[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5036454B2 - Phosphor particles, wavelength converter and light emitting device - Google Patents

Phosphor particles, wavelength converter and light emitting device Download PDF

Info

Publication number
JP5036454B2
JP5036454B2 JP2007222978A JP2007222978A JP5036454B2 JP 5036454 B2 JP5036454 B2 JP 5036454B2 JP 2007222978 A JP2007222978 A JP 2007222978A JP 2007222978 A JP2007222978 A JP 2007222978A JP 5036454 B2 JP5036454 B2 JP 5036454B2
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
wavelength converter
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007222978A
Other languages
Japanese (ja)
Other versions
JP2009052003A (en
Inventor
正人 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007222978A priority Critical patent/JP5036454B2/en
Publication of JP2009052003A publication Critical patent/JP2009052003A/en
Application granted granted Critical
Publication of JP5036454B2 publication Critical patent/JP5036454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、紫外線又は可視光を吸収し、長波長の可視光を発する蛍光体粒子、LED(Light Emitting Diode:発光ダイオード)などの発光素子から発せられる光を波長変換して外部に取り出す蛍光体粒子を含有する波長変換器、この波長変換器を搭載した発光装置に関する。   The present invention relates to a phosphor particle that absorbs ultraviolet light or visible light and emits long-wavelength visible light, and a phosphor that converts light emitted from a light emitting element such as an LED (Light Emitting Diode) to extract it to the outside. The present invention relates to a wavelength converter containing particles and a light emitting device equipped with the wavelength converter.

半導体材料からなる発光素子(以下「LEDチップ」とも言う)は、小型で電力効率が良く鮮やかに発色する。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶等のバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light-emitting element made of a semiconductor material (hereinafter also referred to as “LED chip”) is small in size, has high power efficiency, and vividly colors. LED chips have excellent characteristics such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

LEDチップの発光装置への応用は、LEDチップの光の一部を蛍光体で波長変換し、当該波長変換された光と波長変換されないLEDチップの光とを混合して放出することにより、LEDチップの光とは異なる色を発光する発光装置として既に製造されている。   Application of LED chips to light-emitting devices is possible by converting part of the light of the LED chip with a phosphor, and mixing and emitting the wavelength-converted light and the light of the LED chip that is not wavelength-converted. It has already been manufactured as a light emitting device that emits a color different from the light of the chip.

この発光装置は、青色LEDチップ上に(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体等の黄色成分の蛍光体を形成したものである。 In this light emitting device, a yellow component phosphor such as a YAG phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is formed on a blue LED chip.

この発光装置では、発光素子から発する光が黄色成分の蛍光体に照射されると、黄色成分の蛍光体は励起されて可視光を発し、この可視光が出力として利用される。ところが、発光素子の明るさを変えると、青色と黄色との光量比が変化するため、白色の色調が変化し、演色性に劣るといった問題があった。   In this light-emitting device, when the light emitted from the light-emitting element is irradiated onto the yellow component phosphor, the yellow component phosphor is excited to emit visible light, and this visible light is used as an output. However, when the brightness of the light emitting element is changed, the light quantity ratio between blue and yellow changes, so that there is a problem that the color tone of white changes and the color rendering property is inferior.

そこで、このような課題を解決するために、発光素子として400nm以下のピークを有する紫色LEDチップを用いるとともに、波長変換器には3種類の蛍光体を高分子樹脂中に混ぜ込んだ構造を採用し、紫色光を赤色、緑色、青色の各波長に変換して白色を発光することが提案されている(特許文献1参照)。これにより、演色性を向上することができる。   Therefore, in order to solve such problems, a purple LED chip having a peak of 400 nm or less is used as a light emitting element, and the wavelength converter employs a structure in which three types of phosphors are mixed in a polymer resin. However, it has been proposed to emit white light by converting violet light into red, green, and blue wavelengths (see Patent Document 1). Thereby, a color rendering property can be improved.

しかしながら、特許文献1に記載の発光装置では、励起光400nm付近の紫外域領域に対する赤色成分の蛍光体の発光効率が低いため、白色光の効率を向上できないという問題があった。   However, the light emitting device described in Patent Document 1 has a problem in that the efficiency of white light cannot be improved because the luminous efficiency of the red component phosphor in the ultraviolet region near the excitation light of 400 nm is low.

このような状況を鑑み、赤色成分の蛍光体の開発が行われており、例えば、非特許文献1には、Ba3−x−yEuMnMgSiの化学式で表される珪酸塩系蛍光体が報告されている。
特開2002−314142号公報 ジャーナル・オブ・エレクトロケミカル・ソサイエティ(Journal of Electrochemical Society)、1968年、P773-778
In view of this situation, has been carried out to develop a phosphor of the red component, for example, Non-Patent Document 1, silicate represented by a chemical formula of Ba 3-x-y Eu x Mn y MgSi 2 O 8 Salt-based phosphors have been reported.
JP 2002-314142 A Journal of Electrochemical Society, 1968, P773-778

しかしながら、非特許文献1に開示されるような、Eu、Mg、Mn、Si、Baを含有する珪酸塩系蛍光体においては、高温多湿雰囲気において発光強度の経時的低下が大きく、耐湿性が低いという問題があった。これにより、例えば浴場などの高温多湿雰囲気では、Eu、Mg、Mn、Si、Baを含有する珪酸塩系蛍光体の発光強度の経時的劣化が激しいという問題があった。   However, the silicate phosphor containing Eu, Mg, Mn, Si, and Ba as disclosed in Non-Patent Document 1 has a large decrease in emission intensity over time in a high-temperature and high-humidity atmosphere and low moisture resistance. There was a problem. As a result, for example, in a high-temperature and high-humidity atmosphere such as a bathhouse, there has been a problem that the emission intensity of the silicate phosphor containing Eu, Mg, Mn, Si, and Ba is severely deteriorated with time.

本発明は、高温多湿雰囲気での発光強度の経時的劣化を抑制できる蛍光体粒子および波長変換器ならびに発光装置を提供することを目的とする。   An object of the present invention is to provide phosphor particles, a wavelength converter, and a light-emitting device that can suppress deterioration over time of emission intensity in a high-temperature and high-humidity atmosphere.

本発明者は、高温多湿雰囲気における発光強度の経時的劣化について鋭意検討した結果、高温多湿雰囲気では、Eu、Mnを含有するBaMgSiからなる蛍光体粒子からBaが蛍光体粒子の外方に拡散し、これにより、発光強度が経時的に劣化していくことを見出し、本発明に至った。 As a result of intensive studies on temporal degradation of light emission intensity in a high-temperature and high-humidity atmosphere, the present inventors have determined that Ba is a phosphor particle from a phosphor particle composed of Ba 3 MgSi 2 O 8 containing Eu and Mn. As a result, it was found that the light emission intensity deteriorates with time by diffusing outwardly, resulting in the present invention.

すなわち、本発明の蛍光体粒子は、Euと、Mgと、Mnと、Siと、M(Mは、Ba、SrおよびCaのうち少なくとも1種)とを含有する複合酸化物からなる蛍光体粒子であって、EuおよびMnを含有するM MgSiからなるコア部と、該コア部の周囲に前記コア部を取り囲むように形成され、EuおよびMnを含有するMMgSiOからなるシェル部とを備えてなることを特徴とする。 That is, the phosphor particles of the present invention are fluorescent light composed of a composite oxide containing Eu, Mg, Mn, Si, and M 1 (M 1 is at least one of Ba, Sr, and Ca). M 1 MgSiO containing a core part made of M 1 3 MgSi 2 O 8 containing Eu and Mn, and surrounding the core part around the core part, and containing Eu and Mn And a shell portion made of four .

このような蛍光体粒子では、コア部の周囲に、コア部を取り囲むようにMMgSiOからなるシェル部が形成されているため、コア部から外部への例えばBa等のMの拡散が抑制され、高温多湿雰囲気であってもBaの外部への拡散を抑制でき、高温多湿雰囲気での劣化を抑制できる。 In such a phosphor particle, since a shell portion made of M 1 MgSiO 4 is formed around the core portion so as to surround the core portion, diffusion of M 1 such as Ba from the core portion to the outside is performed. Even if it is a high-temperature and high-humidity atmosphere, diffusion of Ba to the outside can be suppressed, and deterioration in a high-temperature and high-humidity atmosphere can be suppressed.

の蛍光体粒子外部への拡散を抑制することにより、高温多湿雰囲気での発光強度の経時的劣化を抑制できる理由は明らかではないが、本発明者は、M MgSiよりも安定に存在するMMgSiOにより、このシェル部のMMgSiOからMが外部に拡散することを抑制できるとともに、コア部のM MgSiからのMも、シェル部のMMgSiOにより外部に拡散することを抑制でき、これにより、シェル部に存在する3価のEuよりも不安定であるが、発光するために必要なコア部に存在する2価のEu量の経時的減少を防止でき、発光強度の経時的劣化を抑制できると考えている。 The reason why the emission intensity in a high-temperature and high-humidity atmosphere can be suppressed by suppressing the diffusion of M 1 to the outside of the phosphor particles is not clear, but the present inventor has obtained from M 1 3 MgSi 2 O 8 the M 1 MgSiO 4 also exist stably, with M 1 from M 1 MgSiO 4 of the shell portion can be prevented from diffusing to the outside, also M 1 from M 1 3 MgSi 2 O 8 of the core portion, the shell Diffusion to the outside can be suppressed by the part M 1 MgSiO 4 , which makes it more unstable than the trivalent Eu present in the shell part, but the divalent present in the core part necessary for light emission. It is believed that a decrease in the amount of Eu with time can be prevented and deterioration with time of emission intensity can be suppressed.

本発明の蛍光体粒子は、例えば、Euと、Mgと、Mnと、Siと、M(Mは、Ba、SrおよびCaのうち少なくとも1種)とを含有する複合酸化物を、湿度60〜95%における雰囲気で温度50〜100℃で、100〜150時間熱処理することにより、Eu、Mnを含有するBaMgSiからBaが拡散を始め、コア部に溝部が形成されるとともに、コア部の周囲に、M MgSiより安定なMMgSiOからなるシェル部が形成された蛍光体粒子からなる蛍光体を作製できる。 The phosphor particles of the present invention include, for example, a composite oxide containing Eu, Mg, Mn, Si, and M 1 (M 1 is at least one of Ba, Sr, and Ca), humidity, Ba is started to diffuse from Ba 3 MgSi 2 O 8 containing Eu and Mn, and a groove is formed in the core by heat treatment in an atmosphere at 60 to 95% at a temperature of 50 to 100 ° C. for 100 to 150 hours. At the same time, a phosphor composed of phosphor particles in which a shell portion made of M 1 MgSiO 4 that is more stable than M 1 3 MgSi 2 O 8 is formed around the core portion can be produced.

このような蛍光体粒子を発光装置に用いた場合、MMgSiOからなるシェル部により、これ以上のコア部からのBaの拡散が抑制され、発光強度の経時的劣化を抑制できる。 When such phosphor particles are used in a light emitting device, the further diffusion of Ba from the core portion is suppressed by the shell portion made of M 1 MgSiO 4 , and the deterioration of the emission intensity over time can be suppressed.

本発明の波長変換器は、透明マトリクス中に蛍光体粒子が分散しており、光源から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する波長変換器であって、前記蛍光体粒子は、上記蛍光体粒子を含有することを特徴とする。上記蛍光体粒子を用いた波長変換器を発光装置に組み込むことにより、耐湿性の経時的劣化を抑制できる。   The wavelength converter of the present invention is a wavelength converter in which phosphor particles are dispersed in a transparent matrix, converts the wavelength of light emitted from a light source, and outputs output light including the light whose wavelength has been converted. And the said fluorescent substance particle contains the said fluorescent substance particle, It is characterized by the above-mentioned. By incorporating a wavelength converter using the phosphor particles in a light emitting device, it is possible to suppress the deterioration of moisture resistance with time.

本発明の発光装置は、励起光を発する化合物半導体からなる発光素子と、該発光素子と電気的に接続し、かつ外部と接続させるための導体と、前記励起光の波長を変換する上記波長変換器とを基板に備えてなることを特徴とする。このような発光装置では、上記した蛍光体粒子を用いることにより、耐湿性の経時的劣化を抑制できる。   The light-emitting device of the present invention includes a light-emitting element made of a compound semiconductor that emits excitation light, a conductor that is electrically connected to the light-emitting element and connected to the outside, and the wavelength conversion that converts the wavelength of the excitation light. And a vessel is provided on the substrate. In such a light emitting device, it is possible to suppress the deterioration of moisture resistance with time by using the above-described phosphor particles.

本発明の蛍光体粒子は、コア部の周囲に、コア部を取り囲むようにMMgSiOからなるシェル部が形成されているため、コア部から外部へのBaの拡散が抑制され、高温多湿雰囲気であってもBaの外部への拡散を抑制でき、高温多湿雰囲気での発光強度の経時的劣化を抑制できる。このような蛍光体粒子を用いた波長変換器、発光装置では、耐湿性の経時的劣化を抑制できる。 In the phosphor particles of the present invention, since a shell portion made of M 1 MgSiO 4 is formed around the core portion so as to surround the core portion, diffusion of Ba from the core portion to the outside is suppressed, and high temperature and high humidity Even in an atmosphere, diffusion of Ba to the outside can be suppressed, and deterioration of light emission intensity over time in a high-temperature and high-humidity atmosphere can be suppressed. In the wavelength converter and light emitting device using such phosphor particles, it is possible to suppress the deterioration of moisture resistance with time.

本発明の蛍光体粒子31は、Euと、Mgと、Mnと、Siと、M(Mは、Ba、SrおよびCaのうち少なくとも1種)とを含有する複合酸化物(珪酸塩系蛍光体)からなるもので、図1に示すように、コア部33と、該コア部33の周囲にコア部33を取り囲むように形成されたシェル部35とから構成されている。MとしてはBaであることが望ましい。尚、図1(a)では、便宜上、2つの蛍光体粒子が接合したものを示すが、蛍光体粒子はそれぞれ分離した状態が通常である。 The phosphor particles 31 of the present invention include a composite oxide (silicate-based) containing Eu, Mg, Mn, Si, and M 1 (M 1 is at least one of Ba, Sr, and Ca). As shown in FIG. 1, it is composed of a core portion 33 and a shell portion 35 formed around the core portion 33 so as to surround the core portion 33. M 1 is preferably Ba. In FIG. 1A, for convenience, two phosphor particles are joined, but the phosphor particles are usually separated from each other.

コア部33には亀裂37が形成されており、中央部には直線状亀裂37aが一定方向に形成され、外周部には、直線状亀裂37aを連結するような環状亀裂37bが形成されている。環状亀裂37bは、言い換えれば、直線状亀裂37aを取り囲むように形成されている。コアシェル構造を有するか否かは、SEM写真の環状亀裂37bの存在により確認することができる。   A crack 37 is formed in the core portion 33, a linear crack 37a is formed in a certain direction in the center portion, and an annular crack 37b that connects the linear crack 37a is formed in the outer peripheral portion. . In other words, the annular crack 37b is formed so as to surround the linear crack 37a. Whether or not it has a core-shell structure can be confirmed by the presence of the annular crack 37b in the SEM photograph.

このコア部33は、Eu、Mnを含有するM MgSiから形成されており、直線状亀裂37a、環状亀裂37bおよびその近傍にはBa元素が多く存在している。Eu、Mnを含有するM MgSiとは、BaMgSi結晶のBaサイトの一部または全部がSrまたはCaで置換される場合があり、このBaMgSi結晶中にEu、Mnが固溶していることを意味する。BaMgSi結晶中には、Euは2価として存在する。 The core portion 33 is made of M 1 3 MgSi 2 O 8 containing Eu and Mn, and a large amount of Ba element exists in the linear crack 37a, the annular crack 37b, and the vicinity thereof. Eu or Mn-containing M 1 3 MgSi 2 O 8 is a case where part or all of the Ba site of the Ba 3 MgSi 2 O 8 crystal is substituted with Sr or Ca. This Ba 3 MgSi 2 O 8 It means that Eu and Mn are dissolved in the crystal. Eu is present as divalent in the Ba 3 MgSi 2 O 8 crystal.

シェル部35は、環状亀裂37bの外側に形成され、Eu、Mnを含有するM MgSiよりも安定なMMgSiOから形成されており、Eu、Mnを含有するMMgSiOとは、BaMgSiO結晶のBaサイトの一部または全部がSrまたはCaで置換される場合があり、このBaMgSiO結晶中にEu、Mnが固溶していることを意味する。BaMgSiO結晶中には、Euはより安定な3価として存在する。 The shell portion 35 is formed on the outer side of the annular crack 37b, is formed of M 1 MgSiO 4 that is more stable than M 1 3 MgSi 2 O 8 containing Eu and Mn, and M 1 MgSiO containing Eu and Mn. 4 means that part or all of the Ba site of the BaMgSiO 4 crystal may be substituted with Sr or Ca, and Eu and Mn are dissolved in the BaMgSiO 4 crystal. In the BaMgSiO 4 crystal, Eu exists as a more stable trivalent.

このような蛍光体粒子では、コア部33の周囲に、コア部33を取り囲むようにMMgSiOからなるシェル部35が形成されているため、コア部33から外部へのBaの拡散が抑制され、高温多湿雰囲気であってもBaの外部への拡散を抑制でき、高温多湿雰囲気での発光強度の経時的劣化を抑制できる。 In such phosphor particles, the shell portion 35 made of M 1 MgSiO 4 is formed around the core portion 33 so as to surround the core portion 33, so that the diffusion of Ba from the core portion 33 to the outside is suppressed. In addition, diffusion of Ba to the outside can be suppressed even in a high-temperature and high-humidity atmosphere, and deterioration with time of emission intensity in a high-temperature and high-humidity atmosphere can be suppressed.

本発明の蛍光体は、上記蛍光体粒子が多数集合してなるもので、このような蛍光体では、高温多湿雰囲気での劣化を抑制できる。   The phosphor of the present invention is formed by aggregating a large number of the above-described phosphor particles. With such a phosphor, deterioration in a high-temperature and high-humidity atmosphere can be suppressed.

本発明の蛍光体は、M 3−aEuMg1−bMnSiの化学組成(但し、aは0<a≦1.5、bは0<b≦0.5、cは1.905≦c≦2.205を満足する値である)を有することが望ましい。これにより、化学量論組成に近く、励起光を赤色に変換することのできる結晶が再現よく形成され、赤色以外の変換光の発生を抑制することができる。 Phosphor of the present invention, M 1 3-a Eu a Mg 1-b Mn b Si chemical composition of c O 8 (provided that, a 0 <a ≦ 1.5, b is 0 <b ≦ 0.5, c preferably has a value satisfying 1.905 ≦ c ≦ 2.205). Thereby, a crystal close to the stoichiometric composition and capable of converting excitation light into red is formed with good reproducibility, and generation of converted light other than red can be suppressed.

Euのモル比aは、M 3−aEuMg1−bMnSi中で0<a≦1.5を満たせばよい。しかし、発光中心イオンEu2+のモル比aが小さすぎると、発光強度が小さくなる傾向があり、一方、多すぎても、濃度消光と呼ばれる現象によりやはり発光強度が小さくなる傾向がある。下限としては0.01≦aが好ましく、上限としてはa≦1が好ましい。さらに、aは、0.05≦a≦0.20の範囲にあることが望ましい。 The molar ratio of Eu a is, M 1 3-a Eu a Mg 1-b Mn b Si c O 8 0 in <should satisfy a ≦ 1.5. However, if the molar ratio “a” of the luminescent center ion Eu 2+ is too small, the emission intensity tends to decrease. On the other hand, if it is too large, the emission intensity tends to decrease due to a phenomenon called concentration quenching. The lower limit is preferably 0.01 ≦ a, and the upper limit is preferably a ≦ 1. Furthermore, a is preferably in the range of 0.05 ≦ a ≦ 0.20.

Mnのモル比は0<b≦0.5を満たせばよい。しかし本発明の蛍光体は励起光源の照射を受けて励起したEu2+のエネルギーがMn2+に移動し、Mn2+が赤発光しているものと考えられているため、Mnの組成によりエネルギー移動の程度が異なる。それゆえ効率よく赤色発光強度を得るには、0.01≦b≦0.3のMn組成が好ましい。さらに、bは、0.075≦b≦0.100を満足することが望ましい。また、cは、1.905≦c≦2.205を満足すればよい。 The molar ratio of Mn should satisfy 0 <b ≦ 0.5. However phosphor of the present invention moves to energy Mn 2+ of Eu 2+ excited by irradiation of the excitation light source, since the Mn 2+ is believed to have red light emission, energy transfer by the composition of the Mn The degree is different. Therefore, in order to obtain red light emission intensity efficiently, a Mn composition of 0.01 ≦ b ≦ 0.3 is preferable. Further, b preferably satisfies 0.075 ≦ b ≦ 0.100. Moreover, c should just satisfy 1.905 <= c <= 2.205.

本発明の蛍光体は、Eu、Mnを含有するBaMgSi結晶を主たる結晶し、BaMgSiO結晶を含有するものであり、他にBaMgSi結晶、BaSiO結晶が存在することがあるが、BaMgSi結晶、BaSiO結晶については実質的に存在しないことが望ましい。なお、Eu、Mnは、賦活剤として機能するものである。 The phosphor of the present invention mainly contains Ba 3 MgSi 2 O 8 crystals containing Eu and Mn, and contains BaMgSiO 4 crystals. Besides, Ba 2 MgSi 2 O 7 crystals and Ba 2 SiO 4 crystals. However, it is desirable that the Ba 2 MgSi 2 O 7 crystal and the Ba 2 SiO 4 crystal are not substantially present. Eu and Mn function as activators.

すなわち、Eu、Mnを賦活剤として含有するBaMgSi結晶の2θ=31.5°〜32°付近で検出されるピークのX線(Cu−Kα)回折強度をAとし、BaMgSi結晶の2θ=27.7°〜28.2°でのピークのX線回折強度をBとし、BaSiO結晶の2θ=29.2°〜29.8°でのピークのX線回折強度をCとし、BaMgSiO結晶の2θ=28.0°〜28.4°でのピークのX線回折強度をDとしたときB/(A+B+C+D)が0.1以下であり、C/(A+B+C+D)が0.1以下であり、D/(A+B+C+D)が0.3以下であることが望ましい。 That is, the X-ray (Cu-Kα) diffraction intensity of the peak detected in the vicinity of 2θ = 31.5 ° to 32 ° of a Ba 3 MgSi 2 O 8 crystal containing Eu and Mn as an activator is A, and Ba 2 The X-ray diffraction intensity of the peak at 2θ = 27.7 ° to 28.2 ° of the MgSi 2 O 7 crystal is B, and the peak at 2θ = 29.2 ° to 29.8 ° of the Ba 2 SiO 4 crystal is When the X-ray diffraction intensity is C and the X-ray diffraction intensity of the peak at 2θ = 28.0 ° to 28.4 ° of the BaMgSiO 4 crystal is D, B / (A + B + C + D) is 0.1 or less. It is desirable that / (A + B + C + D) is 0.1 or less and D / (A + B + C + D) is 0.3 or less.

このような範囲になる蛍光体は、Eu、Mnを賦活剤として含有するBaMgSi結晶以外からの緑色発光を抑制でき、純粋な赤色発光スペクトルに近い変換光が得られる。 The phosphor in such a range can suppress green light emission from other than Ba 3 MgSi 2 O 8 crystals containing Eu and Mn as activators, and can obtain converted light close to a pure red light emission spectrum.

本発明の蛍光体は、先ず、Euと、Mgと、Mnと、Siと、M(Mは、Ba、Sr、Caの少なくとも1種)とを含有する複合酸化物を作製し、この複合酸化物を、湿度60〜95%における雰囲気で温度50〜100℃で100〜150時間熱処理することにより得ることができる。 The phosphor of the present invention first produces a composite oxide containing Eu, Mg, Mn, Si, and M 1 (M 1 is at least one of Ba, Sr, and Ca). The composite oxide can be obtained by heat treatment at a temperature of 50 to 100 ° C. for 100 to 150 hours in an atmosphere at a humidity of 60 to 95%.

複合酸化物は、例えば、Ba、Mg、Eu、Mn、Siの元素源化合物を、下記の(A)又は(B)の混合法により調整した混合物を焼成することにより製造することができる。   The composite oxide can be produced, for example, by firing a mixture prepared by adjusting an element source compound of Ba, Mg, Eu, Mn, and Si by the following (A) or (B) mixing method.

(A):ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒を用いる粉砕とリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合と合わせた乾式混合法。   (A): Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverizer using mortar and pestle and mixer such as ribbon blender, V-type blender, Henschel mixer, or mixing using mortar and pestle And dry mixing method.

(B):粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と攪拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。   (B): Using a pulverizer or a mortar and pestle or the like, add water or the like in a slurry state or a solution state, mix with a pulverizer, mortar and pestle, or evaporating dish and stirring rod, A wet mixing method in which drying is performed by heat drying or natural drying.

これらの混合法の中で、特に、賦活剤の元素化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素化合物において全体に均一な混合が得られる面からも、後者湿式混合法が好ましい。   Among these mixing methods, particularly in the case of activator elemental compounds, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the whole compound, and in other elemental compounds, The latter wet mixing method is preferable from the viewpoint of obtaining uniform mixing throughout.

焼成方法としてはアルミナや石英製の坩堝やトレイ等の耐熱容器中で、1000℃〜1300℃で、酸素、窒素、水素、アルゴン、等の気体の単独或いは混合雰囲気下、1〜24時間、加熱することによりなされる。酸化性雰囲気中で焼成した場合には、還元処理することが必要である。   As a firing method, heating is performed in a heat-resistant container such as a crucible or tray made of alumina or quartz at 1000 ° C. to 1300 ° C. in a single or mixed atmosphere of a gas such as oxygen, nitrogen, hydrogen, argon, etc. for 1 to 24 hours. It is done by doing. When firing in an oxidizing atmosphere, a reduction treatment is necessary.

また、加熱プロセス中の構成成分の蒸発を抑制するために、埋め焼き、マイクロ波焼成、共剤を用いて熱処理を行っても良い。   In addition, in order to suppress evaporation of the constituent components during the heating process, heat treatment may be performed using filling baking, microwave baking, or a co-agent.

尚、前記加熱雰囲気としては、賦活元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu,Mn等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性もしくは還元性雰囲気下が好ましい。   As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the activation element contributes to light emission is selected. In the case of divalent Eu, Mn, etc. in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, argon is preferable.

上記のようにして、Euと、Mgと、Mnと、Siと、Mとを含有する複合酸化物を作製し、次に、この複合酸化物を、湿度60〜95%における雰囲気で温度50〜100℃で100〜150時間熱処理することにより、本発明の蛍光体を得ることができる。 As described above, a composite oxide containing Eu, Mg, Mn, Si, and M 1 is prepared. Next, the composite oxide is heated to a temperature of 50 to 95% in an atmosphere at a humidity of 60 to 95%. The phosphor of the present invention can be obtained by heat treatment at -100 ° C for 100-150 hours.

すなわち、複合酸化物を湿度60〜95%における雰囲気で温度50〜100℃で100〜150時間熱処理することにより、Eu、Mnを含有するBaMgSi(複合酸化物)からBaが拡散を始め、コア部に亀裂37が形成されるとともに、コア部33の周囲に、M MgSiより安定なMMgSiOからなるシェル部35が形成され、このような蛍光体粒子を発光装置に用いた場合、MMgSiOからなるシェル部35により、これ以上のコア部33からのBaの拡散が抑制され、耐久性の劣化を抑制できる。 That is, Ba is diffused from Ba 3 MgSi 2 O 8 (composite oxide) containing Eu and Mn by heat-treating the composite oxide in an atmosphere at a humidity of 60 to 95% at a temperature of 50 to 100 ° C. for 100 to 150 hours. In addition, a crack 37 is formed in the core portion, and a shell portion 35 made of M 1 MgSiO 4 that is more stable than M 1 3 MgSi 2 O 8 is formed around the core portion 33, and such phosphor particles Is used in the light emitting device, the further diffusion of Ba from the core portion 33 is suppressed by the shell portion 35 made of M 1 MgSiO 4 , and deterioration of durability can be suppressed.

次に、本発明の波長変換器、さらに該波長変換器を搭載した発光装置を、図面を用いて説明する。図2は、本発明の発光装置11の一実施形態を示す概略断面図である。図2によれば、本発明の発光装置11は、電極13が形成された基板15と、基板15上に設けられている発光素子17と、基板15上に発光素子17を覆うように形成された1層の波長変換器19と、光を反射する反射部材21とを備えている。   Next, a wavelength converter of the present invention and a light emitting device equipped with the wavelength converter will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of the light-emitting device 11 of the present invention. According to FIG. 2, the light emitting device 11 of the present invention is formed so as to cover the light emitting element 17 on the substrate 15, the light emitting element 17 provided on the substrate 15, and the substrate 15. In addition, a single-layer wavelength converter 19 and a reflecting member 21 that reflects light are provided.

波長変換器19は、例えば、透明マトリクス中に、430nmから490nmの蛍光を発する青色蛍光体(図示せず)、520nmから570nmの蛍光を発する緑色蛍光体(図示せず)、600nmから650nmの蛍光を発する赤色蛍光体(図示せず)が含有されており、光源である発光素子17から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する。   The wavelength converter 19 is, for example, a blue phosphor (not shown) that emits fluorescence of 430 to 490 nm, a green phosphor (not shown) that emits fluorescence of 520 to 570 nm, and a fluorescence of 600 to 650 nm in a transparent matrix. A red phosphor (not shown) that emits light is contained, converts the wavelength of light emitted from the light emitting element 17 that is a light source, and outputs output light including the light having the converted wavelength.

青色蛍光体は、400nm前後の励起効率が高い材料からなる。一方、緑色蛍光体は、400nmから460nmまでの光で励起される材料からなる。また、赤色蛍光体は、400nmから460nmだけでなく、550nm付近の光でも励起される材料からなる。   The blue phosphor is made of a material having a high excitation efficiency of around 400 nm. On the other hand, the green phosphor is made of a material that is excited by light from 400 nm to 460 nm. The red phosphor is made of a material that is excited not only by 400 nm to 460 nm but also by light in the vicinity of 550 nm.

この波長変換器19において、赤色蛍光体として、本発明の蛍光体を用いることで、本発明の波長変換器19および発光装置11を容易に作製することができる。   In the wavelength converter 19, the wavelength converter 19 and the light emitting device 11 of the present invention can be easily manufactured by using the phosphor of the present invention as the red phosphor.

波長変換器19は、蛍光体を均一に分散および担持し、かつ蛍光体の光劣化を抑制することができるため、高分子樹脂やガラス材料などの透明マトリクス中に分散して形成することが好ましい。高分子樹脂膜、ゾルゲルガラス薄膜などのガラス材料としては、透明性が高く、かつ加熱や光によって容易に変色しない耐久性を有するものが望ましい。   The wavelength converter 19 is preferably formed by being dispersed in a transparent matrix such as a polymer resin or a glass material because the wavelength converter 19 can uniformly disperse and carry the phosphor and suppress light deterioration of the phosphor. . As a glass material such as a polymer resin film or a sol-gel glass thin film, a material having high transparency and durability that is not easily discolored by heating or light is desirable.

高分子樹脂膜は、材料は特に限定されるものではなく、例えば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体が用いられる。特に、350nm以上の波長域において優れた光透過性を有していることが好ましい。このような透明性に加え、耐熱性の観点から、シリコーン樹脂がより好適に用いられる。   The material of the polymer resin film is not particularly limited. For example, epoxy resin, silicone resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, cellulose acetate, polyarylate, Derivatives of these materials are used. In particular, it is preferable to have excellent light transmittance in a wavelength region of 350 nm or more. In addition to such transparency, a silicone resin is more preferably used from the viewpoint of heat resistance.

ガラス材料は、シリカ、チタニア、ジルコニア、さらにそれらのコンポジット系を例示できる。ガラス材料中に蛍光体をそれぞれ単独で分散させて形成する。高分子樹脂膜と比較して、光、特に紫外線に対する耐久性が高く、さらに熱に対する耐久性が高いことから、製品の長寿命化を実現できる。また、ガラス材料は、安定性を向上させることができることから、信頼性に優れた発光装置を実現できる。   Examples of the glass material include silica, titania, zirconia, and composite materials thereof. Each of the phosphors is formed in the glass material by dispersing it alone. Compared to a polymer resin film, it has a high durability against light, particularly ultraviolet rays, and further has a high durability against heat, so that the product life can be extended. In addition, since the glass material can improve stability, a light-emitting device with excellent reliability can be realized.

波長変換器19は、ゾルゲルガラス膜などのガラス材料または高分子樹脂膜を用いて、塗布法により形成することができる。一般的な塗布法であれば限定されないが、ディスペンサーによる塗布が好ましい。例えば、液状で未硬化の樹脂、ガラス材料、または溶剤で可塑性を持たせた樹脂およびガラス材料に、蛍光体を混合することにより製造することができる。未硬化の樹脂としては、例えばシリコーン樹脂が使用できる。これらの樹脂は2液を混合して硬化させるタイプのものであっても1液で硬化するタイプのものであっても良く、2液を混合して硬化させるタイプの場合、両液にそれぞれ蛍光体を混練してもよく、あるいはどちらか一方の液に蛍光体を混練しても構わない。また、溶剤で可塑性を持たせた樹脂としては例えばアクリル樹脂を使用することができる。   The wavelength converter 19 can be formed by a coating method using a glass material such as a sol-gel glass film or a polymer resin film. Although it will not be limited if it is a general coating method, the application | coating by a dispenser is preferable. For example, it can be produced by mixing a phosphor with a liquid uncured resin, a glass material, or a resin and a glass material plasticized with a solvent. As the uncured resin, for example, a silicone resin can be used. These resins may be of a type that is cured by mixing two liquids, or a type that is cured by one liquid. The body may be kneaded, or the phosphor may be kneaded in either one of the liquids. In addition, as a resin made plastic with a solvent, for example, an acrylic resin can be used.

硬化した波長変換器19は、未硬化状態でディスペンサー等の塗布法を使用するなどして、フィルム状に成形したり、所定の型に流し込んで固めることで得られる。樹脂およびガラス材料を硬化させる方法としては、熱エネルギーや光エネルギーを使う方法がある他、溶剤を揮発させる方法がある。   The cured wavelength converter 19 can be obtained by forming into a film shape by using a coating method such as a dispenser in an uncured state, or pouring into a predetermined mold and hardening. As a method of curing the resin and the glass material, there are a method of using heat energy and light energy, and a method of volatilizing the solvent.

電極13を形成する導体は、発光素子17を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子17と接続されている。導体としては、例えば、W、Mo、Cu、Ag等の金属粉末を含むメタライズ層を用いることができる。導体は、基板15がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成され、基板15が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基板15の内部に設置固定される。   The conductor forming the electrode 13 has a function as a conductive path for electrically connecting the light emitting element 17 and is connected to the light emitting element 17 by a conductive bonding material. As the conductor, for example, a metallized layer containing metal powder such as W, Mo, Cu, and Ag can be used. When the substrate 15 is made of ceramic, the conductor is formed on the upper surface by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn) or the like at a high temperature, and the substrate 15 is made of resin. In this case, a lead terminal made of copper (Cu), iron (Fe) -nickel (Ni) alloy or the like is molded and fixed inside the substrate 15.

基板15は、熱伝導性に優れ、かつ全反射率の大きいことが求められるため、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   Since the substrate 15 is required to have excellent thermal conductivity and high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed is preferably used in addition to a ceramic material such as alumina or nitrogen aluminum. It is done.

発光素子17は、蛍光体の励起を効率的に行なうことができるため、中心波長が370〜420nmの光を発する半導体材料を備えた発光素子を用いている。これにより、出力光の強度を高め、より発光強度の高い発光装置を得ることが可能となる。   The light-emitting element 17 uses a light-emitting element including a semiconductor material that emits light having a center wavelength of 370 to 420 nm because phosphors can be excited efficiently. As a result, it is possible to increase the intensity of the output light and obtain a light emitting device with higher emission intensity.

発光素子17は、上記中心波長を発するものが好ましいが、発光素子基板表面に、半導体材料からなる発光層を備える構造(図示せず)を有していることが、高い外部量子効率を有する点で好ましい。このような半導体材料として、ZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板上に半導体材料からなる発光層を有する積層構造を形成すれば良い。発光素子基板は、結晶性の良い窒化物半導体を量産性よく形成させるために、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、SiC、Si、ZnO、ZrB、GaNおよび石英等の材料が好適に用いられる。 The light emitting element 17 preferably emits the above-mentioned center wavelength, but having a structure (not shown) including a light emitting layer made of a semiconductor material on the surface of the light emitting element substrate has high external quantum efficiency. Is preferable. Examples of such semiconductor materials include various semiconductors such as ZnSe and nitride semiconductors (GaN, etc.), but the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure including a light-emitting layer made of a semiconductor material may be formed over a light-emitting element substrate using a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method. In order to form a nitride semiconductor with good crystallinity with high productivity, for example, when a light emitting layer made of a nitride semiconductor is formed on the surface of the light emitting element substrate, sapphire, spinel, SiC, Si, ZnO, ZrB 2 , GaN In addition, materials such as quartz are preferably used.

発光素子17と波長変換器19の側面には、必要に応じて、光を反射する反射部材21を設け、側面に逃げる光を前方に反射し、出力光の強度を高めることができる。反射部材21の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)およびこれらの積層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。   If necessary, a reflecting member 21 that reflects light is provided on the side surfaces of the light emitting element 17 and the wavelength converter 19, and the light escaping to the side surface can be reflected forward to increase the intensity of the output light. Examples of the material of the reflecting member 21 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

本発明の発光装置は、図2に示すように、波長変換器19を発光素子17上に設置することにより得られる。波長変換器19を発光素子17上に設置する方法としては硬化したシート状の波長変換器19を発光素子7上に設置することが可能であるほか、液状の未硬化の材料を発光素子17上に設置した後、硬化させて設置することも可能である。   The light emitting device of the present invention can be obtained by installing the wavelength converter 19 on the light emitting element 17 as shown in FIG. As a method of installing the wavelength converter 19 on the light emitting element 17, it is possible to install a cured sheet-like wavelength converter 19 on the light emitting element 7, and a liquid uncured material is applied on the light emitting element 17. It is also possible to harden and install after installation.

以下、実施例および比較例を挙げて本発明の蛍光体粒子を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, the phosphor particles of the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

炭酸バリウム粉末、炭酸ストロンチウム粉末、炭酸カルシウム粉末、酸化マグネシウム粉末、二酸化珪素粉末、酸化ユウロピウム粉末、酸化マンガン粉末を用いて、化学式M 3−aEuMg1−bMnSiにおけるa、b、cが表1の組成となるように秤量し、さらに、塩化アンモニウムを所定量添加し、ポリポット中で混合し、乾燥後、大気雰囲気下1150℃で3時間焼成した。その後、12%の水素を含む窒素ガス流下1250℃で9時間焼成し、Euと、Mgと、Mnと、Siと、Mとを含有する複合酸化物を作製し、この複合酸化物を、表1に示す湿度および温度の雰囲気の高温高湿漕中に収容し、表1に示す時間熱処理し、これを冷却し、取り出した。 Barium carbonate powder, strontium carbonate powder, calcium carbonate powder, magnesium oxide powder, silicon dioxide powder, europium oxide powder, with a manganese oxide powder, in the chemical formula M 1 3-a Eu a Mg 1-b Mn b Si c O 8 A, b, and c were weighed so as to have the composition shown in Table 1, and a predetermined amount of ammonium chloride was added, mixed in a polypot, dried, and then fired at 1150 ° C. for 3 hours in an air atmosphere. Thereafter, it was fired at 1250 ° C. for 9 hours under a nitrogen gas flow containing 12% hydrogen to produce a composite oxide containing Eu, Mg, Mn, Si, and M 1 . It was housed in a high-temperature and high-humidity atmosphere having the humidity and temperature shown in Table 1, heat-treated for the time shown in Table 1, cooled, and taken out.

この蛍光体について、耐湿性を評価した。耐湿性は、作製初期の600から640nm領域の蛍光ピークの蛍光強度に対して、温度85℃で湿度85%の雰囲気で100時間保持した後の蛍光強度の比、すなわち、初期の蛍光強度を100としたときの、温度85℃で湿度85%の雰囲気で100時間保持した後の蛍光強度を相対値として求め、表1に記載した。   This phosphor was evaluated for moisture resistance. The moisture resistance is the ratio of the fluorescence intensity after holding for 100 hours in an atmosphere of 85% humidity at a temperature of 85 ° C. with respect to the fluorescence intensity of the fluorescence peak in the 600 to 640 nm region at the initial production stage, that is, the initial fluorescence intensity is 100. The fluorescence intensity after maintaining for 100 hours in an atmosphere of 85 ° C. and 85% humidity was determined as a relative value and listed in Table 1.

また、この際の蛍光体を構成する蛍光体粒子を、走査型電子顕微鏡(SEM)写真を確認することにより、組織がコア部とシェル部から構成されているか確認し、表1に記載した。また、コア部とシェル部の結晶相をX線回折測定により観察し、コア部がEu、Mnを含有するM MgSiから形成されており、シェル部が、Eu、Mnを含有するMMgSiOから形成されていることを確認した。さらに、コア部とシェル部から構成されている場合には、コア部に亀裂が形成されていることを確認した。 Moreover, it confirmed that the structure | tissue was comprised from the core part and the shell part by confirming the fluorescent substance particle which comprises the fluorescent substance in this case by confirming the scanning electron microscope (SEM) photograph, and it described in Table 1. Further, the crystal phase of the core part and the shell part is observed by X-ray diffraction measurement, and the core part is formed from M 1 3 MgSi 2 O 8 containing Eu and Mn, and the shell part contains Eu and Mn. It was confirmed that it was formed from M 1 MgSiO 4 . Furthermore, when it comprised from the core part and the shell part, it confirmed that the crack was formed in the core part.

また、複合酸化物の高温高湿での熱処理をしない点を除いて、上記実施例と同様にして比較例の試料No.6を作製した。これらについても、上記実施例と同様にして評価し、表1に記載した。
Further, the sample No. of the comparative example was the same as the above example except that the complex oxide was not heat-treated at high temperature and high humidity. 6 was produced. These were also evaluated in the same manner as in the above examples and listed in Table 1.

表1から、高温高湿処理を行った本発明の試料では、コアシェル構造を有しており、このコアシェル構造により、コアシェル構造を有しない試料No.6よりも耐湿性が向上していることが判る。これは、本発明の試料では、熱処理時の水分の影響で、蛍光体粒子内部のBaが粒子表面に拡散し、結果粒子表面にMMgSiOからなるシェル部が形成されるために、粒子内部のコア部のEuが安定して2価で存在するためであると考えられる。 From Table 1, the sample of the present invention subjected to the high-temperature and high-humidity treatment has a core-shell structure. It can be seen that the moisture resistance is higher than 6. This is because in the sample of the present invention, Ba inside the phosphor particles diffuses to the particle surface due to the influence of moisture during heat treatment, and as a result, a shell portion made of M 1 MgSiO 4 is formed on the particle surface. It is thought that this is because Eu in the inner core portion is stably divalent.

図1に試料No.2の蛍光体粒子の断面を示す。図1より、蛍光体粒子表面にMMgSiOからなるシェル部が形成されていることが判る。 In FIG. The cross section of 2 fluorescent substance particles is shown. From FIG. 1, it can be seen that a shell portion made of M 1 MgSiO 4 is formed on the surface of the phosphor particles.

本発明の蛍光体粒子を示すもので、(a)はSEM写真、(b)は模式図である。The fluorescent substance particle of this invention is shown, (a) is a SEM photograph, (b) is a schematic diagram. 本発明の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device of this invention.

符号の説明Explanation of symbols

11・・・発光装置
13・・・電極
15・・・基板
17・・・発光素子
19・・・波長変換器
31・・・蛍光体粒子
33・・・コア部
35・・・シェル部
37a・・・直線上亀裂
37b・・・環状亀裂
DESCRIPTION OF SYMBOLS 11 ... Light-emitting device 13 ... Electrode 15 ... Substrate 17 ... Light-emitting element 19 ... Wavelength converter 31 ... Phosphor particle 33 ... Core part 35 ... Shell part 37a ..Linear crack 37b ... annular crack

Claims (4)

Euと、Mgと、Mnと、Siと、M(Mは、Ba、SrおよびCaのうち少なくとも1種)とを含有する複合酸化物からなる蛍光体粒子であって、EuおよびMnを含有するM MgSiからなるコア部と、該コア部の周囲に前記コア部を取り囲むように形成され、EuおよびMnを含有するMMgSiOからなるシェル部とを備えてなることを特徴とする蛍光体粒子。 Phosphor particles made of a composite oxide containing Eu, Mg, Mn, Si, and M 1 (M 1 is at least one of Ba, Sr and Ca), and Eu and Mn A core portion made of M 1 3 MgSi 2 O 8 and a shell portion made of M 1 MgSiO 4 formed to surround the core portion and containing Eu and Mn. A phosphor particle characterized by the above. 前記コア部に亀裂が形成されていることを特徴とする請求項1記載の蛍光体粒子。 The phosphor particle according to claim 1, wherein a crack is formed in the core portion. 透明マトリクス中に蛍光体粒子が分散しており、該蛍光体粒子により光源から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する波長変換器であって、前記蛍光体粒子は、請求項1または2に記載の蛍光体粒子を含有することを特徴とする波長変換器。 The phosphor particles are dispersed in the transparent matrix, the wavelength converter that converts the wavelength of the light emitted from the light source by the phosphor particles, and outputs the output light including the wavelength-converted light, The said phosphor particle contains the phosphor particle of Claim 1 or 2, The wavelength converter characterized by the above-mentioned. 励起光を発する化合物半導体からなる発光素子と、該発光素子と電気的に接続され、かつ外部と接続するための導体と、前記励起光の波長を変換する請求項3に記載の波長変換器とを基板に備えてなることを特徴とする発光装置。 The light emitting element which consists of a compound semiconductor which emits excitation light, the conductor which is electrically connected with this light emitting element, and connects with the exterior, The wavelength converter of Claim 3 which converts the wavelength of the said excitation light, Is provided on a substrate.
JP2007222978A 2007-08-29 2007-08-29 Phosphor particles, wavelength converter and light emitting device Active JP5036454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222978A JP5036454B2 (en) 2007-08-29 2007-08-29 Phosphor particles, wavelength converter and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222978A JP5036454B2 (en) 2007-08-29 2007-08-29 Phosphor particles, wavelength converter and light emitting device

Publications (2)

Publication Number Publication Date
JP2009052003A JP2009052003A (en) 2009-03-12
JP5036454B2 true JP5036454B2 (en) 2012-09-26

Family

ID=40503361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222978A Active JP5036454B2 (en) 2007-08-29 2007-08-29 Phosphor particles, wavelength converter and light emitting device

Country Status (1)

Country Link
JP (1) JP5036454B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585804A (en) * 2011-12-26 2012-07-18 天津理工大学 660 nanometer red fluorescent material excited by blue-violet chip and spray production method
JP5689407B2 (en) * 2011-12-28 2015-03-25 宇部マテリアルズ株式会社 Silicate green light emitting phosphor
JP6112029B2 (en) * 2014-01-30 2017-04-12 信越化学工業株式会社 Method for producing double fluoride phosphor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544482A (en) * 1968-03-15 1970-12-01 Sylvania Electric Prod Europium and manganese activated alkaline earth silicate phosphors
US6099754A (en) * 1998-03-31 2000-08-08 Sarnoff Corporation Long persistence red phosphors
JP4101468B2 (en) * 2001-04-09 2008-06-18 豊田合成株式会社 Method for manufacturing light emitting device
JP2003082342A (en) * 2001-09-12 2003-03-19 Matsushita Electric Ind Co Ltd Plasma display device
FR2846663B1 (en) * 2002-11-05 2006-08-11 Rhodia Elect & Catalysis LIGHT-EMITTING MATERIAL, PARTICULARLY FOR GREENHOUSE WALLS, COMPRISING AS A BARIUM AND MAGNESIUM SILICATE ADDITIVE
CN1768122A (en) * 2003-03-28 2006-05-03 奥斯兰姆奥普托半导体有限责任公司 Method for producing a coating on the surface of a particle or on a material and corresponding product
FR2869159B1 (en) * 2004-04-16 2006-06-16 Rhodia Chimie Sa ELECTROLUMINESCENT DIODE EMITTING A WHITE LIGHT
KR100746204B1 (en) * 2005-11-22 2007-08-03 특허법인 맥 White luminescent material and the preparation method and white light emitting diode using the material

Also Published As

Publication number Publication date
JP2009052003A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4104013B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE
JP5137850B2 (en) Phosphor and wavelength converter, light emitting device, and illumination device using the same
TWI407474B (en) A ceramic luminescence converter and illumination system comprising said converter
JP4963705B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE
US8471459B2 (en) Fluorescent substance and light-emitting device employing the same
JP2011071404A (en) Light-emitting device and illumination apparatus
JP4521227B2 (en) Method for producing phosphor containing nitrogen
US9068116B2 (en) Luminescent material
TWI296648B (en) Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
JP2001308393A (en) Light-emitting diode
JP2008538652A (en) Lighting system including ceramic luminescence converter
JP2010129906A (en) Illumination device for display device and display device
JPWO2008102628A1 (en) Phosphor, its manufacturing method, wavelength converter, light emitting device, and lighting device
JP2010006850A (en) Wavelength converter, light emitter, and illuminating device
JP2010225960A (en) Light emitting device and illumination apparatus
JP2007088248A (en) Colored light emitting diode lamp, lighting apparatus for decoration, and color-display signing apparatus
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device
US20120230010A1 (en) Fluorescent substance and light-emitting device employing the same
TWI362763B (en) Radiation-emitting device
JP2011155125A (en) Light-emitting device, and illumination apparatus
JP2010199273A (en) Light-emitting device and lighting device
JP5036454B2 (en) Phosphor particles, wavelength converter and light emitting device
JP2009280793A (en) Fluorescent substance, wavelength converter, light emitter and lighting installation
JP5004616B2 (en) Phosphor, method for manufacturing the same, wavelength converter and light emitting device
JP2009203264A (en) Fluorescent substance, wavelength converter and light emitting device, and illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150