[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5035382B2 - Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method - Google Patents

Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method Download PDF

Info

Publication number
JP5035382B2
JP5035382B2 JP2010096289A JP2010096289A JP5035382B2 JP 5035382 B2 JP5035382 B2 JP 5035382B2 JP 2010096289 A JP2010096289 A JP 2010096289A JP 2010096289 A JP2010096289 A JP 2010096289A JP 5035382 B2 JP5035382 B2 JP 5035382B2
Authority
JP
Japan
Prior art keywords
peripheral blade
outer peripheral
inner peripheral
glass disk
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010096289A
Other languages
Japanese (ja)
Other versions
JP2010205405A (en
Inventor
秀樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2010096289A priority Critical patent/JP5035382B2/en
Publication of JP2010205405A publication Critical patent/JP2010205405A/en
Application granted granted Critical
Publication of JP5035382B2 publication Critical patent/JP5035382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体の側周面を加工する情報記録媒体用ガラスディスクの製造方法及び当該方法に使用する製造装置に関する。   The present invention relates to a method for manufacturing a glass disk for information recording medium for processing a side peripheral surface of a glass disk laminate in which a large number of glass disks for information recording medium are stacked, and a manufacturing apparatus used in the method.

磁気ディスクの小型・高密度化に伴い、表面平滑性及び機械的強度が優れたガラスディスクを情報記録媒体用ディスクとして利用することが多くなっている。情報記録媒体用ガラスディスクは、ガラスディスクの側周面をラッピング加工したあとポリッシング加工し、さらにガラスディスクの表裏の記録面をラッピング加工したあとポリッシング加工することによって作成される。   As magnetic disks become smaller and higher in density, glass disks with excellent surface smoothness and mechanical strength are increasingly used as information recording medium disks. The glass disk for information recording medium is produced by lapping the side peripheral surface of the glass disk and then polishing, and further lapping the front and back recording surfaces of the glass disk and polishing.

ガラスディスクの側周面の機械的加工は、一枚一枚個別に行うことも可能であるが、作業効率が非常に悪い。そこで、ガラスディスクの側周面の機械的加工は、ガラスディスクを多数枚積層したガラスディスク積層体に対して行われることが一般的である(例えば、特許文献1を参照のこと)。   The mechanical processing of the side peripheral surface of the glass disk can be performed individually one by one, but the working efficiency is very poor. Therefore, the mechanical processing of the side peripheral surface of the glass disk is generally performed on a glass disk laminated body in which a large number of glass disks are laminated (see, for example, Patent Document 1).

特開平11−219521号公報JP-A-11-219521

特許文献1に開示されたガラスディスク積層体のコアドリル加工方法は、ワークであるガラスディスク積層体が高速回転する一方で、コアドリルが固定されているという片持ち支持状態によってガラスディスク積層体がコアドリル加工されている。加工効率を高めるために、ガラスディスク積層体の積層枚数をできるだけ増やしたいという要望に対して、ガラスディスクの積層枚数を増やすと、片持ち支持されたガラスディスク積層体の回転軸心ブレの影響を受けやすくなってしまう。したがって、コアドリルがガラスディスク積層体に当接し始める加工初期段階において、回転軸心ブレによってガラスディスクのコア加工精度が低下するという問題がある。   The core drilling method of the glass disk laminated body disclosed in Patent Document 1 is such that the glass disk laminated body is core drilled by a cantilever support state in which the glass disk laminated body as a workpiece rotates at high speed while the core drill is fixed. Has been. In response to the desire to increase the number of laminated glass disk stacks as much as possible in order to increase the processing efficiency, increasing the number of laminated glass disks has the effect of rotational axis blurring of the cantilevered glass disk stack. It becomes easy to receive. Accordingly, there is a problem in that the core processing accuracy of the glass disk is reduced due to the rotational axis center blur at the initial stage of processing where the core drill starts to contact the glass disk laminate.

また、内周刃と外周刃とが一体的に構成された一体型コアドリルにおいて、一般的に、同じ研削能力を持った内周刃及び外周刃が用いられている。しかしながら、同じ研削能力を持った内周刃及び外周刃を用いた場合には、一体型コアドリルを回転させたときに内周刃の周速よりも外周刃の周速の方が速いために、ガラスディスクの外周部分は素早く研削されるが内周部分は研削されにくく研削面がラフになって仕上がり面が悪いという問題がある。   Further, in an integrated core drill in which an inner peripheral blade and an outer peripheral blade are integrally formed, an inner peripheral blade and an outer peripheral blade having the same grinding ability are generally used. However, when using an inner peripheral blade and an outer peripheral blade having the same grinding ability, the peripheral speed of the outer peripheral blade is faster than the peripheral speed of the inner peripheral blade when the integrated core drill is rotated. The outer peripheral portion of the glass disk is quickly ground, but the inner peripheral portion is difficult to be ground, resulting in a problem that the ground surface becomes rough and the finished surface is poor.

したがって、本発明の解決すべき技術的課題は、多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体の内周面及び外周面を高精度に加工することのできる情報記録媒体用ガラスディスクの製造方法及び当該方法に使用する製造装置を提供することである。   Therefore, the technical problem to be solved by the present invention is for an information recording medium capable of processing the inner peripheral surface and outer peripheral surface of a glass disk laminate in which a large number of glass disks for information recording medium are laminated with high accuracy. It is providing the manufacturing method of a glass disc, and the manufacturing apparatus used for the said method.

上記技術的課題を解決するために、本発明によれば、以下の情報記録媒体用ガラスディスクの製造方法及び当該方法に使用する製造装置が提供される。   In order to solve the above technical problem, according to the present invention, the following method for producing a glass disk for information recording medium and a production apparatus used for the method are provided.

すなわち、請求項1の発明は、多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体が保持台に対して固着されていて、
内周刃と外周刃とが同じ回転軸上で別々に回転駆動される分離型コアドリルが、回転軸を中心に回転駆動されるとともに回転軸に沿ってガラスディスク積層体の側にスライド移動されることによって、ガラスディスク積層体の内周面及び外周面を加工する情報記録媒体用ガラスディスクの製造方法において、
前記内周刃の砥石の番手を前記外周刃の砥石の番手よりも小さくすることにより、前記内周刃の研削能力が前記外周刃の研削能力より高いことを特徴とする。
That is, in the invention of claim 1, the glass disk laminate in which a large number of glass disks for information recording media are laminated is fixed to the holding table,
A separation-type core drill in which the inner peripheral blade and the outer peripheral blade are separately rotated on the same rotation axis is driven to rotate about the rotation axis and is slid to the glass disk laminate side along the rotation axis. In the method for manufacturing a glass disk for information recording medium, which processes the inner and outer peripheral surfaces of the glass disk laminate ,
By making the count of the grindstone of the inner peripheral blade smaller than the count of the grindstone of the outer peripheral blade, the grinding ability of the inner peripheral blade is higher than the grinding ability of the outer peripheral blade .

請求項2の発明は、内周刃と外周刃とが同じ回転軸上で別々に回転駆動される分離型コアドリルと、
分離型コアドリルを回転駆動する駆動部と、
多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体が着脱自在に固着される保持台と、
回転する分離型コアドリルの内周刃のシャフトと外周刃のシャフトとを別々にスライド可能に軸支する保持部材と、を備え
前記内周刃の砥石の番手を前記外周刃の砥石の番手よりも小さくすることにより、前記内周刃の研削能力が前記外周刃の研削能力より高いことを特徴とする。
The invention according to claim 2 is a separation type core drill in which the inner peripheral blade and the outer peripheral blade are separately driven to rotate on the same rotating shaft,
A drive unit for rotationally driving the separated core drill;
A holding table to which a glass disk laminate in which a plurality of glass disks for information recording media are laminated is detachably fixed;
A holding member which separated axially supported to be slidable separately and the inner peripheral edge of the shaft and the outer peripheral edge of the shaft of the core drill rotates, the provided,
By making the count of the grindstone of the inner peripheral blade smaller than the count of the grindstone of the outer peripheral blade, the grinding ability of the inner peripheral blade is higher than the grinding ability of the outer peripheral blade .

請求項1の発明によれば、ガラスディスク積層体が保持台に堅固に固着されているとともに、軸心ブレの起こりにくい分離型コアドリルが高速回転する。したがって、高速回転した一体型コアドリルがガラスディスク積層体に対して当接され始める加工初期段階においても軸心ブレが起こらないために、多数枚のガラスディスクを積層したガラスディスク積層体であっても高い精度でコア加工することができる。そして、分離型コアドリルの内周刃及び外周刃の回転速度を別々に調節することができるので、周速が速くなる外周刃の回転数を小さくして周速が遅くなる内周刃の回転数を大きくすることによって、研削度合いを適宜変化させることができる。さらに、内周刃の砥石の番手を外周刃のそれよりも小さくすることにより内周刃の研削能力が外周刃の研削能力より高くすることで、内周刃と外周刃とを同じ回転数で研削加工する場合であっても、内周研削度合いと外周研削度合いとを実質的に同じにすることができる。 According to the first aspect of the present invention, the glass core laminated body is firmly fixed to the holding base, and the separated core drill that is less likely to cause shaft center blurring rotates at high speed. Therefore, even when the integrated core drill rotated at a high speed does not cause shaft center blur even at the initial stage of processing where the integrated core drill starts to come into contact with the glass disc laminate, even a glass disc laminate in which a large number of glass discs are laminated. Core processing can be performed with high accuracy. And since the rotational speeds of the inner peripheral blade and the outer peripheral blade of the separable core drill can be adjusted separately, the rotational speed of the inner peripheral blade that reduces the rotational speed by decreasing the rotational speed of the outer peripheral blade that increases the peripheral speed. The degree of grinding can be appropriately changed by increasing. Furthermore, by making the grindstone count of the inner peripheral blade smaller than that of the outer peripheral blade, the grinding ability of the inner peripheral blade is made higher than the grinding ability of the outer peripheral blade, so that the inner peripheral blade and the outer peripheral blade are at the same rotational speed. Even in the case of grinding, the inner peripheral grinding degree and the outer peripheral grinding degree can be made substantially the same.

請求項の発明によれば、ガラスディスク積層体が保持台に堅固に固着されているとともに、軸心ブレの起こりにくい分離型コアドリルが高速回転する。したがって、高速回転した一体型コアドリルがガラスディスク積層体に対して当接され始める加工初期段階においても軸心ブレが起こらないために、多数枚のガラスディスクを積層したガラスディスク積層体であっても高い精度でコア加工することができる。そして、分離型コアドリルの内周刃及び外周刃の回転速度を別々に調節することができるので、周速が速くなる外周刃の回転数を小さくして周速が遅くなる内周刃の回転数を大きくすることによって、研削度合いを適宜変化させることができる。さらに、内周刃の砥石の番手を外周刃のそれよりも小さくすることにより内周刃の研削能力が外周刃の研削能力より高くすることで、内周刃と外周刃とを同じ回転数で研削加工する場合であっても、内周研削度合いと外周研削度合いとを実質的に同じにすることができる。 According to the second aspect of the present invention, the glass core laminate is firmly fixed to the holding base, and the separation type core drill that is less likely to cause shaft center blurring rotates at high speed. Therefore, even when the integrated core drill rotated at a high speed does not cause shaft center blur even at the initial stage of processing where the integrated core drill starts to come into contact with the glass disk laminate, even a glass disk laminate in which a large number of glass disks are laminated Core processing can be performed with high accuracy. And since the rotational speeds of the inner peripheral blade and the outer peripheral blade of the separable core drill can be adjusted separately, the rotational speed of the inner peripheral blade that reduces the rotational speed by decreasing the rotational speed of the outer peripheral blade that increases the peripheral speed. The degree of grinding can be appropriately changed by increasing. Furthermore, by making the grindstone count of the inner peripheral blade smaller than that of the outer peripheral blade, the grinding ability of the inner peripheral blade is made higher than the grinding ability of the outer peripheral blade, so that the inner peripheral blade and the outer peripheral blade are at the same rotational speed. Even in the case of grinding, the inner peripheral grinding degree and the outer peripheral grinding degree can be made substantially the same.

本発明の第一実施形態に係る情報記録媒体用ガラスディスクの製造装置の模式的斜視図である。It is a typical perspective view of the manufacturing apparatus of the glass disc for information recording media which concerns on 1st embodiment of this invention. 図1に示した情報記録媒体用ガラスディスクの製造装置の一体型コアドリルの底面図である。It is a bottom view of the integrated core drill of the manufacturing apparatus of the glass disc for information recording media shown in FIG. ガラスディスク積層体をコアドリル加工した後の模式的斜視図である。It is a typical perspective view after carrying out a core drill process of the glass disk laminated body. 本発明の第二実施形態に係る情報記録媒体用ガラスディスクの製造装置の模式的正面図である。It is a typical front view of the manufacturing apparatus of the glass disc for information recording media which concerns on 2nd embodiment of this invention.

以下に、本発明の第一実施形態に係る情報記録媒体用ガラスディスク12の製造方法及びそれに使用される製造装置2を、図1乃至3を参照しながら詳細に説明する。   Below, the manufacturing method of the glass disk 12 for information recording media which concerns on 1st embodiment of this invention, and the manufacturing apparatus 2 used for it are demonstrated in detail, referring FIG.

図1は、本発明の第一実施形態に係る情報記録媒体用ガラスディスク12の製造装置2の模式的斜視図である。図2は、図1に示した情報記録媒体用ガラスディスク12の製造装置2の一体型コアドリル20の底面図である。図3は、ガラスディスク積層体10をコアドリル加工した後の模式的斜視図である。   FIG. 1 is a schematic perspective view of a manufacturing apparatus 2 for an information recording medium glass disk 12 according to a first embodiment of the present invention. FIG. 2 is a bottom view of the integrated core drill 20 of the apparatus 2 for manufacturing the information recording medium glass disk 12 shown in FIG. FIG. 3 is a schematic perspective view after the core drilling of the glass disk laminate 10.

コアドリル加工の対象であるガラスディスク12は、様々なサイズのものが該当するが、例えば、ハードディスクドライブに内蔵される磁気記録用ガラスディスクであって、1.8インチサイズのものや2.5インチサイズのものである。   The glass disk 12 that is the target of core drilling corresponds to various sizes. For example, a glass disk for magnetic recording built in a hard disk drive, which has a 1.8-inch size or 2.5-inch size. Of size.

図1に示すように、情報記録媒体用ガラスディスク12の製造装置2は、大きくは、一体型コアドリル20と保持シャフト29と保持台42とから構成されている。   As shown in FIG. 1, the apparatus 2 for manufacturing the information recording medium glass disk 12 is mainly composed of an integrated core drill 20, a holding shaft 29, and a holding table 42.

図1及び2に示すように、一体型コアドリル20は、内周刃22と外周刃26とが一体的に構成されている。すなわち、内周刃22及び外周刃26は、それぞれ大略円筒形状をしており、それらの上端部分が互いに連結されて、下端部分がオープンである。内周刃22の上面部には、保持シャフト29が回転軸56の上下方向にスライド移動できる貫通穴が設けられている。内周刃22及び外周刃26の下端部分は、刃先23及び刃先27をそれぞれ形成している。内周刃22の回転軸と外周刃26の回転軸と保持シャフト29とは回転軸56を中心にした同軸であり、刃先23と刃先27と保持シャフト29の外周面とは、回転軸56を中心にした同心円を描いている。   As shown in FIGS. 1 and 2, the integrated core drill 20 has an inner peripheral blade 22 and an outer peripheral blade 26 integrally formed. That is, the inner peripheral blade 22 and the outer peripheral blade 26 have a substantially cylindrical shape, their upper end portions are connected to each other, and the lower end portions are open. A through hole through which the holding shaft 29 can slide in the vertical direction of the rotation shaft 56 is provided in the upper surface portion of the inner peripheral blade 22. The lower end portions of the inner peripheral blade 22 and the outer peripheral blade 26 form a blade edge 23 and a blade edge 27, respectively. The rotating shaft of the inner peripheral blade 22, the rotating shaft of the outer peripheral blade 26, and the holding shaft 29 are coaxial about the rotating shaft 56, and the cutting edge 23, the cutting edge 27, and the outer peripheral surface of the holding shaft 29 are connected to the rotating shaft 56. It draws a concentric circle with a center.

コアドリル加工の初期において小径の刃先23がガラスディスク12にポイント的に当接して過大な研削力がガラスディスク12に負荷されることによってガラスディスク12が破損する可能性がある。そこで、外周刃26の刃先27が先にガラスディスク12に当接するように、内周刃22の刃先23が外周刃26の刃先27よりわずかに引っ込んでいるように構成されている。   There is a possibility that the glass disk 12 may be damaged when the small-diameter cutting edge 23 comes into point contact with the glass disk 12 in an initial stage of core drilling and an excessive grinding force is applied to the glass disk 12. Therefore, the cutting edge 23 of the inner peripheral blade 22 is configured to be slightly retracted from the cutting edge 27 of the outer peripheral blade 26 so that the cutting edge 27 of the outer peripheral blade 26 contacts the glass disk 12 first.

内周刃22は、例えば、砥石の番手が#80乃至300であり、材質がダイヤモンド、炭化ケイ素(SiC)、窒化ケイ素(Si)又はタングステンカーバイド(WC)であり、刃先23の厚みが0.2乃至1.0mmである。 For example, the inner peripheral edge 22 has a grindstone count of # 80 to 300, and the material is diamond, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or tungsten carbide (WC). Is 0.2 to 1.0 mm.

外周刃26は、例えば、砥石の番手が#150乃至800であり、材質がダイヤモンド、炭化ケイ素(SiC)、窒化ケイ素(Si)、タングステンカーバイド(WC)又は焼き入れ鋼であり、刃先27の厚みが0.3乃至3.0mmである。 For example, the outer peripheral blade 26 has a grinding wheel count of # 150 to 800, and the material is diamond, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), tungsten carbide (WC), or hardened steel, and the cutting edge 27 has a thickness of 0.3 to 3.0 mm.

同じ研削能力を持った内周刃22及び外周刃26を用いて同じ回転数で研削加工した場合には、外周部分での周速が内周部分での周速よりも速くなるために、外周部分は素早く研削されるが内周部分は研削されにくくなる。このような問題を解決するために、内周刃22の砥石の番手を外周刃26のそれよりも小さくして、内周刃22の研削能力を外周刃26の研削能力より高くすることによって、同じ回転数で研削加工した場合での内周研削度合いと外周研削度合いとが実質的に同じであるように構成されている。   When grinding is performed at the same rotational speed using the inner peripheral edge 22 and the outer peripheral edge 26 having the same grinding ability, the peripheral speed at the outer peripheral part becomes faster than the peripheral speed at the inner peripheral part. The part is ground quickly, but the inner peripheral part is difficult to grind. In order to solve such a problem, the grinding wheel count of the inner peripheral blade 22 is made smaller than that of the outer peripheral blade 26, and the grinding ability of the inner peripheral blade 22 is made higher than the grinding ability of the outer peripheral blade 26. The inner peripheral grinding degree and the outer peripheral grinding degree when grinding is performed at the same rotational speed are configured to be substantially the same.

一体型コアドリル20の上部には、一体型コアドリル20を回転駆動する回転駆動機構(不図示)が設けられている。例えば、一体型コアドリル20の外周刃26の外周上面に形成されたギア部と、回転駆動機構のギア部とが係合していて、回転駆動機構のモータの回転駆動力が両ギア部を介して一体型コアドリル20に伝達されるように構成されている。そして、高速回転する一体型コアドリル20をガラスディスク積層体10に向けて押し下げることによって、ガラスディスク積層体10が研削加工される。一体型コアドリル20の毎分の回転数は、例えば100乃至1000rpmである。   A rotation drive mechanism (not shown) for rotating the integrated core drill 20 is provided on the upper part of the integrated core drill 20. For example, the gear portion formed on the outer peripheral upper surface of the outer peripheral blade 26 of the integrated core drill 20 is engaged with the gear portion of the rotational drive mechanism, and the rotational drive force of the motor of the rotational drive mechanism is passed through both gear portions. Are transmitted to the integrated core drill 20. And the glass disk laminated body 10 is ground by pushing down the integral core drill 20 which rotates at high speed toward the glass disk laminated body 10. The number of rotations per minute of the integrated core drill 20 is, for example, 100 to 1000 rpm.

ガラスディスク積層体10は、例えば、外径寸法が50乃至100mmで、厚みが0.6乃至1.35mmの大略方形又は大略円形のホウ珪酸ガラスからなるガラスディスク12が、薄肉の接合剤又はスペーサを介して積層されている。接合剤は、一般的な接着剤、ワックス、熱硬化樹脂、光硬化樹脂等の中から選択される。また、スペーサは、樹脂材料、繊維材料、ゴム材料、金属材料、セラミック材料等の中から選択される。ガラスディスク12の積層枚数は10乃至100枚である。コアドリル加工によって、例えば、内径20mm、外径85mm、厚み0.65mmのドーナツ板、内径12mm、外径40mm、厚み0.6mmのドーナツ板、内径15mm、外径45mm、厚み1.1mmのドーナツ板、又は内径12mm、外径65mm、厚み1.35mmのドーナツ板のガラスディスク12が得られる。   For example, the glass disk laminate 10 includes a thin-walled bonding agent or spacer in which a glass disk 12 made of a roughly rectangular or roughly circular borosilicate glass having an outer diameter of 50 to 100 mm and a thickness of 0.6 to 1.35 mm. It is laminated through. The bonding agent is selected from general adhesives, waxes, thermosetting resins, photocuring resins and the like. The spacer is selected from a resin material, a fiber material, a rubber material, a metal material, a ceramic material, and the like. The number of laminated glass disks 12 is 10 to 100. By core drilling, for example, a donut plate having an inner diameter of 20 mm, an outer diameter of 85 mm, and a thickness of 0.65 mm, an inner diameter of 12 mm, an outer diameter of 40 mm, and a thickness of 0.6 mm, an inner diameter of 15 mm, an outer diameter of 45 mm, and a thickness of 1.1 mm Or a glass disk 12 of a donut plate having an inner diameter of 12 mm, an outer diameter of 65 mm, and a thickness of 1.35 mm.

保持シャフト29及び保持台42は、ステンレス材料(例えばSUS304)等の剛性材料から作られている。保持シャフト29の円筒外面及び底面、保持台42の上面には電解研磨による平滑化処理が施されていて、一体型コアドリル20の円筒内面及びガラスディスク12との摩擦がそれぞれ軽減されている。もちろん、ガラスディスク積層体10への衝撃的応力の負荷を防止するために、ガラスディスク積層体10と保持シャフト29、及びガラスディスク積層体10と保持台42の間にゴム等の弾性緩衝材をそれぞれ介在することは、好適である。   The holding shaft 29 and the holding base 42 are made of a rigid material such as a stainless material (for example, SUS304). The cylindrical outer surface and bottom surface of the holding shaft 29 and the upper surface of the holding table 42 are smoothed by electrolytic polishing to reduce friction between the inner surface of the integrated core drill 20 and the glass disk 12. Of course, in order to prevent an impact stress from being applied to the glass disk laminate 10, an elastic buffer material such as rubber is provided between the glass disk laminate 10 and the holding shaft 29 and between the glass disk laminate 10 and the holding table 42. It is preferable that each intervenes.

円柱形状をした保持シャフト29は、保持台42に対して垂直下向きに延在している。保持シャフト29が保持台42に向けてすなわち下向きに付勢されていて、ガラスディスク積層体10が保持シャフト29と保持台42との間で挟持されている。したがって、一体型コアドリル20は、軸心ブレの起こりにくい状態で高速回転することができる。   The cylindrical holding shaft 29 extends vertically downward with respect to the holding base 42. The holding shaft 29 is biased toward the holding table 42, that is, downward, and the glass disk stack 10 is sandwiched between the holding shaft 29 and the holding table 42. Therefore, the integrated core drill 20 can rotate at a high speed in a state in which shaft center blurring hardly occurs.

高速回転した一体型コアドリル20がガラスディスク積層体10に対して軸心ブレの起こりにくい状態で押下されるので、図3に示すように、外周面17及び内周面18が高い精度でコアドリル加工されたガラスディスク積層体10が得られる。そして、一体型コアドリル20がガラスディスク12に当接され始める加工初期段階において、ガラスディスク12が破損することも無い。   Since the integrated core drill 20 rotated at a high speed is pressed against the glass disk laminated body 10 in a state in which shaft center blurring hardly occurs, as shown in FIG. 3, the outer peripheral surface 17 and the inner peripheral surface 18 are core drilled with high accuracy. The obtained glass disk laminated body 10 is obtained. The glass disk 12 is not damaged at the initial stage of processing when the integrated core drill 20 starts to contact the glass disk 12.

このように外周面17及び内周面18がコアドリル加工されたガラスディスク積層体10は、積層状態を維持したままで、フッ酸と硫酸とを含むエッチング液に浸漬する化学的な仕上げ加工に供される。そして、ガラスディスク積層体10から接合剤又はスペーサを除去することによって、コアリング加工された多数枚のガラスディスク12に分離される。その結果、各ガラスディスク12の外周面18及び内周面17は潜傷の除去された平滑な面となっているとともに、各ガラスディスク12のエッジ部が面取り加工されている。   Thus, the glass disk laminated body 10 in which the outer peripheral surface 17 and the inner peripheral surface 18 are core-drilled is subjected to a chemical finishing process that is immersed in an etching solution containing hydrofluoric acid and sulfuric acid while maintaining the laminated state. Is done. Then, by removing the bonding agent or spacer from the glass disk laminate 10, the glass disk laminate 10 is separated into a large number of glass disks 12 that have been subjected to coring. As a result, the outer peripheral surface 18 and the inner peripheral surface 17 of each glass disk 12 are smooth surfaces from which latent scratches have been removed, and the edge portion of each glass disk 12 is chamfered.

次に、本発明の第二実施形態に係る情報記録媒体用ガラスディスク12の製造方法及びそれに使用される製造装置2を、図4を参照しながら詳細に説明するが、上述した第一実施形態との相違点を中心に説明する。   Next, the manufacturing method of the information recording medium glass disk 12 according to the second embodiment of the present invention and the manufacturing apparatus 2 used therefor will be described in detail with reference to FIG. The difference will be mainly described.

図4に示すように、情報記録媒体用ガラスディスク12の製造装置2は、大きくは、分離型コアドリル30と支柱50とアーム52と保持台42とから構成されている。   As shown in FIG. 4, the apparatus 2 for manufacturing the information recording medium glass disk 12 is mainly composed of a separate core drill 30, a support column 50, an arm 52, and a holding table 42.

図4に示すように、分離型コアドリル30は、内周刃32と外周刃36とが同じ回転軸56上で別個独立に回転駆動されるように構成されている。すなわち、内周刃32及び外周刃36は、それぞれ大略円筒形状をしており、それらの上端部分が内シャフト34及び外シャフト38にそれぞれ連結されている。内周刃32及び外周刃36の下端部分は、刃先33及び刃先37をそれぞれ形成している。外シャフト38の軸穴に挿通された内シャフト34と外シャフト38とが、回転軸56に対して同軸に配置されている。内周刃32の刃先33と外周刃36の刃先37とは回転軸56を中心にした同心円を描いている。そして、例えば、刃先33の厚みが0.2乃至1.0mmであり、刃先37の厚みが0.3乃至3.0mmである。   As shown in FIG. 4, the separation-type core drill 30 is configured such that the inner peripheral blade 32 and the outer peripheral blade 36 are separately rotationally driven on the same rotation shaft 56. That is, the inner peripheral blade 32 and the outer peripheral blade 36 have a substantially cylindrical shape, and their upper end portions are connected to the inner shaft 34 and the outer shaft 38, respectively. The lower end portions of the inner peripheral blade 32 and the outer peripheral blade 36 form a blade edge 33 and a blade edge 37, respectively. The inner shaft 34 and the outer shaft 38 inserted through the shaft hole of the outer shaft 38 are disposed coaxially with the rotation shaft 56. The cutting edge 33 of the inner peripheral blade 32 and the cutting edge 37 of the outer peripheral blade 36 draw concentric circles around the rotation axis 56. For example, the thickness of the blade edge 33 is 0.2 to 1.0 mm, and the thickness of the blade edge 37 is 0.3 to 3.0 mm.

内周刃32と外周刃36とを同時に使ってコアドリル加工する場合、コアドリル加工の初期に内周刃32の刃先33がガラスディスク12にポイント的に当接して過大な研削力がガラスディスク12に負荷されることによってガラスディスク12が破損することがないように、内周刃32の刃先33が外周刃36の刃先37よりわずかに引っ込んでいるように位置決めされている。   When core drilling is performed using the inner peripheral edge 32 and the outer peripheral edge 36 at the same time, the cutting edge 33 of the inner peripheral edge 32 contacts the glass disk 12 in a point at the initial stage of the core drilling process, and an excessive grinding force is applied to the glass disk 12. The blade edge 33 of the inner peripheral blade 32 is positioned so as to be slightly retracted from the blade edge 37 of the outer peripheral blade 36 so that the glass disk 12 is not damaged by being loaded.

保持台42や支柱50やアーム52は、ステンレス材料(例えばSUS304)等の剛性材料から作られている。保持台42の上面には、リング状の弾性緩衝部材46が配設されている。弾性緩衝部材46及び保持台42には、吸着通路44が配設されている。吸着通路44に連通した吸着ポンプ(不図示)で、ガラスディスク積層体10の下面を吸着することによって、ガラスディスク積層体10を保持台42に対して固定する。弾性緩衝部材46の設置によりガラスディスク積層体10の下面は保持台42の上面から離間しているが、保持台42の上面の中央部には、内刃32が保持台42に衝突することを防止する内刃用逃がし凹部47が設けられている。また、保持台42の上面には、外刃36が保持台42に衝突することを防止する円環状の外刃用逃がし凹部49が設けられている。   The holding table 42, the support column 50, and the arm 52 are made of a rigid material such as a stainless material (for example, SUS304). A ring-shaped elastic buffer member 46 is disposed on the upper surface of the holding table 42. An adsorption passage 44 is disposed in the elastic buffer member 46 and the holding table 42. The glass disk laminate 10 is fixed to the holding table 42 by adsorbing the lower surface of the glass disc laminate 10 with an adsorption pump (not shown) communicating with the adsorption passage 44. Although the lower surface of the glass disk laminate 10 is separated from the upper surface of the holding table 42 by the installation of the elastic buffer member 46, the inner blade 32 collides with the holding table 42 at the center of the upper surface of the holding table 42. A relief recess 47 for the inner blade to prevent is provided. Further, an annular outer blade relief recess 49 is provided on the upper surface of the holding table 42 to prevent the outer blade 36 from colliding with the holding table 42.

支柱50が保持台42の垂直上向きに延在していて、アーム52が支柱50の水平方向(横向き)に延在している。アーム52の上面には駆動モータ54が取付されている。アーム52を上下方向に貫通した軸支部58の中に、内シャフト34及び外シャフト38が回転軸56と同軸に挿通されている。駆動モータ54のギア部を切り替えることによって、内シャフト34だけを駆動すること、外シャフト38だけを駆動すること、あるいは内シャフト34と外シャフト38とを同時駆動することの3パターンで回転駆動することができる。そして、不図示の押下手段によって、内シャフト34と外シャフト38とを別個独立に回転軸56の上下方向にスライド移動することができる。したがって、高速で回転駆動された内シャフト34及び外シャフト38が、別個独立に回転軸56の上下方向にスライド移動することができ、ガラスディスク積層体10のコアドリル加工に供することができる。   The support column 50 extends vertically upward of the holding table 42, and the arm 52 extends in the horizontal direction (lateral direction) of the support column 50. A drive motor 54 is attached to the upper surface of the arm 52. An inner shaft 34 and an outer shaft 38 are inserted coaxially with the rotary shaft 56 in a shaft support portion 58 that penetrates the arm 52 in the vertical direction. By switching the gear portion of the drive motor 54, it is rotationally driven in three patterns: driving only the inner shaft 34, driving only the outer shaft 38, or simultaneously driving the inner shaft 34 and the outer shaft 38. be able to. Then, the inner shaft 34 and the outer shaft 38 can be slid in the vertical direction of the rotary shaft 56 independently by pressing means (not shown). Therefore, the inner shaft 34 and the outer shaft 38 that are rotationally driven at high speed can slide independently in the vertical direction of the rotating shaft 56, and can be used for core drilling of the glass disk stack 10.

分離型コアドリル30では、内周刃32及び外周刃36の回転速度を別々に調節することができる。したがって、同じ研削能力を持った内周刃32及び外周刃36を用いた場合には、周速が速くなる外周刃36の回転数を小さくして周速が遅くなる内周刃32の回転数を大きくすることによって、研削度合いを適宜変化させることができる。例えば、砥石の番手が#150乃至800であり、材質がダイヤモンド、炭化ケイ素(SiC)、窒化ケイ素(Si)又はタングステンカーバイド(WC)と砥石を共通にして、内周刃32の毎分回転数を300乃至2000rpmにして、外周刃36の毎分回転数を50乃至500rpmにして、回転数の変化によって研削能力を大略同じにすることができる。内周刃32及び外周刃36の研削能力を大略同じにして、砥石寿命を同じ程度に合わせることによって、内周刃32及び外周刃36の管理が非常に楽になる。 In the separated core drill 30, the rotation speeds of the inner peripheral blade 32 and the outer peripheral blade 36 can be adjusted separately. Therefore, when the inner peripheral blade 32 and the outer peripheral blade 36 having the same grinding ability are used, the rotational speed of the inner peripheral blade 32 that decreases the rotational speed of the outer peripheral blade 36 that increases the peripheral speed and decreases the peripheral speed. The degree of grinding can be appropriately changed by increasing. For example, the grindstone count is # 150 to 800, and the material is diamond, silicon carbide (SiC), silicon nitride (Si 3 N 4 ) or tungsten carbide (WC) and the grindstone is used in common for each inner peripheral edge 32. By setting the number of revolutions to 300 to 2000 rpm and the number of revolutions of the outer peripheral blade 36 to 50 to 500 rpm, the grinding ability can be made substantially the same by changing the number of revolutions. By making the grinding ability of the inner peripheral blade 32 and the outer peripheral blade 36 substantially the same and adjusting the life of the grindstone to the same level, the management of the inner peripheral blade 32 and the outer peripheral blade 36 becomes very easy.

また、上述したように、外周刃36及び内周刃32の回転数を別個独立に調節することもできるが、第一実施形態と同様に、内周刃32の砥石の番手を外周刃36のそれよりも小さくすることによって、内周刃32の研削能力が外周刃36の研削能力より高くして、内周研削度合いと外周研削度合いとを実質的に同じにすることができる。   In addition, as described above, the rotation speeds of the outer peripheral blade 36 and the inner peripheral blade 32 can be adjusted independently. However, as in the first embodiment, the grindstone count of the inner peripheral blade 32 is set to the outer peripheral blade 36. By making it smaller than that, the grinding ability of the inner peripheral blade 32 can be made higher than the grinding ability of the outer peripheral blade 36, and the inner peripheral grinding degree and the outer peripheral grinding degree can be made substantially the same.

したがって、ガラスディスク積層体10を高い精度でコア加工することができるとともに、内周部分及び外周部分での研削度合いの実質的同一化を実現することができる。   Therefore, the glass disk laminated body 10 can be core-processed with high accuracy, and substantially the same degree of grinding can be realized in the inner peripheral portion and the outer peripheral portion.

2:情報記録媒体用ガラスディスクの製造装置
10:ガラスディスク積層体
12:ガラスディスク
14:スペーサ
17:外周面
18:内周面
20:一体型コアドリル
22:内周刃
23:刃先
26:外周刃
27:刃先
29:保持シャフト
30:分離型コアドリル
32:内周刃
33:刃先
34:内シャフト
36:外周刃
37:刃先
38:外シャフト
42:保持台
44:吸着通路
46:緩衝部材
47:内刃用逃がし凹部
49:外刃用逃がし凹部
50:支柱
52:アーム
54:駆動モータ
56:回転軸
58:軸支部
2: Glass disk manufacturing apparatus for information recording medium 10: Glass disk laminate 12: Glass disk 14: Spacer 17: Outer peripheral surface 18: Inner peripheral surface 20: Integrated core drill 22: Inner peripheral blade 23: Cutting edge 26: Outer peripheral blade 27: Cutting edge 29: Holding shaft 30: Separable core drill 32: Inner peripheral blade 33: Cutting edge 34: Inner shaft 36: Outer blade 37: Cutting edge 38: Outer shaft 42: Holding base 44: Suction passage 46: Buffer member 47: Inner Blade relief recess 49: Outer blade relief recess 50: Strut 52: Arm 54: Drive motor 56: Rotating shaft 58: Shaft support

Claims (2)

多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体が保持台に対して固着されていて、
内周刃と外周刃とが同じ回転軸上で別々に回転駆動される分離型コアドリルが、回転軸を中心に回転駆動されるとともに回転軸に沿ってガラスディスク積層体の側にスライド移動されることによって、ガラスディスク積層体の内周面及び外周面を加工する情報記録媒体用ガラスディスクの製造方法において、
前記内周刃の砥石の番手を前記外周刃の砥石の番手よりも小さくすることにより、前記内周刃の研削能力が前記外周刃の研削能力より高いことを特徴とする、情報記録媒体用ガラスディスクの製造方法。
A glass disk laminate in which a large number of information recording medium glass disks are laminated is fixed to a holding table,
A separation-type core drill in which the inner peripheral blade and the outer peripheral blade are separately rotated on the same rotation axis is driven to rotate about the rotation axis and is slid to the glass disk laminate side along the rotation axis. In the method for manufacturing a glass disk for information recording medium, which processes the inner and outer peripheral surfaces of the glass disk laminate ,
A glass for an information recording medium, wherein the grinding ability of the inner peripheral blade is higher than the grinding ability of the outer peripheral blade by making the count of the grindstone of the inner peripheral blade smaller than the count of the grindstone of the outer peripheral blade. Disc manufacturing method.
内周刃と外周刃とが同じ回転軸上で別々に回転駆動される分離型コアドリルと、
分離型コアドリルを回転駆動する駆動部と、
多数枚の情報記録媒体用ガラスディスクが積層されたガラスディスク積層体が着脱自在に固着される保持台と、
回転する分離型コアドリルの内周刃のシャフトと外周刃のシャフトとを別々にスライド可能に軸支する保持部材と、を備え
前記内周刃の砥石の番手を前記外周刃の砥石の番手よりも小さくすることにより、前記内周刃の研削能力が前記外周刃の研削能力より高いことを特徴とする、情報記録媒体用ガラスディスクの製造装置。
A separate core drill in which the inner peripheral blade and the outer peripheral blade are separately driven to rotate on the same rotational axis;
A drive unit for rotationally driving the separated core drill;
A holding table to which a glass disk laminate in which a plurality of glass disks for information recording media are laminated is detachably fixed;
A holding member which separated axially supported to be slidable separately and the inner peripheral edge of the shaft and the outer peripheral edge of the shaft of the core drill rotates, the provided,
A glass for an information recording medium, wherein the grinding ability of the inner peripheral blade is higher than the grinding ability of the outer peripheral blade by making the count of the grindstone of the inner peripheral blade smaller than the count of the grindstone of the outer peripheral blade. Disc manufacturing equipment.
JP2010096289A 2010-04-19 2010-04-19 Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method Expired - Fee Related JP5035382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096289A JP5035382B2 (en) 2010-04-19 2010-04-19 Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096289A JP5035382B2 (en) 2010-04-19 2010-04-19 Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006277335A Division JP4591431B2 (en) 2006-10-11 2006-10-11 Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method

Publications (2)

Publication Number Publication Date
JP2010205405A JP2010205405A (en) 2010-09-16
JP5035382B2 true JP5035382B2 (en) 2012-09-26

Family

ID=42966715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096289A Expired - Fee Related JP5035382B2 (en) 2010-04-19 2010-04-19 Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method

Country Status (1)

Country Link
JP (1) JP5035382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108000597A (en) * 2017-11-30 2018-05-08 天津泰立得塑胶制品有限公司 A kind of edge-neatening apparatus of laminated glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572229B1 (en) 2014-02-07 2021-10-27 Corning Incorporated Method of forming laminated glass structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198530A (en) * 1992-10-08 1994-07-19 Asahi Glass Co Ltd Method for working and superposing a plurality of plate-like materials
JP3365425B2 (en) * 1992-10-20 2003-01-14 旭硝子株式会社 Processing device with inner and outer diameter grinding wheels and its processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108000597A (en) * 2017-11-30 2018-05-08 天津泰立得塑胶制品有限公司 A kind of edge-neatening apparatus of laminated glass

Also Published As

Publication number Publication date
JP2010205405A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5126351B2 (en) Disk-shaped glass substrate and method for manufacturing disk-shaped glass substrate
JP4591431B2 (en) Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method
WO2008059929A1 (en) Glass substrate chamfering apparatus
JP2012169024A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2010030807A (en) Method for producing glass substrate
JP2012099172A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2009248282A (en) Polishing apparatus, polishing auxiliary apparatus, and polishing method
JP5035382B2 (en) Manufacturing method of glass disk for information recording medium and manufacturing apparatus used for the method
JP5006011B2 (en) Manufacturing method of disk-shaped substrate
JP4905238B2 (en) Polishing method of glass substrate for magnetic recording medium
JP6645935B2 (en) Substrate manufacturing method, substrate end surface processing apparatus, substrate end surface processing method, and grinding wheel
WO2005070619A1 (en) Method of grinding wafer and wafer
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP4818613B2 (en) Double-sided surface polishing machine
JP5413409B2 (en) Support jig and method for manufacturing glass substrate for magnetic recording medium
JP2015129056A (en) Method of cutting glass substrate and method of manufacturing glass substrate for magnetic recording medium
JP2008307641A (en) Chamfering device, polishing member and chamfering method
JP2011025347A (en) Method for machining metal plate
JP5725134B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP2001246536A (en) Method of mirror-finishing edge of recording medium disc original plate
JPH10217076A (en) Work method of disk substrate, work device and outer peripheral blade grinding wheel used in this work method
JP2009279679A (en) Beveling member, beveling device, beveling method, glass disc material, glass substrate for magnetic recording medium, and magnetic recording medium
JP5944581B2 (en) Semiconductor wafer grinding apparatus, semiconductor wafer manufacturing method, and semiconductor wafer grinding method
JP2015230734A (en) Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium
CN103465151A (en) Tool for processing brittle material at high speed and processing method of tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees