JP5033457B2 - Water treatment chemical injection method - Google Patents
Water treatment chemical injection method Download PDFInfo
- Publication number
- JP5033457B2 JP5033457B2 JP2007093549A JP2007093549A JP5033457B2 JP 5033457 B2 JP5033457 B2 JP 5033457B2 JP 2007093549 A JP2007093549 A JP 2007093549A JP 2007093549 A JP2007093549 A JP 2007093549A JP 5033457 B2 JP5033457 B2 JP 5033457B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- cooling water
- amount
- cooling
- makeup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 203
- 239000000126 substance Substances 0.000 title claims description 81
- 238000002347 injection Methods 0.000 title claims description 41
- 239000007924 injection Substances 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 21
- 239000000498 cooling water Substances 0.000 claims description 124
- 238000001816 cooling Methods 0.000 claims description 27
- 238000012937 correction Methods 0.000 claims description 11
- 238000012886 linear function Methods 0.000 claims description 6
- 238000009834 vaporization Methods 0.000 claims description 6
- 230000008016 vaporization Effects 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000003814 drug Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000700 radioactive tracer Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Description
本発明は、空調用、各種工業用等の開放循環冷却水系に注入する水処理薬剤の注入方法に関するものである。 The present invention relates to a method for injecting a water treatment chemical to be injected into an open circulating cooling water system for air conditioning, various industrial use, and the like.
開放型冷却水系では、水を循環利用している。よって冷却水の蒸発・濃縮は不可避である。冷却水の蒸発・濃縮によりカルシウム等のスケールが発生し、さらに、循環利用中に微生物が増殖しスライムも発生する。加えて構成機器の軟鋼や銅の腐食が発生する問題が起こる。 In the open cooling water system, water is circulated. Therefore, evaporation / concentration of cooling water is inevitable. The scale of calcium and the like is generated by evaporation and concentration of the cooling water, and further, microorganisms grow and slime is generated during circulation. In addition, there is a problem that corrosion of mild steel and copper of the component equipment occurs.
こうした問題を防止して、設備機器の安全かつ効率的な運転を確保するため冷却水に水処理薬剤が注入される。 Water treatment chemicals are injected into the cooling water to prevent such problems and ensure safe and efficient operation of the equipment.
開放循環冷却水系に注入される水処理薬剤には、防食剤、スケール防止剤、スライム防除剤、及びこれらの各種成分を配剤し複数の効果を持たせた薬剤等がある。 Examples of water treatment chemicals injected into the open circulation cooling water system include anticorrosives, scale inhibitors, slime control agents, and agents that have a plurality of effects by dispensing these various components.
水処理薬剤は、冷却水中に一定濃度を維持することで効果を発し、濃度が低い場合は効果が不十分となり上記各種の問題が発生する。一方、水処理薬剤の濃度が高すぎる場合は水処理薬剤の費用がかさみ不経済となるとともに、弊害をもたらすこともある。 The water treatment chemical produces an effect by maintaining a constant concentration in the cooling water. When the concentration is low, the effect becomes insufficient and the above-mentioned various problems occur. On the other hand, when the concentration of the water treatment chemical is too high, the cost of the water treatment chemical becomes high and uneconomical, and it may cause harmful effects.
従って、水処理薬剤を使用する場合は、使用目的に対応して最も効果的かつ経済的に注入されなければならない。即ち、水処理薬剤の機能を十分発揮させる為に開放循環冷却系で一定量以上の濃度を維持、管理することが必要である。そこで、開放循環冷却水系には、不足した水処理薬剤を適宜補充する必要が生じる。 Therefore, when using a water treatment chemical, it must be injected most effectively and economically according to the purpose of use. That is, it is necessary to maintain and manage a concentration of a certain amount or more in an open circulation cooling system in order to fully exert the function of the water treatment chemical. Therefore, it is necessary to appropriately replenish the open circulating cooling water system with the insufficient water treatment chemical.
このような水処理薬剤を冷却水に注入し、冷却水中の水処理薬剤濃度を一定に維持する手段として、従来から以下の様な方法が採用されてきた。 Conventionally, the following methods have been employed as means for injecting such a water treatment chemical into cooling water and maintaining a constant concentration of the water treatment chemical in the cooling water.
開放循環冷却水系への水処理薬剤の注入方法として、特許文献1、2に開示された、タイマーによって薬注ポンプを制御し、定期的に水処理薬剤を注入する方法がある。
タイマーによって薬注ポンプを制御する水処理薬剤の注入方法では、一定時間の経過後、一定量の水処理薬剤を注入するため、冷却塔や冷凍機の負荷に応じて注入量を変化させることが難しく、冷却水中の薬剤濃度を一定に維持することは困難である。従って、冷却水中で一定以上の薬剤濃度を確保するためには、過剰に注入するしかなく、経済的でなかった。 In the water treatment chemical injection method that controls the chemical injection pump with a timer, a fixed amount of water treatment chemical is injected after a certain period of time, so the injection amount can be changed according to the load of the cooling tower or refrigerator. It is difficult to maintain a constant drug concentration in the cooling water. Therefore, in order to ensure a drug concentration of a certain level or higher in the cooling water, there is no choice but to inject excessively, which is not economical.
また、特許文献3、特許文献4には、水処理薬剤をトレーサー物質とし、あるいは水処理薬剤に比例した濃度のトレーサー物質を添加し、トレーサー物質を連続的に測定して水処理薬剤を注入する方法が開示されている。 Further, in Patent Document 3 and Patent Document 4, a water treatment chemical is used as a tracer substance, or a tracer substance having a concentration proportional to the water treatment chemical is added, and the water treatment chemical is injected by continuously measuring the tracer substance. A method is disclosed.
しかし、特許文献3、4記載の水処理薬剤の注入方法では、冷却水中の水処理薬剤濃度を一定に維持することは可能であるが、高度な測定機器を必要とするため初期投資が多額となる。加えて、測定制御機器を安全かつ高精度に維持・運転させるためのメンテナンス費用も高いものとなる。
また、特許文献5に示すように、パルス発信式流量計等で補給水の補給量を測定し、補給水に対して一定量の水処理薬剤を比例注入する方法が知られている。この方法は、比較的簡便かつ装置の信頼性も高く、自動ブローによる冷却水の濃縮管理と組み合わせることで冷却水中の薬剤濃度を一定に維持することが可能である。しかし、この方法でも、高価なパルス発信式流量計を補給水ラインの配管内に設置する必要があり、経済的かつ簡便な方法とは言えない。
そこで、本発明は、経済的、簡便に、冷却水中の水処理薬剤を所定の濃度に維持することができる、開放循環冷却水系における水処理薬剤の注入方法を提供することを課題とする。 Then, this invention makes it a subject to provide the injection method of the water treatment chemical | medical agent in an open circulation cooling water system which can maintain the water treatment chemical | medical agent in cooling water at a predetermined density | concentration economically and simply.
本発明は、上記課題を解決するためのものである。即ち、
熱交換器に冷却水を循環供給すると共にこの冷却水を冷却塔で冷却し、かつ、冷却水の一部をブローすると共に補給水を供給して冷却水の濃縮倍率を一定に保つようにした開放循環冷却水系において、
冷却塔から熱交換器に向かう冷却水(循環水)の温度T1(℃)、熱交換器から冷却塔に戻る冷却水(循環水)の温度T2(℃)に基づき、
次式(A)及び式(B)に従って前記冷却水への補正理論補給水量(Mt)を求め、
Mt=η×((T2−T1)×c×R/Q)×(N/(N−1))・・・式(A)
η=a×T0+b・・・式(B)
Mt:補正理論補給水量(m3/h)
c:水の比熱(kcal/kg・℃)
R:冷却水の循環水量(m3/h)
Q:水の蒸発潜熱(kcal/kg)
N:冷却水の濃縮倍率(倍)
η:補正係数(外気温の1次関数)
T0:外気温(℃)
a、b:理論補給水量((T2−T1)×c×R/Q)×(N/(N−1))と
補給水量の実測値とを比較し、前記補正理論補給水量(Mt)が
補給水量の実測値に一致するようにa及びbを計算して定める定数
前記補正理論補給水量(Mt)に比例する量の水処理薬剤を前記冷却水に注入することを特徴とする水処理薬剤の注入方法を提供するものである。
The present invention is for solving the above-mentioned problems. That is,
Cooling water is circulated and supplied to the heat exchanger and this cooling water is cooled by the cooling tower, and a part of the cooling water is blown and makeup water is supplied to keep the concentration ratio of the cooling water constant. In an open circulating cooling water system,
Based on the temperature T1 (° C.) of the cooling water (circulated water) from the cooling tower to the heat exchanger and the temperature T2 (° C.) of the cooling water (circulating water) returning from the heat exchanger to the cooling tower,
According to the following equations (A) and (B), a corrected theoretical makeup water amount (Mt) for the cooling water is obtained,
Mt = η × ((T2−T1) × c × R / Q) × (N / (N−1)) Expression (A)
η = a × T0 + b Formula (B)
Mt: corrected theoretical makeup water volume (m 3 / h)
c: Specific heat of water (kcal / kg · ° C)
R: Circulating water volume of cooling water (m 3 / h)
Q: latent heat of vaporization of water (kcal / kg)
N: Concentration ratio of cooling water (times)
η: Correction coefficient (linear function of outside temperature)
T0: Outside air temperature (° C)
a, b: Theoretical makeup water amount ((T2-T1) × c × R / Q) × (N / (N−1))
Compared with the actual measured value of the makeup water amount, the corrected theoretical makeup water amount (Mt) is
Constants determined by calculating a and b so that they match the measured value of the makeup water volume
A water treatment chemical injection method is provided, wherein a water treatment chemical in an amount proportional to the corrected theoretical makeup water amount (Mt) is injected into the cooling water.
本発明は、以上の構成であるから、水処理薬剤の冷却水中での濃度を所定の濃度に簡易・低コストに維持・管理することができる。 Since this invention is the above structure, it can maintain and manage the density | concentration in the cooling water of a water treatment chemical | medical agent to a predetermined density | concentration simply and at low cost.
即ち、T1、T2を測定し、その他のデータは、予め、開放循環冷却水系毎に定まる値を入力情報として用い、式(1)から理論補給水量を求めることで、開放循環冷却水系1への補給水4a量を簡易かつ精度よく把握することができ、その理論補給水量に比例した水処理薬剤5aを冷却水2aに注入することで、簡易かつ精度よく、冷却水2a中の水処理薬剤5aを所定の濃度に維持することができることとなる。
That is, T1 and T2 are measured, and the other data is obtained in advance by using the value determined for each open circulating cooling water system as input information, and obtaining the theoretical makeup water amount from the equation (1). The amount of the
従って、従来のように、補給水4a量を実測するため、高価なパルス発信式流量計を設置する必要がなく、簡易、低コストで補給水4a量を把握することができる。またパルス発信式流量計を設置するために開放循環冷却水系の稼働を停止する必要がなく、簡便に既存の開放循環冷却水系に適用できる点、極めて優れている。
Therefore, since the amount of the
また、T1を冷却塔2から熱交換器3cに向かう冷却水配管(冷却水往配管3e)に接触させかつ断熱材で被覆した温度センサ(往)10を用いて、T2を熱交換器3cから冷却塔2に戻る冷却水配管(冷却水還配管3d)に接触させかつ断熱材で被覆した温度センサ(還)9を用いてそれぞれ測定することで、開放循環冷却水系の稼働を停止することなく、温度センサ(往)10、(還)9を設置でき、T1、T2を測定することができる。加えて、温度センサ(還)9、(往)10を断熱材で被覆することで、T1、T2の測定精度が高くなり、理論補給水量を精度よく求めることができ、冷却水2a中の水処理薬剤5aの濃度を簡易に所定の濃度に維持することができることとなる。
Further, T2 is removed from the heat exchanger 3c by using a temperature sensor (outward) 10 in which T1 is brought into contact with a cooling water pipe (cooling water forward pipe 3e) from the cooling tower 2 toward the heat exchanger 3c and covered with a heat insulating material. Without stopping the operation of the open circulation cooling water system by measuring each using the temperature sensor (return) 9 which is in contact with the cooling water pipe (cooling
さらに、理論補給水量を外気温(T0)の1次関数となる補正係数(η)を基に補正し、補正した理論補給水量(以下、補正理論補給水量という。)を求めることにより、より精度よく補給水量を把握し、その補正理論補給水量に比例した水処理薬剤5aを冷却水2aに注入することで、より適切に水処理薬剤5aの冷却水2a中での濃度を所定値に管理することができることとなる。
Furthermore, the theoretical makeup water amount is corrected based on a correction coefficient (η) that is a linear function of the outside air temperature (T0), and a corrected theoretical makeup water amount (hereinafter referred to as a corrected theoretical makeup water amount) is obtained for more accuracy. By well grasping the amount of makeup water and injecting the water treatment chemical 5a proportional to the corrected theoretical makeup water volume into the
水処理薬剤の冷却水中での濃度を所定の濃度に簡易・低コストに維持・管理する目的を、熱交換器3cに冷却水2aを循環供給すると共にこの冷却水2aを冷却塔2で冷却し、かつ、冷却水2aの一部をブローすると共に補給水4aを供給して冷却水2aの濃縮倍率を一定に保つようにした開放循環冷却水系において、
冷却塔2から熱交換器3cに向かう冷却水2a(循環水3a)の温度T1(℃)を冷却塔2から熱交換器3cに向かう冷却水往配管3eに接触させ、かつ断熱材で被覆した温度センサ(往)10を用いて、熱交換器3cから冷却塔2に戻る冷却水2a(循環水3a)の温度T2(℃)を熱交換器3cから冷却塔2に戻る冷却水還配管3dに接触させ、かつ断熱材で被覆した温度センサ(還)9を用いて、それぞれ測定し、
次式(1)
M=((T2−T1)×c×R/Q)×(N/(N−1))・・・式(1)
M:理論補給水量(m3/h)
c:水の比熱(kcal/kg・℃)
R:冷却水の循環水量(m3/h)
Q:水の蒸発潜熱(kcal/kg)
N:冷却水の濃縮倍率(倍)
に従って前記冷却水2aへの理論補給水量(M)を求め、
さらに、前記理論補給水量(M)を外気温T0(℃)の関数となる補正係数を用いて補正し、該補正した理論補給水量(補正理論補給水量)に比例する量の水処理薬剤5aを前記冷却水2aに注入することを特徴とする水処理薬剤の注入方法の構成とすることで実現した。
For the purpose of maintaining and managing the concentration of the water treatment chemical in the cooling water to a predetermined concentration simply and at low cost, the
The temperature T1 (° C.) of the cooling
The following formula (1)
M = ((T2−T1) × c × R / Q) × (N / (N−1)) (1)
M: Theoretical makeup water volume (m 3 / h)
c: Specific heat of water (kcal / kg · ° C)
R: Circulating water volume of cooling water (m 3 / h)
Q: latent heat of vaporization of water (kcal / kg)
N: Concentration ratio of cooling water (times)
The theoretical makeup water amount (M) to the
Further, the theoretical makeup water amount (M) is corrected using a correction coefficient that is a function of the outside air temperature T0 (° C.), and an amount of water treatment chemical 5a proportional to the corrected theoretical makeup water amount (corrected theoretical makeup water amount) is obtained. The water treatment chemical injection method is characterized in that it is injected into the cooling
なお、T1、T2は測定値であり、T1は冷却水往配管3e中の冷却水2a(循環水3a)の測定値であれば、どの位置でどのように測定した値であってもよく、T2は冷却水還配管3d中の冷却水2a(循環水3a)の測定値であれば、どの位置でどのように測定した値であってもよい。また、冷凍機等で、冷却水の入り口、出口の温度をリアルタイムに測定している場合等、開放循環冷却水系の運転情報からT1、T2の値が得られる場合には、その値を採用しても構わない。
T1 and T2 are measured values, and T1 may be a measured value at any position as long as it is a measured value of the cooling
また、T1、T2は、それぞれ単位時間当たりの平均温度を使用してもよく、例えば、1時間当たりのT1、T2、それぞれの平均値から、式(1)に従って、1時間当たりの理論補給水量を求めてもよい。 T1 and T2 may each use an average temperature per unit time. For example, from T1 and T2 per hour, the average value of each, according to the formula (1), the theoretical amount of replenishment water per hour You may ask for.
水の比熱(c)は、温度によって変化する値であるが、誤差が小さいため、1kcal/kg・℃として差し支えない。ただし、温度に対応する比熱データを予め入力しておき、冷却水2aの測定温度(T1、T2等)に対応する比熱(c)を用いれば、さらに精度よく理論補給水を求めることができる。
The specific heat (c) of water is a value that varies depending on the temperature, but since the error is small, it can be set to 1 kcal / kg · ° C. However, if the specific heat data corresponding to the temperature is input in advance and the specific heat (c) corresponding to the measured temperature (T1, T2, etc.) of the cooling
冷却水2aの循環水量(R)は通常一定とみなすことができるので、開放循環冷却水系毎に設計値として定まる循環水量(R)を使用して差し支えない。ただし、循環ライン3に、循環水3aの循環水量を測定するための流量計を設置してもよく、前記流量計で測定した循環水量を使用することもできる。
Since the circulating water amount (R) of the cooling
水の蒸発潜熱(Q)は、冷却水2aの温度に応じて定まる定数であるが、一般的に、冷却水の温度は30℃程度であるので、簡易には30℃における水の蒸発潜熱(580Kcal/Kg)を使用して差し支えない。ただし、理論補給水量の算出精度をより高めるために、温度に対応する蒸発潜熱のデータを予め入力しておき、T1、T2、又はT1、T2の平均値等に対応する水の蒸発潜熱(Q)を使用しても構わない。
Although the latent heat of vaporization (Q) of water is a constant determined according to the temperature of the cooling
冷却水の濃縮倍率(N)は、冷却水の管理目標水質と補給水水質から開放循環冷却水系毎に適宜設定した定数である。ただし、冷却水の水質情報(電気伝導率やイオン濃度)を測定し、補給水の水質情報で除した値を濃縮倍率として採用することも可能である。 The cooling water concentration ratio (N) is a constant set as appropriate for each open circulating cooling water system from the management target water quality and the makeup water quality of the cooling water. However, it is also possible to measure the water quality information (electric conductivity and ion concentration) of the cooling water and adopt the value divided by the water quality information of the makeup water as the concentration factor.
従って、通常は、
補給水量(M)=
((T2−T1)×1×R/580)×(N/(N−1))・・・式(2)
として簡易的に理論補給水量を求めて差し支えない。
Therefore, usually
Makeup water volume (M) =
((T2-T1) × 1 × R / 580) × (N / (N−1)) (2)
As a matter of course, it is possible to simply calculate the theoretical water supply amount.
即ち、T1、T2を測定し、式(1)、或いは式(2)から理論補給水量を求めることで、開放循環冷却水系1への補給水4a量を把握することができる。
That is, the amount of
次に、式(1)、或いは式(2)で算出した理論補給水量(M)を外気温(T0)を基に補正する方法について説明する。開放循環冷却水系1への補給水4a量は、T1、T2を測定し、式(1)、或いは式(2)から理論補給水量(M)として把握することができるが、前記理論補給水量(M)と、実際の補給水量(実測)との間には誤差が生じることがある。
Next, a method for correcting the theoretical makeup water amount (M) calculated by the equation (1) or the equation (2) based on the outside air temperature (T0) will be described. The amount of make-up
その原因を鋭意探求した結果、誤差と外気温(T0)との間に相関関係があることを見出した。そこで、理論補給水量を外気温(T0)の関数となる補正係数を基に補正し、補正理論補給水量を求めることにより、より精度よく補給水量を把握し、その補正理論補給水量に比例した水処理薬剤5aを冷却水2aに注入することで、より適切に水処理薬剤5aの冷却水2a中での濃度を所定値に管理することができることとなる。
As a result of earnestly searching for the cause, it was found that there is a correlation between the error and the outside air temperature (T0). Therefore, the theoretical makeup water amount is corrected based on a correction coefficient that is a function of the outside air temperature (T0), and the corrected theoretical makeup water amount is obtained, so that the makeup water amount can be grasped more accurately and the water proportional to the corrected theoretical makeup water amount is obtained. By injecting the treatment chemical 5a into the cooling
ここで、外気温(T0)の関数となる補正係数をηとすると、外気温(T0)の影響を加味した補正理論補給水量Mt(m3/h)は、次式(A)で求められる。
Mt=η×((T2−T1)×1×R/Q)×(N/(N−1))・・・式(A)
Here, when a correction coefficient that is a function of the outside air temperature (T0) is η, a corrected theoretical makeup water amount Mt (m 3 / h) that takes into account the influence of the outside air temperature (T0) is obtained by the following equation (A). .
Mt = η × ((T2−T1) × 1 × R / Q) × (N / (N−1)) Expression (A)
ここで、補正係数(η)は、外気温(T0)の1次関数として次式(B)を用いることができる。
η=a×T0+b・・・式(B)
Here, for the correction coefficient (η), the following equation (B) can be used as a linear function of the outside air temperature (T0).
η = a × T0 + b Formula (B)
一般的な設備であれば、定数aは0.015、bは0.5として差し支えない。なお、定数a、bを設備毎に計算することにより、より精度よく補正理論補給水量を求めることができる。具体的には、理論補給水量(M)と補給水の実測値とを比較し、一致するようa、bを設備毎に定める。また、補正係数(η)は、一次関数に限らず、二次関数その他の関数としてもよい。要は、外気温(T0)を基に、実測した補給水量に最も近い値の補正理論補給水量を求められる関数であればよい。 For general equipment, the constant a may be 0.015 and b may be 0.5. In addition, by calculating the constants a and b for each facility, the corrected theoretical makeup water amount can be obtained more accurately. Specifically, the theoretical makeup water amount (M) is compared with the actual measured value of makeup water, and a and b are determined for each facility so as to match. The correction coefficient (η) is not limited to a linear function, but may be a quadratic function or other functions. In short, any function may be used as long as the corrected theoretical makeup water amount having a value closest to the actually measured makeup water amount is obtained based on the outside air temperature (T0).
さらに、補正理論補給水量(Mt)は、理論補給水量(M)から外気温(T0)の関数f(T0)を減じる補正を行い、次式(C)によって算出することも可能である。なお、関数f(T0)は、補正係数(η)同様、一次、二次、その他の関数とすることができる。
Mt=((T2−T1)×c×R/Q)×(N/(N−1))−f(T0)・・式(C)
Further, the corrected theoretical makeup water amount (Mt) can be calculated by the following equation (C) by performing a correction by subtracting the function f (T0) of the outside air temperature (T0) from the theoretical makeup water amount (M). Note that the function f (T0) can be a primary function, a secondary function, or other functions, like the correction coefficient (η).
Mt = ((T2-T1) * c * R / Q) * (N / (N-1))-f (T0) .. Formula (C)
以下、添付図面に基づいて、本発明である水処理薬剤の注入方法について詳細に説明する。 Hereinafter, based on an accompanying drawing, the injection method of the water treatment chemical | medical agent which is this invention is demonstrated in detail.
図1は、本発明である水処理薬剤の注入方法が適用される開放循環冷却水系(一例)の概略図である。 FIG. 1 is a schematic view of an open circulation cooling water system (one example) to which the water treatment chemical injection method of the present invention is applied.
開放循環冷却水系1は、冷却水2aを溜める水槽2dに冷却水2aを空冷するファン2eを取り付け、冷却塔2の水槽2dの水位が一定以上にならないように、過剰の冷却水2aをオーバーフロー水2bとして排出するオーバーフローライン11が備えられた冷却塔2と、前記冷却塔2に連結し、前記冷却水2a(循環水3a)を循環ポンプ3bの駆動により冷凍機等の熱交換器3cに送る冷却水往配管3e、及び熱交換器3cを通過し、熱交換された冷却水2a(循環水3a)を冷却塔2に戻す冷却水還配管3d、並びに冷凍機等の熱交換器3cよりなる循環ライン3と、前記冷却塔2に連結し、前記冷却水2aが減少したときに前記水槽2dの水位を保つために、又は前記冷却水2aの濃縮倍率が上昇したときに強制ブローを行うために補給水4aを注入する補給ライン4と、理論補給水量に比例した水処理薬剤を冷却水2aに注入する水処理薬剤の注入装置8とからなる。
The open circulation cooling
補給ライン4は、冷却塔2内部に挿通する補給配管4cに、水槽2dの水面の高さに連動するボールタップ4eが連結し、冷却水2aが減少したとき補給水4aを適宜補給するラインと、冷却水2aの濃縮倍率が設定値以上に上昇したときに、強制補給弁4gが開いて補給水4aを強制的に冷却塔2に補給する強制補給ライン4fとを備える。
The replenishment line 4 is connected to a
冷却塔2の冷却水2aには、冷却水2aの電気伝導率を測定する電気伝導率計7が設置され、前記冷却水2aの電気伝導率が設定値以上になると、前記強制補給弁4gが開いて補給水4aが補給され、オーバーフロー水2bとして冷却水の一部が排出されることで、冷却水2aの濃縮倍率が所定の値に維持される。
The cooling
水処理薬剤の注入装置8は、温度センサ(往)10と、温度センサ(還)9と、薬注装置5と、薬注制御装置6からなる。なお必要に応じ外気温センサ12を付加してもよい。
The water treatment chemical injection device 8 includes a temperature sensor (outward) 10, a temperature sensor (return) 9, a
温度センサ(往)10は、冷却水往配管3eに設けられ、冷却塔2から熱交換器3cに向かう冷却水2aの温度(T1)を測定する。温度センサ(往)10で測定した温度T1は、後述の薬注制御装置6に送られる。
The temperature sensor (outward) 10 is provided in the cooling water outgoing pipe 3e, and measures the temperature (T1) of the cooling
温度センサ(還)9は、冷却水還配管3dに設けられ、熱交換器3cから冷却塔2に戻る冷却水2aの温度(T2)を測定する。温度センサ(還)9で測定した温度T2も、後述の薬注制御装置6に送られる。
The temperature sensor (return) 9 is provided in the cooling
なお、上記、温度センサ(還)9、(往)10は、それぞれ配管内に挿通しても、配管に接触(貼付)させてもよい。配管に接触させる場合には、T1、T2の測定精度を高めるために、温度センサを含む配管部分を断熱材で覆うことが望ましい。温度センサ(還)9、(往)10を配管に接触させる方式の場合、開放循環冷却水系1の稼働を停止せずに設置することができ、補給水量を簡易、低コストで把握することができる。一方、従来のように補給水4aの流量を流量計を設置して測定する場合では、開放循環冷却水系を停止し、高価なパルス発信式流量計を設置しなければならず煩雑であった。
The temperature sensors (return) 9 and (outward) 10 may be inserted into the pipe or contacted (attached) to the pipe. When contacting the piping, it is desirable to cover the piping portion including the temperature sensor with a heat insulating material in order to increase the measurement accuracy of T1 and T2. In the case of the system in which the temperature sensors (return) 9 and (out) 10 are brought into contact with the pipe, the open circulating
薬注装置5は、水処理薬剤5aを貯留するタンク5bと、前記タンク5bから水槽2d内に連絡する薬注ライン5dと、水処理薬剤5aを前記薬注ライン5dを通り水槽2dに注入するための薬注ポンプ5cとからなる。
The
薬注ポンプ5cは、流体を移送することができるポンプであれば、特に限定されない。なお、薬注ポンプ5cは、後述の薬注制御装置6から出力された薬注ポンプ運転シグナル6eに基づき駆動し、理論補給水量に比例する量の水処理薬剤5aを前記開放循環冷却水系1に注入するよう、薬注制御装置6で制御される。
The medicinal pump 5c is not particularly limited as long as it is a pump capable of transferring a fluid. The chemical injection pump 5c is driven based on a chemical injection
薬注制御装置6は、測定値であるT1、T2、予め設定された、或いは測定し求めた、水の比熱(c)、循環水量(R)、水の蒸発潜熱(Q)、冷却水の濃縮倍率(N)、必要に応じ測定した外気温(T0)を基に、前述の式(1)、(2)、式(A)及び(B)、式(C)の何れかの式に従って開放循環冷却水系1への理論補給水量(M)或いは補正理論補給水量(Mt)を求め、それら求めた補給水量に比例する量の水処理薬剤5aを前記開放循環冷却水系1に注入するよう薬注ポンプ運転シグナル6eを薬注ポンプ5cに出力する。その結果、薬注ポンプ5cは、求めた補給水量に比例する量の水処理薬剤5aを前記開放循環冷却水系1に注入し、前記開放循環冷却水系1の水処理薬剤5aが所定の濃度に維持、管理されることとなる。
The medicinal injection control device 6 has measured values T1, T2, specific heat of water (c), circulating water amount (R), latent heat of water evaporation (Q), cooling water set in advance or measured. Based on the concentration ratio (N) and the outside air temperature (T0) measured as necessary, according to any of the above formulas (1), (2), formulas (A) and (B), and formula (C) A chemical for obtaining a theoretical makeup water amount (M) or a corrected theoretical makeup water amount (Mt) for the open circulating
なお、図1においては、薬注制御装置6は、電気伝導率計7からの電気伝導率データ7aを基に、強制補給弁4gを開閉する強制補給シグナル6fを出力する機能を持つが、当然別装置として、薬注制御装置6から分離しても構わない。
In FIG. 1, the chemical injection control device 6 has a function of outputting a forced
実稼働中のある冷却塔で実測した補給水量(実測)と、式(2)から求めた理論補給水量(M)、及び式(A)、式(B)から求めた補正理論補給水量(Mt)の比較試験について、図2を参照し説明する。 The amount of make-up water measured in a cooling tower in actual operation (actual measurement), the amount of theoretical make-up water (M) obtained from Equation (2), and the corrected amount of theoretical make-up water (Mt) obtained from Equation (A) and Equation (B) ) Will be described with reference to FIG.
図2は、補給水量実測値と理論補給水量及び補正理論補給水量の関係を示す図である。図2の横軸は補給水量実測値(m3/h)、縦軸は式(2)、及び式(A)、式(B)から求めた補給水量計算値(m3/h)である。◇は式(2)によって求められた理論補給水量、▲は、外気温(T0)を基に式(2)で求めた理論補給水量(◇)を式(A)、式(B)によって補正して求めた補正理論補給水量である。但し、式(B)における定数は、a=0.015、b=0.5とした。 FIG. 2 is a diagram showing the relationship between the measured value of the makeup water amount, the theoretical makeup water amount, and the corrected theoretical makeup water amount. The horizontal axis of FIG. 2 is the actually measured amount of makeup water (m 3 / h), and the vertical axis is the calculated amount of makeup water (m 3 / h) obtained from Equation (2), Equation (A), and Equation (B). . ◇ is the theoretical makeup water volume obtained from equation (2), and ▲ is the theoretical makeup water volume (◇) obtained from equation (2) based on outside air temperature (T0), corrected by equations (A) and (B). This is the corrected theoretical makeup water amount. However, the constants in the formula (B) were a = 0.015 and b = 0.5.
実測した補給水量の値と、式(2)、及び式(A)、式(B)から求めた補給水量計算値とが一致すれば、一次関数y=x上に、◇、▲はプロットされることとなる。ところが、外気温による補正を行わない式(2)より求めた理論補給水量◇は、全体的に若干高めの値となる。 If the measured amount of make-up water matches the calculated amount of make-up water obtained from Equation (2), Equation (A), and Equation (B), ◇ and ▲ are plotted on the linear function y = x. The Rukoto. However, the theoretical amount of replenishment water ◇ obtained from the equation (2) that is not corrected by the outside air temperature is a slightly higher value overall.
従って、理論補給水量を基に水処理薬剤を注入した場合、水処理薬剤の濃度が所定の濃度よりやや高くなることとなる。しかし、式(1)、(2)で求めた理論補給水量を基に水処理薬剤の注入量を決定しても、水処理薬剤の不足はなく、水処理薬剤の機能を発揮させるという点では、開放循環冷却水系の実際の稼働において支障はない。 Accordingly, when the water treatment chemical is injected based on the theoretical replenishment water amount, the concentration of the water treatment chemical is slightly higher than the predetermined concentration. However, even if the injection amount of the water treatment chemical is determined based on the theoretical replenishment water amount obtained by the formulas (1) and (2), there is no shortage of the water treatment chemical and the function of the water treatment chemical is exhibited. There is no problem in the actual operation of the open circulation cooling water system.
一方、プロットされた補正理論補給水量▲は、実際の補給水量(実測)に極めて近い値を示していることがわかり、外気温(T0)の関数で補正する、式(A)、式(B)を用いた理論補給水量の補正方法が有効であることがわかる。 On the other hand, it can be seen that the plotted corrected theoretical makeup water amount ▲ shows a value very close to the actual makeup water amount (actual measurement) and is corrected by a function of the outside air temperature (T0). It can be seen that the method of correcting the theoretical makeup water amount using) is effective.
即ち、補正理論補給水量を基に水処理薬剤の注入量を決定することで、より水処理薬剤の濃度を適正値に近づけること(節約)ができることとなり、より経済的である。 That is, by determining the injection amount of the water treatment chemical based on the corrected theoretical replenishment water amount, the concentration of the water treatment chemical can be brought closer to an appropriate value (saving), which is more economical.
1 開放循環冷却水系
2 冷却塔
2a 冷却水
2b オーバーフロー水
2d 水槽
2e ファン
3 循環ライン
3a 循環水
3b 循環ポンプ
3c 熱交換器
3d 冷却水還配管
3e 冷却水往配管
4 補給ライン
4a 補給水
4c 補給配管
4e ボールタップ
4f 強制補給ライン
4g 強制補給弁
5 薬注装置
5a 水処理薬剤
5b タンク
5c 薬注ポンプ
5d 薬注ライン
6 薬注制御装置
6e 薬注ポンプ運転シグナル
6f 強制補給シグナル
7 電気伝導率計
7a 電気伝導率データ
8 水処理薬剤の注入装置
9 温度センサ(還)
10 温度センサ(往)
11 オーバーフローライン
12 外気温センサ
DESCRIPTION OF
10 Temperature sensor (out)
11
Claims (1)
冷却塔から熱交換器に向かう冷却水(循環水)の温度T1(℃)、熱交換器から冷却塔に戻る冷却水(循環水)の温度T2(℃)に基づき、
次式(A)及び式(B)に従って前記冷却水への補正理論補給水量(Mt)を求め、
Mt=η×((T2−T1)×c×R/Q)×(N/(N−1))・・・式(A)
η=a×T0+b・・・式(B)
Mt:補正理論補給水量(m3/h)
c:水の比熱(kcal/kg・℃)
R:冷却水の循環水量(m3/h)
Q:水の蒸発潜熱(kcal/kg)
N:冷却水の濃縮倍率(倍)
η:補正係数(外気温の1次関数)
T0:外気温(℃)
a、b:理論補給水量((T2−T1)×c×R/Q)×(N/(N−1))と
補給水量の実測値とを比較し、前記補正理論補給水量(Mt)が
補給水量の実測値に一致するようにa及びbを計算して定める定数
前記補正理論補給水量(Mt)に比例する量の水処理薬剤を前記冷却水に注入することを特徴とする水処理薬剤の注入方法。 Cooling water is circulated and supplied to the heat exchanger and this cooling water is cooled by the cooling tower, and a part of the cooling water is blown and makeup water is supplied to keep the concentration ratio of the cooling water constant. In an open circulating cooling water system,
Based on the temperature T1 (° C.) of the cooling water (circulated water) from the cooling tower to the heat exchanger and the temperature T2 (° C.) of the cooling water (circulating water) returning from the heat exchanger to the cooling tower,
According to the following equations (A) and (B), a corrected theoretical makeup water amount (Mt) for the cooling water is obtained,
Mt = η × ((T2−T1) × c × R / Q) × (N / (N−1)) Expression (A)
η = a × T0 + b Formula (B)
Mt: corrected theoretical makeup water volume (m 3 / h)
c: Specific heat of water (kcal / kg · ° C)
R: Circulating water volume of cooling water (m 3 / h)
Q: latent heat of vaporization of water (kcal / kg)
N: Concentration ratio of cooling water (times)
η: Correction coefficient (linear function of outside temperature)
T0: Outside air temperature (° C)
a, b: Theoretical makeup water amount ((T2-T1) × c × R / Q) × (N / (N−1))
Compared with the actual measured value of the makeup water amount, the corrected theoretical makeup water amount (Mt) is
Constants determined by calculating a and b so that they match the measured value of the makeup water volume
A water treatment chemical injection method, wherein an amount of water treatment chemical proportional to the corrected theoretical makeup water amount (Mt) is injected into the cooling water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007093549A JP5033457B2 (en) | 2007-03-30 | 2007-03-30 | Water treatment chemical injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007093549A JP5033457B2 (en) | 2007-03-30 | 2007-03-30 | Water treatment chemical injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008249300A JP2008249300A (en) | 2008-10-16 |
JP5033457B2 true JP5033457B2 (en) | 2012-09-26 |
Family
ID=39974452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007093549A Active JP5033457B2 (en) | 2007-03-30 | 2007-03-30 | Water treatment chemical injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5033457B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369831B2 (en) * | 2009-03-31 | 2013-12-18 | 栗田工業株式会社 | Cooling water state measuring device and cooling tower |
JP5551381B2 (en) * | 2009-04-15 | 2014-07-16 | 水ing株式会社 | Cooling water chemical injection control method and apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243695A (en) * | 1987-03-30 | 1988-10-11 | Toshiba Corp | Automatic blow down system for cooling tower |
JPS6449893A (en) * | 1987-08-21 | 1989-02-27 | Kurita Water Ind Ltd | Water balance measuring device for cooling tower |
JP2001317821A (en) * | 2000-05-11 | 2001-11-16 | Babcock Hitachi Kk | Air heat source type cooling apparatus and cooling method using the same |
JP2002159962A (en) * | 2000-11-24 | 2002-06-04 | Hakuto Co Ltd | System for controlling injection of water treating chemical in circulating water system |
JP2003130587A (en) * | 2001-10-29 | 2003-05-08 | Ebara Corp | Circulating type cooling apparatus for cooling water and water quality controlling method |
JP2006342979A (en) * | 2005-06-07 | 2006-12-21 | Yamaguchi Univ | Outdoor unit of air-cooled type cooling device |
-
2007
- 2007-03-30 JP JP2007093549A patent/JP5033457B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008249300A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608211B (en) | Water quality management apparatus, water treatment system, water quality management method, and optimization program for water treatment system | |
EP2175224A1 (en) | Method and apparatus for controlling chemical feeding in cooling water system | |
AU659345B2 (en) | Method of inhibiting corrosion in aqueous systems | |
CA2689830A1 (en) | Method to inhibit scale formation in cooling circuits using carbon dioxide | |
WO2016087920A2 (en) | Cooling water supply system and method | |
JP5699445B2 (en) | Water treatment chemical injection management method and apparatus for open circulation cooling water system | |
JP6779185B2 (en) | Water quality control equipment, water treatment systems, heat plants, power plants, and water quality control methods | |
JP5033457B2 (en) | Water treatment chemical injection method | |
JP5226357B2 (en) | Water treatment chemical injection method | |
JP5551381B2 (en) | Cooling water chemical injection control method and apparatus | |
TW201231726A (en) | Anticorrosive agent for boiler | |
ES2594558T3 (en) | Procedure for the operation of a dosing pump and associated dosing device | |
JPH0712497A (en) | Controlling method for water quality of circulating cooling water of cooling tower | |
US6645384B1 (en) | Method for inhibiting scale in high-cycle aqueous systems | |
JP2002159962A (en) | System for controlling injection of water treating chemical in circulating water system | |
JP2008249275A (en) | Injection method of water treatment agent | |
JP5983310B2 (en) | Boiler water quality management method and apparatus | |
JP2019098331A (en) | Chemical injection control device, drug management device, water treatment system, chemical injection control method, and program | |
JP2003130587A (en) | Circulating type cooling apparatus for cooling water and water quality controlling method | |
JP4437262B2 (en) | cooling tower | |
EP0866148B1 (en) | Method for inhibiting corrosion in water systems | |
JPH06317393A (en) | Water quality control method for circulating cooling water in cooling tower | |
JP6515639B2 (en) | Water treatment management device and method | |
KR101767191B1 (en) | Method for calculating optimal injection rate of corrosion inhibitor using by Langelier Index applied system for evaluating corrosion inhibition of raw water | |
JP2004025036A (en) | System and method for controlling concentration of water treating chemicals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120106 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20120316 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5033457 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |