The present invention has been made in view of the above circumstances, and is capable of widely dealing with fluctuations in the properties of sludge or wastewater, has little deterioration of the flocculant, and has excellent practicality. It aims to provide a method.
上記課題を解決する本発明の第一の態様は、凝集剤を含有する凝集剤水溶液を汚泥に添加する汚泥の凝集脱水処理方法であって、
前記汚泥が、時間に応じて性状が変動する汚泥であり、
2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィーダーと、給水ポンプを備えた混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記汚泥の性状を観測し、その性状の変動に応じて、前記2以上の貯留槽にそれぞれ接続された前記フィーダーの供給量を設定することにより前記2種以上の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、前記フィーダーを介して混合槽に供給された粉末状高分子凝集剤を該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過させることにより前記凝集剤水溶液を調製し、
前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を汚泥に添加するまでの平均滞留時間が3時間以内であることを特徴とする汚泥の凝集脱水処理方法である。
本発明の第二の態様は、凝集剤を含有する凝集剤水溶液を廃水に添加する廃水の凝集沈殿処理方法であって、
前記廃水が、時間に応じて性状が変動する廃水であり、
2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィーダーと、給水ポンプを備えた混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記廃水の性状を観測し、その性状の変動に応じて、前記2以上の貯留槽にそれぞれ接続された前記フィーダーの供給量を設定することにより前記2種以上の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、前記フィーダーを介して混合槽に供給された粉末状高分子凝集剤を該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過させることにより前記凝集剤水溶液を調製し、
前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を廃水に添加するまでの平均滞留時間が3時間以内であることを特徴とする廃水の凝集沈殿処理方法である。
The first aspect of the present invention for solving the above problems is a method for coagulating and dewatering sludge by adding a flocculant aqueous solution containing a flocculant to sludge,
The sludge is sludge whose properties vary with time,
Two or more storage tanks for independently storing two or more kinds of powdery polymer flocculants, a feeder with adjustable feed amount connected to the storage tank, a mixing tank equipped with a water supply pump, and filtration Using a continuous dissolution supply device equipped with members,
Addition of the two or more kinds of powdery polymer flocculants by observing the properties of the sludge and setting the supply amount of the feeder connected to the two or more storage tanks according to the variation of the properties The amount is adjusted independently, and a powdery polymer flocculant supplied to the mixing tank through the feeder is mixed with water in the mixing tank to prepare a dispersion, and the dispersion is filtered through the filter member. Preparing the aqueous flocculant solution by passing it through ;
The sludge coagulation dewatering method is characterized in that an average residence time from dissolution of the powdery polymer flocculant to addition of the flocculant aqueous solution to the sludge is within 3 hours .
A second aspect of the present invention is a method for coagulating and precipitating wastewater by adding a flocculant aqueous solution containing a flocculant to wastewater,
The waste water is waste water whose properties vary with time,
Two or more storage tanks for independently storing two or more kinds of powdery polymer flocculants, a feeder with adjustable feed amount connected to the storage tank, a mixing tank equipped with a water supply pump, and filtration Using a continuous dissolution supply device equipped with members,
Addition of the two or more powdery polymer flocculants by observing the properties of the wastewater and setting the supply amount of the feeder connected to the two or more storage tanks according to the variation of the properties The amount is adjusted independently, and a powdery polymer flocculant supplied to the mixing tank through the feeder is mixed with water in the mixing tank to prepare a dispersion, and the dispersion is filtered through the filter member. Preparing the aqueous flocculant solution by passing it through ;
The method for coagulating and precipitating wastewater , wherein an average residence time from dissolution of the powdery polymer flocculant to addition of the aqueous flocculant solution to the wastewater is 3 hours or less .
本発明の汚泥の凝集脱水処理方法および廃水の凝集沈殿処理方法は、汚泥または廃水の性状変動に幅広く対応でき、凝集剤の劣化が少なく、実用性にも優れている。すなわち、2種以上の凝集剤を含有する凝集剤水溶液を調製する際に、凝集剤として少なくとも2種の粉末状高分子凝集剤を用い、該粉末状高分子凝集剤を、それぞれ独立に添加量を調節して水に添加することにより、該凝集剤水溶液中の各種高分子凝集剤の添加量や添加比率を、常に、汚泥の凝集脱水または廃水の凝集沈殿に最も適した最適条件とすることができる。さらに、高分子凝集剤を粉末状で保持し、使用時に溶解して用いることから、凝集剤の性能劣化が少なく、汚泥または廃水の急激な変動に対しても迅速に対応できまた大がかりな装置も不要であり実用性が高い。 The sludge coagulation dewatering treatment method and waste water coagulation sedimentation treatment method of the present invention can cope with a wide variety of properties of sludge or waste water, have little deterioration of the coagulant, and are excellent in practicality. That is, when preparing an aqueous flocculant solution containing two or more kinds of flocculants, at least two kinds of powdery polymer flocculants are used as flocculants, and each of these powdery polymer flocculants is added independently. The amount and ratio of the various polymer flocculants in the aqueous flocculant solution are always adjusted to the optimum conditions most suitable for sludge flocculation and dewatering or waste water flocculation and precipitation. Can do. In addition, since the polymer flocculant is held in powder form and dissolved at the time of use, the performance of the flocculant is small and it can respond quickly to sudden changes in sludge or wastewater. It is unnecessary and highly practical.
以下、本発明をより詳細に説明する。
本発明の汚泥の凝集脱水処理方法は、凝集剤を含有する凝集剤水溶液を汚泥に添加する方法である。
また、本発明の廃水の凝集沈澱処理方法は、凝集剤を含有する凝集剤水溶液を廃水に添加する方法である。
以下、これらをまとめて本発明の処理方法ということがある。
凝集剤水溶液は、少なくとも2種の粉末状高分子凝集剤の添加量を調節し、該粉末状高分子凝集剤と水とを混合し、溶解することにより調製されるものである。2種以上の粉末状高分子凝集剤の添加量を調節して凝集剤水溶液を調製することにより、汚泥または廃水の性状変動に対する幅広い対応が容易に可能になる。また、高分子凝集剤としては、一般に、粉末状のほか、液状、エマルジョン状等の形態のものが市販されているが、粉末状高分子凝集剤は、液状のものやエマルジョン状のものに比べて保存安定性が良く、保存時に性能が劣化しにくい利点を有している。また、使用時に粉末状高分子凝集剤を溶解して用いることにより溶液状態の時間を短くできるため、凝集剤水溶液の性能の劣化を抑制できる。さらに、粉末であるため、輸送費が安く、貯蔵に要する場所も少なくてすむ等の利点もある。
Hereinafter, the present invention will be described in more detail.
The sludge coagulation dehydration method of the present invention is a method of adding a flocculant aqueous solution containing a flocculant to sludge.
Moreover, the coagulation sedimentation processing method of the waste water of this invention is a method of adding the coagulant aqueous solution containing a coagulant to waste water.
Hereinafter, these may be collectively referred to as the processing method of the present invention.
The aqueous flocculant solution is prepared by adjusting the addition amount of at least two powdery polymer flocculants, mixing and dissolving the powdery polymer flocculant and water. By adjusting the addition amount of two or more kinds of powdery polymer flocculants to prepare the flocculant aqueous solution, it is possible to easily cope with a wide range of properties of sludge or wastewater. Further, as the polymer flocculant, in general, powders, liquids, emulsions and the like are commercially available. However, the powdery polymer flocculants are in comparison with liquids and emulsions. The storage stability is good and the performance is not easily deteriorated during storage. Moreover, since the time of a solution state can be shortened by melt | dissolving and using a powdery polymer flocculant at the time of use, degradation of the performance of flocculant aqueous solution can be suppressed. Furthermore, since it is a powder, there are also advantages such as low transportation costs and less space required for storage.
粉末状高分子凝集剤としては、従来、汚泥または廃水の凝集脱水処理に用いられている高分子凝集剤のうち、粉末状のものであれば任意のものが使用できる。
使用する粉末状高分子凝集剤の平均粒子径としては、特に制限はない。水への溶解性を考慮すると平均粒径、50〜3000μmが好ましく、100〜2000μmがより好ましい。
As the powdery polymer flocculant, any one of powdery polymer flocculants conventionally used for the coagulation and dehydration treatment of sludge or waste water can be used.
There is no restriction | limiting in particular as an average particle diameter of the powdery polymer flocculent to be used. Considering the solubility in water, the average particle size is preferably 50 to 3000 μm, more preferably 100 to 2000 μm.
高分子凝集剤としては、カチオン性、アニオン性、ノニオン性、両性等があり、本発明においてはいずれのものも使用できる。
カチオン性高分子凝集剤としては、アクリロイルオキシエチルトリメチルアンモニウムクロリドの(共)重合体、メタクリロイルオキシエチルトリメチルアンモニウムクロリドの(共)重合体、(メタ)アクリロイルオキシエチルベンジルジメチルアンモニウムクロライドの(共)重合体等のアクリロイル系カチオン性高分子凝集剤、ポリアミジン等のアミジン系カチオン性高分子凝集剤、ポリビニルアミンなどが例示される。
アニオン性高分子凝集剤としては、アクリルアミドとアクリル酸(塩)の共重合体、アクリルアミドとアクリルアミド−2−メチルプロパンスルホン酸との共重合体、アクリルアミドとアクリル酸塩とアクリルアミド−2−メチルプロパンスルホン酸の共重合体等が例示される。
ノニオン性高分子凝集剤としては、アクリルアミドの重合体等が例示される。
両性凝集剤としては(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロリド−アクリルアミド−アクリル酸の3元あるいは4元系の共重合体等が例示される。
As the polymer flocculant, there are cationic, anionic, nonionic and amphoteric, and any of them can be used in the present invention.
Cationic polymer flocculants include (co) polymer of acryloyloxyethyltrimethylammonium chloride, (co) polymer of methacryloyloxyethyltrimethylammonium chloride, (co) polymer of (meth) acryloyloxyethylbenzyldimethylammonium chloride Examples thereof include acryloyl cationic polymer flocculants such as coalescence, amidine cationic polymer flocculants such as polyamidine, and polyvinylamine.
Examples of anionic polymer flocculants include copolymers of acrylamide and acrylic acid (salt), copolymers of acrylamide and acrylamide-2-methylpropanesulfonic acid, acrylamide, acrylate and acrylamide-2-methylpropanesulfone. Examples include acid copolymers.
Examples of nonionic polymer flocculants include acrylamide polymers.
Examples of amphoteric flocculants include (meth) acryloyloxyethyltrimethylammonium chloride-acrylamide-acrylic acid ternary or quaternary copolymers.
また、高分子凝集剤の分子量は特に制限されない。高分子凝集剤は、分子量が1000万以上の高分子量型のものと、分子量が数百万の比較的低分子量型のものまで各種種類があるが、本発明は、両者に効果がある。高分子凝集剤は、通常、分子量が高い程溶解に時間を要するが、本発明においては高分子量のものでも迅速に溶解でき、ママコと呼ばれる未溶解分を残すことがない。 Further, the molecular weight of the polymer flocculant is not particularly limited. There are various types of high molecular flocculants, including high molecular weight types having a molecular weight of 10 million or more and relatively low molecular weight types having a molecular weight of several millions, but the present invention is effective for both. The higher the molecular weight, the longer the time required for dissolution of the polymer flocculant. However, in the present invention, even a polymer having a high molecular weight can be dissolved quickly, and an undissolved portion called Mamako is not left.
本発明において用いられる2種以上の粉末状高分子凝集剤の組み合わせとしては、その性質、たとえば分子構造や分子量、イオン性等が全く同一でないものの組み合わせであれば特に限定されない。
具体的な組み合わせとしては、たとえばカチオン性高分子凝集剤の2種以上の組み合わせ、カチオン性高分子凝集剤と両性高分子凝集剤の組み合わせ、アニオン性高分子凝集剤とカチオン性高分子凝集剤の組み合わせ、アニオン性高分子凝集剤と両性高分子凝集剤の組み合わせ等が挙げられる。また、高分子量型高分子凝集剤と比較的低分子量型高分子凝集剤の組み合わせ等が挙げられる。
カチオン性高分子凝集剤の2種以上の組み合わせとして、より具体的には、カチオン度が低くかつ高分子量型である低カチオン高分子量型の高分子凝集剤と、カチオン度が高くかつ低分子量型である高カチオン低分子量型の高分子凝集剤との組み合わせ、アクリロイル系カチオン性高分子凝集剤とアミジン系カチオン性高分子凝集剤との組み合わせ等が挙げられる。
また、カチオン性高分子凝集剤と両性高分子凝集剤との組み合わせとしては、上述のような2種以上のカチオン性高分子凝集剤の組み合わせと両性高分子凝集剤とを組み合わせたもの、両性系凝集剤とアミジン系カチオン性高分子凝集剤の組み合わせ、組成の異なる2種以上の両性高分子凝集剤の組み合わせ等が例示されるが、これらの組み合わせに限られる物ではない。またあらかじめ配合された2種以上の凝集剤に第三の成分を組み合わせても良い
The combination of two or more kinds of powdery polymer flocculants used in the present invention is not particularly limited as long as their properties such as molecular structure, molecular weight, ionicity and the like are not identical.
Specific combinations include, for example, combinations of two or more cationic polymer flocculants, combinations of cationic polymer flocculants and amphoteric polymer flocculants, anionic polymer flocculants and cationic polymer flocculants. A combination, a combination of an anionic polymer flocculant and an amphoteric polymer flocculant, and the like can be mentioned. Further, a combination of a high molecular weight type polymer flocculant and a relatively low molecular weight type polymer flocculant may be mentioned.
As a combination of two or more kinds of cationic polymer flocculants, more specifically, a low cationic high molecular weight type polymer flocculant having a low cationic degree and a high molecular weight type, and a high cationic degree and low molecular weight type. And a combination of a high cationic low molecular weight type polymer flocculant and a combination of an acryloyl cationic polymer flocculant and an amidine cationic polymer flocculant.
Moreover, as a combination of a cationic polymer flocculant and an amphoteric polymer flocculant, a combination of two or more cationic polymer flocculants as described above and an amphoteric polymer flocculant, an amphoteric system Examples include a combination of a flocculant and an amidine-based cationic polymer flocculant, a combination of two or more amphoteric polymer flocculants having different compositions, and the like, but are not limited to these combinations. Moreover, you may combine a 3rd component with 2 or more types of flocculants mix | blended previously.
これらの組み合わせは、処理対象である汚泥または廃水の種類や性状を考慮して適宜決定すれば良い。
たとえば汚泥が有機物を含有する有機汚泥の場合、カチオン性高分子凝集剤の2種以上の組み合わせ、カチオン性高分子凝集剤と両性高分子凝集剤との組み合わせが特に好ましい。
組み合わせの具体例としては、たとえば下水混合汚泥(初沈汚泥と余剰汚泥の混合汚泥)のベルトプレス脱水機による脱水にはメタクリロイル系カチオン性高分子凝集剤とアミジン系カチオン性高分子凝集剤の組み合わせが好ましい。初沈汚泥の混合比率が高い時は濾水速度が大きく、濾布からの剥離性が良いメタクリロイル系カチオン性凝集剤を多くしておき、脱水の困難な余剰汚泥の混合比率が高くなる場合はポリマーの粘性が低くカチオン密度の高いアミジン系凝集剤の比率を増やすことで、濾水性等を良好に保つことができる。また効果なアミジン系凝集剤を過剰に使うことが無いので経済的にも優れている。
What is necessary is just to determine these combinations suitably in consideration of the kind and property of sludge or wastewater which are treatment objects.
For example, when the sludge is an organic sludge containing an organic substance, a combination of two or more cationic polymer flocculants, or a combination of a cationic polymer flocculant and an amphoteric polymer flocculant is particularly preferable.
Specific examples of combinations include, for example, a combination of a methacryloyl cationic polymer flocculant and an amidine cationic polymer flocculant for dewatering of sewage mixed sludge (mixed sludge of primary sludge and excess sludge) with a belt press dehydrator. Is preferred. When the mixing ratio of the initial settling sludge is high, the drainage speed is large, the methacryloyl-based cationic flocculant with good releasability from the filter cloth is increased, and the mixing ratio of the excess sludge that is difficult to dehydrate becomes high. By increasing the ratio of the amidine flocculant having a low viscosity of the polymer and a high cation density, it is possible to maintain good drainage and the like. Moreover, since an effective amidine type flocculant is not used excessively, it is economically excellent.
組み合わせの際に考慮する汚泥の性状としては、通常、汚泥に添加する高分子凝集剤を選択する際に考慮する性状、たとえば汚泥の含水率、凝集時のフロック径、脱水時の濾水速度、脱水ケーキの含水率等が挙げられる。
組み合わせの際に考慮する廃水の性状としては、通常、廃水に添加する高分子凝集剤を選択する際に考慮する性状、たとえば廃水の濁度、SS分、PH等が挙げられる。
これらの性状を観測して、凝集剤水溶液の組成(凝集剤の種類や配合比)が、凝集効果が最も発揮される組成(最適組成)になるように粉末状高分子凝集剤の添加量等を調節する。
The properties of sludge to be considered at the time of combination are usually properties to be considered when selecting a polymer flocculant to be added to sludge, for example, moisture content of sludge, floc diameter at the time of aggregation, drainage speed at the time of dehydration The moisture content of a dehydrated cake is mentioned.
Properties of wastewater to be considered in combination usually include properties to be considered when selecting a polymer flocculant to be added to the wastewater, such as turbidity of wastewater, SS content, and PH.
By observing these properties, the amount of powdered polymer flocculant added, etc., so that the composition of the flocculant aqueous solution (type of flocculant and blending ratio) is the composition that exhibits the most flocculating effect (optimum composition). Adjust.
凝集剤水溶液の調製においては、粉末状高分子凝集剤のほか、液状またはエマルジョン状の高分子凝集剤を添加してもよい。
また、凝集剤水溶液には、従来、汚泥の凝集脱水処理または廃水の凝集沈殿処理に用いられている任意の無機凝集剤を添加してもよい。かかる無機凝集剤としては、硫酸バンド、ポリ硫酸アルミ、硫酸第一鉄、塩化第二鉄、ポリ硫酸第二鉄等が挙げられる。
また、両性高分子凝集剤やアニオン性高分子凝集剤を用いる場合には、それらの溶解性を高めるため、pHを調節するための酸等を配合しても良い。
In preparing the flocculant aqueous solution, a liquid or emulsion polymer flocculant may be added in addition to the powdered polymer flocculant.
Moreover, you may add to the coagulant | flocculant aqueous solution the arbitrary inorganic coagulants conventionally used for the coagulation dehydration process of sludge, or the coagulation sedimentation process of wastewater. Examples of such inorganic flocculants include sulfuric acid band, polyaluminum sulfate, ferrous sulfate, ferric chloride, and polyferric sulfate.
Further, when an amphoteric polymer flocculant or an anionic polymer flocculant is used, an acid or the like for adjusting the pH may be blended in order to increase the solubility thereof.
凝集剤水溶液中、高分子凝集剤(粉末状高分子凝集剤と、任意に添加される液状またはエマルジョン状の高分子凝集剤との合計)の濃度は0.5質量%以下が好ましく、0.05〜0.5質量%濃度がより好ましい。濃度が0.6質量%を越えると、液粘性が高すぎて汚泥または廃水との混合性が低下するおそれがある。高分子凝集剤の濃度が低いと高分子凝集剤がより劣化しやすくなる。 In the flocculant aqueous solution, the concentration of the polymer flocculant (the total of the powdered polymer flocculant and the liquid or emulsion polymer flocculant optionally added) is preferably 0.5% by mass or less. A concentration of 05 to 0.5% by mass is more preferable. If the concentration exceeds 0.6% by mass, the liquid viscosity is too high, and the miscibility with sludge or wastewater may be reduced. When the concentration of the polymer flocculant is low, the polymer flocculant is more likely to deteriorate.
本発明においては、粉末状高分子凝集剤の性能の劣化を防止するために、粉末状高分子凝集剤を溶解してから、凝集剤水溶液を汚泥または廃水に添加するまでの平均滞留時間が、3時間以下であることが好ましく、10秒以上1時間以下がより好ましく、1分以上30分以下がさらに好ましい。該平均滞留時間が3時間を超えると高分子凝集剤の劣化が大きくなるおそれがある。なお、高分子凝集剤の劣化は溶解した初期から生じていると考えられる。
ここで、「平均滞留時間」とは、回分式の溶解をする場合は粉末状高分子凝集剤の溶解開始から調製した凝集剤水溶液を汚泥または廃水に添加開始するまでの時間と、粉末状高分子凝集剤の溶解開始から凝集剤水溶液を汚泥または廃水に添加終了するまでの時間との平均時間のことである。なお、粉末状高分子凝集剤は略一定速度(単位;体積/時間)で水に添加するものとする。連続式の溶解設備を用いる場合は装置内の滞留時間であり、溶解装置、供給ライン等のホールドアップ量を単位時間あたりの流量で除することで計算できる。
従来形式の回分式の場合はバッチ毎の溶解量を少なくすることで平均滞留時間を短くできるが操作が煩雑になる傾向にある。
また、高分子凝集剤の溶解時間を短くするためには、粉末状高分子凝集剤の粒径を小さくして溶解速度を上げ、かつ溶解後の貯留槽を小さくし平均滞留時間を短縮する必要がある。
In the present invention, in order to prevent deterioration of the performance of the powdery polymer flocculant, the average residence time from the dissolution of the powdery polymer flocculant to the addition of the flocculant aqueous solution to sludge or waste water, It is preferably 3 hours or shorter, more preferably 10 seconds or longer and 1 hour or shorter, and further preferably 1 minute or longer and 30 minutes or shorter. When the average residence time exceeds 3 hours, the polymer flocculant may be greatly deteriorated. The deterioration of the polymer flocculant is considered to have occurred from the initial stage of dissolution.
Here, “average residence time” refers to the time from the start of dissolution of the powdery polymer flocculant to the start of addition of the prepared flocculant aqueous solution to sludge or wastewater, It is the average time from the start of dissolution of the molecular flocculant to the end of the addition of the flocculant aqueous solution to sludge or wastewater. The powdery polymer flocculant is added to water at a substantially constant rate (unit: volume / hour). When a continuous melting facility is used, it is the residence time in the apparatus, and can be calculated by dividing the hold-up amount of the melting apparatus, supply line, etc. by the flow rate per unit time.
In the case of the conventional batch type, the average residence time can be shortened by reducing the amount of dissolution for each batch, but the operation tends to be complicated.
In order to shorten the dissolution time of the polymer flocculant, it is necessary to reduce the particle size of the powdered polymer flocculant to increase the dissolution rate, and to reduce the storage tank after dissolution to shorten the average residence time. There is.
本発明の処理方法では、凝集剤水溶液の調製および供給に連続溶解供給装置を用いることが好ましい。連続溶解供給装置では、上記のような制約が少なく、工業的規模に適している。
ここで、連続溶解供給装置としては、特に制限されないが、凝集剤の劣化を低減するためには、粉末状高分子凝集剤を迅速に溶解できる装置を利用することが好ましい。かかる装置としては、粉末状高分子凝集剤が迅速に溶解できるものであればその形式は制限があるわけではないが、たとえば、特許第3184729号公報、特許3184797号公報等に示された装置が称揚される。該装置は、粉末高分子凝集剤を水に分散、膨潤させ、膨潤ゲルを網目状の濾過部材に擦りつけゲルを微細化し、溶解させる形式であり、凝集剤の溶解劣化が少ない長所がある。
In the treatment method of the present invention, it is preferable to use a continuous dissolution supply apparatus for the preparation and supply of the flocculant aqueous solution. The continuous dissolution and supply apparatus has few restrictions as described above and is suitable for an industrial scale.
Here, the continuous dissolution supply device is not particularly limited, but it is preferable to use a device capable of rapidly dissolving the powdery polymer flocculant in order to reduce the deterioration of the flocculant. The type of the apparatus is not limited as long as the powdery polymer flocculant can be dissolved quickly. For example, the apparatus shown in Japanese Patent Nos. 3184729 and 318497 is available. Praised. The apparatus has a merit that the powdered polymer flocculant is dispersed and swollen in water, the swollen gel is rubbed against a mesh-like filter member, the gel is refined and dissolved, and the flocculant is less dissolved and degraded.
本発明の処理方法は、特に、2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィーダーと、給水ポンプを備えた混合槽と、濾過部材とを備えた装置を用い、前記貯留槽に貯留される粉末状高分子凝集剤を、フィーダーを介して混合槽に供給し、該混合槽内で水と混合して分散液を調製し、該分散液を濾過部材に通過させることにより凝集剤水溶液を調製することにより行うことが好ましい。 The treatment method of the present invention particularly comprises two or more storage tanks for independently storing two or more kinds of powdery polymer flocculants, a feeder with adjustable feed amount connected to the storage tank, and water supply Using a device provided with a mixing tank equipped with a pump and a filtration member, the powdery polymer flocculant stored in the storage tank is supplied to the mixing tank via a feeder, and water and water are contained in the mixing tank. It is preferable to prepare a dispersion by mixing and preparing the aqueous flocculant solution by passing the dispersion through a filter member.
濾過部材は、目開きが10〜500μmであることが好ましく、50〜200μmであることがより好ましい。目開きが500μmを超えると、高分子凝集剤の溶解効率が低下し、10μm未満であると濾過に時間を要すると共に濾過の際に高分子凝集剤に力がかかりすぎて劣化しやすくなる。
濾過部材の材質としては、分散液を通す際の圧力に耐える材質であれば特に制限されないが、通常は金網が用いられる。また、濾過部材は一層であってもよいし多層であってもよいが、強度の点では多層の方が好ましい。多層の場合、同じ目開きのものを数層重ねてもよいし、目開きの異なるものを重ねあわせてもよい。
分散液を濾過部材に通過させる際の速度(濾過速度)は、分散液への圧力付与方法にもよるが、濾過部材の濾過面1m2当たり1m3/分以下であることが好ましい。濾過速度が濾過部材の濾過面1m2当たり1m3/分以下であれば高分子凝集剤の劣化をより防ぐことができるが、1m2当たり1m3/分を超えると劣化する傾向にある。
濾過部材に分散液を通過させる際には、流動抵抗が生じるため、分散液に圧力を付与してもよい。圧力を付与する方法としては、たとえば、周面が網状になっている筒状濾過部材に分散液を、摺動式のプレートやローラーで押し付ける方法などが挙げられる。
The filter member preferably has an opening of 10 to 500 μm, and more preferably 50 to 200 μm. If the mesh size exceeds 500 μm, the dissolution efficiency of the polymer flocculant decreases, and if it is less than 10 μm, it takes time for filtration and excessive force is applied to the polymer flocculant during filtration, and the polymer flocculant tends to deteriorate.
The material of the filter member is not particularly limited as long as it is a material that can withstand the pressure when the dispersion is passed, but usually a wire mesh is used. Further, the filtering member may be a single layer or a multilayer, but a multilayer is preferable in terms of strength. In the case of multiple layers, several layers with the same opening may be stacked, or layers with different opening may be stacked.
The speed at which the dispersion is passed through the filter member (filtration speed) is preferably 1 m 3 / min or less per 1 m 2 of the filtration surface of the filter member, although it depends on the method of applying pressure to the dispersion. If the filtration rate is 1 m 3 / min or less per 1 m 2 of the filtration surface of the filtration member, the polymer flocculant can be further prevented from deteriorating, but if it exceeds 1 m 3 / min per 1 m 2 , it tends to deteriorate.
When the dispersion is passed through the filter member, a flow resistance is generated, and therefore pressure may be applied to the dispersion. Examples of the method of applying pressure include a method of pressing the dispersion liquid with a sliding plate or roller onto a cylindrical filtration member having a net-like peripheral surface.
かかる装置を用いた本発明の処理方法の一例を図1を用いて説明する。
図1に示す連続溶解供給装置1は、粉末状高分子凝集剤Aを貯留するホッパー(貯留槽)2、粉末状高分子凝集剤Bを貯留するホッパー3を有し、該ホッパー2,3には、それぞれ、供給量の調節が可能なフィーダー4,5が取り付けられており、ホッパー2,3内の粉末状高分子凝集剤A,Bが、供給量を調節しながら混合槽6に供給できるようになっている。
各粉末状高分子凝集剤の供給量は、フィーダー4,5で供給量を設定することにより、それぞれ独立に調節できる。供給量の設定は手動によって行っても良いし、汚泥または廃水、もしくは凝集処理後の液の何らかの物性を測定し、その物性値に基づき自動的に設定が変更されるようにしても良い。
手動で調節する際には、汚泥の凝集時のフロック径、脱水時の濾水速度、脱水ケーキの含水率等、または廃水の濁度、SS分、PH等を観測して、処理に最適な組成になるように両凝集剤の添加量等が調節される。自動制御の場合は上記の項目などを自動測定し、その結果に基づいて制御される。
An example of the processing method of the present invention using such an apparatus will be described with reference to FIG.
1 has a hopper (storage tank) 2 for storing a powdery polymer flocculant A and a hopper 3 for storing a powdered polymer flocculant B. Are respectively equipped with
The supply amount of each powdery polymer flocculant can be adjusted independently by setting the supply amount with the
When adjusting manually, the floc diameter during sludge aggregation, drainage speed during dehydration, moisture content of dehydrated cake, etc., or turbidity of wastewater, SS content, PH, etc. are observed, which is optimal for treatment. The amount of both coagulants added is adjusted so that the composition is obtained. In the case of automatic control, the above items are automatically measured and controlled based on the result.
混合槽6内には、撹拌装置6aが配されている。また、混合槽6には、水を供給する給水ポンプ(図示せず)が取り付けられており、該給水ポンプから水を水供給ライン14を通じて供給し、該水に、フィーダー4,5で供給量を調節しながら粉末状高分子凝集剤A,Bを供給し、撹拌、混合して粉末状高分子凝集剤を膨潤させることにより、凝集剤を含有する分散液が調製される。
In the mixing tank 6, a stirring
連続溶解供給装置1は、さらに、円筒状の外とう部7と該外とう部7内に収容された円筒状のフィルター8と、該フィルター8内に配置された摺動プレート9と、該摺動プレート9を摺動させるためのモーター10とを備えた濾過装置11を備えている。そして、混合槽6と濾過装置11とが分散液フィードライン12により連絡されており、該分散液フィードライン12により、フィルター8の内側に分散液が供給されるようになっている。このようにして供給された分散液をフィルター8に通過させることにより、凝集剤水溶液が得られる。
このとき、分散液中の未溶解の凝集剤はフィルター8を通過しないが、摺動プレート9を摺動させることにより、フィルター8に分散液が押し付けられ、未溶解の凝集剤と水とが効率よく混合し、膨潤するため、該凝集剤を迅速に溶解することができる。従来は粉末状高分子凝集剤の溶解に時間がかかり、凝集剤水溶液の劣化が大きかったが、かかる装置を用いることにより、粉末状高分子凝集剤を迅速に溶解することができるため、凝集剤水溶液の劣化を低減できる。
The continuous dissolution supply apparatus 1 further includes a cylindrical outer portion 7, a cylindrical filter 8 accommodated in the outer portion 7, a sliding
At this time, the undissolved flocculant in the dispersion does not pass through the filter 8, but by sliding the sliding
さらに、連続溶解供給装置1においては、濾過装置11の外とう部7とフィルター8との間に水溶液フィードライン13が接続されており、該水溶液フィードライン13にはポンプ(図示せず)が取り付けられており、得られた凝集剤水溶液を、汚泥または廃水の凝集処理槽に連続的に供給できるようになっている。
このような連続溶解供給装置によれば、凝集剤の劣化をより防止できる上に、大規模な汚泥処理または廃水処理を行うことができる。
Furthermore, in the continuous dissolution supply apparatus 1, an aqueous
According to such a continuous dissolution and supply apparatus, the deterioration of the flocculant can be further prevented, and a large-scale sludge treatment or wastewater treatment can be performed.
上述のようにして得られた凝集剤水溶液を汚泥または廃水に添加、混合することで、汚泥または廃水中の固形分を凝集させることができる。凝集した汚泥については、脱水機等で脱水処理を施す。また、固形分が凝集し、沈殿した廃水については、重力による固形分の分離処理を施す。
汚泥の脱水に使用される脱水機の形式に特に制限はなく、プレス脱水機、遠心脱水機、多重円盤型脱水機等が例示される。
By adding and mixing the flocculant aqueous solution obtained as described above to sludge or wastewater, solids in the sludge or wastewater can be agglomerated. The agglomerated sludge is dehydrated with a dehydrator or the like. Moreover, about the wastewater which solid content aggregated and settled, the solid content separation process by gravity is performed.
There is no restriction | limiting in particular in the form of the dehydrator used for the dehydration of sludge, A press dehydrator, a centrifugal dehydrator, a multiple disk type dehydrator etc. are illustrated.
本発明の処理方法の対象となる汚泥および廃水は、特に制約はない。本発明の処理方法が汚泥または廃水の性状変動に幅広く対応できることから、たとえば初沈汚泥と余剰汚泥の混合比率の変わる混合生汚泥や、間けつ式に汚泥を引き抜く比較的小規模な処理場で引き抜き時期により汚泥の腐敗の程度が変化する汚泥、季節により腐敗度が変わる汚泥、雨水の流入などにより濃度が大きく変化する廃水の処理により生じる汚泥、pHの変動する廃水等に対し、本発明の処理方法の効用が顕著である。 There is no restriction | limiting in particular in the sludge and waste water used as the object of the processing method of this invention. Since the treatment method of the present invention can respond widely to changes in the properties of sludge or wastewater, for example, in mixed raw sludge where the mixing ratio of primary sludge and surplus sludge is changed, or in a relatively small treatment plant where sludge is extracted intermittently. For sludge whose degree of decay of sludge changes depending on the drawing time, sludge whose degree of corruption changes depending on the season, sludge generated by treatment of wastewater whose concentration changes greatly due to inflow of rainwater, wastewater whose pH varies, etc. The utility of the treatment method is remarkable.
なお、上記連続溶解供給装置1においては、貯留槽およびフィーダーの数が2であるが、本発明はこれに限定されず、3以上としてもよい。
また、連続溶解供給装置1においては、粉末状高分子凝集剤の種類に応じた数の貯留槽およびフィーダーと、ひとつの混合槽6と、1台の濾過装置11とを具備しているが、必要に応じ、混合槽6、濾過装置11を複数台装備しても良い。省スペース化しやすいことから、粉末状高分子凝集剤の種類に応じた数の貯留槽およびフィーダーと、ひとつの混合槽6と、1台の濾過装置11とを備えた装置を用いるのがもっとも簡易である。
さらに、本発明においては、場所などの制約のない場合、上記のような連続溶解供給装置を2台以上用い、それぞれ独立に凝集剤水溶液を調製した後、それらをラインミキシングしてもよい。また、上記のような連続溶解供給装置と単一もしくは複数の凝集剤を自由に混合溶解できる装置を複数用いてさらに多種の凝集剤水溶液をラインミキシングしてもよい。
In addition, in the said continuous melt | dissolution supply apparatus 1, although the number of a storage tank and a feeder is 2, this invention is not limited to this, It is good also as 3 or more.
In addition, the continuous dissolution and supply apparatus 1 includes a number of storage tanks and feeders according to the type of the powdery polymer flocculant, one mixing tank 6, and one
Furthermore, in the present invention, when there is no restriction on the place or the like, two or more continuous dissolution and supply apparatuses as described above may be used, and after preparing the flocculant aqueous solution independently of each other, they may be line mixed. Further, a variety of flocculant aqueous solutions may be line-mixed by using a plurality of continuous dissolution and supply apparatuses as described above and a plurality of apparatuses capable of freely mixing and dissolving a single or a plurality of flocculants.
以下、本発明について、実施例を用いて更に詳細に説明するが、本特許の趣旨を超えない限り、この範囲に限定されるものではない。
実施例1
図1に示す連続溶解供給装置1を用い、A処理場(オキシデーションディッチ)で発生する汚泥の処理を行った。フィルター8としては、メッシュプレート(100ミクロン目開き)を用いた。
連続溶解供給装置1のホッパー2内に、凝集剤Aとしてダイヤニトリックス社製KP7000(粉末状カチオン性高分子凝集剤(ポリアミジン系)、カチオン当量6meq/g、分子量300万)、凝集剤Bとして粉末状両性高分子凝集剤(アクリロイルオキシエチルトリメチルアンモニウムクロライド/アクリルアミド/アクリル酸=27.0/44.0/29.0(モル%)の共重合体、分子量400万)を装備し、下記の操作を行った。
9月24日:凝集剤A/凝集剤B=75/25(質量%)のブレンド比率の粉末状高分子凝集剤を水に溶解して0.2質量%の凝集剤水溶液を調製しを調製し、該凝集剤水溶液を、汚泥に対し、凝集剤を200mg/L対液の添加量で添加し、該汚泥を遠心脱水機用いて脱水した。運転開始時が脱水性能がもっとも良好であり、脱水後の汚泥の含水率が83.9%であった。
そのまま数日運転したところ、汚泥含水率が85.6%に上昇した(脱水性能が低下した)ので、ブレンド比率を50/50(質量%)に調節した(濃度は同じ)ところ、汚泥含水率は84%まで低下した。
さらに11月12日になると、再び含水率の上昇が観測されたので、ブレンド比率を60/40とし、11月15日までの間に、ブレンド比率を60/40から70/30(質量%)に変化させた(濃度は同じ)。この間の汚泥含水率が83.2%であった。
9月24日から11月15日までの間で上記の様にブレンド比率を調節した結果、処理された汚泥の含水率は平均84.5%であった。
なお、上記処理においては、粉末状高分子凝集剤を水に溶解してから3時間以内の凝集剤水溶液を用いた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this range as long as the gist of the present patent is not exceeded.
Example 1
Using the continuous dissolution and supply apparatus 1 shown in FIG. 1, the sludge generated at the A treatment site (oxidation ditch) was treated. As the filter 8, a mesh plate (100 micron opening) was used.
In the hopper 2 of the continuous dissolution and supply apparatus 1, KP7000 (powdered cationic polymer flocculant (polyamidine type), cation equivalent 6 meq / g, molecular weight 3 million) as a flocculant A, powder form as flocculant B Equipped with amphoteric polymer flocculant (acryloyloxyethyltrimethylammonium chloride / acrylamide / acrylic acid = 27.0 / 44.0 / 29.0 (mol%) copolymer, molecular weight 4 million) went.
September 24: Prepare a 0.2% by weight aqueous flocculant solution by dissolving powdery polymer flocculant in a blend ratio of flocculant A / flocculant B = 75/25 (mass%) in water. The flocculant aqueous solution was added to the sludge in an amount of 200 mg / L of the flocculant, and the sludge was dehydrated using a centrifugal dehydrator. The dehydration performance was the best at the start of operation, and the moisture content of the sludge after dehydration was 83.9%.
After operating for several days as it was, the sludge moisture content increased to 85.6% (dehydration performance decreased), so the blend ratio was adjusted to 50/50 (mass%) (concentration was the same). Dropped to 84%.
Furthermore, since the increase in moisture content was observed again on November 12, the blend ratio was set to 60/40, and by November 15, the blend ratio was changed from 60/40 to 70/30 (mass%). (Concentration is the same). During this time, the moisture content of the sludge was 83.2%.
As a result of adjusting the blend ratio as described above from September 24 to November 15, the average water content of the treated sludge was 84.5%.
In the above treatment, an aqueous flocculant solution within 3 hours after dissolving the powdery polymer flocculant in water was used.
比較例1
A処理場において、実施例1と同様の装置と凝集剤を用い、11/17日より1ケ月間、凝集剤A/凝集剤B=50/50の凝集剤水溶液(濃度200mg/L)を、ブレンド比率を変化させずに用いて汚泥処理を行ったところ、11/17日より1ケ月間に処理された汚泥の含水率は84.2%〜88.2%の範囲内で変化し、その平均は86.1%であった。
Comparative Example 1
In the treatment plant A, the same apparatus and flocculant as in Example 1 were used, and a flocculant A / coagulant B = 50/50 flocculant aqueous solution (concentration 200 mg / L) was used for one month from 11/17 days. When the sludge treatment was performed without changing the blend ratio, the moisture content of the sludge treated for 1 month from 11/17 changed within the range of 84.2% to 88.2%. The average was 86.1%.
実施例2
B浄化センター(オキシデーションディッチ)で10日間、実施例1と同様の装置を用い、凝集剤Aにダイヤニトリックス社製KP7000、凝集剤Bに粉末状両性高分子凝集剤(メタクリロイルオキシエチルトリメチルアンモニウムクロライド/アクリルアミド/アクリル酸=18.6/71.3/10.1(モル%)の共重合体、分子量400万)を用い、脱水後のケーキの含水率が最も低くなるように、ブレンド比率を凝集剤A/凝集剤B=60/40から70/30まで順次変化させて汚泥処理を行ったところ、10日間に処理された汚泥の含水率の平均は81%であった。
Example 2
B Purification Center (Oxidation Ditch) for 10 days, using the same apparatus as in Example 1, with KP7000 manufactured by Daianitrix Co. as flocculant A and powdered amphoteric polymer flocculant (methacryloyloxyethyltrimethylammonium chloride / Using acrylamide / acrylic acid = 18.6 / 71.3 / 10.1 (mol%) copolymer, molecular weight 4 million), blending the blend ratio so that the water content of the cake after dehydration is the lowest When the sludge treatment was performed by sequentially changing the agent A / flocculant B = 60/40 to 70/30, the average water content of the sludge treated for 10 days was 81%.
比較例2
B浄化センターで5日間、実施例2と同様の装置と凝集剤を用い、凝集剤A/凝集剤B=60/40の0.2%凝集剤水溶液(濃度200mg/L)を、ブレンド比率を変化させずに用いて汚泥処理を行ったところ、5日間に処理された汚泥の含水率の平均は82.8%であった。
Comparative Example 2
At the B purification center for 5 days, using the same apparatus and flocculant as in Example 2, flocculant A / flocculant B = 60/40 0.2% flocculant aqueous solution (concentration 200 mg / L), blend ratio When the sludge treatment was performed without change, the average moisture content of the sludge treated for 5 days was 82.8%.
実施例3
C処理場(混合生汚泥)で、実施例1と同様の装置を用い、凝集剤Aにダイヤニトリックス社製KP201G(粉末状カチオン性高分子凝集剤、メタクリロイルオキシエチルトリメチルアンモニウムクロライド100%)、凝集剤Bにダイヤニトリックス社製KP7000を用いて汚泥処理を行った。
初沈汚泥/余剰汚泥=60/40(質量比)の組成の混合生汚泥については、凝集剤A/凝集剤B=100/0にて処理を行った場合が最も良好で、汚泥の平均含水率は78.4%であった。
次いで処理を行った初沈汚泥/余剰汚泥=20/80(質量比)の組成の混合生汚泥については、凝集剤A/凝集剤B=75/25(質量比)にて処理を行った場合が最も良好で、汚泥の平均含水率は79.1%であった。
Example 3
In the C treatment plant (mixed raw sludge), the same apparatus as in Example 1 was used. The coagulant A was KP201G (powdered cationic polymer coagulant, methacryloyloxyethyltrimethylammonium chloride 100%), coagulant. B was subjected to sludge treatment using KP7000 manufactured by Dianitics.
For mixed raw sludge having a composition of initial settling sludge / surplus sludge = 60/40 (mass ratio), it is best when the treatment is performed with coagulant A / coagulant B = 100/0. The rate was 78.4%.
Next, with regard to the mixed raw sludge having the composition of the initially settled sludge / excess sludge = 20/80 (mass ratio), the treatment was performed with the coagulant A / coagulant B = 75/25 (mass ratio). The average water content of the sludge was 79.1%.
比較例3
実施例3と同一条件下で、凝集剤Aのみを用いて汚泥の処理を行ったところ、含水率は平均82%であった。
Comparative Example 3
When the sludge was processed using only the flocculant A under the same conditions as in Example 3, the water content was 82% on average.
上記結果から、汚泥の含水率や初沈汚泥/余剰汚泥比のような組成の変化に応じて粉末状高分子凝集剤の添加量を調節してブレンド比率を変えた実施例1〜3は、含水率が低く、脱水効率が高かった。 From the above results, Examples 1 to 3 in which the blend ratio was changed by adjusting the addition amount of the powdery polymer flocculant according to the change in the composition such as the moisture content of the sludge and the initial sludge / excess sludge ratio, The water content was low and the dehydration efficiency was high.
実施例4
汚泥中のSS分が2.5%で、汚泥SS分中の繊維分の比率が10%〜35%の範囲で変動するD製紙工場廃水汚泥の処理を下記の手順で行った。
5日間、実施例1と同様の装置を用い、凝集剤Aに粉末状カチオン性高分子凝集剤(アクリロイルオキシエチルトリメチルアンモニウムクロライド/アクリルアミド=30/70(モル%)の共重合体、分子量500万)、凝集剤Bに粉末状両性高分子凝集剤(アクリロイルオキシエチルトリメチルアンモニウムクロライド/アクリルアミド/アクリル酸=25.0/50.0/25.0(モル%)の共重合体、分子量400万)を用い、これらの凝集剤を、汚泥のSS分中の繊維分の比率(繊維分/SS、質量%)に応じ、最適な処理が可能なように下記の混合比率にて混合し、固形分濃度0.2質量%となるよう水に溶解させた高分子凝集剤を汚泥に添加し、混合後、スクリュープレス脱水機にて脱水処理を行った。その結果、高分子凝集剤の添加量60ppmで、脱水後のケーキ含水率が65%以下であり、脱水機からのSS分のリークの無い状況を5日間維持することができた。
繊維分/SSが10%以上25%未満:凝集剤A/凝集剤B=70/30(質量比)
繊維分/SSが25%以上35%以下:凝集剤A/凝集剤B=95/5(質量比)
Example 4
The treatment of D paper mill wastewater sludge in which the SS content in the sludge was 2.5% and the ratio of the fiber content in the sludge SS content was varied in the range of 10% to 35% was carried out according to the following procedure.
Using the same apparatus as in Example 1 for 5 days, the powdery cationic polymer flocculant (acryloyloxyethyltrimethylammonium chloride / acrylamide = 30/70 (mol%) copolymer,
Fiber content / SS: 10% or more and less than 25%: flocculant A / flocculant B = 70/30 (mass ratio)
Fiber content / SS: 25% or more and 35% or less: Coagulant A / Coagulant B = 95/5 (mass ratio)
比較例4
実施例4と同一の汚泥に対して、高分子凝集剤として、凝集剤Aを単独で、または凝集剤A/凝集剤B=70/30(質量比)にブレンド比率を固定した混合物を用いて脱水を行ったところ、下記に示すように、安定した脱水が得られなかった。
[高分子凝集剤が凝集剤A単独の例]
汚泥の繊維分/SSが25〜35%の場合、高分子凝集剤添加量60ppmで脱水性が良好であったものの、繊維分/SS10〜24%の場合、高分子凝集剤添加量40〜100ppmの範囲において、脱水機からのSS分の流出が発生した。
[高分子凝集剤が凝集剤A/凝集剤B=70/30の例]
・汚泥の繊維分/SSが10〜24%の場合、高分子凝集剤添加量60ppmで脱水性が良好であったものの、繊維分/SS25〜35%の場合、高分子凝集剤添加量を90ppmまで増加させないとケーキ含水率を65%以下に維持できなかった。
Comparative Example 4
For the same sludge as in Example 4, as the polymer flocculant, flocculant A alone or a mixture in which the blend ratio is fixed to flocculant A / flocculant B = 70/30 (mass ratio) is used. When dehydration was performed, stable dehydration was not obtained as shown below.
[Example where polymer flocculant is flocculant A alone]
When the sludge fiber content / SS is 25 to 35%, the polymer flocculant addition amount was 60 ppm, and the dehydration was good, but when the fiber content / SS was 10 to 24%, the polymer flocculant addition amount was 40 to 100 ppm. In the range of, SS outflow from the dehydrator occurred.
[Example in which polymer flocculant is flocculant A / flocculant B = 70/30]
・ When the sludge fiber content / SS is 10 to 24%, the polymer flocculant addition amount was 60 ppm, and the dehydration was good, but when the fiber content / SS was 25 to 35%, the polymer flocculant addition amount was 90 ppm. The cake moisture content could not be maintained at 65% or less unless the content was increased up to.
実施例5
高分子凝集剤添加前のpHが5.7〜7.2の範囲で変動する下記性状の製紙工場廃水の処理を下記の手順で行った。
[廃水の性状]
・SS分:1400〜1500ppm
・硫酸バンド添加量:70ppm
・pH変動:5.7〜7.2
実施例1と同様の装置を用い、凝集剤Aに粉末状低アニオン性高分子凝集剤(アクリルアミド/アクリル酸ソーダ=95.0/5.0(モル%)分子量1000万)、凝集剤Bに粉末状中アニオン性高分子凝集剤(アクリルアミド/アクリル酸ソーダ=88.0/12.0(モル%)分子量1000万)を用い、最適な凝集が得られるようにこれらの凝集剤を、廃水のpHに応じ、下記に示す混合比率により混合し、固形分濃度0.1質量%となるよう水に溶解させた高分子凝集剤を0.6ppmの濃度となるよう廃水に添加し、混合後、凝集沈殿処理を行った。
廃水のpHが5.7〜6.1:凝集剤A/凝集剤B=90/10(質量比)
廃水のpHが6.2〜6.6:凝集剤A/凝集剤B=50/50(質量比)
廃水のpHが6.7〜7.2:凝集剤A/凝集剤B=10/90(質量比)
その結果、安定した凝集沈殿処理が維持できた。たとえば、混合直後の廃水の一部を採取し、ジャーテスター(製品名:ジャーテスターMJS−4P;株式会社宮本製作所製)によりフロックの沈降時間(フロックの沈降が見られなくなるまでの時間)を測定し、その沈降時間測定後(凝集沈殿後)の当該廃水の上澄みの濁度を濁度計(製品名:濁度計2100N;セントラル科学株式会社製)により測定したところ、沈降時間は全て30秒以内、濁度は50NTU以下であった。
Example 5
A paper mill wastewater having the following properties, in which the pH before addition of the polymer flocculant fluctuates in the range of 5.7 to 7.2, was treated according to the following procedure.
[Properties of wastewater]
-SS content: 1400-1500ppm
・ Sulfuric acid band addition amount: 70ppm
-PH fluctuation: 5.7-7.2
Using the same apparatus as in Example 1, flocculant A was powdered low anionic polymer flocculant (acrylamide / sodium acrylate = 95.0 / 5.0 (mol%)
The pH of the wastewater is 5.7 to 6.1: flocculant A / flocculant B = 90/10 (mass ratio)
PH of waste water is 6.2 to 6.6: flocculant A / flocculant B = 50/50 (mass ratio)
PH of waste water is 6.7 to 7.2: flocculant A / flocculant B = 10/90 (mass ratio)
As a result, a stable coagulation sedimentation treatment could be maintained. For example, a part of waste water immediately after mixing is collected, and a floc settling time (time until no floc settling is observed) is measured with a jar tester (product name: Jar tester MJS-4P; manufactured by Miyamoto Seisakusho Co., Ltd.) The turbidity of the supernatant of the waste water after the sedimentation time was measured (after coagulation sedimentation) was measured with a turbidimeter (product name: Turbidimeter 2100N; manufactured by Central Science Co., Ltd.). The turbidity was 50 NTU or less.
比較例5
実施例5と同じ廃水に対し、高分子凝集剤として、凝集剤AまたはBを単独で、または凝集剤A/凝集剤B=50/50(質量比)にブレンド比率を固定した混合物を用いて凝集沈殿処理を実施したところ、それぞれ、下記の問題点が発生した。
凝集剤A単独で用いた場合、pH6.2以上の廃水において、凝集沈殿後の上澄みの濁度が大きかった(たとえばpH7.2の廃水の場合、沈降時間は30秒以内、濁度は110NTUであった)。
凝集剤B単独で用いた場合、pH6.6以下の廃水においてフロックの沈降時間が長かった(たとえばpH5.7の廃水の場合、沈降時間は60秒、濁度は50NTU以下であった)。
凝集剤A/凝集剤B=50/50の混合物を用いた場合、pH5.7〜6.1の領域でフロックの沈降時間が長くなった(たとえばpH5.7の廃水の場合、沈降時間は47秒、濁度は50NTU以下であった)。また、pH6.7〜7.2の領域で凝集沈殿後の上澄みの濁度が大きくなった(たとえばpH7.2の廃水の場合、沈降時間は30秒以内、濁度は80NTUであった)。
Comparative Example 5
For the same waste water as in Example 5, as a polymer flocculant, flocculant A or B alone or a mixture in which the blend ratio is fixed to flocculant A / flocculant B = 50/50 (mass ratio) is used. When the coagulation sedimentation treatment was performed, the following problems occurred.
When flocculant A was used alone, the turbidity of the supernatant after coagulation sedimentation was large in waste water of pH 6.2 or higher (for example, in the case of waste water of pH 7.2, the sedimentation time was within 30 seconds and the turbidity was 110 NTU. there were).
When flocculant B was used alone, the floc sedimentation time was long in wastewater having a pH of 6.6 or less (for example, in the case of wastewater having a pH of 5.7, the sedimentation time was 60 seconds and the turbidity was 50 NTU or less).
When a mixture of flocculant A / flocculant B = 50/50 was used, the sedimentation time of floc was increased in the region of pH 5.7 to 6.1 (for example, in the case of wastewater at pH 5.7, the sedimentation time was 47 Second, turbidity was less than 50 NTU). Moreover, the turbidity of the supernatant after coagulation sedimentation became large in the region of pH 6.7 to 7.2 (for example, in the case of pH 7.2 wastewater, the sedimentation time was within 30 seconds and the turbidity was 80 NTU).
1…連続溶解供給装置、2…ホッパー、3…ホッパー、4…フィーダー、5…フィーダー、6…混合槽、7…外とう部、8…フィルター、9…摺動プレート、10…モーター、11…濾過装置、12…分散液フィードライン、13…水溶液フィードライン、14…水供給ライン
DESCRIPTION OF SYMBOLS 1 ... Continuous melt | dissolution supply apparatus, 2 ... Hopper, 3 ... Hopper, 4 ... Feeder, 5 ... Feeder, 6 ... Mixing tank, 7 ... Outer part, 8 ... Filter, 9 ... Sliding plate, 10 ... Motor, 11 ...
Claims (5)
前記汚泥が、時間に応じて性状が変動する汚泥であり、
2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィーダーと、給水ポンプを備えた混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記汚泥の性状を観測し、その性状の変動に応じて、前記2以上の貯留槽にそれぞれ接続された前記フィーダーの供給量を設定することにより前記2種以上の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、前記フィーダーを介して混合槽に供給された粉末状高分子凝集剤を該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過させることにより前記凝集剤水溶液を調製し、
前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を汚泥に添加するまでの平均滞留時間が3時間以内であることを特徴とする汚泥の凝集脱水処理方法。 A method for coagulating and dewatering sludge, wherein a flocculant aqueous solution containing a flocculant is added to sludge,
The sludge is sludge whose properties vary with time,
Two or more storage tanks for independently storing two or more kinds of powdery polymer flocculants, a feeder with adjustable feed amount connected to the storage tank, a mixing tank equipped with a water supply pump, and filtration Using a continuous dissolution supply device equipped with members,
Addition of the two or more kinds of powdery polymer flocculants by observing the properties of the sludge and setting the supply amount of the feeder connected to the two or more storage tanks according to the variation of the properties The amount is adjusted independently, and a powdery polymer flocculant supplied to the mixing tank through the feeder is mixed with water in the mixing tank to prepare a dispersion, and the dispersion is filtered through the filter member. Preparing the aqueous flocculant solution by passing it through ;
A sludge coagulation dewatering method , wherein an average residence time from dissolution of the powdery polymer flocculant to addition of the flocculant aqueous solution to the sludge is within 3 hours .
前記カチオン性高分子凝集剤がアクリロイル系カチオン性高分子凝集剤またはアミジン系カチオン性高分子凝集剤である請求項2に記載の汚泥の凝集脱水処理方法。 The two or more powdery polymer flocculants are a combination of two or more cationic polymer flocculants, or a combination of a cationic polymer flocculant and an amphoteric polymer flocculant,
The method for coagulating and dewatering sludge according to claim 2 , wherein the cationic polymer flocculant is an acryloyl cationic polymer flocculant or an amidine cationic polymer flocculant.
前記廃水が、時間に応じて性状が変動する廃水であり、
2種以上の粉末状高分子凝集剤をそれぞれ独立に貯留するための2以上の貯留槽と、該貯留槽に接続された供給量調節可能なフィーダーと、給水ポンプを備えた混合槽と、濾過部材を備えた連続溶解供給装置を用い、
前記廃水の性状を観測し、その性状の変動に応じて、前記2以上の貯留槽にそれぞれ接続された前記フィーダーの供給量を設定することにより前記2種以上の粉末状高分子凝集剤の添加量をそれぞれ独立に調節し、前記フィーダーを介して混合槽に供給された粉末状高分子凝集剤を該混合槽内で水と混合して分散液を調製し、該分散液を前記濾過部材を通過させることにより前記凝集剤水溶液を調製し、
前記粉末状高分子凝集剤を溶解してから、前記凝集剤水溶液を廃水に添加するまでの平均滞留時間が3時間以内であることを特徴とする廃水の凝集沈殿処理方法。 A method for coagulating and precipitating wastewater by adding an aqueous flocculant solution containing a flocculant to wastewater,
The waste water is waste water whose properties vary with time,
Two or more storage tanks for independently storing two or more kinds of powdery polymer flocculants, a feeder with adjustable feed amount connected to the storage tank, a mixing tank equipped with a water supply pump, and filtration Using a continuous dissolution supply device equipped with members,
Addition of the two or more powdery polymer flocculants by observing the properties of the wastewater and setting the supply amount of the feeder connected to the two or more storage tanks according to the variation of the properties The amount is adjusted independently, and a powdery polymer flocculant supplied to the mixing tank through the feeder is mixed with water in the mixing tank to prepare a dispersion, and the dispersion is filtered through the filter member. Preparing the aqueous flocculant solution by passing it through ;
A method for coagulating and precipitating wastewater , wherein an average residence time from dissolution of the powdery polymer flocculant to addition of the aqueous flocculant solution to wastewater is within 3 hours .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005335510A JP5037002B2 (en) | 2004-11-25 | 2005-11-21 | Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004340162 | 2004-11-25 | ||
JP2004340162 | 2004-11-25 | ||
JP2005335510A JP5037002B2 (en) | 2004-11-25 | 2005-11-21 | Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006175427A JP2006175427A (en) | 2006-07-06 |
JP5037002B2 true JP5037002B2 (en) | 2012-09-26 |
Family
ID=36730022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005335510A Active JP5037002B2 (en) | 2004-11-25 | 2005-11-21 | Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5037002B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5731089B1 (en) * | 2015-01-14 | 2015-06-10 | 巴工業株式会社 | Polymer flocculant mixing dissolution system and polymer flocculant mixing dissolution method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736497B2 (en) * | 2006-08-02 | 2010-06-15 | M-I L.L.C. | Dewatering system |
JP4854432B2 (en) * | 2006-09-04 | 2012-01-18 | ダイヤニトリックス株式会社 | Sludge dewatering method |
JP5042057B2 (en) * | 2008-02-07 | 2012-10-03 | ダイヤニトリックス株式会社 | Sludge dewatering method |
WO2010050416A1 (en) * | 2008-10-31 | 2010-05-06 | Mtアクアポリマー株式会社 | Method of dissolving water-soluble polymer |
JP5622263B2 (en) * | 2010-03-23 | 2014-11-12 | ハイモ株式会社 | Sludge dewatering method |
JP5733947B2 (en) * | 2010-10-15 | 2015-06-10 | 友岡化研株式会社 | Powdered coagulation dewatering agent and organic sludge coagulation dehydration method |
JP5765768B2 (en) * | 2011-03-30 | 2015-08-19 | ハイモ株式会社 | Coagulation treatment agent and sludge dewatering method using the same |
JP5826545B2 (en) * | 2011-07-20 | 2015-12-02 | 株式会社西原環境 | Polluted water treatment system and polluted water treatment method |
AU2012315514A1 (en) | 2011-09-30 | 2014-04-17 | M-I L.L.C. | Drilling fluid processing |
JP6131465B2 (en) * | 2013-02-15 | 2017-05-24 | 三菱ケミカル株式会社 | Sludge dewatering method |
JP6134940B2 (en) * | 2013-02-20 | 2017-05-31 | 三菱ケミカル株式会社 | Coagulation treatment method for oil-containing cleaning wastewater |
JP6119300B2 (en) * | 2013-02-25 | 2017-04-26 | 三菱ケミカル株式会社 | Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same |
CN106746484A (en) * | 2017-03-03 | 2017-05-31 | 上海绿美环保科技有限公司 | A kind of system of selection of environmentally friendly sludge dewatering preferred agents |
CN113880212A (en) * | 2021-11-22 | 2022-01-04 | 范思飞 | Flocculant dissolving process |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938840B2 (en) * | 1980-12-29 | 1984-09-19 | 栗田工業株式会社 | Sludge dewatering control method and manufacturing equipment |
JPS58216707A (en) * | 1982-06-09 | 1983-12-16 | Kurita Water Ind Ltd | Dehydrating agent for sludge |
JPS62125893A (en) * | 1985-11-25 | 1987-06-08 | Ichikawa Keori Kk | Flocculating method for suspended matter in waste water |
JP3184797B2 (en) * | 1998-03-19 | 2001-07-09 | ミヤマ株式会社 | Mixing equipment |
JP2001121158A (en) * | 1999-10-29 | 2001-05-08 | Ebara Corp | Flocculation auxiliary for water purification treatment and production thereof and coagulation treatment and treatment apparatus thereof |
JP4382533B2 (en) * | 2003-03-07 | 2009-12-16 | 三洋化成工業株式会社 | Polymer flocculant |
-
2005
- 2005-11-21 JP JP2005335510A patent/JP5037002B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5731089B1 (en) * | 2015-01-14 | 2015-06-10 | 巴工業株式会社 | Polymer flocculant mixing dissolution system and polymer flocculant mixing dissolution method |
WO2016114283A1 (en) * | 2015-01-14 | 2016-07-21 | 巴工業株式会社 | Polymer flocculant mixing and dissolving system, and method for mixing and dissolving polymer flocculant |
Also Published As
Publication number | Publication date |
---|---|
JP2006175427A (en) | 2006-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5037002B2 (en) | Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water | |
JP6143835B2 (en) | Sludge aggregation method and apparatus | |
JP5521272B2 (en) | Sludge or wastewater treatment method | |
JP2018020292A (en) | Low acrylamide flocculant composition and method for using low acrylamide flocculant composition | |
WO2006057285A1 (en) | Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating waste water with use of polymer coagulant | |
JP2011230038A (en) | Water treatment apparatus | |
CN101343099B (en) | Aluminum sulfate-poly-dimethyl diene propyl- ammonium chloride composite flocculent, preparation and application method thereof | |
WO2014021228A1 (en) | Sludge treatment method and treatment device | |
JP4523731B2 (en) | Water treatment equipment | |
JP5589430B2 (en) | Treatment method of inorganic waste water | |
CN101522582B (en) | Method of dewatering sewage sludge | |
JP3168608B2 (en) | Sludge treatment equipment | |
JP4029021B2 (en) | Sludge dewatering agent and sludge dewatering method | |
WO1999050195A1 (en) | Dewatering of organic suspensions with anionic and cationic polymers | |
JP7190642B2 (en) | Composition for sludge control | |
JP7117101B2 (en) | Water treatment method and device | |
JPH0938700A (en) | Treatment of organic sludge | |
JP4923834B2 (en) | Method and apparatus for treating water containing soluble COD component | |
JP5723916B2 (en) | Method and apparatus for dewatering organic sludge | |
JP2019111496A (en) | Method and apparatus for treating water to be treated | |
JP3225266B2 (en) | Algae-containing water treatment method | |
JP5993605B2 (en) | Flocculant evaluation method and flocculant processing apparatus | |
JP2002192199A (en) | Method and apparatus for dehydrating sludge | |
JP6197016B2 (en) | Water purification method and water purification device | |
JP2010082593A (en) | Water treatment method and organic coagulant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5037002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |