[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5033258B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5033258B2
JP5033258B2 JP2011205072A JP2011205072A JP5033258B2 JP 5033258 B2 JP5033258 B2 JP 5033258B2 JP 2011205072 A JP2011205072 A JP 2011205072A JP 2011205072 A JP2011205072 A JP 2011205072A JP 5033258 B2 JP5033258 B2 JP 5033258B2
Authority
JP
Japan
Prior art keywords
defrosting
temperature
cooler
refrigerator
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011205072A
Other languages
Japanese (ja)
Other versions
JP2012017976A (en
Inventor
良二 河井
昭義 大平
明久 廣田
昌幸 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011205072A priority Critical patent/JP5033258B2/en
Publication of JP2012017976A publication Critical patent/JP2012017976A/en
Application granted granted Critical
Publication of JP5033258B2 publication Critical patent/JP5033258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator that has high energy-saving performance, and hardly causes such a problem that food in the refrigerator can not be maintained within a predetermined temperature range, and in which frost on a cooler and the surrounding thereof can be removed. <P>SOLUTION: The refrigerator characteristically includes a defroster which when a compressor is stopped, brings a freezing chamber damper into a closed state, brings a refrigerating chamber damper into an opened state, drives a heater, makes an air blower operate to send cold air cooled by latent heat to a refrigeration temperature zone chamber so as to cool the refrigeration temperature zone chamber by the latent heat of frost attached to the cooler, uses the latent heat of the frost to cool the refrigeration temperature zone chamber, and then stops sending of the cold air to the refrigeration temperature zone chamber. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、冷蔵庫、特に冷却器に付着した霜を除去する除霜運転を自動的に行う冷蔵庫に関する。   The present invention relates to a refrigerator, particularly a refrigerator that automatically performs a defrosting operation for removing frost attached to a cooler.

冷蔵室(本願発明における冷蔵温度帯室に対応)と冷凍室(本願発明における冷凍温度帯室に対応)を、共通の冷却器によって冷却する冷気強制循環方式の冷蔵庫において、霜を解かす従来の技術としては、以下に示す特許文献1から特許文献4の技術が知られている。   In a refrigerator with a forced air circulation system that cools a refrigerator compartment (corresponding to the refrigerator temperature zone chamber in the present invention) and a freezer chamber (corresponding to the refrigerator temperature zone chamber in the present invention) with a common cooler, As the techniques, the techniques of Patent Document 1 to Patent Document 4 shown below are known.

特許文献1には、圧縮機停止状態、全ダンパ閉状態、庫内送風機停止状態で、除霜ヒータ通電状態として除霜する技術が記載されている。   Patent Document 1 describes a technique for performing defrosting as a defrosting heater energized state in a compressor stopped state, a state where all dampers are closed, and an internal fan stopped state.

特許文献2には、通常冷却運転中に圧縮機の運転時間の積算が所定値に達したとき、または、使用者が手動式の加湿スイッチをONした場合に、冷蔵室ダンパを開状態、冷凍室ダンパを閉状態とし、庫内送風機を稼動させ加湿運転を行い、所定時間経過した後、または冷却器が所定の上限温度に上昇したときに除霜運転を終了させる技術が記載されている。
特許文献2にはまた、圧縮機の運転時間の積算値が所定値に達したときに、除霜ヒータに通電すると同時に、冷蔵室ダンパを開状態、冷凍室ダンパを閉状態とし、庫内送風機を稼動させ加湿運転(兼除霜運転)を行う技術が記載されている。
Patent Document 2 discloses that when a compressor operation time integration reaches a predetermined value during a normal cooling operation or when a user turns on a manual humidification switch, the refrigerator compartment damper is opened, A technique is described in which the chamber damper is closed, the internal fan is operated to perform a humidifying operation, and the defrosting operation is terminated after a predetermined time has elapsed or when the cooler has risen to a predetermined upper limit temperature.
Patent Document 2 also discloses that when the integrated value of the operating time of the compressor reaches a predetermined value, the defrost heater is energized, and at the same time, the refrigerator compartment damper is opened and the freezer compartment damper is closed. Describes a technique for performing a humidification operation (also a defrosting operation) by operating the.

また、特許文献3には、圧縮機の積算運転時間が所定の時間以上になった場合に、圧縮機の運転を停止し、除霜ヒータへ通電し、且つ冷凍室ダンパを閉状態、冷蔵室ダンパを開状態として、庫内送風機を稼動することで冷蔵室内の加湿運転(兼除霜運転)を行い、冷蔵室の温度が所定温度以上になったときには、除霜ヒータへの通電を停止及び圧縮機の運転再開により冷蔵室内の冷却運転(冷蔵室温度復帰運転)を行う技術が記載されている。
更に、特許文献4には、除霜運転時に除霜ヒータ通電前に圧縮機停止状態で、冷蔵室ダンパを開状態にして、比較的温度の高い冷蔵室内の冷気を、庫内送風機を稼動することにより冷気吐出ダクト内に呼び戻すようにして冷却器の温度を上昇させ、冷却器の温度が所定温度より高くなった場合に、庫内送風機を停止し、冷蔵室ダンパを閉状態にして除霜ヒータに通電し除霜する技術が記載されている。
Further, in Patent Document 3, when the accumulated operation time of the compressor becomes a predetermined time or more, the operation of the compressor is stopped, the defrost heater is energized, the freezer damper is closed, and the refrigerator compartment When the damper is in the open state, the humidifier operation (also defrosting operation) in the refrigerator compartment is performed by operating the internal fan, and when the temperature of the refrigerator compartment exceeds the predetermined temperature, the energization to the defrost heater is stopped and A technique for performing a cooling operation in the refrigerator compartment (refrigerating compartment temperature return operation) by resuming the operation of the compressor is described.
Furthermore, in Patent Document 4, the compressor is stopped before the defrost heater is energized during the defrosting operation, the refrigerator compartment damper is opened, and the cooler in the refrigerator compartment having a relatively high temperature is operated. As a result, the temperature of the cooler is raised so as to be called back into the cold air discharge duct, and when the temperature of the cooler becomes higher than a predetermined temperature, the internal fan is stopped and the refrigerator compartment damper is closed to defrost. A technique for energizing and defrosting a heater is described.

特開2002−31466号公報JP 2002-31466 A 特開2001−280784号公報JP 2001-280784 A 特許第3912233号公報Japanese Patent No. 3912233 特開2003−83667号公報JP 2003-83667 A

しかしながら、前記従来技術では、省エネルギ性能が十分高くなく、また、確実な除霜を行うとか、除霜中の冷蔵室温度及び冷凍室温度をそれぞれの所定温度以下に保つという点で信頼性が低かった。以下にその理由を説明する。
まず、省エネルギ性能に関する従来の技術の問題点について説明する。冷蔵室と冷凍室を共通に冷却する冷却器を備えた冷蔵庫において、この冷却器の霜を解かすための第一の方式は、特許文献1に記載されている、圧縮機停止状態、全ダンパ閉状態及び庫内送風機停止状態で、除霜ヒータ通電状態として霜を加熱して解かす方式である。この方式の省エネルギ性能は、〔1〕除霜ヒータと霜の間の熱伝達効率、〔2〕霜の冷熱の扱いを考えることで説明できる。まず、〔1〕除霜ヒータと霜の間の熱伝達効率についてであるが、特許文献1に記載の除霜ヒータによって霜を加熱する方式では、基本的に除霜ヒータから霜への伝熱は自然対流によることになるため(輻射もあるが一般に自然対流が支配的)、除霜ヒータと霜と間の熱伝達効率は低い。したがって、必要な熱量を霜に与えるためには、除霜ヒータへより多くの入力が必要になり省エネルギ性能は低い。次に、〔2〕霜の冷熱の扱いについて説明する。冷蔵室は通常3〜5℃程度に維持される室であるため、0℃で相変化(融解)する霜は、冷蔵室から見れば、冷蔵室を冷却し得る冷熱源として考えることができる。このことを考えると、特許文献1に記載の除霜ヒータによって霜を加熱して解かす方式(第一の方式)は、利用可能な霜の冷熱を冷蔵室の冷却に再利用せずに捨てていることになり、省エネルギ性能を十分高くすることができていない。
However, the conventional technology does not have sufficiently high energy saving performance, and is reliable in that reliable defrosting is performed, and that the temperature of the refrigerator compartment and the temperature of the freezer compartment during the defrosting is kept below their respective predetermined temperatures. It was low. The reason will be described below.
First, problems of the conventional technology relating to energy saving performance will be described. In a refrigerator provided with a cooler that cools the refrigerator compartment and the freezer compartment in common, the first method for defrosting the cooler is the compressor stop state, all dampers described in Patent Document 1. In the closed state and the state where the internal fan is stopped, the defrost heater is energized to heat and defrost the frost. The energy saving performance of this method can be explained by considering [1] heat transfer efficiency between the defrosting heater and the frost and [2] handling of frost cold. First, [1] Regarding the heat transfer efficiency between the defrost heater and the frost, in the method of heating frost with the defrost heater described in Patent Document 1, heat transfer from the defrost heater to the frost is basically performed. Is due to natural convection (there is also radiation, but natural convection is generally dominant), so the heat transfer efficiency between the defrost heater and frost is low. Therefore, in order to give the necessary amount of heat to the frost, more inputs are required to the defrost heater, and the energy saving performance is low. Next, [2] handling of frost cold will be described. Since the refrigerating room is a room that is normally maintained at about 3 to 5 ° C., frost that undergoes a phase change (melting) at 0 ° C. can be considered as a cooling heat source that can cool the refrigerating room when viewed from the refrigerating room. Considering this, the method (first method) in which frost is heated and defrosted by the defrost heater described in Patent Document 1 is discarded without reusing the cold heat of available frost for cooling the refrigerator compartment. As a result, the energy saving performance cannot be sufficiently increased.

冷蔵室と冷凍室を共通に冷却する冷却器を備えた冷蔵庫において、この冷却器の霜を解かすための第二の方式は、特許文献2に記載されている、圧縮機停止状態で冷蔵室ダンパを開状態、冷凍室ダンパを閉状態、除霜ヒータ非通電状態とし、庫内送風機を稼動させて冷蔵室を加湿するという方式である。この第二の方式は加湿を目的としたものであるが、この方式でも霜は解けるのでここでは第二の方式として説明する。この場合、除霜ヒータへの入力はゼロで、外部から投入するエネルギは庫内送風機の動力(一般に除霜ヒータ入力に比べて十分小さい)だけとなり、また、霜によって冷やされた空気が冷蔵室に供給される。   In a refrigerator provided with a cooler that cools the refrigerator compartment and the freezer compartment in common, the second method for defrosting the cooler is described in Patent Document 2, and the refrigerator compartment is in a refrigerator stopped state. In this method, the damper is opened, the freezer damper is closed, and the defrost heater is not energized, and the refrigerator is operated to humidify the refrigerator. This second method is intended for humidification, but frost can be dissolved by this method as well, so here it will be described as the second method. In this case, the input to the defrost heater is zero, the energy input from the outside is only the power of the internal fan (generally sufficiently smaller than the input of the defrost heater), and the air cooled by the frost is stored in the refrigerator compartment. To be supplied.

すなわち、霜の冷熱を利用して冷蔵室を冷やすため省エネルギ性能は非常に高い。ただし、この第二の方式によって完全な除霜を行うことは困難である。これは、圧縮機停止状態で冷蔵室ダンパを開状態、冷凍室ダンパを閉状態とし、庫内送風機を稼動させるという方式では、霜を解かすために時間がかかるため、除霜(完全な除霜)を行おうとすると、ダンパを閉じて送風を止めている冷凍室の温度が上昇してしまうという不具合が生じるためである。したがって、特許文献2に記載されている冷却器の霜を解かすための第二の方式は冷蔵室と冷凍室を共通に冷却する冷却器を備えた冷蔵庫の除霜方式としては不向きである。   That is, the energy saving performance is very high because the refrigeration room is cooled using the cold heat of frost. However, it is difficult to perform complete defrosting by this second method. This is because when the compressor is stopped and the refrigerator compartment damper is opened, the freezer compartment damper is closed, and the internal fan is operated, it takes time to defrost. This is because if the frost is attempted, the temperature of the freezer compartment that closes the damper and stops air blowing rises. Therefore, the second method for defrosting the cooler described in Patent Document 2 is unsuitable as a defrosting method for a refrigerator provided with a cooler that cools the refrigerator compartment and the freezer compartment in common.

冷蔵室と冷凍室を共通に冷却する冷却器を備えた冷蔵庫において、この冷却器の霜を解かすための第三の方式は、特許文献2または特許文献3に記載されている、圧縮機停止状態で、冷蔵室ダンパを開状態、冷凍室ダンパを閉状態、除霜ヒータ通電状態とし、庫内送風機を稼動させるという方式である。この第三の方式は加湿を目的としたものであるが、この方式でも霜は解けるので、ここでは第三の方式として説明する。図12を参照しながらこの方式の省エネルギ性能を説明する。   In a refrigerator provided with a cooler that cools the refrigerator compartment and the freezer compartment in common, the third method for defrosting the cooler is described in Patent Document 2 or Patent Document 3, and the compressor stop In this state, the refrigerator compartment damper is opened, the freezer compartment damper is closed, the defrost heater is energized, and the internal fan is operated. Although this third method is intended for humidification, frost can be dissolved by this method as well, so here it will be described as the third method. The energy saving performance of this method will be described with reference to FIG.

図12は、特許文献2または特許文献3に記載の、圧縮機停止時に、冷凍室への冷気循環を遮断した状態で、除霜ヒータに通電すると同時に、冷蔵庫内に設けられた庫内送風機によって冷蔵室に送風を行うことにより加湿運転を行った場合の冷蔵室内の温度、冷蔵室吐出空気温度、及び、冷却器温度の変化を表すタイムチャートである。冷蔵室から戻る空気は除霜ヒータによって加熱され温度上昇する。ここで、加湿の効果を高めるためには、冷蔵室からの戻り空気は、除霜ヒータによって温度を十分上げて、相対湿度を下げた状態にして(飽和水蒸気量を上げた状態にして)、冷却器に流すようにすればよい。これにより、冷却器表面の水(または霜)がより多く蒸発(または昇華)するので、多くの水分を含んだ空気を冷蔵室に供給できるようになる。   FIG. 12 shows a state in which the defrosting heater is energized at the same time that the defrost heater is energized with the cool air circulation to the freezer compartment shut off when the compressor is stopped, as described in Patent Document 2 or Patent Document 3. It is a time chart showing the change of the temperature in a refrigerator compartment, the refrigerator air discharge temperature, and a cooler temperature at the time of performing a humidification operation by sending air to a refrigerator compartment. The air returning from the refrigerator compartment is heated by the defrost heater and the temperature rises. Here, in order to increase the effect of humidification, the return air from the refrigerator compartment is sufficiently raised in temperature by a defrost heater to reduce the relative humidity (in a state where the amount of saturated water vapor is increased), What is necessary is just to make it flow into a cooler. As a result, more water (or frost) on the surface of the cooler evaporates (or sublimates), so that air containing a large amount of moisture can be supplied to the refrigerator compartment.

一方で、除霜ヒータによって温度を十分上げることにより、冷蔵室に供給する空気の温度も同時に上昇するため、図12に示すように、冷蔵室吐出空気の温度は冷蔵室より高くなり、結果として、冷蔵室温度は上昇することになる。したがって、特許文献2に記載の技術では、過度に冷蔵室温度が上昇することがあったため、そのような事態が生じないように特許文献3に記載の技術では、冷蔵室内の冷却運転(冷蔵室温度復帰運転)を行うようにしている。
なお、霜の相変化(融解)のために、霜融解開始から霜融解完了までは冷却器温度はほぼ0℃に保たれる。
On the other hand, by sufficiently raising the temperature by the defrost heater, the temperature of the air supplied to the refrigerating room also rises at the same time, so that the temperature of the refrigerating room discharge air becomes higher than that of the refrigerating room as shown in FIG. The refrigerator compartment temperature will rise. Therefore, in the technique described in Patent Document 2, since the temperature of the refrigerator compartment is excessively increased, the technique described in Patent Document 3 is used to perform a cooling operation in the refrigerator compartment (the refrigerator compartment) so that such a situation does not occur. Temperature recovery operation).
Note that due to the frost phase change (melting), the cooler temperature is maintained at approximately 0 ° C. from the start of frost melting to the completion of frost melting.

このように、加湿を主目的として、圧縮機停止時に、冷凍室への冷気循環を遮断した状態で、除霜ヒータに通電すると同時に、冷蔵庫内に設けられた庫内送風機によって冷蔵室に送風を行う特許文献2、若しくは、特許文献3の従来技術では、冷蔵室の温度上昇が生じる、すなわち、冷蔵室を冷却できていない。このことから、冷却器の霜を解かすための第三の方式は、庫内送風機によって強制対流が形成されるため、除霜ヒータと霜の間の熱伝達効率は高いが、冷却器の霜を解かすための第一の方式の説明で述べたとおり、利用可能な霜の冷熱を冷蔵室の冷却に再利用できていないため、その分省エネルギ性能は低くなる。つまり、特許文献2、若しくは、特許文献3の従来技術では、加湿を目的とするため、「霜の冷熱を再利用する」という省エネ性を高めるための配慮がなされていない。   In this way, with the main purpose of humidification, when the compressor is stopped, the defrost heater is energized while the cold air circulation to the freezer compartment is shut off, and at the same time, the refrigerator compartment is provided with air in the refrigerator compartment. In the prior art of Patent Document 2 or Patent Document 3 to be performed, the temperature of the refrigerator compartment rises, that is, the refrigerator compartment cannot be cooled. From this, the third method for defrosting the cooler frost has a high heat transfer efficiency between the defrost heater and the frost because the forced convection is formed by the internal fan, but the cooler frost As described in the explanation of the first method for solving the problem, the energy saving performance is lowered by that amount because the available frost is not reused for cooling the refrigerator compartment. That is, in the prior arts of Patent Document 2 or Patent Document 3, since the purpose is humidification, no consideration is given to increase energy savings such as “reuse of frost cold”.

以上の理由により、従来の霜を解かす技術を用いて除霜(完全な除霜)を行う場合、省エネルギ効果が小さくなっていた。   For the above reasons, when performing defrosting (complete defrosting) using the conventional technology for defrosting, the energy saving effect has been reduced.

次に前記した確実な除霜を行うとか、除霜中の冷蔵室温度及び冷凍室温度をそれぞれの所定温度以下に保つという点の信頼性に関する従来の技術の問題点について説明する。
特許文献2に記載の技術、若しくは、特許文献3に記載の技術では、冷蔵室からの戻り冷気が形成する冷却器室の冷気の流れの状態を示す流れ場と、冷凍室からの戻り冷気が形成する冷却器室の冷気の流れの状態を示す流れ場が異なるために、庫内送風機によって冷蔵室に送風を行い、除霜を行った場合に、霜が解け難い箇所が存在することに対する配慮がなされていない。その結果、使用者に特別な落ち度、例えば、冷蔵庫の扉を開放した状態で長時間放置する等がなくとも、省エネルギ性能の悪化や、冷蔵庫内の食品を所定温度範囲に維持できなくなるといった問題が生じていた。
Next, a description will be given of problems of the related art relating to reliability in that the above-described reliable defrosting is performed or the temperature of the refrigerator compartment and the temperature of the freezer compartment during the defrosting are kept below the predetermined temperatures.
In the technique described in Patent Document 2 or the technique described in Patent Document 3, the flow field indicating the state of the cool air flow in the cooler chamber formed by the return cold air from the refrigerator compartment, and the return cold air from the freezer compartment Because the flow field indicating the state of the cold air flow in the cooler room to be formed is different, consideration is given to the fact that there is a place where frost is difficult to thaw when air is blown into the refrigerator room by the internal fan and defrosted Has not been made. As a result, there is a problem that the user will not be able to keep the food in the predetermined temperature range or the energy saving performance will be deteriorated without leaving the refrigerator door open for a long time, for example, without leaving the refrigerator door open for a long time. Has occurred.

また、特許文献4に記載の技術では、比較的温度の高い冷蔵室内の冷気を、庫内送風機を稼動することにより冷気吐出ダクト内に逆流させて冷却器温度を上昇させるものである。温度の高い冷蔵室内の冷気を冷蔵室戻りダクト内ではなく、冷蔵室送風ダクト内に逆流させるには、通常の冷却運転時とは逆向きの空気の流れを形成する必要があり、例えば、庫内送風機を逆回転させたり、逆向きの流れを形成するための第2の庫内送風機を別途設けたりすることが必要になる。   Moreover, in the technique described in Patent Document 4, the cooler in the refrigerating room having a relatively high temperature is caused to flow back into the cool air discharge duct by operating the internal blower, thereby raising the cooler temperature. In order to cause the cold air in the refrigeration room having a high temperature to flow back into the refrigeration room air duct rather than into the refrigeration room return duct, it is necessary to form an air flow opposite to that during normal cooling operation. It is necessary to reversely rotate the inner blower or to separately provide a second internal blower for forming a reverse flow.

通常、庫内送風機は順回転時に送風効率が最大となるよう羽形状が設計されるため、逆回転時には送風効率が大幅に低下する。したがって、所定の風量を得るために、例えば逆回転時に回転速度を上げるといったことが必要になり、庫内送風機の所要動力が増大するという問題や、騒音が大きくなるという問題が生じていた。
また、逆向きの流れを形成するために別途、第2の庫内送風機を設けた場合は、冷蔵庫容積の減少や、コストの増加を招いていた。
Usually, since the wing shape is designed so that the blower efficiency is maximized during forward rotation, the blower efficiency is greatly reduced during reverse rotation. Therefore, in order to obtain a predetermined air volume, for example, it is necessary to increase the rotational speed during reverse rotation, which causes a problem that required power of the internal fan increases and a problem that noise increases.
Moreover, when the 2nd fan in a store | warehouse | chamber was provided separately in order to form a reverse flow, the reduction | decrease in the refrigerator volume and the increase in cost were caused.

更に、特許文献4に記載の技術は、冷却器温度が所定温度より高くなった場合に、庫内送風機を停止し、冷蔵室ダンパを閉状態にして除霜ヒータに通電し除霜するものであるが、除霜時の冷却器の温度変化に対する配慮が十分でないために、省エネルギ性能が低かったり、使用者に特別な落ち度がなくとも、冷蔵庫内の食品を所定温度範囲に維持できなくなったり、といった可能性が生じていた。   Furthermore, the technique described in Patent Document 4 is for defrosting when the cooler temperature is higher than a predetermined temperature by stopping the internal fan and closing the refrigerator compartment damper to energize the defrost heater. However, due to insufficient consideration of the temperature change of the cooler during defrosting, the energy saving performance is low, and even if the user does not have a special drop, the food in the refrigerator cannot be maintained within the specified temperature range. There was a possibility that.

前記、課題が生じる理由を以下に説明する。除霜時の冷却器温度は霜の温度をほぼ表しており、霜の温度変化は、霜がマイナス温度から0℃に至るまでの顕熱変化の部分、霜の融解時(相変化時)に見られる0℃一定の潜熱変化の部分、霜が解けきった後の0℃より温度が高くなる顕熱変化の部分により構成される。霜(氷)の比熱は約2kJ/(kg・K)、霜(氷)の融解潜熱は約335kJ/kg、水の比熱は約4.2kJ/(kg・K)であることから、冷蔵庫の冷却器の霜を解かす場合、潜熱変化(相変化)時に非常に多くの熱量が必要となる。
このことから、除霜時に、特に霜が比較的多く存在する場合には、0℃一定の時間が長くなる。言い換えると、霜は、0℃一定の相変化時に非常に多くの熱を吸熱しうる冷熱源であるといえる。また、省エネルギ性能を考えると、除霜ヒータが非通電状態で、庫内送風機によって冷蔵室に送風を行う除霜方式は、霜の冷熱を利用して、冷蔵室を冷却しているつまり、冷蔵室の熱負荷で霜を解かしている効果と、送風により強制対流を起こすことで冷却器と送風との熱伝達効率が高まるために、省エネルギ性能が高い。
The reason why the problem occurs will be described below. The cooler temperature at the time of defrosting almost represents the temperature of the frost, and the temperature change of the frost is the part of the sensible heat change from the minus temperature to 0 ° C, when the frost melts (during phase change) It is composed of a constant latent heat change portion that is seen at 0 ° C., and a sensible heat change portion where the temperature becomes higher than 0 ° C. after the frost has been thawed. The specific heat of frost (ice) is about 2 kJ / (kg · K), the latent heat of fusion of frost (ice) is about 335 kJ / kg, and the specific heat of water is about 4.2 kJ / (kg · K). When defrosting the cooler, a great amount of heat is required at the time of latent heat change (phase change).
From this, at the time of defrosting, especially when there is a relatively large amount of frost, the constant time of 0 ° C. becomes longer. In other words, it can be said that frost is a cold source that can absorb a great deal of heat during a phase change of 0 ° C. In addition, considering energy saving performance, the defrosting method in which the defrost heater is in a non-energized state and blows air to the refrigerating room by the internal fan uses the cold heat of the frost to cool the refrigerating room. Energy saving performance is high because the effect of defrosting with the heat load of the refrigerator compartment and the heat transfer efficiency between the cooler and the blower are increased by causing forced convection by the blower.

一方、庫内送風機を停止状態で除霜ヒータに通電する除霜方式は、霜の冷熱を冷却に利用せず、また、冷却器とその周りの空気とは自然対流であり、強制対流に比べて熱伝達効率が低いために省エネルギ性能は低い。
以上を考慮した場合、特許文献4に記載の技術における、庫内送風機を停止するための冷却器温度の設定値を、0℃以下に設定した場合、霜の有する冷熱の内、顕熱変化の部分の冷熱しか冷蔵室の冷却に利用できないことになる。したがって、冷蔵室の冷却のためにより多くの利用可能な冷熱が取り出せる潜熱変化の部分については、庫内送風機を停止した状態で行われる除霜ヒータによる除霜によって捨てられてしまうことになる。これにより省エネルギ効果が小さくなっていた。
On the other hand, the defrosting method that energizes the defrosting heater while the internal fan is stopped does not use the cold heat of the frost for cooling, and the cooler and the surrounding air are natural convection, compared with forced convection. Because of its low heat transfer efficiency, energy saving performance is low.
In consideration of the above, in the technique described in Patent Document 4, when the set value of the cooler temperature for stopping the internal fan is set to 0 ° C. or less, the sensible heat change of the frost has Only the cold heat of the part can be used for cooling the refrigerator compartment. Therefore, the part of the latent heat change from which more available cold heat can be taken out for cooling the refrigerator compartment is discarded by the defrosting by the defrosting heater performed with the internal fan stopped. As a result, the energy saving effect was reduced.

一方、庫内送風機を停止するための冷却器温度の設定値を、0℃より高い温度に設定した場合、霜の量が比較的多い場合、前記のとおり0℃一定の時間(潜熱変化の部分)が長くなり、この間に、冷気循環を遮断した状態の冷凍室の温度上昇が著しくなり、使用者に特別な落ち度がなくとも、冷凍食品が解けるといった問題を生じる可能性があった。   On the other hand, when the set value of the cooler temperature for stopping the internal blower is set to a temperature higher than 0 ° C., when the amount of frost is relatively large, as described above, the time constant for 0 ° C. (part of the latent heat change) ) For a long time, the temperature rise in the freezer compartment in a state where the cold air circulation is interrupted becomes significant, and there is a possibility that the frozen food can be dissolved even if the user does not have a special drop.

本発明は前記の従来技術の問題点に鑑みてなされたものであり、省エネルギ性能が高く、冷蔵庫内の食品を所定温度範囲に維持できないという可能性が生じ難く、冷却器とその周辺の霜を取り除くことができる冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, has high energy saving performance, and is unlikely to be able to maintain food in the refrigerator in a predetermined temperature range. An object of the present invention is to provide a refrigerator that can remove the problem.

前記目的を達成するために、本発明の請求項1に記載の発明は、冷凍温度帯室と、冷蔵温度帯室と、圧縮機と、前記冷凍温度帯室と前記冷蔵温度帯室を冷却する冷却器と、前記冷却器で冷却された冷気を、前記冷凍温度帯室と前記冷蔵温度帯室に循環させる送風機と、前記冷却器から前記冷凍温度帯室への送風を制御する冷凍室ダンパと、前記冷却器から前記冷蔵温度帯室への送風を制御する冷蔵室ダンパと、前記冷却器に付着した霜を解かす加熱手段を備える冷蔵庫において、前記圧縮機の停止時に、前記冷凍室ダンパを閉状態とし、前記冷蔵室ダンパを開状態とし、前記加熱手段を駆動し、前記送風機を稼動させて、前記冷却器に付着した霜の潜熱で前記冷蔵温度帯室を冷却するように前記潜熱で冷却した冷気を前記冷蔵温度帯室に送風して、前記冷蔵温度帯室を前記霜の潜熱を利用して冷却した後に前記冷蔵温度帯室への前記冷気の送風を停止する除霜手段を備え、前記冷却器に付着した霜の潜熱で前記冷蔵温度帯室を冷却した後に、前記加熱手段を停止状態、前記冷蔵室ダンパを閉状態、前記冷凍室ダンパを閉状態、前記送風機を停止状態として、前記圧縮機を運転状態とすることを特徴とする。 In order to achieve the object, the invention according to claim 1 of the present invention cools the refrigeration temperature zone chamber, the refrigeration temperature zone chamber, the compressor, the refrigeration temperature zone chamber, and the refrigeration temperature zone chamber. A cooler, a blower that circulates the cold air cooled by the cooler to the freezing temperature zone chamber and the refrigeration temperature zone chamber, and a freezer compartment damper that controls ventilation from the cooler to the freezing temperature zone chamber; A refrigerator including a refrigerator for controlling air flow from the cooler to the refrigerator temperature zone chamber and a heating unit for defrosting frost attached to the cooler, and when the compressor is stopped, the freezer damper is In the closed state, the refrigerator compartment damper is opened, the heating means is driven, the blower is operated, and the latent heat is used to cool the refrigerator compartment with the latent heat of frost adhering to the cooler. Cooled air is blown into the refrigerated temperature zone Te, wherein the refrigeration temperature zone compartment comprises a defrosting means for stopping the blowing of the cold air to the refrigerating temperature zone compartment after cooling by utilizing the latent heat of the frost, the in latent heat of frost adhering to the cooler After cooling the refrigeration temperature zone chamber, the heating means is stopped, the refrigeration chamber damper is closed, the freezer compartment damper is closed, the blower is stopped, and the compressor is in an operating state. And

請求項1に記載の発明によれば、除霜運転では、圧縮機を停止した状態で、冷凍室ダンパを閉状態とし、冷蔵室ダンパを開状態とし、加熱手段を駆動し、送風機を稼動させて、冷却器に付着した霜の潜熱で冷却した冷気を冷蔵温度帯室へ送風する制御を行うので、省エネルギ効果が大きい。また、冷蔵温度帯室の温度が冷却器の温度以下になると冷却器が持つ冷熱では、冷蔵温度帯室を冷却する能力はないため、送風の継続によって冷蔵温度帯室の温度を暖めてしまうことを防ぐことができる。また、冷却器の霜の解け残りを防ぐことができる。そして、冷却器に付着した霜の潜熱で冷蔵温度帯室を冷却した後に、加熱手段を停止状態、冷蔵室ダンパを閉状態、冷凍室ダンパを閉状態、送風機を停止状態として、圧縮機を運転状態とするので、除霜手段による除霜運転が終了した時点で温度が高くなっている冷却器とその周辺の空気が、そのまま庫内各室に送られて、庫内各室を暖めてしまうという問題が生じ難くなる。 According to the first aspect of the present invention, in the defrosting operation, with the compressor stopped, the freezer compartment damper is closed, the refrigerator compartment damper is opened, the heating means is driven, and the blower is operated. In addition, since the cool air cooled by the latent heat of the frost adhering to the cooler is controlled to be sent to the refrigeration temperature zone, the energy saving effect is great. In addition, if the temperature of the refrigerated temperature zone falls below the temperature of the cooler, the cooler has no ability to cool the refrigerated temperature zone, so the temperature of the refrigerated temperature zone can be warmed by continuing ventilation. Can be prevented. Moreover, it is possible to prevent the frost of the cooler from remaining unmelted. Then, after cooling the refrigeration temperature zone with the latent heat of frost adhering to the cooler, the heating unit is stopped, the refrigeration chamber damper is closed, the freezer damper is closed, and the blower is stopped. Because it is in a state, when the defrosting operation by the defrosting means is finished, the cooler whose temperature is high and the air around it are sent to the chambers as they are, and each chamber is warmed It becomes difficult to cause the problem.

本発明によれば、省エネルギ性能が高く、冷蔵庫内の食品を所定温度範囲に維持できないという可能性を生じ難い、信頼性の高い冷蔵庫を提供することができる。   According to the present invention, it is possible to provide a highly reliable refrigerator that has high energy saving performance and is unlikely to cause a possibility that the food in the refrigerator cannot be maintained in a predetermined temperature range.

本発明の実施形態に係る冷蔵庫の正面外形図である。It is a front external view of the refrigerator which concerns on embodiment of this invention. 冷蔵庫の庫内の構成を表す縦断面図である。It is a longitudinal cross-sectional view showing the structure in the store | warehouse | chamber of a refrigerator. 冷蔵庫の庫内の構成を表す正面図である。It is a front view showing the structure in the store | warehouse | chamber of a refrigerator. 冷却器周辺部分の部分側面図である。It is a partial side view of a cooler peripheral part. 冷却器周辺部分の部分正面図である。It is a partial front view of a cooler peripheral part. 除霜モードを説明する図である。It is a figure explaining a defrost mode. 除霜運転の制御の流れを示すローチャートである。It is a flowchart which shows the flow of control of a defrost operation. 除霜運転の制御の流れを示すローチャートである。It is a flowchart which shows the flow of control of a defrost operation. 除霜運転の制御の流れを示すローチャートである。It is a flowchart which shows the flow of control of a defrost operation. 除霜運転の制御の流れを示すローチャートである。It is a flowchart which shows the flow of control of a defrost operation. 除霜モード4における除霜時のタイムチャートである。It is a time chart at the time of defrosting in the defrosting mode 4. FIG. 従来技術における加湿運転時のタイムチャートである。It is a time chart at the time of the humidification driving | operation in a prior art.

本発明に係る冷蔵庫の実施形態を、図1から図11を参照しながら説明する。
図1は、本実施形態の冷蔵庫の正面外形図であり、図2は、冷蔵庫の庫内の構成を表す図1におけるX−X縦断面図である。図3は、冷蔵庫の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図である。
図1に示すように、本実施形態の冷蔵庫1は、上方から、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6から構成されている。
ここで、本実施形態における冷蔵室2と野菜室6は、請求項に記載の冷蔵温度帯室に対応し、製氷室3、上段冷凍室4、下段冷凍室5は請求項に記載の冷凍温度帯室に対応する。
An embodiment of a refrigerator according to the present invention will be described with reference to FIGS.
FIG. 1 is a front external view of a refrigerator according to the present embodiment, and FIG. 2 is an XX longitudinal sectional view in FIG. 1 showing a configuration inside the refrigerator. FIG. 3 is a front view illustrating a configuration inside the refrigerator, and is a diagram illustrating the arrangement of the cold air duct and the outlet.
As shown in FIG. 1, the refrigerator 1 of this embodiment is comprised from the upper part from the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6. As shown in FIG.
Here, the refrigerator compartment 2 and the vegetable compartment 6 in this embodiment correspond to the refrigerator temperature zone described in the claims, and the ice making chamber 3, the upper freezer compartment 4, and the lower refrigerator compartment 5 are the freezing temperatures described in the claims. Corresponds to the obi room.

冷蔵室2は前方側に、左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称する。
また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2の温度設定や上段冷凍室4や下段冷凍室5の温度設定をする図示しない温度設定器等を備えている。
The refrigerating room 2 includes front and rear refrigerating room doors 2a and 2b which are divided into left and right sides, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are respectively drawer-type ice making room doors. 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.
The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, and 6a, and a state determined to be the door open state for a predetermined time, for example, 1 minute. When the operation is continued, an alarm (not shown) for notifying the user, a temperature setting unit (not shown) for setting the temperature of the refrigerator compartment 2 and the temperature of the upper freezer compartment 4 and the lower freezer compartment 5 are provided.

図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は複数の真空断熱材25を実装している。
庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。
扉2a,2b(図1参照、図2では冷蔵室扉2bは図示せず)の庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。
As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). The heat insulating box 10 of the refrigerator 1 has a plurality of vacuum heat insulating materials 25 mounted thereon.
The inside of the refrigerator is separated from the refrigerator compartment 2 by the heat insulating partition wall 28, the upper freezing chamber 4 and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2). The lower freezer compartment 5 and the vegetable compartment 6 are separated.
A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1, the refrigerator compartment door 2b is not shown in FIG. 2). The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

図2に示すように、上段冷凍室4、下段冷凍室5及び野菜室6は、それぞれの室の前方に備えられた扉3a,4a,5a,6aと一体に、収納容器3b,4b,5b,6bがそれぞれ設けられており、扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。   As shown in FIG. 2, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are integrated with doors 3a, 4a, 5a, 6a provided in front of the respective compartments, and storage containers 3b, 4b, 5b. , 6b are provided, and the storage containers 4b, 5b, 6b can be pulled out by placing a hand on a handle portion (not shown) of the doors 4a, 5a, 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out.

図2に示すように(適宜図3参照)、冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられており、冷却器7の上方に設けられた庫内送風機(送風機)9により冷却器7と熱交換して冷やされた空気(冷気、以下、冷却器7で冷やされてできた低温空気を冷気と称する)が冷蔵室送風ダクト11、符号省略の野菜室送風ダクト(図3参照)、上段冷凍室送風ダクト12、下段冷凍室送風ダクト13及び図示しない製氷室送風ダクトを介して、冷蔵室2、野菜室6、上段冷凍室4、下段冷凍室5、製氷室3の各室へ送られる。各室への送風は冷蔵室ダンパ20と冷凍室ダンパ50の開閉により制御される。
ちなみに、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5及び野菜室6への各送風ダクトは、図3に破線で示すように冷蔵庫1の各室の背面側に設けられている。
As shown in FIG. 2 (see FIG. 3 as appropriate), the cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5, and is a warehouse provided above the cooler 7. Air cooled by the inner blower (blower) 9 by heat exchange with the cooler 7 (cold air, hereinafter, low-temperature air cooled by the cooler 7 is referred to as cold air) is a refrigerator compartment air duct 11, code not shown The refrigerated compartment 2, the vegetable compartment 6, the upper freezer compartment 4, and the lower freezer compartment through the vegetable compartment air duct (see FIG. 3), the upper freezer compartment air duct 12, the lower freezer compartment air duct 13, and the ice making room air duct (not shown). 5. It is sent to each chamber of the ice making chamber 3. Air blowing to each room is controlled by opening and closing the refrigerator compartment damper 20 and the freezer compartment damper 50.
Incidentally, the air ducts to the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided on the back side of each room of the refrigerator 1 as indicated by broken lines in FIG. Yes.

具体的には、冷蔵室ダンパ20が開状態、冷凍室ダンパ50が閉状態のときには、冷気は、冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られ、冷蔵室送風ダクト11から分岐した野菜室送風ダクト(図3参照)を経て、吹き出し口6cから野菜室6に送られる。
なお、冷蔵室2を冷却した冷気は、例えば、冷蔵室2の下面に設けられた戻り口2dから冷蔵室戻りダクト16を経て、冷却器収納室8(図5参照)の正面から見て、例えば、右側下部に戻る。また、野菜室6からの戻り空気は、戻り口6dを経て、冷却器収納室8の下部に戻る。
Specifically, when the refrigerator compartment damper 20 is in the open state and the freezer compartment damper 50 is in the closed state, the cold air is sent to the refrigerator compartment 2 from the air outlets 2c provided in multiple stages via the refrigerator compartment air duct 11. It passes through the vegetable room ventilation duct (refer FIG. 3) branched from the room ventilation duct 11, and is sent to the vegetable room 6 from the blower outlet 6c.
Note that the cold air that has cooled the refrigerator compartment 2 is viewed from the front of the cooler storage compartment 8 (see FIG. 5) from the return port 2d provided on the lower surface of the refrigerator compartment 2 through the refrigerator compartment return duct 16, for example. For example, return to the lower right side. The return air from the vegetable compartment 6 returns to the lower part of the cooler storage compartment 8 through the return opening 6d.

図3では冷凍室ダンパ50が省略されているが、冷凍室ダンパ50が開状態のとき、冷却器7で熱交換された冷気が庫内送風機9により図示省略の製氷室送風ダクトや上段冷凍室送風ダクト12を経て吹き出し口3c,4cからそれぞれ製氷室3、上段冷凍室4へ送風され、下段冷凍室送風ダクト13を経て吹き出し口5cから上段冷凍室4へ送風される。
上段冷凍室4、下段冷凍室5、製氷室3を冷却した冷気は、下段冷凍室5の奥下方に設けられた冷凍室戻り口17を介して、冷却器収納室8に戻る。
Although the freezer damper 50 is omitted in FIG. 3, when the freezer damper 50 is in an open state, the cold air heat-exchanged by the cooler 7 is not shown in the drawing by an internal fan 9 and an ice making chamber air duct or upper freezer The air is blown from the blowout ports 3c and 4c to the ice making chamber 3 and the upper freezer compartment 4 through the blower duct 12, and is blown from the blowout port 5c to the upper freezer chamber 4 through the lower freezer compartment blower duct 13.
The cold air that has cooled the upper freezer room 4, the lower freezer room 5, and the ice making room 3 returns to the cooler storage room 8 through the freezer return port 17 provided in the lower part of the lower freezer room 5.

また、冷却器7の下方に除霜ヒータ22が設置されており、除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するために、上部カバー53が設けられている。
なお、除霜ヒータ22は、後記する制御基板31によるデューティ制御により出力を可変できる。
冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜によって融解することで生じた除霜水は冷却器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後記する機械室19に配された蒸発皿21に達し、後記する凝縮器の熱により蒸発させられる。
A defrost heater 22 is installed below the cooler 7, and an upper cover 53 is provided above the defrost heater 22 to prevent defrost water from dripping onto the defrost heater 22. It has been.
In addition, the defrost heater 22 can change an output by the duty control by the control board 31 mentioned later.
The defrost water produced by the frost adhering to the wall of the cooler 7 and the surrounding cooler storage chamber 8 is melted by the defrost, and then flows into the trough 23 provided at the lower part of the cooler storage chamber 8. It reaches the evaporating dish 21 disposed in the machine room 19 to be described later via the drain pipe 27 and is evaporated by the heat of the condenser to be described later.

また、冷却器7の正面から見て右上部には冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。
ここで、本実施形態における冷蔵室温度が請求項に記載の冷蔵温度帯室の温度に、冷凍室温度が請求項に記載の冷凍温度帯室の温度に対応する。
更に、冷蔵庫1は、庫外の温湿度環境(外気温度、外気湿度)を検知する図示しない外気温度センサと外気湿度センサを備えている。
なお、野菜室6にも野菜室温度センサ33Aを配置しても良い。
In addition, a cooler temperature sensor 35 is provided in the upper right portion of the cooler 7 as viewed from the front, a refrigerator temperature sensor 33 is provided in the refrigerator compartment 2, and a freezer compartment temperature sensor 34 is provided in the lower freezer compartment 5, respectively. The temperature of the cooler 7 (hereinafter referred to as “cooler temperature”), the temperature of the refrigerator compartment 2 (hereinafter referred to as “refrigerator compartment temperature”), and the temperature of the lower freezer compartment 5 (hereinafter referred to as “freezer compartment temperature”) can be detected. It has become.
Here, the temperature of the refrigerator compartment in the present embodiment corresponds to the temperature of the refrigerator temperature zone described in the claims, and the temperature of the freezer compartment corresponds to the temperature of the refrigerator temperature zone described in the claims.
Further, the refrigerator 1 includes an outside air temperature sensor and an outside air humidity sensor (not shown) that detect a temperature and humidity environment (outside air temperature, outside air humidity) outside the refrigerator.
Note that the vegetable room temperature sensor 33A may be arranged in the vegetable room 6 as well.

断熱箱体10の下部背面側には、機械室19が設けられており、機械室19には、圧縮機24及び図示しない凝縮器が収納されており、図示しない庫外送風機により凝縮器の熱が除熱される。
ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。
A machine room 19 is provided on the lower back side of the heat insulating box 10. The machine room 19 contains a compressor 24 and a condenser (not shown). Is removed.
Incidentally, in this embodiment, isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.

冷蔵庫1の天井壁上面側にはCPU,ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31が配置されており、制御基板31は、前記した外気温度センサ、外気湿度センサ、冷却器温度センサ35、冷蔵室温度センサ33、冷凍室温度センサ34、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する前記した扉センサ、冷蔵室2内壁に設けられた図示しない温度設定器、下段冷凍室5内壁に設けられた図示しない温度設定器等と接続し、前記ROMに予め搭載されたプログラムにより、圧縮機24のオン、オフ等の制御、冷蔵室ダンパ20及び冷凍室ダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、庫内送風機9のオン/オフ制御や回転速度制御、前記庫外送風機のオン/オフ制御や回転速度制御等の制御、前記した扉開放状態を報知するアラームのオン/オフ等の制御を行う。   A control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is disposed on the upper surface side of the refrigerator 1. The control board 31 includes the above-described outside temperature sensor, outside air humidity sensor, and cooler. The temperature sensor 35, the refrigerator compartment temperature sensor 33, the freezer compartment temperature sensor 34, the door sensor for detecting the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, 6a, respectively, are provided on the inner wall of the refrigerator compartment 2. Connected to a temperature setter (not shown), a temperature setter (not shown) provided on the inner wall of the lower freezer compartment 5, etc., and control of turning on / off the compressor 24 by a program pre-installed in the ROM, refrigerator compartment damper 20 and the control of each actuator (not shown) for individually driving the freezer damper 50, on / off control and rotation speed control of the internal fan 9, and the external fan ON / OFF control and control of the rotational speed control and the like, performs control such as an alarm on / off to notify the above-mentioned door open.

次に、図4及び図5を参照しながら、適宜図2、図3を参照して本実施形態の冷蔵庫の冷却器に流入する空気の流れを説明する。
図4は、冷却器周辺部分の部分側面図であり、図5は、冷却器周辺部分の部分正面図である。
冷蔵室ダンパ20が閉状態で、且つ冷凍室ダンパ50が開状態で、冷凍温度帯室(製氷室3、上段冷凍室4及び下段冷凍室5)のみの冷却が行われている状態では、製氷室3に製氷室送風ダクトを介して送風された冷気及び上段冷凍室4に上段冷凍室送風ダクト12(図2参照)を介して送風された冷気は、下段冷凍室5に下降し、下段段冷凍室5に下段冷凍室送風ダクト13(図2参照)を介して送風された冷気とともに、図4中に矢印Cで示す冷凍室戻り空気ように、下段冷凍室5の奥壁下部に配された冷凍室戻り口17を経由して冷却器収納室8の下部前方から冷却器収納室8に流入し、冷却器配管7aに多数のフィンが取り付けられて構成された冷却器7と熱交換する。
ちなみに、冷凍室戻り口17の横幅寸法は、図5に示す冷却器7の幅寸法(冷却器幅寸法L)とほぼ等しい横幅である。
Next, the flow of air flowing into the refrigerator cooler of the present embodiment will be described with reference to FIGS. 2 and 3 as appropriate with reference to FIGS. 4 and 5.
4 is a partial side view of the peripheral portion of the cooler, and FIG. 5 is a partial front view of the peripheral portion of the cooler.
In the state where the refrigerator compartment damper 20 is closed and the freezer compartment damper 50 is open, and only the freezing temperature zone (the ice making room 3, the upper freezing room 4, and the lower freezing room 5) is being cooled, The cold air blown into the chamber 3 through the ice making chamber air duct and the cold air blown into the upper freezer chamber 4 through the upper freezer chamber air duct 12 (see FIG. 2) are lowered to the lower freezer chamber 5 to be moved to the lower stage. Along with the cold air blown into the freezer compartment 5 through the lower freezer compartment air duct 13 (see FIG. 2), the freezer return air indicated by the arrow C in FIG. Then, the refrigerant flows into the cooler storage chamber 8 from the lower front of the cooler storage chamber 8 via the freezer return port 17 and exchanges heat with the cooler 7 having a large number of fins attached to the cooler pipe 7a. .
Incidentally, the width dimension of the freezer return port 17 is substantially equal to the width dimension (cooler width dimension L) of the cooler 7 shown in FIG.

一方、冷蔵室ダンパ20が開状態で、且つ冷凍室ダンパ50が閉状態で、冷蔵温度帯室(冷蔵室2及び野菜室6)のみの冷却が行われている状態では、冷蔵室2からの戻り冷気は、図5中に矢印Dで示す冷蔵室戻り空気のように、冷蔵室戻りダクト16を介して、冷却器収納室8の側方下部から冷却器収納室8に流入し、冷却器7と熱交換する。
なお、野菜室6を冷却した冷気は、図4及び図5中に図示しない、野菜室戻り口6d(図2参照)を介して、冷却器収納室8の下部に流入するが、風量が冷凍温度帯室を循環する風量や冷蔵室2を循環する風量に比べて少なく、冷却器収納室8内の冷気の流れの状態を示す流れ場(以下、冷却器収納室8内の冷気の流れの状態を示す流れ場を単に「流れ場」と称する)に与える影響が比較的小さいのでここでは説明を省略する。
On the other hand, in the state where the refrigerator compartment damper 20 is in the open state and the freezer compartment damper 50 is in the closed state, and only the refrigerator temperature zone chamber (the refrigerator compartment 2 and the vegetable compartment 6) is being cooled, The return cold air flows into the cooler storage chamber 8 from the lower side of the cooler storage chamber 8 through the refrigerator return duct 16 like the cooler return air indicated by the arrow D in FIG. Heat exchange with 7
The cold air that has cooled the vegetable compartment 6 flows into the lower part of the cooler storage chamber 8 through the vegetable compartment return port 6d (see FIG. 2), which is not shown in FIGS. 4 and 5, but the air volume is frozen. The flow field (hereinafter referred to as the flow of the cold air in the cooler storage chamber 8) indicates the state of the cool air flow in the cooler storage chamber 8 which is smaller than the air flow circulating in the temperature zone chamber and the air flow circulating in the refrigerator compartment 2. Since the flow field indicating the state is simply referred to as “flow field”), the description thereof is omitted here.

冷蔵室ダンパ20及び冷凍室ダンパ50が両方とも開状態で、冷蔵温度帯室と冷凍温度帯室が同時に冷却されている場合は、冷蔵温度帯室からの戻り冷気の流れと、冷凍温度帯室からの戻り冷気の流れが互いに影響しあうため、冷却器収納室8内の冷気の流れは複雑な流れ場となるが、おおよそ、図4に示す冷凍温度帯室からの戻り冷気の流れCと、図5に示す冷蔵室2からの戻り冷気の流れDを重ね合わせた流れ場となる。   When both the refrigerator compartment damper 20 and the freezer compartment damper 50 are open and the refrigerator temperature zone chamber and the refrigerator temperature zone chamber are cooled at the same time, the flow of the return cold air from the refrigerator temperature zone chamber and the refrigerator temperature zone chamber Since the flow of the return cold air from each other influences each other, the flow of the cold air in the cooler storage chamber 8 becomes a complicated flow field. However, the flow C of the return cold air from the freezing temperature zone chamber shown in FIG. 5 is a flow field in which the flow D of the return cold air from the refrigerator compartment 2 shown in FIG.

本実施形態の冷蔵庫1の構成に限らず、冷蔵温度帯室と冷凍温度帯室を、共通の冷却器7によって冷却する冷気強制循環方式の冷蔵庫では、それぞれの戻り冷気の、冷却器収納室8への流入箇所、冷却器収納室8への流入方向(角度)、風量等が異なるために、冷凍温度帯室からの戻り冷気と、冷蔵温度帯室からの戻り冷気が形成する冷却器収納室8における流れ場は、冷蔵温度帯室のみを冷却している場合、冷凍温度帯室のみを冷却している場合、冷蔵温度帯室及び冷凍温度帯室を同時に冷却している場合との間で、一般に異なるものとなる。   Not only in the configuration of the refrigerator 1 of the present embodiment, but also in the cold air forced circulation type refrigerator that cools the refrigeration temperature zone chamber and the refrigeration temperature zone chamber by the common cooler 7, the cooler storage chamber 8 for each return cold air. The cooler storage chamber in which the return cold air from the freezing temperature zone chamber and the return cold air from the refrigerating temperature zone chamber are formed because the inflow location, the inflow direction (angle) to the cooler storage chamber 8, the air volume, etc. are different. The flow field in Fig. 8 is between the case where only the refrigeration temperature zone chamber is cooled, the case where only the refrigeration temperature zone chamber is cooled, and the case where the refrigeration temperature zone chamber and the refrigeration temperature zone chamber are cooled simultaneously. Generally, it will be different.

一方、通常、冷蔵庫1の庫内の温湿度環境を考えた場合、温度が高い冷蔵温度帯室の方が、温度が低い冷凍温度帯室に比べて、一般に絶対湿度が高くなるので、冷却器7への着霜の元となる水分は、主に冷蔵温度帯室から運ばれてくることになる。このことから、本実施形態の冷蔵庫1では、冷蔵室戻り冷気が流入する図5中に示す領域B周辺に着霜が生じやすい。この着霜状態の場合、圧縮機24(図2参照)停止時に、冷凍温度帯室への冷気循環を遮断した状態で、庫内送風機9によって冷蔵温度帯室に送風を行い、除霜を行うと(例えば特許文献2に記載の技術)、着霜が生じやすい箇所と除霜を行う際に形成される流れが流れやすい箇所が一致するため、霜は解けやすく除霜の効率は高くなる。   On the other hand, when considering the temperature and humidity environment in the refrigerator 1, the absolute temperature is generally higher in a refrigerated temperature zone room having a higher temperature than in a refrigeration temperature zone room having a lower temperature. Moisture that is the source of frost on the water 7 is mainly carried from the refrigerated temperature zone. From this, in the refrigerator 1 of this embodiment, frosting tends to occur around the region B shown in FIG. In the case of this frosting state, when the compressor 24 (see FIG. 2) is stopped, the cold air circulation to the freezing temperature zone chamber is shut off and air is sent to the refrigerated temperature zone chamber by the internal fan 9 to perform defrosting. (For example, the technique described in Patent Document 2), the location where frost formation is likely to occur coincides with the location where the flow formed during defrosting flows easily, so that the frost is easy to melt and the efficiency of defrosting is increased.

ところが、使用者が特異な冷蔵庫1の使用をしなくとも前記した通常の冷蔵庫の庫内温湿度環境から逸脱する条件が生じることがある。
例えば、冷凍温度帯室に大量に常温の魚や肉を入れて冷凍保存を試みる場合、若しくは、冷凍温度帯室の扉3a,4a,5aと断熱箱体10の間に微小な隙間が生じているにも関わらず、扉3a,4a,5aの開放状態を前記扉センサが検知できず、アラームによる報知がなされなくて使用者がその状況を気付かない場合等に生じる。後者の例としては、冷凍温度帯室の扉3a,4a,5aと、断熱箱体10の開口部の縁の前面との間に細かな食品かす等が挟まった状態で扉3a,4a,5aが閉められた場合が考えられる。この場合、扉3a,4a,5aは基本的に閉まっているので、アラーム機能は作動せず、使用者は扉に隙間が生じていることを知りえないため、次回の扉3a,4a,5aの開閉が行われるまでは、隙間が生じている状態で冷蔵庫1の運転が継続されることになる。
However, even if the user does not use the unique refrigerator 1, there may be a condition that deviates from the temperature and humidity environment of the normal refrigerator described above.
For example, when trying to freeze and store a large amount of normal temperature fish or meat in the freezing temperature zone, or a minute gap is generated between the door 3a, 4a, 5a of the freezing temperature zone and the heat insulating box 10 Nevertheless, this occurs when the door sensor cannot detect the open state of the doors 3a, 4a, 5a, the alarm is not notified, and the user does not notice the situation. As an example of the latter, the doors 3a, 4a, 5a are in a state where fine food residue is sandwiched between the doors 3a, 4a, 5a of the freezing temperature chamber and the front surface of the edge of the opening of the heat insulation box 10. It is possible that is closed. In this case, since the doors 3a, 4a and 5a are basically closed, the alarm function does not operate and the user cannot know that there is a gap in the door, so the next doors 3a, 4a and 5a The operation of the refrigerator 1 is continued in a state in which a gap is generated until the opening and closing of is performed.

前記のような状態においては、冷却器7への着霜の元となる水分は、冷凍温度帯室からも多く冷却器収納室8に運ばれてくることになる。したがって、着霜は、冷却器幅寸法Lと略等しい寸法の冷凍室戻り口17からの流入の影響で、冷却器7の下部のほぼ全幅に大量に生じることになる。
一方で、圧縮機24停止時に、冷凍温度帯室への冷気循環を遮断した状態で、庫内送風機9によって冷蔵温度帯室に送風を行い、除霜を行う場合、除霜が効果的に行われる領域は前記のとおり、冷蔵温度帯室からの戻り冷気が流れやすい図5中に示す領域Bとなるため、冷蔵温度帯室からの戻り冷気の流れの影響が及び難い図5中に示す領域A付近の霜は解け難い。
したがって、領域A付近の霜がなかなか解けないために除霜時間が延びてしまい、除霜の間、庫外からの熱侵入を受け続けている冷凍温度帯室の温度が著しく上昇し、例えば、冷凍食品が解けるといった可能性が生じていた。
In the state as described above, a large amount of moisture that causes frost formation on the cooler 7 is also transported from the freezing temperature zone chamber to the cooler storage chamber 8. Therefore, frost formation occurs in a large amount in almost the entire width of the lower part of the cooler 7 due to the influence of the inflow from the freezer return port 17 having a dimension substantially equal to the cooler width dimension L.
On the other hand, when the compressor 24 is stopped, the cold air circulation to the refrigeration temperature zone chamber is interrupted, and air is blown to the refrigeration temperature zone chamber by the internal fan 9 to perform defrosting effectively. As described above, the region to be returned is the region B shown in FIG. 5 in which the return cold air from the refrigeration temperature zone is easy to flow. Therefore, the region shown in FIG. 5 is hardly affected by the flow of the return cold air from the refrigeration temperature zone. The frost near A is difficult to thaw.
Therefore, since the frost in the vicinity of the area A is not easily melted, the defrosting time is extended, and during the defrosting, the temperature of the freezing temperature zone that continues to receive heat intrusion from the outside of the chamber rises significantly, There was a possibility that the frozen food could be thawed.

更には、領域A付近に霜が残っているにもかかわらず、冷却器7に設ける冷却器温度センサの設置場所によっては、その検知温度が上昇することで除霜が終了したと誤判定され、冷却器7に霜が残ったまま通常運転を再開し、冷却器7における熱交換の効率が低下し、省エネルギ性能が悪化する。ひいては、冷却能力が不足し、冷蔵庫1の庫内温度を所定値に維持できないといった不具合を生じる可能性があった。   Furthermore, even though frost remains in the vicinity of the region A, depending on the installation location of the cooler temperature sensor provided in the cooler 7, it is erroneously determined that the defrosting is finished due to the rise in the detected temperature, The normal operation is resumed with frost remaining in the cooler 7, the efficiency of heat exchange in the cooler 7 is lowered, and the energy saving performance is deteriorated. Eventually, there was a possibility that the cooling capacity was insufficient, and the temperature inside the refrigerator 1 could not be maintained at a predetermined value.

次に、従来技術において除霜終了を誤判定する原因を以下で説明する。冷蔵温度帯室を循環する空気の流れは、図5中の霜が解けやすい領域B付近の霜が解けるほど、領域B付近の通風抵抗が減少するので、更に領域B付近に空気の流れが集中することになる。したがって、時間の経過とともに霜が少ない領域を流れる空気の量が増えていき、霜との熱交換量が減少するため、領域A付近に霜が残っていても循環する空気温度が上昇することがある。この空気温度の上昇によって、例えば、一般に除霜時に冷却器7の霜が残りやすい冷却器7の上部に冷却器温度センサ35が設置されていた場合であってもその位置での冷却器温度にもとづいて、制御基板31(図3参照)は除霜が終了したと判定してしまうことがある。   Next, the cause of erroneously determining the end of defrosting in the prior art will be described below. The flow of air circulating through the refrigerated temperature zone is such that, as the frost in the vicinity of the region B in FIG. Will do. Therefore, the amount of air flowing through the region with little frost increases with the passage of time, and the amount of heat exchange with the frost decreases, so the circulating air temperature may rise even if frost remains in the vicinity of region A. is there. Even if the cooler temperature sensor 35 is installed on the upper part of the cooler 7 in which the frost of the cooler 7 generally tends to remain at the time of defrosting, for example, due to the increase in the air temperature, the cooler temperature at that position is increased. Based on this, the control board 31 (see FIG. 3) may determine that the defrosting has been completed.

このような不具合は、例えば、特許文献2や特許文献3に記載されている、圧縮機24停止時に、冷凍室ダンパ50を閉じて冷凍温度帯室への冷気循環を遮断した状態で、除霜ヒータ22に通電し、庫内送風機9によって冷蔵温度帯室に送風を行う方式を採用した場合であっても生じることがあった。これは、除霜ヒータ22に通電しても、送風を行っているために、除霜ヒータ22からの輻射による除霜効果が小さくなり、図5中の領域A付近の霜が解け難いためである。   Such inconvenience is described in Patent Document 2 and Patent Document 3, for example, when the compressor 24 is stopped, the freezer damper 50 is closed, and the cold air circulation to the freezer temperature zone is shut off. This may occur even when the heater 22 is energized and air is blown into the refrigerated temperature zone by the internal fan 9. This is because even if the defrosting heater 22 is energized, since the air is blown, the defrosting effect due to the radiation from the defrosting heater 22 is reduced, and the frost near the area A in FIG. is there.

除霜ヒータ22からの輻射による除霜効果が小さくなる理由は以下のとおりである。輻射による伝熱量Qradは次式(1)に示すように高温面T1と低温面温度T2の4乗の差(T −T )に比例することが知られている。
rad ∝(T −T ) ・・・・・・・・・・・・・・(1)
一方、発熱量Qが一定の物体表面の温度Tsurfは、次式(2)に示すように、空気の温度Tairと伝熱面積SAが同じであれば物体表面の熱伝達率hが大きいほど低くなる。
surf=Tair+(Q/(h・S)) ・・・・・・・・・・(2)
また、一般に、熱伝達率hは物体表面を流れる風の風速が大きいほど高くなる。したがって、送風状態であれば送風しない状態に比べて熱伝達率hは高くなる。以上から、除霜ヒータ22の発熱量が同じ場合であっても、送風状態とした場合は、式(2)から、除霜ヒータ22表面の温度は送風しない場合に比べて低下する。除霜ヒータ22表面温度が低下すれば、式(1)から、低温面温度(ここでは霜表面温度)が同じ場合、輻射による伝熱量が減少するために輻射による除霜効果が小さくなる。
The reason why the defrosting effect due to radiation from the defrosting heater 22 is reduced is as follows. Heat transfer amount Q rad by radiation is known to be proportional to the fourth power of the difference between the hot surface T1 and the cold face temperature T2 as shown in the following equation (1) (T 1 4 -T 2 4).
Q rad α (T 1 4 -T 2 4) ·············· (1)
On the other hand, the temperature Tsurf of the object surface with a constant calorific value Q has a large heat transfer coefficient h of the object surface if the air temperature Tair and the heat transfer area SA are the same, as shown in the following equation (2). It gets lower.
T surf = T air + (Q / (h · S A )) (2)
In general, the heat transfer coefficient h increases as the wind speed of the wind flowing through the object surface increases. Accordingly, the heat transfer rate h is higher in the blower state than in the state where the blower is not blown. From the above, even if the amount of heat generated by the defrost heater 22 is the same, when the air is blown, the temperature of the surface of the defrost heater 22 is lower than that when no air is blown from Equation (2). If the surface temperature of the defrosting heater 22 is reduced, the defrosting effect due to radiation is reduced because the amount of heat transfer due to radiation decreases when the low-temperature surface temperature (here, the frost surface temperature) is the same.

本実施形態の冷蔵庫では、更に除霜ヒータ22と冷却器7との間に、上部カバー53が存在するため、輻射による除霜効果は一段と小さくなる。
以上の理由により、例えば、特許文献2や特許文献3に記載されている、圧縮機24停止時に、冷凍温度帯室への冷気循環を遮断した状態で、除霜ヒータ22に通電し、庫内送風機9によって冷蔵温度帯室に送風を行う方式を採用した場合、図5中の領域A付近は、輻射による除霜が十分行われず、また、[発明が解決しようとする課題]に前記したとおり、冷蔵温度帯室を循環する空気流によっても十分除霜されない場合があり、省エネルギ性能が悪化する。ひいては、冷却能力が不足し、庫内温度を所定値に維持できないといった不具合を生じる可能性があった。
In the refrigerator of this embodiment, since the upper cover 53 exists between the defrosting heater 22 and the cooler 7, the defrosting effect due to radiation is further reduced.
For the above reasons, for example, when the compressor 24 is stopped as described in Patent Document 2 and Patent Document 3, the defrost heater 22 is energized while the cold air circulation to the refrigeration temperature zone chamber is shut off, When the method of blowing air to the refrigerated temperature zone by the blower 9 is adopted, the area A in FIG. 5 is not sufficiently defrosted by radiation, and as described in [Problems to be Solved by the Invention] The air flow circulating through the refrigerated temperature zone may not be sufficiently defrosted and the energy saving performance deteriorates. Eventually, there was a possibility that the cooling capacity was insufficient and the internal temperature could not be maintained at a predetermined value.

次に、本実施形態の冷蔵庫1の除霜方法について図6から図11を参照しながら説明する。
図6は除霜モードを説明する図であり、図7から図10は除霜の制御の流れを示すフローチャートであり、図11は除霜中の除霜ヒータ、庫内送風機、冷蔵室ダンパ、冷凍室ダンパ、圧縮機の動作状態を示すタイムチャートと冷蔵室温度、冷凍室温度、冷却器温度の推移を説明する図である。
Next, the defrosting method of the refrigerator 1 of this embodiment is demonstrated, referring FIGS. 6-11.
FIG. 6 is a diagram for explaining a defrosting mode, FIGS. 7 to 10 are flowcharts showing a flow of defrosting control, and FIG. 11 is a defrosting heater during defrosting, an internal fan, a cold room damper, It is a figure explaining the transition of the time chart which shows the operation state of a freezer compartment damper, a compressor, refrigerator compartment temperature, freezer compartment temperature, and cooler temperature.

なお、以下の説明では、圧縮機24が稼動している状態を「圧縮機ON」、圧縮機24が停止している状態を「圧縮機OFF」、庫内送風機9が稼動している状態を「庫内送風機ON」、庫内送風機9が停止している状態を「庫内送風機OFF」、除霜ヒータ22に通電している状態を「除霜ヒータON」、除霜ヒータ22に通電していない状態を「除霜ヒータOFF」、冷蔵室ダンパ20が開状態で、冷蔵温度帯室への送風が可能な状態を「冷蔵室ダンパ開」、冷蔵室ダンパ20が閉状態で、冷蔵温度帯室への送風が遮断された状態を「冷蔵室ダンパ閉」、冷凍室ダンパ50が開状態で、冷凍温度帯室への送風が可能な状態を「冷凍室ダンパ開」、冷凍室ダンパ50が閉状態で、冷凍温度帯室への送風が遮断された状態を「冷凍室ダンパ閉」と略称する。   In the following description, the state where the compressor 24 is operating is “compressor ON”, the state where the compressor 24 is stopped is “compressor OFF”, and the state where the internal fan 9 is operating. The state in which the internal fan 9 is stopped, the state in which the internal fan 9 is stopped is “internal fan OFF”, the state in which the defrost heater 22 is energized is “defrost heater ON”, and the defrost heater 22 is energized. The state where the defrost heater is not turned on, the refrigerator compartment damper 20 is in the open state, and the state where the air can be sent to the refrigerator compartment is "refrigerator compartment damper open", the refrigerator compartment damper 20 is in the closed state, and the refrigerator temperature The state where the ventilation to the belt room is blocked is “refrigeration room damper closed”, the freezing room damper 50 is open, and the state where the air blowing to the freezing temperature zone is possible is “freezing room damper open”, the freezing room damper 50 Is closed and the state where the air flow to the freezer compartment is shut off Referred to as.

また、冷蔵庫1の通常冷却運転のモードとして複数の冷却運転モードが用意されており、「圧縮機ON、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」の状態を「冷蔵室冷却運転」モード、「圧縮機ON、庫内送風機ON、冷蔵室ダンパ閉、冷凍室ダンパ開、除霜ヒータOFF」の状態を「冷凍室冷却運転」モード、「圧縮機ON、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ開、除霜ヒータOFF」の状態を「冷蔵室・冷凍室同時冷却運転」モードと称する。
ここで、通常冷却運転とは、冷蔵室温度センサ、冷凍室温度センサ及び外気温度センサが検知する温度にもとづき、圧縮機24と、庫内送風機9と、庫外送風機の制御(オン/オフ制御や回転速度制御)と、冷蔵室ダンパ20、冷凍室ダンパ50の開閉状態の制御によって、各室を所定温度(例えば、冷蔵室は3℃程度、野菜室は5℃程度、冷凍室は−18℃程度)に維持する運転である。
なお、以下の除霜方法の説明においては、野菜室6は、冷蔵室2の一部として扱い、野菜室6に関する説明は省略する。
In addition, a plurality of cooling operation modes are prepared as the normal cooling operation mode of the refrigerator 1, and the states of “compressor ON, internal fan ON, refrigeration chamber damper open, freezer compartment damper close, defrost heater OFF” The state of “refrigeration room cooling operation” mode, “compressor ON, internal fan ON, cold room damper closed, freezer damper open, defrost heater OFF” state “freezer cooling operation” mode, “compressor ON, warehouse” The state of “inner blower ON, refrigerator compartment damper open, freezer compartment damper open, defrost heater OFF” is referred to as a “refrigerator compartment / freezer compartment simultaneous cooling operation” mode.
Here, the normal cooling operation refers to control (on / off control) of the compressor 24, the internal fan 9, and the external fan based on the temperatures detected by the refrigerator temperature sensor, the freezer temperature sensor, and the outside air temperature sensor. And the rotation speed control) and the open / closed state control of the refrigerator compartment damper 20 and the freezer compartment damper 50, each room has a predetermined temperature (for example, the refrigerator compartment is about 3 ° C, the vegetable compartment is about 5 ° C, and the freezer compartment is -18). The operation is maintained at about ℃.
In the following description of the defrosting method, the vegetable compartment 6 is treated as a part of the refrigerated compartment 2, and the explanation regarding the vegetable compartment 6 is omitted.

図6に示すように、本実施形態の冷蔵庫1は、除霜運転におけるモードとして除霜モード1〜6の6つのモードを備えている。これらの除霜モードの中で、図6の表の下に示すように、「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」の「庫内送風機による除霜」を行う除霜モード1は、請求項に記載の「第1の除霜手段」に対応し、「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータON」の「庫内送風機+除霜ヒータによる除霜」を行う除霜モード3は、請求項に記載の「第2の除霜手段」に対応し、「圧縮機OFF、庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータON」の「除霜ヒータによる除霜」を行う除霜モード6は、請求項に記載の「第3の除霜手段」に対応する。   As shown in FIG. 6, the refrigerator 1 of the present embodiment includes six modes of defrost modes 1 to 6 as modes in the defrost operation. Among these defrosting modes, as shown in the table below in FIG. 6, “internal fan” of “compressor OFF, internal fan ON, refrigerator compartment damper open, freezer damper close, defrost heater OFF” The defrosting mode 1 for performing “defrosting by” corresponds to the “first defrosting means” recited in the claims, and “compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper close, removal The defrost mode 3 for performing “defrosting by the internal fan + defrosting heater” of “frost heater ON” corresponds to the “second defrosting means” recited in the claims, and “compressor OFF, internal fan” The defrosting mode 6 for performing “defrosting by the defrosting heater” of “OFF, refrigerating chamber damper closing, freezing chamber damper closing, defrosting heater ON” corresponds to the “third defrosting means” recited in the claims. .

そして、除霜モード2は、除霜モード1(第1の除霜手段)による除霜運転の後に引続いて除霜モード3(第2の除霜手段)による除霜運転を行うモードであり、除霜モード4は、除霜モード1(第1の除霜手段)による除霜運転の後に引続いて除霜モード3(第2の除霜手段)、除霜モード6(第3の除霜手段)による除霜運転を行うモードであり、除霜モード5は、除霜モード3(第2の除霜手段)による除霜運転の後に引続いて除霜モード6(第3の除霜手段)による除霜運転を行うモードである。
このように本実施形態の冷蔵庫1における除霜運転のモードは第1から第3の除霜手段の全て、または一部を組み合わせて除霜モードとしている。
本実施形態における除霜モード4が請求項の第1の除霜モードに対応し、除霜モード4,5が請求項に記載の第2の除霜モードに対応する。
And the defrost mode 2 is a mode which performs the defrost operation by the defrost mode 3 (2nd defrost means) succeedingly after the defrost operation by the defrost mode 1 (1st defrost means). In the defrosting mode 4, the defrosting mode 3 (second defrosting means) and the defrosting mode 6 (third defrosting mode) are subsequently performed after the defrosting operation in the defrosting mode 1 (first defrosting means). The defrosting mode 5 is a mode in which the defrosting operation is performed by the defrosting mode), and the defrosting mode 5 is performed after the defrosting operation by the defrosting mode 3 (second defrosting unit), followed by the defrosting mode 6 (third defrosting mode). In this mode, the defrosting operation is performed.
Thus, the mode of the defrosting operation in the refrigerator 1 of this embodiment is set to the defrosting mode by combining all or a part of the first to third defrosting means.
The defrost mode 4 in this embodiment corresponds to the first defrost mode in the claims, and the defrost modes 4 and 5 correspond to the second defrost mode in the claims.

図6の表の「除霜前条件」欄に示すように、除霜モード1〜6に対して適用される除霜運転開始前の冷蔵庫1の冷却運転モード、冷凍室温度や冷蔵室温度の温度に対する条件が異なっている。また、図6の表の「除霜」欄には、各除霜モードが分かり易いように除霜手段1〜3の組合せを記載してある。更に、図6の表の「除霜完了判定条件」欄に示すように、除霜モード1〜6は、どのような冷凍室温度や冷蔵室温度や冷却器温度の除霜完了判定温度の条件でそれぞれの除霜モードが完了するかが示され、例えば、冷凍室温度で判定する場合でも各モードで適用される温度数値が異なっている。
ここで、図6の表の「除霜完了判定条件」欄に示す冷却器温度の条件が請求項に記載の除霜完了判定温度に対応する。
除霜前条件及び除霜完了判定条件の詳細については、後記するフローチャートの説明の中で説明する。
As shown in the “conditions before defrosting” column in the table of FIG. 6, the cooling operation mode of the refrigerator 1 before the start of the defrosting operation applied to the defrosting modes 1 to 6, the freezer room temperature, and the refrigerator room temperature. The conditions for temperature are different. Moreover, the combination of the defrosting means 1-3 is described in the "Defrost" column of the table | surface of FIG. 6 so that each defrost mode can be understood easily. Furthermore, as shown in the “defrosting completion determination condition” column in the table of FIG. 6, the defrosting modes 1 to 6 are for any freezing room temperature, refrigerating room temperature, or cooler temperature defrosting completion determination temperature condition. Indicates whether each defrosting mode is completed. For example, even when the determination is made based on the freezer temperature, the temperature values applied in each mode are different.
Here, the condition of the cooler temperature shown in the “defrosting completion determination condition” column of the table of FIG. 6 corresponds to the defrosting completion determination temperature described in the claims.
Details of the pre-defrost condition and the defrost completion determination condition will be described in the description of the flowchart described later.

《除霜運転の制御の流れ》
次に図7から図11を参照しながら除霜運転の制御の流れについて説明する。この制御は、制御基板31(図2参照)のCPUがROMに格納されたプログラムを実行することによって行われる。
図7に示すように、冷蔵庫は電源投入により運転が開始され(スタート)、初期条件としてFLAGi=0,FLAGj=0となされる(ステップS100)。
ここで、FLAGiは、後記するように除霜モード4が選択されたことを示すフラグであり、除霜モード4における除霜運転の途中で冷凍室温度が上昇し過ぎて、除霜運転を中断し冷凍室冷却運転等を一時的に行って、他の除霜モードに移行したことを示すフラグでもある。また、FLAGjは、後記するように冷却器除霜を優先する条件が満足されたことを示すフラグであり、その除霜運転における除霜モードの切替のためのフラグでもある。
<Control flow for defrosting operation>
Next, the control flow of the defrosting operation will be described with reference to FIGS. This control is performed by the CPU of the control board 31 (see FIG. 2) executing a program stored in the ROM.
As shown in FIG. 7, the refrigerator is started to operate when the power is turned on (start), and FLAGi = 0 and FLAGj = 0 are set as initial conditions (step S100).
Here, FLAGi is a flag indicating that the defrosting mode 4 has been selected as will be described later, and the freezing room temperature has risen too much during the defrosting operation in the defrosting mode 4, and the defrosting operation is interrupted. It is also a flag indicating that the freezing room cooling operation or the like is temporarily performed and the mode is shifted to another defrosting mode. FLAGj is a flag indicating that a condition for prioritizing cooler defrosting is satisfied as will be described later, and is also a flag for switching the defrosting mode in the defrosting operation.

そして、通常冷却運転が行われる(ステップS101)。ステップS102では、通常冷却運転のモードが「冷凍室冷却運転」で、且つ、冷凍室温度が−21℃より低いか否かをチェックする。「冷凍室冷却運転」モードで、且つ、冷凍室温度が−21℃より低い場合(Yes)はステップS103へ進み、そうでない場合(No)は、ステップS101に戻り通常冷却運転を継続する。   Then, a normal cooling operation is performed (step S101). In step S102, it is checked whether the normal cooling operation mode is “freezer compartment cooling operation” and the freezer compartment temperature is lower than −21 ° C. In the “freezer compartment cooling operation” mode and the freezer compartment temperature is lower than −21 ° C. (Yes), the process proceeds to step S103. Otherwise (No), the process returns to step S101 and the normal cooling operation is continued.

通常冷却運転には、前記したとおり3種類の冷却運転モードがあるため、通常冷却運転を継続する場合、「冷凍室冷却運転」モードを継続する以外に、冷蔵室温度、冷凍室温度にもとづいて、「冷凍室冷却運転」モード以外の他の2種類の冷却運転モード(「冷蔵室冷却運転」モード、「冷蔵室・冷凍室同時冷却運転」モード)に切り替わる場合もある。例えば、使用者が冷蔵室2に温度の比較的高い食品を入れる等があった場合、「冷凍室冷却運転」モードから「冷蔵室冷却運転」モードに切り替わり、冷蔵室2を素早く所定温度まで冷却した後に再び「冷凍室冷却運転」モードに移行する。   Since the normal cooling operation has three types of cooling operation modes as described above, when the normal cooling operation is continued, in addition to continuing the “freezer compartment cooling operation” mode, the normal cooling operation is based on the refrigerator compartment temperature and the freezer compartment temperature. In some cases, the mode may be switched to two types of cooling operation modes other than the “freezer compartment cooling operation” mode (“refrigeration room cooling operation” mode and “refrigeration room / freezer compartment simultaneous cooling operation” mode). For example, when a user puts food having a relatively high temperature into the refrigerator compartment 2, the mode is switched from the "refrigeration compartment cooling operation" mode to the "refrigeration compartment cooling operation" mode, and the refrigerator compartment 2 is quickly cooled to a predetermined temperature. After that, it shifts to the “freezer cooling operation” mode again.

ステップS102において、冷凍室温度が−21℃より低い場合、続いて、信頼性確保除霜を行う条件を満足しているか否かを判定する(ステップ103)。ここで、信頼性確保除霜とは、冷却器7とその周辺の霜を完全に取り除くことを目的とした除霜であり、具体的には、冷却器温度が、霜が解ける温度である0℃より十分高い、例えば、8℃を超えるまで除霜を行うものである。本実施形態では、信頼性確保除霜を行う条件か否かは、前回の信頼性確保除霜の除霜運転完了後からの圧縮機24の積算運転時間と圧縮機24の稼動回転速度と、庫外の温湿度環境(外気温度、外気湿度(相対湿度))にもとづいて判断される。この条件は、予め、ROMにテーブルデータの形で、外気温度、外気室、積算運転時間、稼動回転速度をパラメータとして、格納されており、このデータテーブルを参照することによって判定される。例えば、外気温度30℃、相対湿度70%の条件であれば、ほぼ1日に1回の頻度で信頼性確保除霜を行う条件が満足される。   In step S102, when the freezer temperature is lower than −21 ° C., it is subsequently determined whether or not a condition for performing reliability ensuring defrosting is satisfied (step 103). Here, the reliability ensuring defrosting is defrosting for the purpose of completely removing the frost in the cooler 7 and its surroundings. Specifically, the cooler temperature is a temperature at which the frost is melted. Defrosting is performed until the temperature is sufficiently higher than, for example, 8 ° C. In the present embodiment, whether or not it is a condition for performing reliability defrosting is based on the accumulated operation time of the compressor 24 and the operating rotational speed of the compressor 24 after completion of the defrosting operation of the previous reliability ensuring defrost, Judgment is made based on the temperature and humidity environment (outside temperature, outside humidity (relative humidity)) outside the chamber. This condition is stored in advance in the form of table data in the ROM using the outside air temperature, the outside air chamber, the accumulated operation time, and the operating rotational speed as parameters, and is determined by referring to this data table. For example, if the conditions are an outside air temperature of 30 ° C. and a relative humidity of 70%, the condition for performing reliable defrosting is satisfied almost once a day.

ステップS103において、信頼性確保除霜を行う条件が満足された場合(Yes)はステップS201へ進み、信頼性確保除霜を行う条件が満足されない場合(No)は、続いて、冷却器除霜を優先する条件か否かを判定する(ステップS104)。
ここで、「冷却器除霜を優先する」条件とは、庫内の温度変動が若干大きくなっても、冷却器に付着した霜を取り除くことを優先させる除霜が必要である条件である。この条件は、例えば、外気温度が35℃より高く、且つ、外気湿度が85%より高い場合とする。
ステップS104において、冷却器除霜を優先する条件が満足された場合(Yes)は、ステップS501へ進み、冷却器除霜を優先する条件が満足されない場合(No)は、自動的に除霜モード1が選択される(ステップS105)。
ここで、冷却器除霜を優先するか条件を満足とは、外気温度センサが検知する温度が35℃より高く、且つ、外気湿度センサが検知する湿度(相対湿度)が85%より高い場合に、冷却器除霜を優先する条件が満足されたと判定する。
In step S103, when the conditions for performing reliability ensuring defrosting are satisfied (Yes), the process proceeds to step S201, and when the conditions for performing reliability ensuring defrosting are not satisfied (No), subsequently, the cooler defrosting is performed. It is determined whether or not the condition is prioritized (step S104).
Here, the “priority to cooler defrosting” condition is a condition that requires defrosting to prioritize removing frost attached to the cooler even if the temperature fluctuation in the storage is slightly increased. This condition is, for example, the case where the outside air temperature is higher than 35 ° C. and the outside air humidity is higher than 85%.
In step S104, if the condition for prioritizing the cooler defrost is satisfied (Yes), the process proceeds to step S501. If the condition for prioritizing the cooler defrost is not satisfied (No), the defrost mode is automatically performed. 1 is selected (step S105).
Here, the condition that the cooler defrost is prioritized or satisfied is that the temperature detected by the outside air temperature sensor is higher than 35 ° C. and the humidity (relative humidity) detected by the outside air humidity sensor is higher than 85%. It is determined that the condition for prioritizing the cooler defrosting is satisfied.

(除霜モード1)
続いて、第1の除霜手段(「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」)による除霜運転が行なわれる(ステップS106)。ステップS106の除霜運転状態は、ステップS107における冷凍室温度−17℃より高、ステップS108における冷蔵室温度5℃より高、ステップS109における冷蔵室温度0℃より低、または、ステップS110における冷却器温度0.5℃より高の何れかの除霜完了判定条件が満足されるまで継続され、ステップS107〜ステップS110の何れかの除霜完了判定条件が満足される(Yes)と除霜モード1による除霜運転は終了し(ステップS111)、通常冷却運転(ステップS101)が再開される。ステップS107〜ステップS109のそれぞれの除霜完了判定条件が満足されない場合(No)は、次のステップS108〜ステップS110のそれぞれ除霜完了判定条件のチェックに進む。
ここで、ステップS107における冷凍室温度の−17℃は、請求項に記載の冷凍温度帯室上限温度に対応する。
(Defrost mode 1)
Subsequently, the defrosting operation is performed by the first defrosting means (“compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper closed, defrost heater OFF”) (step S106). The defrosting operation state in step S106 is higher than the freezer temperature −17 ° C. in step S107, higher than the refrigerator temperature 5 ° C. in step S108, lower than the refrigerator temperature 0 ° C. in step S109, or the cooler in step S110. Defrosting mode 1 is continued until any defrosting completion determination condition at a temperature higher than 0.5 ° C. is satisfied, and any defrosting completion determination condition in steps S107 to S110 is satisfied (Yes). The defrosting operation is terminated (step S111), and the normal cooling operation (step S101) is resumed. When each defrost completion determination condition of step S107-step S109 is not satisfied (No), it progresses to the check of each defrost completion determination condition of following step S108-step S110.
Here, -17 degreeC of the freezer compartment temperature in step S107 respond | corresponds to the freezer compartment zone upper limit temperature as described in a claim.

ここで、各除霜完了判定条件について具体的に説明する。ステップS107の除霜完了判定条件(冷凍室温度>−17℃)は、庫外からの熱侵入によって冷凍室温度が上昇した場合や、除霜モード1による除霜運転の最中に、使用者によって冷凍温度帯室の扉3a,4a,5aのいずれかが開閉されるといった要因で冷凍室温度が上昇した場合に満足される。   Here, each defrost completion determination condition is demonstrated concretely. The defrosting completion determination condition (freezer room temperature> −17 ° C.) in step S107 is a case where the temperature of the freezer room rises due to heat intrusion from outside the store or during the defrosting operation in the defrosting mode 1. Is satisfied when the temperature of the freezer compartment rises due to the factor that one of the doors 3a, 4a, 5a of the freezer compartment is opened or closed.

ステップS108の除霜完了判定条件(冷蔵室温度>5℃)は、基本的に冷蔵室2は霜が持つ冷熱によって冷却されているため温度上昇は起こり難く満足されることは少ないが、使用者によって冷蔵室2内に温度の高い食品が入れられた場合に満足されることがある。霜が残っている状態(冷却器温度が低温の状態)であれば、時間はかかっても冷蔵室の冷却は実施されるが、ステップS108の除霜完了判定条件(冷蔵室温度>5℃)が満足されるような場合は、新しく入れられた食品の冷却速度が遅くなることがある。したがって、ステップS108の除霜完了判定条件は、新しく入れられた食品を素早く冷却するために設けているステップである。   The defrosting completion determination condition (refrigeration room temperature> 5 ° C.) in step S108 is basically satisfied because the temperature in the refrigerator compartment 2 is cooled by the cold heat of the frost, and the temperature rise hardly occurs. May be satisfied when food with a high temperature is put in the refrigerator compartment 2. If the frost remains (cooler temperature is low), the refrigeration room is cooled even if it takes a long time, but the defrosting completion determination condition (refrigeration room temperature> 5 ° C.) in step S108. If this is satisfied, the cooling rate of newly added food may be slow. Therefore, the defrosting completion determination condition in step S108 is a step provided for quickly cooling the newly added food.

ステップS109の除霜完了判定条件(冷蔵室温度<0℃)は、「圧縮機OFF」時の冷却器温度が非常に低温であり、低温であって量も比較的多い霜が冷却器7及びその周辺に付着しており、それら低温の霜の影響(霜の顕熱の影響)で、冷蔵室2の温度の低下が著しい場合に、稀に満足されるものであり、冷蔵室2内の食品の凍結防止のために設けられている。
ステップS110の除霜完了判定条件(冷却器温度>0.5℃)は、冷却器7の霜がほぼ完全に解けて、冷却器7の温度が上昇しはじめた場合に満足される。
なお、着霜量が比較的多い場合は、霜が解けるより先に冷凍室温度が上昇する傾向が強くなり、ステップS107の除霜完了判定条件が満足されることで除霜モード1が終了する場合が多い。一方、着霜量が比較的少ない場合は、ステップS110の除霜完了判定条件が満足されることで除霜モード1が終了する確率が高くなる。
The defrosting completion determination condition (refrigeration room temperature <0 ° C.) in step S109 is that the cooler temperature at the time of “compressor OFF” is very low, and the low temperature and relatively large amount of frost is generated in the cooler 7 and If the temperature of the refrigerator compartment 2 is significantly decreased due to the low temperature frost (the influence of sensible heat of the frost), it is rarely satisfied. It is provided to prevent food from freezing.
The defrosting completion determination condition (cooler temperature> 0.5 ° C.) in step S110 is satisfied when the frost of the cooler 7 is almost completely melted and the temperature of the cooler 7 starts to rise.
In addition, when the amount of frost formation is relatively large, the tendency of the freezer temperature to rise before the frost is released becomes strong, and the defrosting mode 1 is completed when the defrosting completion determination condition in step S107 is satisfied. There are many cases. On the other hand, when the amount of frost formation is comparatively small, the probability that the defrosting mode 1 will be complete | finished becomes high because the defrost completion determination conditions of step S110 are satisfied.

(除霜モード1の効果)
次に、除霜モード1の効果について説明する。除霜モード1は、第1の除霜手段による除霜運転(庫内送風機による除霜)のみを用いた除霜のため、除霜のために外部から投入するエネルギは、庫内送風機9の動力(消費電力1〜2W程度)のみであり、霜の持つ冷熱を利用して冷蔵室2を冷却する、言い換えると、庫内の熱負荷を利用して霜を解かしていることから、非常に省エネルギ性能が高い除霜方式である。また、省エネルギ性能を高めるためには、除霜モード1を実施した際に、なるべく多くの霜を解かすことが効果的であり、冷却器7の霜がほぼ解けたといえる冷却器温度が0.5℃より高の除霜完了判定条件が満足されるまで除霜することが望ましい。
(Effect of defrost mode 1)
Next, the effect of the defrost mode 1 is demonstrated. The defrosting mode 1 is for defrosting using only the defrosting operation by the first defrosting means (defrosting by the internal fan), and the energy input from the outside for the defrosting is that of the internal fan 9. Because it is only motive power (power consumption of about 1 to 2 W), the refrigeration room 2 is cooled using the cold heat of the frost, in other words, the frost is melted using the heat load in the warehouse, It is a defrosting method with high energy saving performance. Further, in order to improve the energy saving performance, it is effective to defrost as much as possible when the defrost mode 1 is carried out, and the cooler temperature that can be said that the defrost of the cooler 7 is almost solved is 0. It is desirable to defrost until the defrosting completion determination condition higher than 5 ° C is satisfied.

一方で、冷蔵庫1は、食品を所定の温度範囲に維持することが基本機能であるため、その基本機能が損なわれてはならない。そこで、所定温度範囲維持という冷蔵庫の基本機能が損なわれない範囲で、除霜モード1による省エネルギ効果を得るために、ステップS107〜ステップS109が設けられている。
これらのステップにより、所定温度範囲維持という基本機能が損なわれない範囲で、最大限の省エネルギ性能を得ることができる、信頼性(所定温度範囲維持)と省エネルギ性能を両立できる冷蔵庫となっている。
On the other hand, since the basic function of the refrigerator 1 is to maintain food in a predetermined temperature range, the basic function should not be impaired. Therefore, Step S107 to Step S109 are provided in order to obtain an energy saving effect by the defrost mode 1 within a range in which the basic function of the refrigerator for maintaining the predetermined temperature range is not impaired.
By these steps, the maximum energy saving performance can be obtained within a range where the basic function of maintaining the predetermined temperature range is not impaired, and the refrigerator can achieve both reliability (maintaining the predetermined temperature range) and energy saving performance. Yes.

また、着霜量が比較的少ない場合は、ステップS110の除霜完了判定条件が満足されることで除霜モード1が終了する確率が高くなるが、着霜量が比較的少ない場合には、霜を解かすために必要な熱量に対して、圧縮機24の「停止時に冷却器7の冷媒配管内の液冷媒を加熱するために必要な熱量が相対的に大きな割合となるため、除霜モード1をステップS110の除霜完了判定条件を満足することで終了させるケースを増やす。すなわち、省エネルギ効果を高めるためには、「圧縮機OFF時」に冷却器7の冷却器配管7a内に存在する液冷媒の量を少なくすることも有効である。本実施形態では、冷媒封入量は約80g(冷媒はイソブタン)と少量にしているために、圧縮機24の停止時に冷却器7の冷却器配管7a内に存在する液冷媒の量を少なくできており、除霜モード1がステップS110の除霜完了判定条件を満足しで終了するケースが比較的多く、省エネルギ性能に優れた冷蔵庫となっている。   Moreover, when the amount of frost formation is comparatively small, the probability that the defrosting mode 1 will be complete | finished by satisfying the defrost completion determination conditions of step S110 becomes high, but when the amount of frost formation is comparatively small, Since the amount of heat necessary for heating the liquid refrigerant in the refrigerant pipe of the cooler 7 when the compressor 24 is stopped is relatively large with respect to the amount of heat necessary for defrosting, defrosting is performed. The number of cases in which mode 1 is terminated by satisfying the defrosting completion determination condition in step S110 is increased, that is, in order to enhance the energy saving effect, in the cooler pipe 7a of the cooler 7 "when the compressor is OFF". It is also effective to reduce the amount of liquid refrigerant present. In the present embodiment, the amount of refrigerant filled is about 80 g (the refrigerant is isobutane), so that the amount of liquid refrigerant existing in the cooler pipe 7a of the cooler 7 can be reduced when the compressor 24 is stopped. In many cases, the defrosting mode 1 is completed when the defrosting completion determination condition in step S110 is satisfied, and the refrigerator has excellent energy saving performance.

〈除霜モード4;信頼性確保除霜〉次に、ステップS103において、信頼性確保除霜を行う条件が満足された場合(Yes)について説明する。
図7ステップS103において、信頼性確保除霜を行う条件が満足された場合(Yes)は、符号(1)にしたがって図8のステップS201に進みFLAGi=1と記憶させる。
<Defrost Mode 4; Reliable Defrosting> Next, in step S103, the case where the conditions for performing reliable defrosting are satisfied (Yes) will be described.
In step S103 of FIG. 7, when the condition for performing reliability ensuring defrosting is satisfied (Yes), the process proceeds to step S201 of FIG. 8 according to the code (1) and stores FLAGi = 1.

次いで除霜モード4が選択され(ステップS202)、除霜モード4による除霜運転開始の条件である「冷凍室冷却運転」、且つ、冷蔵室温度が5℃より高いかをチェックする(ステップS203)。「冷凍室冷却運転」、且つ、冷蔵室温度が5℃より高となった場合(Yes)は、ステップS204へ進み、そうでない場合(No)は、ステップS203を繰り返す。
図6に示すとおり、除霜モード4は、「冷凍室冷却運転」のモード中に冷蔵室温度が5℃より高となった場合に開始されるものなので、ステップS103の時点で「冷凍室冷却運転」が実施されていることから、ステップS202において除霜モード4が選択されても、冷蔵室温度が5℃より高となるまで「冷凍室冷却運転」の通常冷却運転のモードが継続する。
Next, the defrosting mode 4 is selected (step S202), and it is checked whether the “freezing room cooling operation”, which is a condition for starting the defrosting operation in the defrosting mode 4, and whether the temperature in the refrigerator compartment is higher than 5 ° C. (step S203). ). If the “freezer operation cooling operation” and the temperature of the refrigerator compartment is higher than 5 ° C. (Yes), the process proceeds to step S204. If not (No), step S203 is repeated.
As shown in FIG. 6, the defrosting mode 4 is started when the temperature of the refrigerator compartment becomes higher than 5 ° C. during the “freezer cooling operation” mode. Since “operation” is performed, even if the defrosting mode 4 is selected in step S202, the normal cooling operation mode of the “freezer cooling operation” continues until the refrigerator compartment temperature becomes higher than 5 ° C.

ステップS203からステップS204へ進むと、除霜モード4の第1段階の除霜運転である第1の除霜手段による除霜運転(「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」)を行う。続いて、ステップS205においてFLAGi=2か否かをチェックする。FLAGi=2の場合(Yes)は、ステップS208へ進み、FLAGi≠2の場合(No)は、ステップS206へ進む。ここでは、ステップS201において、FLAGi=1と記憶させてあるので、FLAGi=2は満足されないため、ステップS206へ進む。   When the process proceeds from step S203 to step S204, the defrosting operation by the first defrosting means, which is the first stage defrosting operation in the defrosting mode 4 (“compressor OFF, internal fan ON, refrigerator compartment damper open, freezing Close the chamber damper and turn off the defrosting heater ”). In step S205, it is checked whether FLAGi = 2. If FLAGi = 2 (Yes), the process proceeds to step S208. If FLAGi ≠ 2 (No), the process proceeds to step S206. Here, since FLAGi = 1 is stored in step S201, FLAGi = 2 is not satisfied, and the process proceeds to step S206.

ステップS206では、冷凍室温度が−10℃より高か否かをチェックする。冷凍室温度が10℃より高の場合(YES)は、ステップS301へ進み、そうでない場合(No)はステップS207へ進む。ステップS207では、冷蔵室温度と冷却器温度の温度差(冷蔵室温度−冷却器温度)が2℃より低か否かをチェックし、温度差が2℃より低の場合(Yes)は、ステップS208へ進み、そうでない場合はステップS206に戻り、第1の除霜手段による除霜運転を継続しながらステップS206,S207のチェックを繰り返す。
ここで、ステップS206における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応する。
In step S206, it is checked whether or not the freezer temperature is higher than −10 ° C. If the freezer temperature is higher than 10 ° C. (YES), the process proceeds to step S301. If not (No), the process proceeds to step S207. In step S207, it is checked whether or not the temperature difference between the refrigerator temperature and the cooler temperature (refrigerator temperature-cooler temperature) is lower than 2 ° C. If the temperature difference is lower than 2 ° C (Yes), step S207 is performed. It progresses to S208, and when that is not right, it returns to step S206, and the check of step S206, S207 is repeated, continuing the defrost operation by a 1st defrost means.
Here, -10 degreeC of the freezer compartment temperature in step S206 respond | corresponds to the freezer compartment temperature zone upper limit temperature as described in a claim.

ステップS208では、除霜ヒータ22をオンとし、且つ、その出力を80Wとする(除霜ヒータON(80W))。ステップS208で除霜ヒータ22をオンとしたことによって、第2の除霜手段による除霜運転の状態(庫内送風機+除霜ヒータによる除霜:「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータON」)となる。
そして、ステップS209において冷凍室温度が−10℃より高か否かをチェックする。冷凍室温度が−10℃より高の場合(Yes)は、符号(4)に従い、図9のステップS301に進み、冷凍室温度が−10℃以下の場合(No)はステップS210に進む。
ステップS210では、冷蔵室温度が冷却器温度より低いか否かをチェックし、冷蔵室温度が冷却器温度より低い場合(Yes)には、ステップS211へ進み、冷蔵室温度が冷却器温度以上の場合(No)は、再びステップS209に戻り、第2の除霜手段による除霜運転を継続し、ステップS209、S210のチェックを繰り返す。
ここで、ステップS209における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応し、ステップS210における冷蔵室温度が冷却器温度より低い(冷蔵室温度<冷却器温度)が請求項に記載の「前記冷却器温度が0℃以上の所定の第1の冷却器温度」に対応する。
In step S208, the defrost heater 22 is turned on and its output is set to 80 W (defrost heater ON (80 W)). By turning on the defrosting heater 22 in step S208, the state of the defrosting operation by the second defrosting means (defrosting by the internal fan + defrosting heater: “compressor OFF, internal fan ON, refrigerator compartment” Damper open, freezer compartment damper close, defrost heater ON ").
In step S209, it is checked whether the freezer temperature is higher than −10 ° C. When the freezer temperature is higher than −10 ° C. (Yes), the process proceeds to step S301 in FIG. 9 according to reference numeral (4), and when the freezer temperature is −10 ° C. or lower (No), the process proceeds to step S210.
In step S210, it is checked whether or not the refrigerator compartment temperature is lower than the cooler temperature. If the refrigerator compartment temperature is lower than the cooler temperature (Yes), the process proceeds to step S211 and the refrigerator compartment temperature is equal to or higher than the condenser temperature. In the case (No), it returns to step S209 again, continues the defrosting operation by the 2nd defrosting means, and repeats the check of step S209, S210.
Here, −10 ° C. of the freezer temperature in step S209 corresponds to the freezer compartment temperature zone upper limit temperature described in the claims, and the refrigerator temperature in step S210 is lower than the cooler temperature (refrigerator temperature <cooler temperature). ) Corresponds to “predetermined first cooler temperature at which the cooler temperature is 0 ° C. or higher” recited in the claims.

ステップS210で冷蔵室温度が冷却器温度より低(Yes)で、ステップS211に進むと、庫内送風機OFF、冷蔵室ダンパ閉とし、更に、除霜ヒータ出力を80Wから160Wに変更する。これにより、第3の除霜手段による除霜運転の状態となる。図9に移ってステップS212では、冷凍室温度が−10℃より高か否かをチェックする。冷凍室温度が−10℃より高の場合(Yes)は、ステップS301へ進み、冷凍室温度が−10℃以下の場合(No)は、ステップS213に進み、冷却器温度が8℃より高か否かをチェックする。冷却器温度が8℃より高の場合(Yes)は、ステップS214へ進み、冷却器温度が8℃以下の場合(No)は、再びステップS212に戻り、第3の除霜手段による除霜運転を継続し、ステップS212、S213のチェックを繰り返す。
ここで、ステップS212における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応し、ステップS213における冷却器温度が8℃より高(冷却器温度>8℃)が請求項に記載の「所定の第2の冷却器温度まで上昇したとき」に対応する。
If the refrigerating room temperature is lower than the cooler temperature (Yes) in step S210 and the process proceeds to step S211, the internal fan is turned off, the refrigerating room damper is closed, and the defrost heater output is changed from 80W to 160W. Thereby, it will be in the state of the defrost driving | operation by a 3rd defrosting means. Turning to FIG. 9, in step S212, it is checked whether or not the freezer temperature is higher than −10 ° C. If the freezer temperature is higher than −10 ° C. (Yes), the process proceeds to step S301. If the freezer temperature is −10 ° C. or lower (No), the process proceeds to step S213, and whether the cooler temperature is higher than 8 ° C. Check whether or not. When the cooler temperature is higher than 8 ° C. (Yes), the process proceeds to step S214. When the cooler temperature is 8 ° C. or lower (No), the process returns to step S212, and the defrosting operation by the third defrosting means is performed. And the checks in steps S212 and S213 are repeated.
Here, −10 ° C. of the freezer temperature in step S212 corresponds to the upper limit temperature of the freezer temperature zone described in the claims, and the cooler temperature in step S213 is higher than 8 ° C. (cooler temperature> 8 ° C.). This corresponds to “when the temperature rises to the predetermined second cooler temperature” described in the claims.

ステップS213において、YesでステップS214へ進んだ場合は、除霜モード4による除霜運転は終了し、除霜ヒータ22をオフする(除霜ヒータOFF)。これにより、「圧縮機OFF、庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータOFF」の状態となる。そして、ステップS215では、除霜ヒータ22をオフ後、5分が経過したか否かをチェックし(除霜ヒータ22をOFF後5分経過?)、経過しない場合(No)は、ステップS215を繰り返し、5分経過した場合(Yes)は圧縮機24をオンする(ステップS216、圧縮機ON)。これにより、「圧縮機ON、庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータOFF」の状態となる。
ステップS217では、圧縮機24をオン後2分が経過したか否かをチェックする。経過しない場合(No)は、ステップS217を繰り返し、2分経過した場合(Yes)はステップS101(図7参照)に戻り、再び通常冷却運転に戻る(圧縮機ON後2分が経過?)。
In step S213, if the process proceeds to Yes in step S214, the defrosting operation in the defrosting mode 4 ends, and the defrosting heater 22 is turned off (defrosting heater OFF). Thereby, it will be in the state of "the compressor OFF, the internal fan OFF, the refrigerator compartment damper closed, the freezer compartment damper closed, and the defrost heater OFF." In step S215, it is checked whether or not 5 minutes have elapsed after turning off the defrosting heater 22 (5 minutes after turning off the defrosting heater 22?). If not (No), step S215 is executed. If 5 minutes have passed (Yes), the compressor 24 is turned on (step S216, compressor ON). Thereby, it will be in the state of "the compressor ON, the internal fan OFF, the refrigerator compartment damper closed, the freezer compartment damper closed, and the defrost heater OFF."
In step S217, it is checked whether or not two minutes have passed since the compressor 24 was turned on. If not (No), step S217 is repeated, and if 2 minutes have passed (Yes), the process returns to step S101 (see FIG. 7) and returns to the normal cooling operation again (2 minutes after the compressor is turned on?).

(除霜モード4の作用効果)
以上説明したステップS201からステップS217の流れが、信頼性確保除霜を行う条件が満足され、除霜モード4による除霜運転が実施された場合の説明である。
以下で、その効果を、図8、図9のフローチャートと、図11の除霜モード4による除霜運転におけるタイムチャートを参照しながら説明する。図11には、除霜モード4が選択されてからの、「冷凍室冷却運転」の区間、「第1の除霜手段」による除霜運転の区間TA、「第2の除霜手段」による除霜運転の区間TB、「第3の除霜手段」による除霜運転の区間TC、除霜運転完了後の経過の区間TD,TE、「通常冷却運転」の区間に分けられ、その間の冷蔵室温度、冷凍室温度及び冷却器温度の推移、除霜ヒータ22のオン状態(ON 160W)/オン状態(ON 80W)/オフ(OFF)状態、庫内送風機9のオン(ON)/オフ(OFF)状態、冷蔵室ダンパ20の開状態/閉状態、庫内送風機9のオン(ON)/オフ(OFF)状態、冷凍室ダンパ50の開状態/閉状態、圧縮機24のオン(ON)状態/オフ(OFF)状態が示されている。
(Operational effect of defrost mode 4)
The flow from step S201 to step S217 described above is an explanation when the defrosting operation in the defrosting mode 4 is performed when the condition for performing the reliability ensuring defrosting is satisfied.
Below, the effect is demonstrated, referring the flowchart of FIG. 8, FIG. 9, and the time chart in the defrost operation by the defrost mode 4 of FIG. In FIG. 11, after the defrost mode 4 is selected, the section “freezing room cooling operation”, the section TA of the defrosting operation by the “first defrosting means”, and the “second defrosting means” It is divided into a section TB for defrosting operation, a section TC for defrosting operation by the “third defrosting means”, a section TD, TE after the completion of the defrosting operation, and a section for “normal cooling operation”. Transition of room temperature, freezer room temperature and cooler temperature, ON state (ON 160W) / ON state (ON 80W) / OFF state (OFF) of defrost heater 22, ON (ON) / OFF state of internal fan 9 ( OFF) state, open / closed state of the refrigerator compartment damper 20, ON / OFF state of the internal fan 9, open / closed state of the freezer damper 50, ON state of the compressor 24 A state / off state is shown.

図11に示すように、除霜モード4が選択されると、除霜モード4による除霜運転に入る前に、冷蔵室温度が5℃を超えるまで冷凍室冷却運転を実施し(ステップS203)、冷蔵室温度が5℃を超えたら、第1の除霜手段による除霜運転(「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータOFF」)が行われる(ステップS204〜ステップS207)。   As shown in FIG. 11, when the defrost mode 4 is selected, the freezer compartment cooling operation is performed until the refrigerator temperature exceeds 5 ° C. before entering the defrost operation in the defrost mode 4 (step S203). When the refrigerator compartment temperature exceeds 5 ° C., the defrosting operation by the first defrosting means (“Compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper closed, defrost heater OFF”) is performed. (Steps S204 to S207).

これは、庫内送風機9によって冷蔵室2に送風することで霜を解かす場合、冷蔵室2の温度はなるべく高い温度であった方が、冷却器7に付いた霜と熱交換しやすいため、予め冷蔵室2の温度を高くしておくものであり、これにより省エネルギ効果が高まる。また、冷蔵室2が庫外からの熱侵入により温度上昇するのを待つ間は冷凍室冷却運転が実施されているため、除霜時に庫外からの熱侵入で温度上昇しやすい冷凍室を除霜前に十分冷やしておくことができ、除霜時に、冷凍食品が解けるといった不具合の可能性を小さくする効果もある。   This is because, when frost is released by blowing air to the refrigerator compartment 2 by the internal fan 9, it is easier to exchange heat with the frost attached to the cooler 7 when the temperature of the refrigerator compartment 2 is as high as possible. In this case, the temperature of the refrigerator compartment 2 is raised in advance, and the energy saving effect is enhanced. In addition, since the freezer compartment cooling operation is performed while the refrigerator compartment 2 waits for the temperature to rise due to heat intrusion from the outside of the refrigerator, the freezer compartment that tends to rise in temperature due to heat intrusion from outside the compartment during defrosting is removed. It can be sufficiently cooled before frost, and has the effect of reducing the possibility of problems such as freezing of frozen food during defrosting.

除霜モード4における第1段階として、第1の除霜手段による除霜運転が実施されると、図11中の区間TAに示すように、冷蔵室温度は霜の冷熱によって冷却され、一方、冷却器温度(霜温度)は冷蔵室の熱負荷によって上昇し、次第に冷却器温度との差が小さくなる。冷蔵室温度と冷却器温度との温度差が小さくなると、熱交換し難くなるため、そのまま第1の除霜手段による除霜運転を継続した場合、除霜時間が長くなってしまう。一方、図11中に示すように、除霜中、冷凍室温度は上昇し続ける。   As the first stage in the defrosting mode 4, when the defrosting operation by the first defrosting means is performed, as shown in the section TA in FIG. 11, the refrigerator compartment temperature is cooled by the cold heat of the frost, The cooler temperature (frost temperature) rises due to the heat load of the refrigerator compartment, and the difference from the cooler temperature gradually decreases. When the temperature difference between the refrigerator temperature and the cooler temperature becomes small, heat exchange becomes difficult. Therefore, when the defrosting operation by the first defrosting means is continued as it is, the defrosting time becomes long. On the other hand, as shown in FIG. 11, the temperature of the freezer compartment continues to rise during defrosting.

したがって、除霜時間が長いと、冷凍食品が解けるといった不具合が生じる可能性があり望ましくないので、冷蔵室温度と冷却器温度との温度差が小さくなったと判断された場合((冷蔵室温度−冷却器温度)<2℃が満足された場合)(ステップS207)、除霜時間が長引かないように、除霜ヒータ22をオンとすることで(ステップS208)、冷蔵室2からの戻り空気を加熱し、除霜しやすくする。この「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータON」の状態が、図11中の区間TBにおける第2の除霜手段による除霜運転、「庫内送風機+除霜ヒータによる除霜」が実施されている状態である(ステップS208〜ステップS210)。第2の除霜手段における除霜ヒータ22の出力は80Wであり、この出力は、冷却器7に霜が残っている状態であれば、冷却器7を通過後の空気が冷蔵室2の冷却が可能な0〜4℃程度の温度となる出力である。   Therefore, if the defrosting time is long, there is a possibility that the frozen food can be dissolved, which is not desirable. Therefore, when it is determined that the temperature difference between the refrigerator temperature and the cooler temperature is small ((refrigerator temperature− (When the cooler temperature) <2 ° C. is satisfied) (step S207), the defrost heater 22 is turned on so that the defrost time is not prolonged (step S208), thereby returning the return air from the refrigerator compartment 2 Heat and make it easier to defrost. This "compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper closed, defrost heater ON" state is the defrosting operation by the second defrosting means in the section TB in FIG. This is a state in which “defrosting by the inner blower + defrosting heater” is performed (steps S208 to S210). The output of the defrost heater 22 in the second defrosting means is 80 W. If this output is in a state where frost remains in the cooler 7, the air after passing through the cooler 7 cools the refrigerator compartment 2. Is an output with a temperature of about 0 to 4 ° C.

また、通常冷却運転時の庫内送風機9の回転速度は約1600rpmであり、区間TBにおける第2の除霜手段による除霜運転中は約1400rpmとしている。このように、第2の除霜手段による除霜運転時に庫内送風機9の回転速度を通常冷却運転時のそれから変えるのは、冷蔵室2の冷却が可能な0〜4℃程度の空気温度が得られるように調節するためである。   Further, the rotation speed of the internal fan 9 during the normal cooling operation is about 1600 rpm, and is about 1400 rpm during the defrosting operation by the second defrosting means in the section TB. In this way, the rotation speed of the internal fan 9 is changed from that in the normal cooling operation during the defrosting operation by the second defrosting means because the air temperature of about 0 to 4 ° C. that can cool the refrigerator compartment 2 is changed. It is for adjusting so that it may be obtained.

このように、本実施形態の冷蔵庫1の第2の除霜手段による除霜運転は、冷蔵室2の冷却が可能な0〜4℃程度の空気温度が得られるように調節されるので、特許文献2や特許文献3に開示されている加湿を目的として「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータON」とした場合に生じていた、「利用可能な霜の冷熱を冷蔵室の冷却に再利用できていないため、その分省エネルギ性能は低くなる」という問題点を解決でき、省エネルギ性能が高くできている。   Thus, since the defrost operation by the 2nd defrosting means of the refrigerator 1 of this embodiment is adjusted so that the air temperature of about 0-4 degreeC which can cool the refrigerator compartment 2 is obtained, patent For the purpose of humidification disclosed in Document 2 and Patent Document 3, "use of compressor OFF, internal fan ON, refrigerator compartment damper opened, freezer compartment damper closed, defrost heater ON" The problem that the energy-saving performance is reduced because the possible frost heat cannot be reused for cooling the refrigerator compartment can be solved, and the energy-saving performance is improved.

もし、「庫内送風機+除霜ヒータによる除霜」の除霜運転における除霜ヒータ22の出力が過剰であるとすると、冷蔵室2で保つべき温度より高い冷却器を通過後の空気温度となり、冷蔵室2を暖めてしまうため好ましくない。また、第2の除霜手段による除霜運転は、除霜時間の短縮によって冷凍室温度の上昇を抑制することが目的であるため、除霜ヒータ22の出力が過小だと、この目的が達成されない。したがって、第2の除霜手段における除霜ヒータ22の出力は適切なものでなければならない。第2の除霜手段の効果としては、冷凍室温度の上昇抑制とともに、除霜ヒータ22をオンとしているものの、冷蔵室2を冷やしながら霜を解かしている(冷蔵室2の熱負荷を使って霜を解かしている)ので、冷蔵室2の熱負荷を利用した分だけ、除霜のための外部からのエネルギ投入量が少なくて済み、省エネルギ効果が得られる。更に、送風によって冷却器7に冷蔵庫からの戻り空気(図5中の、矢印Dで示した冷蔵室戻り空気)を強制対流させているため、空気と霜との間の熱伝達効率が良く、霜が解けやすくなることによる省エネルギ効果もある。
このように、第1の除霜手段による除霜運転の後に第2の除霜手段による除霜運転を組み合わせることにより、除霜時間を短くしながらも除霜運転時の省エネルギ効果を得ることができる。
If the output of the defrost heater 22 in the defrosting operation of “defrosting by the internal fan + defrost heater” is excessive, the air temperature after passing through the cooler higher than the temperature to be kept in the refrigerator compartment 2 is obtained. This is not preferable because the refrigerator compartment 2 is heated. In addition, since the defrosting operation by the second defrosting means is intended to suppress an increase in freezer temperature by shortening the defrosting time, this purpose is achieved if the output of the defrosting heater 22 is too small. Not. Therefore, the output of the defrost heater 22 in the second defrosting means must be appropriate. As an effect of the second defrosting means, although the defrost heater 22 is turned on as well as suppressing the increase in the freezer temperature, the frost is defrosted while the refrigerator 2 is cooled (using the heat load of the refrigerator 2). Therefore, the amount of energy input from the outside for defrosting can be reduced by the amount using the heat load of the refrigerator compartment 2, and an energy saving effect can be obtained. Furthermore, since the return air from the refrigerator (refrigeration room return air indicated by arrow D in FIG. 5) is forced to convection to the cooler 7 by blowing, heat transfer efficiency between the air and frost is good. There is also an energy saving effect due to the fact that frost can be easily melted.
As described above, by combining the defrosting operation by the second defrosting unit after the defrosting operation by the first defrosting unit, the energy saving effect at the time of the defrosting operation is obtained while shortening the defrosting time. Can do.

続いて、冷蔵室温度が冷却器温度以下になった時点(ステップS210)で「庫内送風機OFF、冷蔵室ダンパ閉」となり、除霜ヒータ22の出力は80Wから160Wに変わる(ステップS211)ことにより図11の区間TCでは、第3の除霜手段による除霜運転、「除霜ヒータによる除霜」が実施される(ステップS211〜ステップS213)。冷蔵室温度が冷却器温度以下になると冷却器7が持つ冷熱では、冷蔵室2を冷却する能力はなく、それ以上送風を継続すると冷蔵室2を暖めてしまうことになるために、送風を停止、「除霜ヒータによる除霜」を行うことで冷蔵室2を暖めてしまうことを防ぐとともに、冷却器7に霜の解け残りがないようにする。   Subsequently, when the temperature of the refrigerating room becomes equal to or lower than the temperature of the cooler (step S210), the internal fan is turned off and the refrigerating room damper is closed, and the output of the defrost heater 22 is changed from 80 W to 160 W (step S211). Thus, in the section TC of FIG. 11, the defrosting operation by the third defrosting means, “defrosting by the defrosting heater” is performed (step S211 to step S213). When the refrigerator temperature falls below the cooler temperature, the cooling heat of the cooler 7 does not have the ability to cool the refrigerator 2 and if the air is further blown, the refrigerator 2 will be warmed. , “Defrosting by the defrosting heater” is performed to prevent the refrigerator compartment 2 from being warmed, and the cooler 7 is made free from unmelted frost.

除霜モード4は信頼性確保除霜が目的であるため、霜の解け残りがないようにしなければならないが、前記のとおり、「庫内送風機ON」状態での第1の除霜手段または第2の除霜手段による除霜運転のみでは、霜が解け難い箇所が生じてしまい、霜の解け残りが生じることがあった。そこで、信頼性確保除霜を実施する場合には、第1の除霜手段及び第2の除霜手段の「庫内送風機ON状態」での除霜の後に、図11の区間TCに示すように「除霜ヒータによる除霜」を実施し、霜の解け残りがないようにしている。   The defrosting mode 4 is intended to ensure the defrosting of reliability, so that it is necessary to prevent the frost from remaining unmelted. As described above, the first defrosting means or the first defrosting means in the “internal fan ON” state is used. Only the defrosting operation by the defrosting means 2 may cause a portion where the frost is difficult to thaw, resulting in unmelted frost. Therefore, when performing defrosting to ensure reliability, as shown in a section TC of FIG. 11 after defrosting in the “inside fan ON state” of the first defrosting means and the second defrosting means. “Defrosting with a defrosting heater” is performed in order to prevent frost from remaining unmelted.

なお、本実施形態では、第3の除霜手段による除霜運転では、除霜ヒータ22の出力を80Wから160Wに上げている。これにより、第3の除霜手段による除霜運転の区間TCを短くでき、その間の冷蔵室温度及び冷凍室温度の上昇を小さく抑えることができる。
また、第3の除霜手段による除霜運転は、送風状態での除霜に比べて冷却器収納室8内の空気と霜との自然対流による熱伝達効率が悪く、省エネルギ性能が低い除霜手段ではある。しかし、本実施形態では、プラス温度に保たれる冷蔵室温度よりも冷却器温度の方が高いという、ほぼ全ての霜が解けたといえる状態から第3の除霜手段による除霜運転が実施されるので、除霜手段3による除霜運転を行うことによる省エネルギ性能の低下の影響は比較的小さい。
このように、除霜モード4では、第1から第3の除霜手段による除霜運転を組み合わせることにより、柔軟で省エネルギ効果のある、確実な除霜を行え、除霜時間の短縮化も図ってその間に冷凍室温度が上昇するのを抑制している。
In the present embodiment, the output of the defrost heater 22 is increased from 80 W to 160 W in the defrosting operation by the third defrosting means. Thereby, section TC of the defrosting operation by the 3rd defrosting means can be shortened, and the rise of the refrigerator compartment temperature and freezer compartment temperature in the meantime can be suppressed small.
In addition, the defrosting operation by the third defrosting means has a lower heat transfer efficiency due to natural convection between the air and frost in the cooler housing chamber 8 than the defrosting in the blown state, and the energy saving performance is low. It is a frost means. However, in this embodiment, the defrosting operation by the third defrosting means is performed from the state that almost all the frost has been dissolved, that is, the cooler temperature is higher than the refrigerator temperature maintained at the plus temperature. Therefore, the influence of the reduction in energy saving performance due to the defrosting operation by the defrosting means 3 is relatively small.
As described above, in the defrosting mode 4, by combining the defrosting operations by the first to third defrosting means, it is possible to perform defrosting that is flexible and energy saving, and shortens the defrosting time. In the meantime, the rise of the freezer temperature is suppressed.

次に、冷却器温度が8℃を超えたとき(ステップS213)、除霜ヒータ22をオフし除霜モード4による除霜運転は終了し(ステップS214)、図11の区間TDで示すように、「圧縮機OFF、庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータOFF」の状態で5分間待つ(ステップS215)。この経過の区間TDによって、除霜水の冷却器7、上部カバー53(図5参照)から樋23(図5参照)への滴下時間が確保され、滴下途中で通常冷却運転が再開されて再び氷結し、冷却器収納室8の一部を閉塞するといった事態が起こり難くなる。
また、ステップS213において冷却器温度が8℃を超えたときに第3の除霜手段による除霜運転を終了するように、図6に示す第3の除霜手段による除霜運転を含まない他の除霜モードの除霜完了判定温度(冷却器温度>0.5℃)よりも比較的高い温度に設定しているので略完全な除霜ができる。
Next, when the cooler temperature exceeds 8 ° C. (step S213), the defrosting heater 22 is turned off and the defrosting operation in the defrosting mode 4 is ended (step S214), as shown by the section TD in FIG. , And waits for 5 minutes in the state of “compressor OFF, internal fan OFF, refrigerator colder damper close, freezer damper close, defrost heater OFF” (step S215). By the section TD of this progress, the dripping time from the cooler 7 of the defrost water and the upper cover 53 (see FIG. 5) to the eaves 23 (see FIG. 5) is secured, and the normal cooling operation is resumed in the middle of the dripping and again. It is difficult for a situation such as freezing and blocking of a part of the cooler storage chamber 8 to occur.
In addition, the defrosting operation by the third defrosting unit shown in FIG. 6 is not included so that the defrosting operation by the third defrosting unit is terminated when the cooler temperature exceeds 8 ° C. in step S213. Since the defrosting completion determination temperature (cooler temperature> 0.5 ° C.) in the defrosting mode is set to a relatively high temperature, substantially complete defrosting can be performed.

経過の区間TDの5分が経過した後に、図11の経過の区間TEに示すように、まず、圧縮機24のみをオンし(「圧縮機ON、庫内送風機OFF、除霜ヒータOFF、冷蔵室ダンパ閉、冷凍室ダンパ閉」)(ステップS216)、2分間待ち(ステップS217)、その後、通常冷却運転を再開する。この2分間の待ち時間は、除霜モード4による除霜運転が終了した時点で温度が高くなっている冷却器7とその周辺の空気が、そのまま庫内各室に送られて、庫内各室を暖めてしまうという問題が生じ難くするためのものであり、通常冷却運転再開前に、冷却器収納室8内を冷却するために設けられている。   After 5 minutes of the elapsed section TD have elapsed, as shown in the elapsed section TE of FIG. 11, first, only the compressor 24 is turned on (“compressor ON, internal fan OFF, defrost heater OFF, refrigeration Chamber damper closed, freezer compartment damper ") (step S216), wait for 2 minutes (step S217), and then resume normal cooling operation. The waiting time of 2 minutes is such that the cooler 7 whose temperature is high when the defrosting operation in the defrosting mode 4 is finished and the surrounding air are sent to the respective chambers as they are, and This is to make it difficult for the problem of warming the chamber to occur, and is usually provided to cool the interior of the cooler housing chamber 8 before resuming the cooling operation.

以上で、信頼性確保除霜を行う条件が満足され、除霜モード4による除霜が実施された場合の作用を説明したが、除霜モード4では、第1の除霜手段による除霜運転、第2の除霜手段による除霜運転、第3の除霜手段による除霜運転のそれぞれの段階に、冷凍室温度をチェックするステップが設けてあり(ステップS206、ステップS209及びステップS212)、それらのステップで冷凍室温度の上昇が著しいと判定された(冷凍室温度が−10℃より高)場合、除霜モード4から除霜モード5による除霜に移行するようになっている。   As described above, the operation when the defrosting condition 4 is satisfied and the defrosting mode 4 is performed has been described. In the defrosting mode 4, the defrosting operation is performed by the first defrosting unit. In addition, a step of checking the freezer temperature is provided at each stage of the defrosting operation by the second defrosting means and the defrosting operation by the third defrosting means (step S206, step S209 and step S212), If it is determined in those steps that the temperature of the freezer compartment is significantly increased (the freezer compartment temperature is higher than −10 ° C.), the defrost mode 4 is shifted to the defrost mode 5.

(除霜モード4から除霜モード5への移行)
再び、図9のフローチャートに戻って、除霜モード4による除霜運転の途中において、ステップS206、ステップS209、または、ステップS212において、冷凍室温度が−10℃より高となり、ステップS301へ進み、除霜モード4から除霜モード5による除霜に移行する場合について説明する。
(Transition from defrost mode 4 to defrost mode 5)
Returning to the flowchart of FIG. 9 again, in the middle of the defrosting operation in the defrosting mode 4, in step S206, step S209, or step S212, the freezer temperature becomes higher than −10 ° C., and the process proceeds to step S301. The case where it transfers to the defrost by the defrost mode 5 from the defrost mode 4 is demonstrated.

ステップS301では、冷却器温度が5℃より高か否かをチェックし、冷却器温度が5℃より高の場合(Yes)は、ステップS302へ進み、そうでない場合(No)は、ステップS305へ進む。
ステップS302では、「庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉、除霜ヒータOFF」の状態とし、更に「圧縮機ON」とする(ステップS303)。そして、ステップS304では、圧縮機オン(ON)後2分が経過したか否かをチェックし、2分経過した場合(Yes)はステップS305に進み、経過していない場合(No)は、ステップS304を繰り返す。ステップS305では、FLAGi=1か否かをチェックする。FLAGi=1の場合(Yes)は、ステップS306へ進み、そうでない場合(No)は、ステップS401へ進む。
ここでは、ステップS201でFLAGi=1と記憶させてあるの、Yesとなり、除霜モード5が選択される(ステップS306)。
In step S301, it is checked whether or not the cooler temperature is higher than 5 ° C. If the cooler temperature is higher than 5 ° C (Yes), the process proceeds to step S302. If not (No), the process proceeds to step S305. move on.
In step S302, the state is "internal fan OFF, refrigerator compartment damper closed, freezer compartment damper closed, defrost heater OFF", and "compressor ON" is set (step S303). In step S304, it is checked whether or not 2 minutes have elapsed since the compressor was turned on (ON). If 2 minutes have elapsed (Yes), the process proceeds to step S305. If not (No), S304 is repeated. In step S305, it is checked whether FLAGi = 1. If FLAGi = 1 (Yes), the process proceeds to step S306. If not (No), the process proceeds to step S401.
Here, since FLAGi = 1 is stored in step S201, the answer is Yes, and the defrosting mode 5 is selected (step S306).

また、ステップS301で冷却器温度が5℃より高となっていた場合、ステップS303で圧縮機のみオンとして、その後2分間待つようにしているのは、冷却運転が開始される前に、冷却器収納室8内を冷却することで、冷却器収納室8内の温度の高い空気がそのまま庫内各室に送られて、庫内各室を暖めてしまうという問題が生じ難くするためである。   Further, when the cooler temperature is higher than 5 ° C. in step S301, only the compressor is turned on in step S303, and then waiting for 2 minutes is performed before the cooling operation is started. This is because by cooling the inside of the storage chamber 8, the high temperature air in the cooler storage chamber 8 is sent as it is to each chamber in the cabinet, and the problem of heating each chamber in the cabinet is less likely to occur.

除霜モード5による除霜運転は、図6に示すように冷凍室冷却運転中に冷凍室温度が−25℃より低となった場合に開始されるように設定されており、その条件を満足するように一旦冷凍室冷却運転が開始され(ステップS307)、ステップS308において冷凍室温度が−25℃より低か否かがチェックされ、冷凍室冷却運転は、冷凍室温度が−25℃より低でない場合(No)は、ステップS307に戻り、冷凍室温度が−25℃より低なるまで継続される(ステップS308)。ステップS308において冷凍室温度が−25℃より低となった場合(Yes)は、ステップS309に進み、FLAGi=2と記憶させ、ステップS204(図8参照)に移り、第1の除霜手段による除霜運転、「庫内送風機による除霜」が実施される状態になり、次に、FLAGi=2か否かをチェックする(ステップS205)。   The defrosting operation in the defrosting mode 5 is set to start when the freezer temperature becomes lower than −25 ° C. during the freezer cooling operation as shown in FIG. Thus, the freezer compartment cooling operation is once started (step S307), and it is checked in step S308 whether or not the freezer compartment temperature is lower than −25 ° C. In the freezer compartment cooling operation, the freezer compartment temperature is lower than −25 ° C. If not (No), the process returns to step S307 and continues until the freezer temperature is lower than −25 ° C. (step S308). When the freezer temperature is lower than −25 ° C. in step S308 (Yes), the process proceeds to step S309, stores FLAGi = 2, moves to step S204 (see FIG. 8), and is performed by the first defrosting means. The defrosting operation, “defrosting by the internal fan” is performed, and then it is checked whether or not FLAGi = 2 (step S205).

ここでは、ステップS309においてFLAGi=2と記憶させてあるので、ステップS208に進み、第1の除霜手段による除霜運転は実施されることなく、第2の除霜手段による除霜運転、「庫内送風機+除霜ヒータによる除霜」が行なわれる。以降ステップS209、または、ステップS212において、再び冷凍室温度が−10℃より高が満足された場合(Yes)以外は既に説明したステップを経て通常冷却運転に戻る。   Here, since FLAGi = 2 is stored in step S309, the process proceeds to step S208, and the defrosting operation by the second defrosting unit is performed without performing the defrosting operation by the first defrosting unit. “Defrosting by internal fan + defrosting heater” is performed. Thereafter, in step S209 or step S212, the normal cooling operation is returned to the normal cooling operation through the steps already described except when the freezer temperature is again satisfied to be higher than −10 ° C. (Yes).

(除霜モード5の作用効果)
除霜モード4の除霜運転の途中において、ステップS206、または、ステップS209、または、ステップS212の何れかで、冷凍室温度が著しく上昇する原因としては、使用者が偶々製氷室3や、上段冷凍室4や、下段冷凍室5の開閉を行い、比較的温度の高い食品を収納した場合も考えられるが、他に、霜の量が多く、除霜に時間がかかり過ぎた、若しくは、下段冷凍室5からの戻り冷気が多くの水分を冷却器収納室8に運んでくる状況となっており、庫内送風機9が稼動している状態での除霜運転では除霜され難い箇所に霜が多く存在し、その霜の影響で除霜時間が延び、冷凍室温度が−10℃より高になる場合と考えられる。
(Operational effect of defrost mode 5)
In the middle of the defrosting operation in the defrosting mode 4, the cause of the remarkable increase in the freezer temperature in either step S 206, step S 209, or step S 212 is that the user accidentally creates the ice making room 3 or the upper stage. It is conceivable that the freezer 4 and the lower freezer 5 are opened and closed, and food with relatively high temperature is stored. However, the amount of frost is large and it takes too long to defrost, or the lower The return cold air from the freezer compartment 5 carries a large amount of moisture to the cooler storage compartment 8, and frost is generated in places where it is difficult to defrost in the defrosting operation with the internal fan 9 operating. It is considered that there is a large amount of frost and the defrosting time is extended due to the influence of the frost, and the freezer temperature becomes higher than −10 ° C.

何れの場合であっても上段冷凍室4や、下段冷凍室5に収納された冷凍食品が解けるといった不具合が生じる可能性があるため、一旦温度上昇した上段冷凍室4や、下段冷凍室5を再冷却するためのステップS307を設け、上段冷凍室4や、下段冷凍室5を低温に冷却する。これにより、信頼性確保除霜を実施している最中に、上段冷凍室4や、下段冷凍室5に収納された冷凍食品が解けるといった不具合を生じる可能性をなくせる。また、除霜モード4の過程において、冷凍室温度の上昇が著しかった原因が、霜の量が多く、除霜時間が長くなり過ぎたことによる場合、除霜時間を短縮することが望ましい。   In any case, there is a possibility that the frozen food stored in the upper freezer compartment 4 or the lower freezer compartment 5 can be dissolved. Step S307 for recooling is provided, and the upper freezer compartment 4 and the lower freezer compartment 5 are cooled to a low temperature. This eliminates the possibility that the frozen food stored in the upper freezer compartment 4 and the lower freezer compartment 5 can be dissolved while the reliability defrosting is being performed. Moreover, in the process of the defrost mode 4, when the cause of the remarkable increase in freezer temperature is that the amount of frost is large and the defrost time is too long, it is desirable to shorten the defrost time.

したがって、除霜モード5は、除霜モード4における、第1の除霜手段による除霜運転、「庫内送風機による除霜」が実施されるステップS204を実質的に経ずに、第2の除霜手段による除霜運転、「庫内送風機+除霜ヒータによる除霜」を始める(ステップS208)。第2の除霜手段は、第1の除霜手段に比べて除霜ヒータ22をオンとする効果が加わるため、同じ霜の量であれば短時間で除霜できる。その結果、除霜モード5によって除霜時間が短縮でき、除霜時間が長くなることで製氷室3や上段冷凍室4や下段冷凍室5の温度が上昇することによる不具合は生じ難くなり、信頼性が高い除霜運転となる。
なお、第1の除霜手段による除霜運転のステップを省略しても、第2の除霜手段による除霜運転を実施することによる省エネルギ効果は得られるため、除霜モード5に移行することによって省エネルギ性能が大幅に悪化することはない。
Therefore, in the defrost mode 5, the defrost mode by the 1st defrost means in the defrost mode 4 and step S204 in which "defrost by an internal fan" is implemented do not pass through 2nd. The defrosting operation by the defrosting means, “defrosting by the internal fan + defrost heater” is started (step S208). Since the 2nd defrosting means adds the effect which turns on the defrost heater 22 compared with a 1st defrosting means, if it is the same amount of frost, it can defrost in a short time. As a result, the defrosting mode 5 can reduce the defrosting time, and the longer the defrosting time, the less the trouble caused by the temperature increase in the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 is less likely to occur. Defrosting operation with high performance.
In addition, even if the step of the defrosting operation by the first defrosting unit is omitted, the energy saving effect by performing the defrosting operation by the second defrosting unit can be obtained. As a result, the energy saving performance is not significantly deteriorated.

(除霜モード6)
次に、ステップS305でFLAGi=1でなく(No)、ステップS401に進んで除霜モード6が選択される場合について説明する。
除霜モード6による除霜は、図6に示すとおり通常冷却運転(冷凍室冷却運転、冷蔵室冷却運転、または冷凍室・冷蔵室同時冷却運転)中に、冷凍室温度が−25℃より低で、且つ、冷蔵室温度が2℃より低となった場合に開始させるものであり、ステップS402において一旦通常冷却運転が開始され、ステップS403において、冷却運転モードのいずれかのモードであって、冷凍室温度が−25℃より低、且つ、冷蔵室温度が2℃より低が満足されているかをチェックし、満足されていない場合(No)は、ステップS402を継続し、満足された場合(Yes)は、ステップS404へ進む。
(Defrost mode 6)
Next, the case where FLAGi = 1 is not set in step S305 (No) and the process proceeds to step S401 and the defrost mode 6 is selected will be described.
As shown in FIG. 6, the defrosting in the defrosting mode 6 is performed when the freezer temperature is lower than −25 ° C. during normal cooling operation (freezer cooling operation, refrigerating chamber cooling operation, or freezing / refrigeration chamber simultaneous cooling operation). And when the refrigerator compartment temperature is lower than 2 ° C., the normal cooling operation is once started in step S402, and in step S403, any one of the cooling operation modes, It is checked whether the freezer compartment temperature is lower than −25 ° C. and the refrigerator compartment temperature is lower than 2 ° C. If not satisfied (No), step S402 is continued and satisfied ( If yes, the process proceeds to step S404.

ステップS404では、第3の除霜手段による除霜運転、「除霜ヒータによる除霜」、(「圧縮機OFF、庫内送風機OFF、冷蔵室ダンパ閉、冷凍室ダンパ閉」、但し、除霜ヒータ22は出力160W)が行われる。続いて、ステップS212に戻り、以降は既に説明したステップを経て通常冷却運転に戻る。
なお、除霜モード6の過程において、再びステップS212で冷凍室温度が−10℃より高の場合(YES)は、ステップS309において、FLAGi=2と記憶されたままなので、再度除霜モード6が実施されることになる。
In step S404, the defrosting operation by the third defrosting means, “defrosting by the defrosting heater”, (“compressor OFF, internal fan OFF, refrigeration chamber damper close, freezer compartment damper close”, however, defrosting is performed. The heater 22 outputs 160 W). Then, it returns to step S212, and returns to a normal cooling operation | movement through the step already demonstrated after that.
In the process of defrost mode 6, if the freezer temperature is higher than −10 ° C. again in step S212 (YES), since FLAGi = 2 is still stored in step S309, defrost mode 6 is again set. Will be implemented.

(除霜モード6の作用効果)
次に除霜モード5から、再び冷凍室温度の上昇が著しい場合に、除霜モード6に移行させることによる作用効果を説明する。
信頼性確保除霜は、除霜モード4がまず実施され、その過程において、冷凍室温度の上昇が著しい場合に除霜モード5に移行させ、除霜モード5の過程において、再び冷凍室温度の上昇が著しい場合に除霜モード6に移行させる。すなわち、除霜モード6は、信頼性確保除霜の過程で2回冷凍室温度上昇が著しいと判定された場合に実施されるものであり、このようなケースは、偶々冷凍温度帯室の扉3a,4a,5a,5bの開閉のタイミングが合致して起こることもありえるが、庫内送風機9の稼動状態での除霜運転(第1の除霜手段または第2の除霜手段による除霜運転)では、除霜が困難な箇所に多くの着霜が生じている可能性も高い。
(Operational effect of defrost mode 6)
Next, when the temperature of the freezer compartment is remarkably increased from the defrost mode 5 again, an operation effect by shifting to the defrost mode 6 will be described.
In the defrosting mode 4, the defrosting mode 4 is first performed, and when the temperature in the freezer compartment rises significantly in the process, the defrosting mode 5 is entered. When the increase is significant, the mode is shifted to the defrost mode 6. That is, the defrost mode 6 is performed when it is determined that the temperature increase in the freezer compartment is marked twice in the process of ensuring the reliability defrosting. Although the timing of opening and closing of 3a, 4a, 5a, 5b may coincide, defrosting operation in the operating state of the internal fan 9 (defrosting by the first defrosting means or the second defrosting means) In the operation), there is a high possibility that a lot of frost is formed in a place where defrosting is difficult.

したがって、本実施形態では、2回冷凍室温度上昇が著しいと判定された場合には除霜モード6に移行させることで、送風機9の稼動状態での除霜運転では除霜が困難な箇所に多くの着霜が生じている場合であっても、確実に除霜ができるようにしてあるため、信頼性の高い冷蔵庫となっている。   Therefore, in this embodiment, when it is determined that the temperature increase in the freezer compartment twice is significant, the defrosting mode 6 is shifted to a place where defrosting is difficult in the defrosting operation in the operating state of the blower 9. Even when a lot of frost formation has occurred, the defrosting can be surely performed, so that the refrigerator is highly reliable.

〈冷却器除霜を優先する場合〉以上でステップS103において信頼性確保除霜を行う条件が満足された場合について説明したが、次に、ステップS104で冷却器除霜を優先する条件が満足された場合について説明する。
ステップS104においてYesの場合、続いて、FLAGj=2か否かをチェックする(ステップS501)。FLAGj=2の場合(Yes)は、ステップS508へ進み、FLAGj≠2の場合(No)は、ステップS502へ進む。ここでは、ステップS100の初期値設定においてFLAGj=0が記憶されているので、FLAGj=2は満足されず、ステップS502,S503へと進み、除霜モード2が選択される。除霜モード2による除霜運転は、図6に示すとおり冷凍室冷却運転中に、冷蔵室温度が5℃より高となった場合に開始されるものなので、冷凍室冷却運転(ステップS104時点では冷凍室冷却運転が実施されている)が行われ、ステップS505において冷蔵室温度が5℃より高か否かをチェックし、冷蔵室温度が5℃より高の場合(Yes)はステップS504へ進み、冷蔵室温度が5℃以下の場合(No)は、冷蔵室温度が5℃より高になるまで冷凍室冷却運転が継続される。
<Case where Cooler Defrost is Prioritized> The case where the conditions for performing reliability securing defrost are satisfied in step S103 has been described above. Next, the condition for prioritizing cooler defrost is satisfied in step S104. The case will be described.
If Yes in step S104, then it is checked whether FLAGj = 2 (step S501). When FLAGj = 2 (Yes), the process proceeds to step S508, and when FLAGj ≠ 2 (No), the process proceeds to step S502. Here, since FLAGj = 0 is stored in the initial value setting in step S100, FLAGj = 2 is not satisfied, and the process proceeds to steps S502 and S503, where the defrosting mode 2 is selected. Since the defrosting operation in the defrosting mode 2 is started when the temperature of the refrigerator compartment becomes higher than 5 ° C. during the freezing room cooling operation as shown in FIG. 6, the freezing room cooling operation (at the time of step S104). In step S505, it is checked whether or not the refrigerator compartment temperature is higher than 5 ° C. If the refrigerator compartment temperature is higher than 5 ° C (Yes), the process proceeds to step S504. When the refrigerator compartment temperature is 5 ° C. or lower (No), the freezer compartment cooling operation is continued until the refrigerator compartment temperature is higher than 5 ° C.

ステップS504では、第1の除霜手段による除霜運転(「圧縮機OFF、庫内送風機ON、冷凍室ダンパ閉、冷蔵室ダンパ開、除霜ヒータOFF」)が行われる。ステップS505では、冷却器温度が0.5℃より高か否かをチェックする。冷却器温度が0.5℃より高の場合(YES)は、符号(7)に従いステップS514へ進み、そうでない場合(No)はステップS506へ進む。ステップS506では、冷凍室温度が−14℃より高か否かをチェックし、冷凍室温度が−14℃より高の場合(Yes)は、ステップS515へ進み、そうでない場合はステップS507に進む。ステップS507では、冷蔵室温度と冷却器温度の温度差(冷蔵室温度−冷却器温度)が2℃より低か否かをチェックし、温度差が2℃より低の場合(Yes)は、ステップS511へ進み、そうでない場合はステップS505に戻り、第1の除霜手段による除霜運転を継続しながらステップS505,S506、S507のチェックを繰り返す。   In step S504, a defrosting operation ("compressor OFF, internal fan ON, freezer damper close, refrigeration chamber damper open, defrost heater OFF") by the first defrosting means is performed. In step S505, it is checked whether or not the cooler temperature is higher than 0.5 ° C. If the cooler temperature is higher than 0.5 ° C. (YES), the process proceeds to step S514 according to symbol (7), and if not (No), the process proceeds to step S506. In step S506, it is checked whether or not the freezer temperature is higher than −14 ° C. If the freezer temperature is higher than −14 ° C. (Yes), the process proceeds to step S515, and if not, the process proceeds to step S507. In step S507, it is checked whether or not the temperature difference between the refrigerator temperature and the cooler temperature (refrigerator temperature-cooler temperature) is lower than 2 ° C. If the temperature difference is lower than 2 ° C (Yes), step S507 is performed. It progresses to S511, and when that is not right, it returns to step S505 and repeats the check of step S505, S506, and S507, continuing the defrost operation by a 1st defrost means.

ステップS511では、除霜ヒータ22が出力80Wでオン(ON)となる。これにより第2の除霜手段による除霜運転の状態(「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉、除霜ヒータON)となる。
ステップS512では、冷却器温度が0.5℃より高か否かをチェックし、冷却器温度が0.5℃より高の場合(Yes)は、ステップS514へ進み、そうでない場合(No)は、ステップS513へ進む。ステップS513では、冷凍室温度が−14℃より高か否かをチェックし、冷凍室温度が−14℃より高の場合(Yes)は、ステップS514へ進み、そうでない場合(No)はステップS512へ戻り、第2の除霜手段による除霜運転を継続し、ステップS512、または、ステップS513のどちらかでYesとなるまでステップS512、または、ステップS513のチェックを繰り返す。
ここで、ステップS506,S512における冷凍室温度の−10℃は、請求項に記載の冷凍室温度帯上限温度に対応する。
In step S511, the defrost heater 22 is turned on with an output of 80W. As a result, the defrosting operation state by the second defrosting means (“compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper closed, defrost heater ON) is established.
In step S512, it is checked whether or not the cooler temperature is higher than 0.5 ° C. If the cooler temperature is higher than 0.5 ° C (Yes), the process proceeds to step S514, and if not (No). The process proceeds to step S513. In step S513, it is checked whether or not the freezer temperature is higher than -14 ° C. If the freezer temperature is higher than -14 ° C (Yes), the process proceeds to step S514, and if not (No), step S512 is executed. Returning to step S2, the defrosting operation by the second defrosting means is continued, and the check in step S512 or step S513 is repeated until the answer is Yes in either step S512 or step S513.
Here, -10 degreeC of the freezer compartment temperature in step S506, S512 respond | corresponds to the freezer compartment temperature zone upper limit temperature as described in a claim.

ステップS514では、FLAGj=1と記憶させて、次いでステップS516では、庫内送風機9をオフ(OFF)、除霜ヒータ22をオフ(OFF)として、符号(5)に従いステップS101の通常冷却運転に戻る。また、ステップS513においてYesでステップS515に進んだ場合は、FLAGj=2と記憶させて、次いでステップS516では、庫内送風機9をオフ(OFF)、除霜ヒータ22をオフ(OFF)として、符号(5)に従いステップS101の通常冷却運転に戻る。   In step S514, FLAGj = 1 is stored. Then, in step S516, the internal fan 9 is turned off (OFF), the defrosting heater 22 is turned off (OFF), and the normal cooling operation in step S101 is performed according to the reference (5). Return. If YES in step S513, the process proceeds to step S515. In step S516, the internal fan 9 is turned off (OFF), and the defrost heater 22 is turned off (OFF). Return to the normal cooling operation of step S101 according to (5).

ステップS501において、FLAGj=2の場合(Yes)は、ステップS508へ進み、除霜モード3が選択される。除霜モード3による除霜運転は、図6に示すとおり冷凍室冷却運転中に、冷凍室温度が−25℃より低となった場合に開始されるものなので、冷凍室冷却運転(ステップS104時点では冷凍室冷却運転が実施されている)が行われ、ステップS509において冷蔵室温度が−25℃より低か否かをチェックし、冷凍室温度が−25℃より低の場合(Yes)はステップS510へ進み、冷凍室温度が−255℃以上の場合(No)は、冷凍室温度が−25℃より低になるまで冷凍室冷却運転が継続される。
ステップS510では、「圧縮機OFF、庫内送風機ON、冷蔵室ダンパ開、冷凍室ダンパ閉」の状態とされ、ステップS511に進み、第2の除霜手段による除霜運転を行う。
In step S501, when FLAGj = 2 (Yes), the process proceeds to step S508, and the defrosting mode 3 is selected. The defrosting operation in the defrosting mode 3 is started when the freezer temperature becomes lower than −25 ° C. during the freezer cooling operation as shown in FIG. In step S509, it is checked whether or not the refrigerator temperature is lower than −25 ° C., and if the freezer temperature is lower than −25 ° C. (Yes), step S509 is performed. In S510, if the freezer temperature is −255 ° C. or higher (No), the freezer cooling operation is continued until the freezer temperature becomes lower than −25 ° C.
In step S510, the state is "compressor OFF, internal fan ON, refrigerator compartment damper open, freezer compartment damper closed", the process proceeds to step S511, and the defrosting operation by the second defrosting means is performed.

(冷却器除霜を優先する場合の作用効果)
以下に冷却器除霜を優先する場合の作用効果を説明する。
まず、「冷却器除霜を優先する」ことが望ましい状況について説明する。本実施形態のフローチャートのステップS104における判断基準としているような環境条件(外気温度35℃より高く、且つ、湿度(相対湿度)が85%より高い条件)では、熱負荷が非常に大きく、また、着霜が進み易い非常に厳しい条件である。「冷蔵庫が所定温度に冷えない」という不良の多くはこのような高温多湿環境下において発生している。その原因として多いのが、霜の成長によって冷却能力不足に陥り、庫内を所定温度範囲に維持することができなくなるというものである。このような不良を減少させるためには、霜の成長が進まないようにして、冷却器の熱交換性能を高い状態で維持することが望ましい。
(Operational effects when priority is given to cooler defrosting)
The effect in the case of giving priority to the cooler defrosting will be described below.
First, a situation where “prioritizing the cooler defrosting” is desirable will be described. Under an environmental condition (a condition where the outside air temperature is higher than 35 ° C. and the humidity (relative humidity) is higher than 85%) as a determination criterion in step S104 of the flowchart of the present embodiment, the heat load is very large, It is a very severe condition where frost formation tends to proceed. Many of the failures that “the refrigerator does not cool to a predetermined temperature” occur in such a hot and humid environment. The most common cause is that the cooling capacity is insufficient due to the growth of frost, and the inside of the cabinet cannot be maintained in a predetermined temperature range. In order to reduce such defects, it is desirable to keep the heat exchange performance of the cooler in a high state by preventing frost growth from progressing.

本実施形態では、冷却器除霜を優先することが望ましい場合には、除霜モード2による除霜が実施される。除霜モード2による除霜は、冷蔵室温度と冷却器温度の温度差が大きくて、第1の除霜手段による除霜運転、「庫内送風機による除霜」が効果的な場合には、第1の除霜手段による除霜運転を行い、第1の除霜手段では冷蔵室温度と冷却器温度との温度差が小さいために熱交換性能が低下し、不利となる場合には、第2の除霜手段による除霜運転、「庫内送風機+除霜ヒータによる除霜」を行うようにしている。更に、除霜完了を判定する冷却器温度を信頼性確保除霜の際の冷却器温度が8℃より高ではなく、冷却器温度が0.5℃より高としているので、信頼性確保除霜に比べて、冷却器7を過度に過熱することがないため、短時間で効果的に冷却器7の霜を解かすことができる。   In this embodiment, when it is desirable to prioritize the cooler defrosting, the defrosting in the defrosting mode 2 is performed. When the defrosting by the defrosting mode 2 has a large temperature difference between the refrigerator temperature and the cooler temperature and the defrosting operation by the first defrosting means, “defrosting by the internal fan” is effective, When the defrosting operation is performed by the first defrosting means, and the first defrosting means has a small temperature difference between the refrigerator temperature and the cooler temperature, the heat exchange performance is lowered and disadvantageous. The defrosting operation by “2” defrosting means, “defrosting by internal fan + defrosting heater” is performed. Furthermore, the cooler temperature for determining the completion of defrosting is ensured because the cooler temperature at the time of defrosting is not higher than 8 ° C and the cooler temperature is higher than 0.5 ° C. Compared to the above, since the cooler 7 is not excessively heated, the frost of the cooler 7 can be effectively defrosted in a short time.

また、除霜モード2の完了判定条件は、冷却器7の除霜がほぼ完了したといえる冷却器温度が0.5℃より高(ステップS505、ステップS512)が満足された場合以外に、冷凍室温度が−14℃より高(ステップS506、ステップS513)が満足された場合にも完了するようにしてあり、除霜モード2の最中に冷凍室温度が上昇し過ぎて、冷凍食品が解けるといった可能性が生じないようにしている。
なお、冷凍室温度が上昇し過ぎとする判定基準の温度−14℃は、除霜モード1による除霜の際の判定基準の温度−17℃より高くしている。これにより、庫内温度変動幅が若干大きくなる傾向になることがあるが、冷却器7の除霜がほぼ完了したといえる冷却器温度が0.5℃より高という条件によって除霜モード2が終了する確率が高くなり、霜が成長することによって庫内各室を所定温度まで冷やすことができなくなるといった不具合は発生し難くなる。
In addition, the defrosting mode 2 has a completion determination condition other than the case where the cooler temperature at which the defrosting of the cooler 7 is almost completed is higher than 0.5 ° C. (steps S505 and S512). Even when the room temperature is higher than −14 ° C. (steps S506 and S513), the process is completed. During the defrosting mode 2, the freezing room temperature rises too much and the frozen food is melted. The possibility of such a thing does not arise.
Note that the criterion temperature of −14 ° C. at which the freezer temperature rises too much is higher than the criterion temperature of −17 ° C. during defrosting in the defrost mode 1. As a result, the internal temperature fluctuation range may tend to be slightly larger. However, the defrost mode 2 is activated depending on the condition that the cooler temperature is higher than 0.5 ° C., which can be said that the defrosting of the cooler 7 is almost completed. There is a high probability that it will be terminated, and it will be difficult for problems such as the chambers to be cooled to a predetermined temperature due to the growth of frost.

また、既に説明したとおり、第2の除霜手段は「除霜ヒータON」としているにもかかわらず、冷蔵室2を冷却することが可能な除霜手段であるので、除霜モード2の実施中(第1の除霜手段または第2の除霜手段による除霜運転実施中)は、冷蔵室2は冷却されるため温度上昇の問題は生じ難く、また、第2の除霜手段による除霜運転を実施するので除霜を比較的短時間で完了させることができ、その結果、冷凍室温度の上昇は比較的小さく抑えられる。   Moreover, since the 2nd defrosting means is a defrosting means which can cool the refrigerator compartment 2 although the 2nd defrosting means is set to "defrost heater ON" as already demonstrated, implementation of defrosting mode 2 is carried out. During the inside (during the defrosting operation by the first defrosting means or the second defrosting means), the refrigerator compartment 2 is cooled, so that the problem of temperature rise hardly occurs, and the defrosting by the second defrosting means is not caused. Since the frost operation is performed, the defrosting can be completed in a relatively short time, and as a result, the increase in the freezer temperature is suppressed to be relatively small.

以上説明したとおり、本実施形態の冷蔵庫1は、冷却器7の除霜を優先することが望ましい場合には、除霜モード2による除霜を実施することにより、霜の成長によって冷却能力不足に陥り、庫内を所定温度範囲に維持することができなくなるという問題が生じ難い、信頼性の高い冷蔵庫となっている。   As described above, the refrigerator 1 according to the present embodiment, when it is desirable to prioritize the defrosting of the cooler 7, performs the defrosting in the defrosting mode 2 so that the cooling capacity is insufficient due to the growth of frost. This is a highly reliable refrigerator that is unlikely to cause a problem that the inside of the cabinet cannot be maintained within a predetermined temperature range.

なお、除霜モード1においては、使用者によって冷蔵室2内に温度の高い食品を多量に収納するといったことがあった場合を想定して、除霜モード1の完了判定条件としてステップS108(冷蔵室温度が5℃より高)を設けてあるが、除霜モード2では、冷蔵室温度の上昇によって除霜を完了させるステップを設けていない。この理由は、ステップS108は、基本的に、冷蔵室2に投入された温度の高い食品を素早く冷やすために設けているステップであるが、本実施形態の冷蔵庫では、冷却器7の除霜を優先することが望ましいような環境下では、「素早く冷やす」という機能より、「確実に所定温度範囲に維持する」ということを重視しており、霜を解かし切る前に除霜モード2が完了してしまうケースを減らすために、冷蔵室温度上昇によって終了させるステップは設けていない。   In the defrosting mode 1, assuming that the user may store a large amount of high-temperature food in the refrigerated chamber 2, step S108 (refrigerated) is set as the defrosting mode 1 completion determination condition. The room temperature is higher than 5 ° C.), however, in the defrosting mode 2, the step of completing the defrosting by increasing the temperature of the refrigerator compartment is not provided. The reason for this is that step S108 is basically a step provided to quickly cool food with a high temperature put into the refrigerator compartment 2, but in the refrigerator of this embodiment, the defroster of the cooler 7 is removed. In an environment where it is desirable to prioritize, more emphasis is placed on “maintaining within a predetermined temperature range” than the function of “cooling quickly”, and the defrosting mode 2 is completed before the frost is completely removed. In order to reduce the number of cases that occur, there is no step to be terminated by the temperature increase in the refrigerator compartment.

(除霜モード2から除霜モード3に移行した場合の作用効果)
次に、除霜モード2が、冷凍室温度の上昇(冷凍室温度が−14℃より高)のために終了(ステップS509、ステップS513)した場合に実施される除霜モード3について説明する。除霜モード2が、冷凍室温度の上昇(ステップS506、または、ステップS513がYesとなって終了した場合は、ステップS515においてFLAGj=2と記憶させてあるため、再びステップS104において、冷却器除霜を優先する条件が満足され、ステップS501においてYesとなり、除霜モード3が選択される(ステップS508)。除霜モード3による除霜は、図6に示すとおり冷凍室冷却運転中に冷凍室温度が−25℃より低となった場合に開始されるものとしており、冷凍室冷却運転(ステップS104時点では冷凍室冷却運転が実施されている)は、冷凍室温度が−25℃より低となるまで継続される(ステップS509)。続いて、「圧縮機OFF、庫内送風機ON、冷凍室ダンパ閉、冷蔵室ダンパ開」の状態となり(ステップS510)、続いてステップS511で「除霜ヒータON(出力80W)」となる。これによりだい2の除霜手段による除霜運転が実施される。以下は既に説明したステップを経て通常冷却運転に戻る(ステップS101)。
(Operational effect when transitioning from defrost mode 2 to defrost mode 3)
Next, the defrosting mode 3 performed when the defrosting mode 2 is finished (step S509, step S513) due to an increase in the freezer temperature (the freezer temperature is higher than −14 ° C.) will be described. In the defrosting mode 2, the freezer temperature rises (when step S506 or step S513 is Yes and ends, since FLAGj = 2 is stored in step S515, the cooler is removed again in step S104. The conditions for giving priority to frost are satisfied, and the result is Yes in step S501, and the defrost mode 3 is selected (step S508) The defrost in the defrost mode 3 is performed in the freezer compartment during the freezer cooling operation as shown in FIG. When the temperature is lower than −25 ° C., the freezer compartment cooling operation (the freezer compartment cooling operation is performed at the time of step S104) is performed when the freezer temperature is lower than −25 ° C. (Step S509) Subsequently, “compressor OFF, internal fan ON, freezer compartment damper closed, refrigerator compartment damper open” state (Step S510), then, in Step S511, “defrost heater ON (output 80 W)” is set, so that the defrosting operation by the defrosting means 2 is carried out. Returning to the cooling operation (step S101).

除霜モード2が、冷凍室温度の上昇(冷凍室温度が−14℃より高)のために終了(ステップS506、ステップS513)した理由としては、使用者が偶々製氷室3や上段冷凍室4や下段冷凍室5の開閉を行い、比較的温度の高い食品を収納した場合も考えられるが、他に、霜の量が多く、除霜に時間がかかり過ぎた、若しくは、下段冷凍室5からの戻り冷気が多くの水分を運んでくる状況となっており、庫内送風機9のオン状態での除霜では除霜され難い箇所に霜が多く存在し、その霜の影響で除霜時間が延びていたといったことが考えられる。使用者が偶々製氷室3や上段冷凍室4や下段冷凍室5の開閉を行い、比較的温度の高い食品を収納したといった場合以外は、基本的に、除霜完了(冷却器温度が0.5℃より高)に至るまでの時間を短くすることと、除霜前に製氷室3や上段冷凍室4や下段冷凍室5を十分冷やしておくことが有効となる。   The reason that the defrosting mode 2 is ended because the freezer temperature is increased (the freezer temperature is higher than −14 ° C.) (step S506, step S513) is that the user accidentally has the ice making room 3 or the upper freezer room 4 It is also possible to open and close the lower freezer compartment 5 and store food with relatively high temperature. However, the amount of frost is large and it takes too long to defrost, or from the lower freezer compartment 5 The return cold air carries a large amount of moisture, and there are many frosts in places where it is difficult to defrost when the internal fan 9 is turned on, and the defrost time is affected by the frost. It may have been extended. Defrosting is basically completed (cooler temperature is 0. 0), except when the user accidentally opens and closes the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 and stores food having a relatively high temperature. It is effective to shorten the time to reach higher than 5 ° C. and to sufficiently cool the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 before defrosting.

したがって、除霜モード3では、除霜前に冷凍室温度が−25℃より低となるまで冷却することで、事前に十分製氷室3や上段冷凍室4や下段冷凍室5を冷却し、また、冷却器7の除霜がほぼ完了したといえる冷却器温度が0.5℃より高に至るまでの時間を短縮するために、第1の除霜手段による除霜運転は実施せずに、第2の除霜手段による除霜運転を行うようにしている。これにより、除霜モード3による除霜開始後に、冷凍室温度が−14℃より高(ステップS513)が満足されるまでの時間が延び、冷却器温度が0.5℃より高(ステップS512)が満足されるまでの時間が短くなるため、除霜モード3は、冷却器温度が0.5℃より高(ステップS512)が満足されて終了する確率が高くなる。したがって、除霜モード2を実施して、冷凍室温度上昇が原因で除霜モード2が終了した場合に、除霜モード3を実施して、冷却器の除霜を完了させやすくすることで霜の成長によって冷却能力不足に陥り、庫内を所定温度範囲に維持することができなくなるという問題が生じ難くできる。   Therefore, in the defrosting mode 3, the ice making room 3, the upper freezing room 4, and the lower freezing room 5 are sufficiently cooled in advance by cooling until the freezing room temperature becomes lower than −25 ° C. before the defrosting. The defrosting operation by the first defrosting means is not carried out in order to reduce the time until the cooler temperature is higher than 0.5 ° C., which can be said that the defrosting of the cooler 7 is almost completed. The defrosting operation by the second defrosting means is performed. Thereby, after the start of defrosting in the defrosting mode 3, the time until the freezer compartment temperature is higher than −14 ° C. (step S513) is extended, and the cooler temperature is higher than 0.5 ° C. (step S512). Therefore, the defrosting mode 3 has a higher probability that the defroster mode 3 is completed when the cooler temperature is higher than 0.5 ° C. (step S512). Therefore, when the defrost mode 2 is performed and the defrost mode 2 is terminated due to a rise in the freezer temperature, the defrost mode 3 is performed to facilitate the completion of the defrost of the cooler. Due to this growth, the cooling capacity is insufficient, and the problem that the inside of the refrigerator cannot be maintained in a predetermined temperature range can hardly be caused.

なお、ステップS512で冷却器温度が0.5℃より高が満足された場合は、FLAGj=1、ステップS513で冷凍室温度が−14℃より高が満足された場合、FLAGj=2となって、通常冷却運転に戻る(ステップS101)ので、次回ステップS104において、冷却器除霜を優先する条件が満足された場合には、それぞれ除霜モード2または除霜モード3による除霜が実施されることになる。これにより、冷却器7の除霜が完了しやすい場合には、省エネルギ性能の高い第1の除霜手段を実施する除霜モード2が実施され、冷凍室温度が上昇しやすい場合には信頼性の高い(冷却器の除霜が完了しやすい)除霜モード3が実施されるため、省エネルギ性能と信頼性を両立した冷蔵庫となっている。   If the cooler temperature is higher than 0.5 ° C. in step S512, FLAGj = 1, and if the freezer temperature is higher than −14 ° C. in step S513, FLAGj = 2. Since the process returns to the normal cooling operation (step S101), defrosting in the defrosting mode 2 or the defrosting mode 3 is performed in the next step S104 when the conditions for prioritizing the cooler defrosting are satisfied. It will be. Thereby, when it is easy to complete the defrosting of the cooler 7, the defrosting mode 2 which implements the 1st defrosting means with high energy-saving performance is implemented, and when the freezer temperature tends to rise, it is reliable. Since the defrosting mode 3 with high performance (easy to complete defrosting of the cooler) is performed, the refrigerator has both energy saving performance and reliability.

なお、本実施形態の冷蔵庫の第1の除霜手段(庫内送風機による除霜)及び第2の除霜手段(庫内送風機+除霜ヒータによる除霜)を実施した場合には、同時に冷蔵室2や野菜室6の加湿効果も得られるため、本実施形態では、省エネルギ性能と信頼性を両立でき、更に、冷蔵温度帯室の乾燥を抑えた保鮮性の高い冷蔵庫となっている。   In addition, when the 1st defrosting means (defrosting with an internal fan) and the 2nd defrosting means (defrosting with an internal fan + defrosting heater) of the refrigerator of this embodiment are implemented, it is refrigerated simultaneously Since the humidification effect of the room 2 or the vegetable room 6 is also obtained, in this embodiment, the energy saving performance and the reliability can be achieved, and furthermore, the refrigerator has high freshness that suppresses drying of the refrigerated temperature zone.

以上の本実施形態によれば、第1から第3の除霜手段による除霜運転を組み合わせた複数の除霜モードを設定し、通常の冷凍室冷却運転中に高頻度で行われる「庫内送風機による除霜」運転(除霜モード1)以外に、信頼性確保除霜(除霜モード4)や冷却器除霜を優先する場合の除霜(除霜モード2,3)を用意し、更に除霜モード4による除霜運転の途中で冷凍室温度が上昇した場合に、除霜運転を中断して、通常冷却運転に戻って、その後、除霜モード5,6によって除霜運転を再開できるように柔軟な構成としているので、省エネルギ性能と信頼性を両立でき、更に、除霜運転中に冷凍温度帯室の温度が上昇し過ぎて収納物を所定の温度範囲に維持できずに解かしてしまうという可能性がなくなる。   According to the above-described embodiment, a plurality of defrosting modes that combine the defrosting operations by the first to third defrosting units are set, and the “inside of the chamber” that is frequently performed during the normal freezer compartment cooling operation. In addition to the “defrosting with a blower” operation (defrosting mode 1), a defrosting (defrosting mode 2 and 3) in the case where priority is given to reliable defrosting (defrosting mode 4) and cooler defrosting, Furthermore, when the freezer compartment temperature rises during the defrosting operation in the defrosting mode 4, the defrosting operation is interrupted, the normal cooling operation is resumed, and then the defrosting operation is resumed by the defrosting modes 5 and 6. Since it has a flexible configuration, energy saving performance and reliability can be achieved at the same time. Furthermore, the temperature of the freezing temperature zone rises too much during the defrosting operation and the stored items cannot be maintained within the predetermined temperature range. The possibility of solving it disappears.

《変形例》
次に本実施形態の変形例について説明する。
前記した実施形態の冷蔵庫1では、通常冷却運転時に対して第2の除霜手段による除霜運転中は庫内送風機9の回転速度を減少させているが、それは冷蔵室2の冷却が可能な0〜4℃程度の空気温度を得られるように調節するためであるので、第1の変形例では、冷蔵室2の冷却が可能な0〜4℃程度の空気温度を得ることを確実にするために、冷蔵室送風ダクト11内または吹き出し口2cを流れる空気温度を検出するための追加の温度センサを少なくとも一つ設けて、その信号を制御基板31(図3参照)に入力する構成とする。そして、制御基板31は、第2の除霜手段による除霜運転中、前記追加の温度センサからの信号にもとづき前記0〜4℃程度の空気温度となるように、除霜ヒータ22の出力を調整する構成とする。
また、第2の変形例では、更に、このとき除霜ヒータ22の出力の調整に加えて、庫内送風機9の回転速度の調整もする構成とする。
<Modification>
Next, a modification of this embodiment will be described.
In the refrigerator 1 of the above-described embodiment, the rotational speed of the internal blower 9 is reduced during the defrosting operation by the second defrosting unit with respect to the normal cooling operation, which can cool the refrigerator compartment 2. Since it is for adjusting so that the air temperature of about 0-4 degreeC can be obtained, in the 1st modification, it is ensured that the air temperature of about 0-4 degreeC which can cool the refrigerator compartment 2 is obtained. For this purpose, at least one additional temperature sensor for detecting the temperature of the air flowing in the refrigerator compartment air duct 11 or the outlet 2c is provided, and the signal is input to the control board 31 (see FIG. 3). . And the control board 31 outputs the output of the defrost heater 22 so that it may become said air temperature of about 0-4 degreeC based on the signal from the said additional temperature sensor during the defrost operation by a 2nd defrost means. The configuration is adjusted.
Further, in the second modification, in addition to the adjustment of the output of the defrost heater 22 at this time, the rotation speed of the internal fan 9 is also adjusted.

このように第1の変形例または第2に変形例では、冷蔵室送風ダクト11内または吹き出し口2cを流れる空気温度を直接検出して除霜ヒータ22の出力の調整や庫内送風機9の回転速度の調整をするので、第2の除霜手段による除霜運転中における冷蔵室温度の制御を、冷蔵室温度が維持されるか低下するように確実に行える。
また、第2の除霜手段による除霜運転を開始してからの冷蔵室送風ダクト11内を流れる空気温度の変化に応じて、柔軟に除霜ヒータ22の出力や庫内送風機9の回転速度を変えることができるので、冷却器7の除霜の進行に応じた霜と空気との熱交換の度合いの変化に柔軟に対応できる。
As described above, in the first modification example or the second modification example, the temperature of the air flowing in the refrigerating chamber air duct 11 or the air outlet 2c is directly detected to adjust the output of the defrost heater 22 or rotate the internal fan 9. Since the speed is adjusted, the temperature of the refrigerator compartment during the defrosting operation by the second defrosting means can be reliably performed so that the refrigerator compartment temperature is maintained or lowered.
Further, the output of the defrost heater 22 and the rotational speed of the internal fan 9 are flexibly changed in accordance with the change in the temperature of the air flowing in the refrigerator compartment air duct 11 after the start of the defrosting operation by the second defrosting means. Therefore, it is possible to flexibly cope with changes in the degree of heat exchange between frost and air according to the progress of defrosting in the cooler 7.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器
8 冷却器収納室
9 庫内送風機(送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 下段冷凍室送風ダクト
16 冷蔵室戻りダクト
17 冷凍室戻り口
20 冷蔵室ダンパ
22 除霜ヒータ
24 圧縮機
50 冷凍室ダンパ
53 上部カバー
1 Refrigerator 2 Refrigerated room (refrigerated temperature zone)
3 Ice making room (freezing temperature zone)
4 Upper freezer room (freezing temperature room)
5 Lower freezer compartment (freezing temperature zone)
6 Vegetable room (refrigerated temperature room)
7 Cooler 8 Cooler storage room 9 Blower (blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room ventilation duct 12 Upper stage freezing room ventilation duct 13 Lower stage freezing room ventilation duct 16 Refrigerating room return duct 17 Freezing room return port 20 Refrigerating room damper 22 Defrost heater 24 Compressor 50 Freezing room damper 53 Top cover

Claims (1)

冷凍温度帯室と、冷蔵温度帯室と、圧縮機と、前記冷凍温度帯室と前記冷蔵温度帯室を冷却する冷却器と、前記冷却器で冷却された冷気を、前記冷凍温度帯室と前記冷蔵温度帯室に循環させる送風機と、前記冷却器から前記冷凍温度帯室への送風を制御する冷凍室ダンパと、前記冷却器から前記冷蔵温度帯室への送風を制御する冷蔵室ダンパと、前記冷却器に付着した霜を解かす加熱手段を備える冷蔵庫において、
前記圧縮機の停止時に、前記冷凍室ダンパを閉状態とし、前記冷蔵室ダンパを開状態とし、前記加熱手段を駆動し、前記送風機を稼動させて、前記冷却器に付着した霜の潜熱で前記冷蔵温度帯室を冷却するように前記潜熱で冷却した冷気を前記冷蔵温度帯室に送風して、前記冷蔵温度帯室を前記霜の潜熱を利用して冷却した後に前記冷蔵温度帯室への前記冷気の送風を停止する除霜手段を備え
前記冷却器に付着した霜の潜熱で前記冷蔵温度帯室を冷却した後に、前記加熱手段を停止状態、前記冷蔵室ダンパを閉状態、前記冷凍室ダンパを閉状態、前記送風機を停止状態として、前記圧縮機を運転状態とすること
を特徴とする冷蔵庫。
A refrigeration temperature zone chamber, a refrigeration temperature zone chamber, a compressor, a cooler that cools the refrigeration temperature zone chamber and the refrigeration temperature zone chamber, and the cold air cooled by the cooler, A blower that circulates in the refrigeration temperature zone chamber, a freezer compartment damper that controls air flow from the cooler to the refrigeration temperature zone chamber, and a refrigeration chamber damper that controls ventilation from the cooler to the refrigeration temperature zone chamber; In a refrigerator comprising heating means for defrosting frost adhering to the cooler,
When the compressor is stopped, the freezer compartment damper is closed, the refrigerator compartment damper is opened, the heating means is driven, the blower is operated, and the latent heat of frost attached to the cooler The cool air cooled by the latent heat is cooled to the refrigeration temperature zone chamber so as to cool the refrigeration temperature zone chamber, and the refrigeration temperature zone chamber is cooled using the latent heat of the frost. Comprising defrosting means for stopping the blowing of the cold air ;
After cooling the refrigeration temperature zone chamber with latent heat of frost adhering to the cooler, the heating means is stopped, the refrigerator compartment damper is closed, the freezer compartment damper is closed, the blower is stopped, The refrigerator which makes the said compressor into an operation state .
JP2011205072A 2011-09-20 2011-09-20 refrigerator Expired - Fee Related JP5033258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205072A JP5033258B2 (en) 2011-09-20 2011-09-20 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205072A JP5033258B2 (en) 2011-09-20 2011-09-20 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010224904A Division JP5215367B2 (en) 2010-10-04 2010-10-04 refrigerator

Publications (2)

Publication Number Publication Date
JP2012017976A JP2012017976A (en) 2012-01-26
JP5033258B2 true JP5033258B2 (en) 2012-09-26

Family

ID=45603354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205072A Expired - Fee Related JP5033258B2 (en) 2011-09-20 2011-09-20 refrigerator

Country Status (1)

Country Link
JP (1) JP5033258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116734561B (en) * 2023-08-07 2024-01-30 广东哈士奇制冷科技股份有限公司 Defrosting dual-mode control method, device and equipment for refrigerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213467A (en) * 1985-03-18 1986-09-22 松下冷機株式会社 Refrigerator
JPH03233280A (en) * 1990-02-08 1991-10-17 Mitsubishi Electric Corp Device for controlling defrosting of freeze refrigerator
JPH07120130A (en) * 1993-10-21 1995-05-12 Matsushita Refrig Co Ltd Refrigerator
JP3583570B2 (en) * 1996-11-26 2004-11-04 シャープ株式会社 refrigerator
KR20010026176A (en) * 1999-09-03 2001-04-06 구자홍 The method for controlling defrost heater of a refrigerator
JP3738169B2 (en) * 2000-03-30 2006-01-25 三洋電機株式会社 Humidity control refrigerator
JP3913448B2 (en) * 2000-07-19 2007-05-09 ホシザキ電機株式会社 Ice storage
JP2002107047A (en) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd Refrigerator
JP4310947B2 (en) * 2001-09-06 2009-08-12 三菱電機株式会社 Control device for refrigerator
JP3912233B2 (en) * 2002-09-06 2007-05-09 三菱電機株式会社 Refrigerator, how to operate the refrigerator
JP4356379B2 (en) * 2003-07-16 2009-11-04 三菱電機株式会社 Refrigerator, how to operate the refrigerator
JP5008348B2 (en) * 2006-07-03 2012-08-22 ホシザキ電機株式会社 Cooling storage

Also Published As

Publication number Publication date
JP2012017976A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4644271B2 (en) refrigerator
JP5260416B2 (en) refrigerator
KR101179371B1 (en) Refrigerator
JP5017340B2 (en) refrigerator
JP5178642B2 (en) refrigerator
JP5393283B2 (en) refrigerator
CN105452785A (en) Refrigerator
JP5215367B2 (en) refrigerator
JP6752107B2 (en) refrigerator
JP5386243B2 (en) refrigerator
JP5604543B2 (en) refrigerator
JP4872558B2 (en) refrigerator
JP4982537B2 (en) refrigerator
JP6890502B2 (en) refrigerator
JP2006226615A (en) Refrigerator
JP5033258B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP6837423B2 (en) refrigerator
JPH09236369A (en) Refrigerator
JP2019027649A (en) refrigerator
JP2007132571A (en) Refrigerator
JP2010281491A (en) Refrigerator
JP2009144969A (en) Refrigerator
JP2007132543A (en) Refrigerator
JP2023007618A (en) refrigerator

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees