[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5028965B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5028965B2
JP5028965B2 JP2006307730A JP2006307730A JP5028965B2 JP 5028965 B2 JP5028965 B2 JP 5028965B2 JP 2006307730 A JP2006307730 A JP 2006307730A JP 2006307730 A JP2006307730 A JP 2006307730A JP 5028965 B2 JP5028965 B2 JP 5028965B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
iron
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006307730A
Other languages
Japanese (ja)
Other versions
JP2008123892A (en
Inventor
山手  茂樹
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2006307730A priority Critical patent/JP5028965B2/en
Publication of JP2008123892A publication Critical patent/JP2008123892A/en
Application granted granted Critical
Publication of JP5028965B2 publication Critical patent/JP5028965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、珪素などを含む物質を活物質とする負極と、リチウムコバルト系複合酸化物を活物質とする正極と、非水電解液とを備えた非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode using a substance containing silicon or the like as an active material, a positive electrode using a lithium cobalt composite oxide as an active material, and a non-aqueous electrolyte.

近年、小形で軽量なリチウムイオン二次電池は、携帯電話およびデジタルカメラなどの電子機器の電源として広く用いられている。この二次電池は、一般的には正極にリチウム遷移金属複合酸化物が、負極に炭素材料が、電解質にリチウム塩を含んだカーボネートが使用されており、作動電圧が高く、エネルギー密度が高いことを特徴としている。   In recent years, small and lightweight lithium ion secondary batteries have been widely used as power sources for electronic devices such as mobile phones and digital cameras. This secondary battery generally uses a lithium transition metal composite oxide for the positive electrode, a carbon material for the negative electrode, and a carbonate containing a lithium salt for the electrolyte, and has a high operating voltage and high energy density. It is characterized by.

近年、より一層高エネルギー密度化するために、負極活物質を珪素や錫などを含む物質に変更することが検討されている。これらの材料のLiイオン拡散係数は、非特許文献1で報告されているように、炭素材料のそれに比べて高いので、高率放電性能や出力が向上するものと考えられる。そのため、この電池を大型化してHEV用途などに適用することが期待されている。 In recent years, in order to further increase the energy density, it has been studied to change the negative electrode active material to a material containing silicon or tin. Since the Li + ion diffusion coefficient of these materials is higher than that of the carbon material as reported in Non-Patent Document 1, it is considered that the high-rate discharge performance and output are improved. Therefore, it is expected that this battery is enlarged and applied to HEV applications and the like.

一方、特許文献1には、正極にリチウム遷移金属複合酸化物を用い、負極に炭素材料を用いた電池において、メトキシベンゼン系化合物と5〜7000ppmの不純物とを電解液中に混在させることにより、電極における不可逆反応を抑制し、サイクル寿命性能を向上させる技術が示されている。しかしながら、明示的ではないが、実施例には、不純物のみを添加した場合にはサイクル寿命性能を向上させる効果がないことが示されており、また、不純物には鉄は含まれていないため、その効果は不明であった。   On the other hand, in Patent Document 1, in a battery using a lithium transition metal composite oxide for a positive electrode and a carbon material for a negative electrode, by mixing a methoxybenzene compound and 5 to 7000 ppm of impurities in an electrolyte, Techniques for suppressing irreversible reactions at electrodes and improving cycle life performance are shown. However, although not explicitly, the examples show that the addition of impurities alone has no effect of improving cycle life performance, and the impurities do not contain iron, The effect was unknown.

また、特許文献2には、正極に遷移金属酸化物を用い、負極に炭素材料を用いた電池において、電解液中のFe2+濃度を0.01mol/dm以上0.1mol/dm以下にすることによって、サイクル寿命性能を向上させることができる技術が示されているが、Fe2+の添加による作用については一切明らかにされておらず、その寿命性能向上効果についてもきわめて効果が薄いものであった。 Patent Document 2 discloses that in a battery using a transition metal oxide for the positive electrode and a carbon material for the negative electrode, the Fe 2+ concentration in the electrolyte is 0.01 mol / dm 3 or more and 0.1 mol / dm 3 or less. Although the technology that can improve the cycle life performance is shown, the effect of adding Fe 2+ has not been clarified at all, and the effect of improving the life performance is very ineffective. there were.

さらに、特許文献3には、正極活物質にLiCoOを、負極活物質に黒鉛を用いた非水電解質電池において、電解液中の鉄イオンを30ppm以下含ませる技術が開示され、特許文献4には、正極活物質にLiMnを、負極活物質に非晶質炭素を用いた非水電解質電池において、電解液中に鉄を40〜50ppm添加する技術が開示され、正極活物質にはコバルト系複合酸化物も使用可能であるとされている。しかしながら、特許文献3および特許文献4の非水電解質電池は、負極活物質に炭素材料を用いており、負極活物質に珪素や錫を含む物質を用いた場合の、電解液中の鉄の効果は不明であった。 Furthermore, Patent Document 3 discloses a technique for containing 30 ppm or less of iron ions in an electrolyte solution in a nonaqueous electrolyte battery using LiCoO 2 as a positive electrode active material and graphite as a negative electrode active material. Discloses a technique of adding 40 to 50 ppm of iron in an electrolyte solution in a non-aqueous electrolyte battery using LiMn 2 O 4 as a positive electrode active material and amorphous carbon as a negative electrode active material. It is said that a cobalt-based composite oxide can also be used. However, the nonaqueous electrolyte batteries of Patent Document 3 and Patent Document 4 use a carbon material for the negative electrode active material, and the effect of iron in the electrolyte solution when a material containing silicon or tin is used for the negative electrode active material Was unknown.

また、特許文献5には、β―ジケトンの鉄錯体を0.001mol/dm以上0.1mol/dm以下電解液中に溶解させることにより、電池内への混入金属不純物を捕捉して安定化および不活性化させて、内部短絡の発生を抑制する技術が示されている。 Patent Document 5 discloses that an iron complex of β-diketone is dissolved in an electrolyte solution of 0.001 mol / dm 3 or more and 0.1 mol / dm 3 or less to capture and stabilize the metal impurities contained in the battery. Technology is shown that suppresses the occurrence of internal short circuits by enabling and deactivating.

さらに、特許文献6には、正極活物質にLiCoOを、負極活物質に黒鉛を用い、電解液を保持する高分子化合物を備えた非水電解質二次電池において、電解液中にFeイオンを含有させることにより、未反応の高分子化合物の割合を低減させて、サイクル寿命特性を向上させる技術が示されている。
特開平10−308236号公報 特開2001−23685号公報 特開平11−204146号公報 特開2002−75460号公報 特開2006−172726号公報 特開2006−59710号公報 M.Winter,J.O.Besenhard et.al.,Electrochimica Acta 45,31(1999)
Further, Patent Document 6 discloses a non-aqueous electrolyte secondary battery using a LiPoO 2 positive electrode active material, graphite as a negative electrode active material, and a polymer compound that holds an electrolytic solution, and Fe ions in the electrolytic solution. A technique for improving the cycle life characteristics by reducing the ratio of the unreacted polymer compound by inclusion is shown.
JP-A-10-308236 Japanese Patent Laid-Open No. 2001-23685 JP-A-11-204146 JP 2002-75460 A JP 2006-172726 A JP 2006-59710 A M.M. Winter, J .; O. Besenhard et. al. , Electrochimica Acta 45, 31 (1999)

珪素や錫などを含む物質を活物質とする負極を用いた非水電解液電池をHEVなどに適用する場合、空間的余裕があるエンジンルーム近辺に設置することが望まれる。エンジンルーム近辺では60℃以上の高温に曝される可能性が高いため、60℃以上の高温下における電池の信頼性が求められる。   When a non-aqueous electrolyte battery using a negative electrode using a material containing silicon, tin, or the like as an active material is applied to an HEV or the like, it is desired to install it in the vicinity of an engine room having a space. Since there is a high possibility of being exposed to a high temperature of 60 ° C. or higher near the engine room, the reliability of the battery at a high temperature of 60 ° C. or higher is required.

しかしながら、負極に珪素やこれらを含む合金を用いた電池は、60℃以上の高温下で長時間放置すると、著しく抵抗が増大するという問題があった。この問題は、負極に黒鉛を用いた電池では顕在化していなかった。   However, a battery using silicon or an alloy containing these for the negative electrode has a problem that the resistance increases remarkably when left for a long time at a high temperature of 60 ° C. or higher. This problem has not become apparent in batteries using graphite as the negative electrode.

特許文献5や特許文献6では、負極活物質に珪素や珪素酸化物を用いた非水電解質電池において、電解液中に鉄を含む技術が開示されているが、いずれも実際に負極活物質に珪素や珪素酸化物を用いた電池についてのデータがなく、60℃以上の高温下における電池の信頼性に関しては不明であった。また、特許文献6に記載のように、負極活物質に珪素や珪素酸化物を用い、ゲル系電解質を用いた場合には、負極活物質の体積変化が大きく、ゲル系電解質は負極の体積変化に追随することができず、実用的な電池は得られない。   Patent Documents 5 and 6 disclose technologies that contain iron in the electrolyte solution in nonaqueous electrolyte batteries using silicon or silicon oxide as the negative electrode active material. There was no data on batteries using silicon or silicon oxide, and the reliability of batteries at high temperatures of 60 ° C. or higher was unknown. In addition, as described in Patent Document 6, when silicon or silicon oxide is used for the negative electrode active material and a gel electrolyte is used, the negative electrode active material has a large volume change, and the gel electrolyte has a negative electrode volume change. Therefore, a practical battery cannot be obtained.

本発明の目的は、珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を活物質とする負極を用いた非水電解液二次電池を、60℃以上の高温下で放置した時の、電池の抵抗上昇を抑制することである。   The object of the present invention is when a non-aqueous electrolyte secondary battery using a negative electrode having a material containing at least one of silicon, germanium, tin, and lead as an active material is left at a high temperature of 60 ° C. or higher. It is to suppress an increase in battery resistance.

発明は、非水電解液二次電池において、珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を活物質とする負極と、チウムコバルト系複合酸化物を活物質とする正極と、非水電解液とを備えた非水電解液二次電池において、前記電解液は、イオンを25ppm以上5000ppm以下含有することを特徴とする。 The present invention is a nonaqueous electrolyte secondary battery, a positive electrode of silicon, germanium, tin, and negative electrode material as an active material comprising at least one lead, the re Chiumukobaruto based composite oxide as an active material, in non-aqueous electrolyte secondary battery comprising a nonaqueous electrolyte solution, the electrolyte solution is characterized by containing iron ions 25ppm or 5000ppm or less.

本発明によれば60℃以上の高温環境下において抵抗上昇が抑制された非水電解液二次電池を得ることができる。 According to the present invention, it is possible to obtain a nonaqueous electrolyte secondary battery in which resistance increase is suppressed in a high temperature environment of 60 ° C. or higher.

本発明は、非水電解液二次電池において、珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を活物質とする負極と、チウムコバルト系複合酸化物を活物質とする正極と、非水電解液とを備えた非水電解液二次電池において、前記電解液は、イオンを25ppm以上5000ppm以下含有することを特徴とするものである。 The present invention is a nonaqueous electrolyte secondary battery, a positive electrode of silicon, germanium, tin, and negative electrode material as an active material comprising at least one lead, the re Chiumukobaruto based composite oxide as an active material, in non-aqueous electrolyte secondary battery comprising a nonaqueous electrolyte, wherein the electrolyte is characterized in that it contains iron ions 25ppm or 5000ppm or less.

本発明の非水電解液二次電池には、負極活物質として、珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を用いる。珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質には、これらの単体、合金、酸化物などが含まれる。   In the non-aqueous electrolyte secondary battery of the present invention, a material containing at least one of silicon, germanium, tin, and lead is used as the negative electrode active material. The substance containing at least one of silicon, germanium, tin, and lead includes these simple substances, alloys, oxides, and the like.

負極活物質の具体例としては、単体ではSi、Ge、Sn、Pb、合金としてはSiNiなど、酸化物としてはSiOa(0.8≦a≦1.2)、SnOなどがあり、また、SiO/Si/SiOなどの複合材料を用いることができる。また、負極活物質の形状はどのようなものでもよく、たとえば、粉末状や気相蒸着法などで形成した膜状などが挙げられる。 Specific examples of the negative electrode active material include Si, Ge, Sn, Pb as a simple substance, Si 2 Ni as an alloy, SiOa (0.8 ≦ a ≦ 1.2), SnO as an oxide, A composite material such as SiO / Si / SiO 2 can be used. Further, the negative electrode active material may have any shape, for example, a powder shape or a film shape formed by a vapor deposition method.

正極活物質として用いるリチウムコバルト系複合酸化物としては、一般式LiCo1−y(MはCo以外の1種以上の素、0.2≦x≦1.1、0.2≦y≦1)で表されるリチウムコバルト系複合酸化物が挙げられる。 Examples of the lithium cobalt composite oxide used as the positive electrode active material, the general formula Li x Co y M 1-y O 2 (M is one or more elemental than Co, 0.2 ≦ x ≦ 1.1,0 And lithium cobalt-based composite oxide represented by 0.2 ≦ y ≦ 1).

なお、MとしてはMn、NiAl、Mg、Cr、Ti、ZrおよびZnからなる群から選択される少なくとも一種の元素、または、P、Bなどの非金属元素が挙げられる。なかでも、高電圧、高エネルギー密度が得られ、サイクル性能も優れることから、リチウム・ニッケル・コバルト・マンガン合酸化物や、リチウム・コバルト複合酸化物や、リチウム・コバルト・ニッケル複合酸化物が好ましい。 As the M Mn, Ni, Al, Mg , Cr, Ti, at least one element selected from the group consisting of Zr and Zn, or, P, non-metallic elements such as B, and the like. Among them, high voltage, high energy density is obtained, since the excellent cycle performance, and a lithium-nickel-cobalt-manganese double engagement oxide, and lithium-cobalt composite oxide, lithium-cobalt-nickel composite oxide preferable.

そして、本発明は、電解液中に鉄を含むものである。なお、ここでいう「電解液中の鉄の濃度」とは、電解液をICP分光分析した際に得られる鉄の濃度を指す。電解液中に鉄を溶解する方法としては、どのようなものであっても良いが、塩化鉄(II)などの無機塩を電解液に溶解する方法や、正極中に鉄粉を混入させて電池を充電することによって酸化して溶解する方法などを用いることができる。   And this invention contains iron in electrolyte solution. Here, “the concentration of iron in the electrolytic solution” refers to the concentration of iron obtained when the electrolytic solution is subjected to ICP spectroscopic analysis. Any method may be used to dissolve iron in the electrolytic solution. For example, an inorganic salt such as iron (II) chloride may be dissolved in the electrolytic solution, or iron powder may be mixed in the positive electrode. A method of oxidizing and dissolving by charging a battery can be used.

本発明のように、負極活物質に珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を用い、正極活物質にチウムコバルト系複合酸化物を用いた非水電解液二次電池では、電解液中に鉄を含まない場合、60℃以上の高温下に放置すると、正極から電解液中に溶出したCo元素が負極上に析出し、これが触媒的に作用して負極上で電解液が分解するために高抵抗の皮膜を形成する。 As in the present invention, silicon negative electrode active material, germanium, tin, using a material comprising at least one lead, in the non-aqueous electrolyte secondary battery using the Li Chiumukobaruto based composite oxide as a positive electrode active material, When the electrolyte does not contain iron, if it is left at a high temperature of 60 ° C. or higher, Co element eluted from the positive electrode into the electrolyte is deposited on the negative electrode, and this acts catalytically, so that the electrolyte on the negative electrode A high resistance film is formed for decomposition.

負極活物質の充放電による体積膨張・収縮のたびに、負極表面に形成される被膜は、破壊され、再形成されて、どんどん厚くなり、その結果、電池の抵抗が著しく増大する。一方、電解液中に鉄が含まれる場合は、Feが負極上に析出することによって、Coの析出を抑制することが可能となる。FeはCoよりも電解液を分解する触媒活性が低いので、高抵抗の皮膜が形成されるのを抑制することができる。   Whenever the volume expansion / contraction due to charging / discharging of the negative electrode active material, the coating film formed on the negative electrode surface is broken and re-formed to become thicker, resulting in a marked increase in battery resistance. On the other hand, when iron is contained in the electrolytic solution, it is possible to suppress the precipitation of Co by the precipitation of Fe on the negative electrode. Fe has a lower catalytic activity for decomposing the electrolytic solution than Co, and thus can suppress the formation of a high-resistance film.

本発明において、電解液中の鉄の濃度は、25ppm〜5000ppmの範囲とす。電解液中の鉄の濃度が25ppm未満の場合には、Coの析出を抑制する効果が小さく、一方、電解液中の鉄の濃度が5000ppmを越える場合は、負極上でのFeの析出量が増大し、内部短絡などの問題が生じ易くなる。 In the present invention, the concentration of iron in the electrolyte shall be the range of 25Ppm~5000ppm. When the concentration of iron in the electrolytic solution is less than 25 ppm, the effect of suppressing the precipitation of Co is small. On the other hand, when the concentration of iron in the electrolytic solution exceeds 5000 ppm, the amount of Fe deposited on the negative electrode is small. This increases and problems such as internal short circuit are likely to occur.

本発明は、正極活物質から電解液中へ溶解したCoが、Siなどを含む負極表面に析出し、抵抗の大きい被膜の形成を抑制するものであるが、正極活物質にCoが含まれていない場合、例えば、正極活物質がマンガン系の場合、Mnは電解液中に溶出するが、負極表面上に抵抗の大きい被膜を形成することはなく、また、正極活物質がニッケル系の場合、約60℃以上の高温において、正極活物質(LiNiO)自体が結晶構造変化を起こして劣化するため、電解液中の鉄の有無にかかわらず、ニッケル系正極活物質を用いた耐高温用電池の作製は困難である。 In the present invention, Co dissolved in the electrolyte solution from the positive electrode active material is deposited on the negative electrode surface containing Si and suppresses the formation of a coating with high resistance. However, the positive electrode active material contains Co. If not, for example, if the positive electrode active material is manganese-based, Mn elutes in the electrolyte, but does not form a highly resistive coating on the negative electrode surface, and if the positive electrode active material is nickel-based, Since the positive electrode active material (LiNiO 2 ) itself undergoes a crystal structure change and deteriorates at a high temperature of about 60 ° C. or higher, a high-temperature resistant battery using a nickel-based positive electrode active material regardless of the presence or absence of iron in the electrolytic solution Is difficult to manufacture.

負極活物質に炭素材料を用いた場合には、正極活物質がCoを含む場合も含まない場合も、炭素負極に形成される被膜はきわめて薄く、負極表面に抵抗の大きい被膜は形成されなため、電解液に鉄を添加する意味はない。   When a carbon material is used as the negative electrode active material, the film formed on the carbon negative electrode is extremely thin and a film having high resistance is not formed on the negative electrode surface, whether or not the positive electrode active material contains Co. There is no point in adding iron to the electrolyte.

本発明の非水電解液二次電池において、負極に用いられる結着剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、スチレン−ブタジエンゴム(SBR)あるいはカルボキシメチルセルロース(CMC)、ポリフッ化ビニリデン、カルボキシ変成ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、エチレン−プロピレン−ジエン共重合体、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ニトロセルロース、ポリエチレン、ポリプロピレンまたはこれらの誘導体などからなる群から選択される少なくとも1種を使用することができる。負極活物質の形状をめっき法や気相蒸着法などで形成した膜状にする場合、結着剤を用いなくてもよい。   In the non-aqueous electrolyte secondary battery of the present invention, the binder used for the negative electrode is not particularly limited, and various materials can be appropriately used. For example, styrene-butadiene rubber (SBR) or carboxymethyl cellulose (CMC), polyvinylidene fluoride, carboxy-modified polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene Copolymer, polyvinylidene fluoride-hexafluoropropylene copolymer, ethylene-propylene-diene copolymer, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, nitrocellulose, polyethylene, polypropylene or derivatives thereof At least one selected from the group consisting of and the like can be used. When the negative electrode active material is formed into a film formed by a plating method or a vapor deposition method, a binder need not be used.

負極活物質および結着剤を混合する時に用いる溶媒としては、非水溶媒または水溶液を用いることができる。非水溶媒には、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどを挙げることができる。また、これらに分散剤、増粘剤などを加えてもよい。   As the solvent used when mixing the negative electrode active material and the binder, a non-aqueous solvent or an aqueous solution can be used. Non-aqueous solvents include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. Can do. Moreover, you may add a dispersing agent, a thickener, etc. to these.

また、負極に用いられる導電剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、Ni、Ti、Alまたはこれらの二種以上の合金もしくは炭素材料が挙げられる。なかでも、炭素材料を用いることが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、気相成長炭素繊維、アセチレンブラック、ケッチェンブラック、ニードルコークスなどの無定形炭素が挙げられる。なお、導電剤は用いなくてもよい。   Moreover, there is no restriction | limiting in particular as a electrically conductive agent used for a negative electrode, A various material can be used suitably. For example, Ni, Ti, Al, or an alloy or carbon material of two or more kinds thereof can be given. Among these, it is preferable to use a carbon material. Examples of the carbon material include amorphous carbon such as natural graphite, artificial graphite, vapor-grown carbon fiber, acetylene black, ketjen black, and needle coke. Note that a conductive agent may not be used.

本発明の非水電解質二次電池に用いるセパレータとしては、たとえば、微多孔膜、織布、不織布などが挙げられる。なかでも、シャットダウン性能を持つために安全性に優れるので、微多孔膜が好ましい。またポリオレフィンとしては、ポリエチレン、ポリプロピレン、および、ポリブテンなどが挙げられ、なかでもポリエチレン、ポリプロピレン、および、これらの共重合体が、膜強度などの面で好ましい。また、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものを使用することができる。たとえば、ポリフッ化ビニリデンやポリアクリロニトリルなどを担持することができる。   Examples of the separator used in the nonaqueous electrolyte secondary battery of the present invention include a microporous membrane, a woven fabric, and a non-woven fabric. Among these, a microporous membrane is preferable because it has a shutdown performance and is excellent in safety. Examples of the polyolefin include polyethylene, polypropylene, and polybutene. Among these, polyethylene, polypropylene, and copolymers thereof are preferable in terms of film strength. In addition, materials, laminates of multiple microporous membranes with different weight average molecular weights and porosity, and appropriate additives such as various plasticizers, antioxidants, and flame retardants are contained in these microporous membranes You can use what you are doing. For example, polyvinylidene fluoride or polyacrylonitrile can be supported.

本発明の非水電解質二次電池において、正極に用いられる結着剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、エチレン−プロピレン−ジエン三元共重合体、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、またはこれらの誘導体からなる群から選択される少なくとも1種を使用することができる。   In the nonaqueous electrolyte secondary battery of the present invention, the binder used for the positive electrode is not particularly limited, and various materials can be appropriately used. For example, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine At least one selected from the group consisting of rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, or derivatives thereof can be used.

また、正極に用いられる導電剤としては、特に制限はなく、種々の材料を適宜使用できる。例えば、Ni、Ti、Alまたはこれらの2種以上の合金もしくは炭素材料が挙げられる。なかでも、炭素材料を用いることが好ましい。炭素材料としては、天然黒鉛、人造黒鉛、気相成長炭素繊維、アセチレンブラック、ケッチェンブラック、ニードルコークスなどの無定形炭素が挙げられる。   Moreover, there is no restriction | limiting in particular as a electrically conductive agent used for a positive electrode, A various material can be used suitably. For example, Ni, Ti, Al, or an alloy or carbon material of two or more of these can be used. Among these, it is preferable to use a carbon material. Examples of the carbon material include amorphous carbon such as natural graphite, artificial graphite, vapor-grown carbon fiber, acetylene black, ketjen black, and needle coke.

正極の結着剤を混合する際に用いる溶媒としては、負極で用いたのと同じ、非水溶媒または水溶液を用いることができる。また、これらに分散剤、増粘剤などを加えてもよい。   As the solvent used for mixing the binder for the positive electrode, the same non-aqueous solvent or aqueous solution as that used for the negative electrode can be used. Moreover, you may add a dispersing agent, a thickener, etc. to these.

本発明の非水電解液二次電池に用いる電極の集電体基板としては、銅、鉄、ニッケル、アルミニウム、SUSなどを用いることができる。中でも、熱伝導性および電子伝導性が高いことから、正極に用いるものとしてはアルミニウムが、負極に用いるものとしては銅が好ましい。また、初期化成時に自発的に鉄の溶出を促すことができるため、正極に鉄あるいはSUSを用いることも好ましい。   Copper, iron, nickel, aluminum, SUS, or the like can be used as the current collector substrate for the electrodes used in the nonaqueous electrolyte secondary battery of the present invention. Of these, aluminum is preferable for use in the positive electrode and copper is preferable for use in the negative electrode because of its high thermal conductivity and electronic conductivity. In addition, iron or SUS is preferably used for the positive electrode because iron elution can be promoted spontaneously during initialization.

集電体基板の形状としては、シート、発泡体、焼結多孔体、エキスパンド格子などが挙げられる。さらに、その集電体に任意の形状で穴を開けたものを用いることができる。また、膜状の負極を用いる場合は、サイクル寿命の観点から、その表面粗さRaを0.3μm以上、3μm以下とすることが好ましい。   Examples of the shape of the current collector substrate include a sheet, a foam, a sintered porous body, and an expanded lattice. Further, a current collector having a hole in an arbitrary shape can be used. Moreover, when using a film-form negative electrode, it is preferable to make the surface roughness Ra into 0.3 micrometer or more and 3 micrometers or less from a viewpoint of cycle life.

本発明の非水電解質電池に用いる電解液の有機溶媒としては、特に制限はなく、種々の材料を適宜使用できる。例えば、エーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類などを用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系炭化水素類が好ましく、とくにカーボネート類が望ましい。   There is no restriction | limiting in particular as an organic solvent of the electrolyte solution used for the nonaqueous electrolyte battery of this invention, A various material can be used suitably. For example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons, esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane hydrocarbons, etc. Among these, ethers, ketones, esters, lactones, halogenated hydrocarbons, carbonates, and sulfolane hydrocarbons are preferable, and carbonates are particularly preferable.

さらに、これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、γ−バレロラクトン、ジメトキシエタン、ジエトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチル、およびホスファゼン誘導体およびこれらの混合溶媒などを挙げることができる。なかでも、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、メチルエチルカーボネート、およびジエチルカーボネートを単独でまたは2種以上を混合して使用することが好ましく、エチレンカーボネートが25質量%以上90質量%以下含むものを使用することがさらに好ましい。   Further examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane, γ-butyrolactone, γ-valerolactone, dimethoxyethane, diethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, Vinylene carbonate, butylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfo Examples thereof include run, trimethyl phosphate, triethyl phosphate, and phosphazene derivatives, and mixed solvents thereof. Of these, ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate are preferably used alone or in admixture of two or more. Ethylene carbonate is preferably 25% by mass or more and 90% by mass. More preferably, the following are used.

また、非水電解質電池に用いる溶質は、特に制限はなく、種々の溶質を適宜使用できる。例えば、LiClO、LiBF、LiAsF、LiPF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF、LiPF(CF)、LiPF(C、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CCO)、LiI、LiAlCl、LiBCなどを単独でまたは2種以上を混合して使用することができる。なかでもイオン伝導性が良好なことから、LiPFを使用することが好ましい。さらに、これらのリチウム塩濃度は0.5〜2.0mol/dmとするのが好ましい。 The solute used for the nonaqueous electrolyte battery is not particularly limited, and various solutes can be used as appropriate. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF (CF 3 ) 5 , LiPF 2 (CF 3 ) 4 , LiPF 3 (CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 5 (CF 3 ), LiPF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 2 F 5 CO) 2 , LiI, LiAlCl 4 , LiBC 4 O 8 or the like can be used alone or in admixture of two or more. Of these, LiPF 6 is preferably used because of its good ion conductivity. Furthermore, the lithium salt concentration is preferably 0.5 to 2.0 mol / dm 3 .

また、電解質中にビニレンカーボネートやブチレンカーボネートなどのカーボネート類、ビフェニル、シクロヘキシルベンゼンなどのベンゼン類、プロパンスルトンなどの硫黄類、エチレンサルファイド、フッ化水素、トリアゾール系環状化合物、フッ素含有エステル類、テトラエチルアンモニウムフルオライドのフッ化水素錯体またはこれらの誘導体、ホスファゼンおよびその誘導体、アミド基含有化合物、イミノ基含有化合物、または窒素含有化合物からなる群から選択される少なくとも1種を含有しても使用できる。また、CO、NO、CO、SOなどから選択される少なくとも1種を含有しても使用できる。とくに、ビニレンカーボネートおよびプロパンスルトンを含むことが望ましい。 Also included in the electrolyte are carbonates such as vinylene carbonate and butylene carbonate, benzenes such as biphenyl and cyclohexylbenzene, sulfurs such as propane sultone, ethylene sulfide, hydrogen fluoride, triazole-based cyclic compounds, fluorine-containing esters, tetraethylammonium It can be used even if it contains at least one selected from the group consisting of fluoride fluoride complexes or derivatives thereof, phosphazenes and derivatives thereof, amide group-containing compounds, imino group-containing compounds, or nitrogen-containing compounds. Moreover, CO 2, NO 2, CO , also contain at least one selected from such SO 2 may be used. In particular, it is desirable to contain vinylene carbonate and propane sultone.

また、電池の形状は特に限定されるものではなく、本発明は、角形、長円形、円筒形、コイン形、ボタン形、シート形電池などの様々な形状の非水電解質二次電池に適用可能である。   In addition, the shape of the battery is not particularly limited, and the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, oval, cylindrical, coin, button, and sheet batteries. It is.

つぎに、本発明の好適な実施例について説明する。しかし、本発明は以下の実施例に限定されるものではなく、その趣旨が変わらない範囲において適宜変更できるものとする。   Next, a preferred embodiment of the present invention will be described. However, the present invention is not limited to the following examples, and can be appropriately changed within a range in which the gist thereof does not change.

[実施例又は参考例1〜10および比較例1]
[実施例1]
負極活物質としての珪素(純度99.999%)を厚さ20μmの銅箔上(表面粗さRa=0.4μm)にRFスパッタリングした。なお、Siの成膜量は精密天秤で秤量し、0.7mg/cmであることを確認した。Cu箔のリード部に樹脂付Ni線を超音波溶着した。このようにして、片面に負極活物質層を備えた負極を製作した。
[Examples or Reference Examples 1 to 10 and Comparative Example 1]
[Example 1]
Silicon (purity 99.999%) as a negative electrode active material was RF-sputtered on a copper foil having a thickness of 20 μm (surface roughness Ra = 0.4 μm). The amount of Si deposited was weighed with a precision balance and confirmed to be 0.7 mg / cm 2 . An Ni wire with resin was ultrasonically welded to the lead portion of the Cu foil. Thus, the negative electrode provided with the negative electrode active material layer on one side was manufactured.

つぎに、90質量部のLiCoO、5質量部のアセチレンブラック、および、5質量部のPVdFをN−メチルピロリドン中で分散させることによりペーストを製作した。このペーストを厚さ20μmのアルミニウム箔上に塗布し、つぎに、150℃で乾燥することにより、N−メチルピロリドンを蒸発させた。さらに、これをロールプレスで圧縮成型した。さらに、Al箔のリード部に樹脂付Al線を超音波溶着した。このようにして、片面に正極活物質層を備えた正極を製作した。なお、正極合剤の塗布重量は16mg/cmであった。 Next, a paste was prepared by dispersing 90 parts by mass of LiCoO 2 , 5 parts by mass of acetylene black, and 5 parts by mass of PVdF in N-methylpyrrolidone. This paste was applied onto an aluminum foil having a thickness of 20 μm, and then dried at 150 ° C. to evaporate N-methylpyrrolidone. Furthermore, this was compression molded with a roll press. Further, an Al wire with resin was ultrasonically welded to the lead portion of the Al foil. Thus, the positive electrode provided with the positive electrode active material layer on one side was manufactured. The coating weight of the positive electrode mixture was 16 mg / cm 2 .

正極、負極および厚さ25μmの連通多孔体であるポリエチレン製セパレータを積層し、これを高さ48mm、幅30mmの、アルミニウム箔の両面を樹脂で被覆したラミネートシートからなる電池容器中に挿入した。さらに、この容器内部に非水電解液を0.4g注入した後に封口して、定格容量が20mAhの、実施例1の非水電解液二次電池を作製した。これを電池A1とした。   A positive electrode, a negative electrode, and a polyethylene separator, which is a continuous porous body having a thickness of 25 μm, were stacked, and this was inserted into a battery container made of a laminate sheet having a height of 48 mm and a width of 30 mm, and both surfaces of an aluminum foil covered with a resin. Further, 0.4 g of the nonaqueous electrolyte solution was injected into the container and then sealed to prepare a nonaqueous electrolyte secondary battery of Example 1 having a rated capacity of 20 mAh. This was designated as battery A1.

ただし、前記電解液は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジメチルカーボネート(EMC)の体積比1:1:1の混合溶媒に1.0mol/lのLiPFおよび100ppmの塩化鉄(II)を溶解し、これにビニレンカーボネート(VC)3質量部添加したものである。 However, the electrolytic solution was mixed with a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and dimethyl carbonate (EMC) in a volume ratio of 1: 1: 1, 1.0 mol / l LiPF 6 and 100 ppm iron chloride ( II) is dissolved, and 3 parts by mass of vinylene carbonate (VC) is added thereto.

参考例2]
電解液への塩化鉄(II)の添加量を10ppmとしたこと以外は実施例1と同様にして、実施例2の非水電解液二次電池を作製した。これを電池A2とした。
[ Reference Example 2]
A non-aqueous electrolyte secondary battery of Example 2 was fabricated in the same manner as in Example 1 except that the amount of iron (II) chloride added to the electrolytic solution was 10 ppm. This was designated as battery A2.

[実施例3]
電解液への塩化鉄(II)の添加量を25ppmとしたこと以外は実施例1と同様にして、実施例3の非水電解液二次電池を作製した。これを電池A3とした。
[Example 3]
A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that the amount of iron (II) chloride added to the electrolyte was 25 ppm. This was designated as battery A3.

[実施例4]
電解液への塩化鉄(II)の添加量を500ppmとしたこと以外は実施例1と同様にして、実施例4の非水電解液二次電池を作製した。これを電池A4とした。
[Example 4]
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1 except that the amount of iron (II) chloride added to the electrolyte was 500 ppm. This was designated as battery A4.

[実施例5]
電解液への塩化鉄(II)の添加量を1000ppmとしたこと以外は実施例1と同様にして、実施例5の非水電解液二次電池を作製した。これを電池A5とした。
[Example 5]
A non-aqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1 except that the amount of iron (II) chloride added to the electrolytic solution was 1000 ppm. This was designated as battery A5.

[実施例6]
電解液への塩化鉄(II)の添加量を5000ppmとしたこと以外は実施例1と同様にして、実施例6の非水電解液二次電池を作製した。これを電池A6とした。
[Example 6]
A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1 except that the amount of iron (II) chloride added to the electrolyte was 5000 ppm. This was designated as battery A6.

参考例7]
電解液への塩化鉄(II)添加量を10000ppmとしたこと以外は実施例1と同様にして、実施例7の非水電解液二次電池を作製した。これを電池A7とした。
[ Reference Example 7]
Except that the addition amount of iron (II) chloride to the electrolytic solution was 10000ppm in the same manner as in Example 1 was used to fabricate a non-aqueous electrolyte secondary battery of Example 7. This was designated as battery A7.

[比較例1]
電解液へ塩化鉄(II)を添加しなかったこと以外は実施例1と同様にして、比較例1の非水電解液二次電池を作製した。これを電池R1とした。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that iron (II) chloride was not added to the electrolyte. This was designated as battery R1.

[実施例8]
実施例1で用いたのと同じ正極ペーストを用い、LiCoOとアセチレンブラックとPVdFの合計100質量部に対し、0.6質量部の鉄粉を添加し、電解液に塩化鉄(II)を添加しなかったこと以外は実施例1と同様にして、実施例8の電池を作製した。これを電池A8とした。
[Example 8]
Using the same positive electrode paste as used in Example 1, 0.6 parts by mass of iron powder was added to 100 parts by mass of LiCoO 2 , acetylene black and PVdF, and iron (II) chloride was added to the electrolyte. A battery of Example 8 was made in the same manner as Example 1 except that it was not added. This was designated as battery A8.

[実施例9]
Si粉末(高純度化学社製、純度99%)を用いて、ロータリーキルン内でトルエンを800℃で熱分解させることにより、Si粒子の表面を炭素でコートした材料を得た。なお、炭素コート量は30質量%であった。ただし「炭素コート量」は、Siと炭素の質量に対するSiの質量の比(C/(Si+C)、質量%)を表すものとする。
[Example 9]
A material in which the surface of Si particles was coated with carbon was obtained by thermally decomposing toluene at 800 ° C. in a rotary kiln using Si powder (manufactured by Kojundo Kagaku Co., Ltd., purity 99%). The carbon coating amount was 30% by mass. However, “carbon coating amount” represents the ratio of the mass of Si to the mass of Si and carbon (C / (Si + C), mass%).

この材料64質量部、16質量部の鱗片状黒鉛、20質量部のPVdFを、N−メチルピロリドン中で分散させることによりペーストを製作した。このペーストを厚さ20μmの銅箔上に塗布し、つぎに、150℃で乾燥することにより、N−メチルピロリドンを蒸発させた。さらに、これをロールプレスで圧縮成型した。さらに、Cu箔のリード部に樹脂付Ni線を超音波溶着した。このようにして、片面に負極合剤層を備えた負極を製作した。なお、負極合剤層の塗布重量は1.8mg/cmであった。この負極を用いたこと以外は実施例1と同様にして、実施例9の電池を作製した。これを電池A9とした。 A paste was prepared by dispersing 64 parts by mass of this material, 16 parts by mass of flaky graphite, and 20 parts by mass of PVdF in N-methylpyrrolidone. This paste was applied onto a copper foil having a thickness of 20 μm and then dried at 150 ° C. to evaporate N-methylpyrrolidone. Furthermore, this was compression molded with a roll press. Further, a Ni wire with resin was ultrasonically welded to the lead portion of the Cu foil. In this way, a negative electrode having a negative electrode mixture layer on one side was produced. The coating weight of the negative electrode mixture layer was 1.8 mg / cm 2 . A battery of Example 9 was made in the same manner as Example 1 except that this negative electrode was used. This was designated as battery A9.

[実施例10]
SiO粉末(住友チタニウム製)を用いたこと以外は実施例9と同様にして、実施例10の電池を製作した。これを電池A10とした。なお、負極活物質層の重量は3.6mg/cmであった。
[Example 10]
A battery of Example 10 was made in the same manner as Example 9 except that SiO powder (manufactured by Sumitomo Titanium) was used. This was designated as battery A10. The weight of the negative electrode active material layer was 3.6 mg / cm 2 .

[特性測定]
実施例又は参考例1〜10電池A1〜A10および比較例1の電池R1を用いて、25℃環境下で初期化成をおこなった。初期化成は4.1Vまでの4mAの定電流充電とそれに引き続く総通電時間が8時間となるまでの定電圧充電、2日間の開回路放置、4mAでの2.5Vまでの定電流放電、1時間の開回路放置とした。なお、各電池は、2個ずつ製作した。
[Characteristic measurement]
Using the batteries A1 to A10 of Examples or Reference Examples 1 to 10 and the battery R1 of Comparative Example 1, initialization was performed in a 25 ° C. environment. Initialization is 4 mA constant current charge up to 4.1 V, followed by constant voltage charge until the total energization time is 8 hours, left open for 2 days, constant current discharge up to 2.5 V at 4 mA, 1 The circuit was left open for hours. Two batteries were manufactured.

初期化成終了後、1個の電池を解体して電解液を抽出し、ICP分光分析法で電解液中の鉄濃度を定量した。   After completion of the initialization, one battery was disassembled to extract the electrolytic solution, and the iron concentration in the electrolytic solution was quantified by ICP spectroscopy.

つぎに、解体した電池とは別の電池を用いて容量確認のための充放電試験をおこなった。充放電試験は25℃の恒温槽内でおこない、4.1Vまでの20mAの定電流充電とそれに引き続く総通電時間が3時間となるまでの定電圧充電後、10分間の開回路状態で放置し、つづいて20mAで2.5Vまでの定電流での放電して、さらに10分間の開回路状態で放置とした。以後、これを「容量確認試験」と称する。ここで得られた放電容量を初期容量C1(mAh)とする。   Next, a charge / discharge test for capacity confirmation was performed using a battery different from the disassembled battery. The charge / discharge test is carried out in a thermostatic chamber at 25 ° C. After 20 mA constant current charging up to 4.1 V and subsequent constant voltage charging until the total energization time becomes 3 hours, it is left in an open circuit state for 10 minutes. Subsequently, the battery was discharged at a constant current of up to 2.5 V at 20 mA and left in an open circuit state for 10 minutes. Hereinafter, this is referred to as “capacity confirmation test”. The discharge capacity obtained here is defined as an initial capacity C1 (mAh).

つづいて、この電池を用いて、4.1Vまでの20mAの定電流充電とそれに引き続く総通電時間が3時間となるまでの定電圧充電をおこなった後に、60℃に保持した恒温槽に入れ、72時間保持した。さらに、この電池を25℃の恒温槽に移し、24時間経過した後に、ソーラトロン社製インピーダンスアナライザー(SI 1255)を用いて10mHzにおけるインピーダンスR(Ω)を測定した。電池A1〜A10および電池R1の内容と試験結果を表1にまとめた。   Subsequently, using this battery, after carrying out constant current charging of 20 mA up to 4.1 V and subsequent constant voltage charging until the total energization time becomes 3 hours, put it in a thermostat kept at 60 ° C., Hold for 72 hours. Further, this battery was transferred to a constant temperature bath at 25 ° C., and after 24 hours, impedance R (Ω) at 10 mHz was measured using an impedance analyzer (SI 1255) manufactured by Solartron. The contents and test results of batteries A1 to A10 and battery R1 are summarized in Table 1.

表1より、実施例又は参考例1〜7の電池A1〜A7と比較例1の電池R1とを比較すると、電解液中に鉄を含む場合にインピーダンスRを低減できることがわかった。これは、電解液中のFeが負極上で還元されて析出することによって、正極から溶出したCo元素の還元による析出を抑制することができたことによるものと推測される。すなわち、CoよりもFeのほうが、電解液が分解して高抵抗の皮膜を形成する反応についての触媒活性が低いので、負極上への高抵抗の皮膜が形成されるのを抑制することができたものと考えられる。 From Table 1, it was found that when the batteries A1 to A7 of Examples or Reference Examples 1 to 7 and the battery R1 of Comparative Example 1 were compared, the impedance R could be reduced when the electrolyte contained iron. This is presumably due to the fact that Fe in the electrolytic solution was reduced and deposited on the negative electrode, thereby suppressing precipitation due to reduction of Co element eluted from the positive electrode. That is, Fe has a lower catalytic activity for a reaction in which the electrolytic solution decomposes to form a high-resistance film than Co, so that formation of a high-resistance film on the negative electrode can be suppressed. It is thought that.

また、表1から、電解液中の鉄濃度を25ppm以上としたときに、インピーダンスRを著しく低減できることがわかった。一方、実施例7の電池A7の結果から、鉄濃度を10000ppmとした場合には、初期容量C1が小さくなったが、これは、鉄が著しく多いため、負極上に多量のFeが析出し、その結果、電池の微小短絡が生じたことによるものと推察される。   Table 1 also shows that impedance R can be significantly reduced when the iron concentration in the electrolyte is 25 ppm or more. On the other hand, from the result of the battery A7 of Example 7, when the iron concentration was set to 10000 ppm, the initial capacity C1 was reduced. However, since the amount of iron was extremely large, a large amount of Fe was deposited on the negative electrode, As a result, it is surmised that the short circuit of the battery occurred.

以上の結果から、非水電解液二次電池を60℃で保存した場合の抵抗増大を抑制し、しかも初期容量を低下させないためには、電解液中の鉄の濃度を25ppm以上、5000ppm以下とすることが好ましいことがわかった。   From the above results, in order to suppress an increase in resistance when the nonaqueous electrolyte secondary battery is stored at 60 ° C. and not to reduce the initial capacity, the concentration of iron in the electrolyte is 25 ppm or more and 5000 ppm or less. It turned out to be preferable.

また、実施例8の電池A8の結果から、鉄を溶解する方法として、塩化鉄などの鉄塩を溶解する方法に限ることなく、鉄粉を正極内に仕込み、初期化成時において酸化して溶解する方法など、種々の方法を用いてもよいことが分かった。   Further, from the result of the battery A8 of Example 8, the method of dissolving iron is not limited to the method of dissolving iron salts such as iron chloride, but iron powder is charged into the positive electrode and oxidized and dissolved during initialization. It has been found that various methods may be used, such as

さらに、実施例9の電池A9および実施例10の電池A10の結果から、負極として、Si薄膜だけでなく、負極活物質に、Si粉末に炭素コートしたものや、SiO粉末に炭素コートしたものなどを用いた場合においても、本発明の効果が現れることが明らかとなった。   Further, from the results of the battery A9 of Example 9 and the battery A10 of Example 10, not only the Si thin film but also the negative electrode active material obtained by carbon-coating Si powder or carbon-coating SiO powder as the negative electrode, etc. It has been clarified that the effect of the present invention is exhibited even when using.

[実施例11〜15]
[実施例11]
負極活物質を錫(純度99.999%)としたこと以外は実施例1と同様にして、実施例11の非水電解液二次電池を作製した。これを電池A11とした。
[Examples 11 to 15]
[Example 11]
A nonaqueous electrolyte secondary battery of Example 11 was produced in the same manner as Example 1 except that the negative electrode active material was tin (purity 99.999%). This was designated as battery A11.

[実施例12]
負極活物質にSnO膜(高純度化学社製、純度99%)を用いたこと以外は実施例1と同様にして、実施例12の非水電解液二次電池を作製した。これを電池A12とした。
[Example 12]
A non-aqueous electrolyte secondary battery of Example 12 was produced in the same manner as in Example 1 except that a SnO film (manufactured by Koyo Chemical Co., Ltd., purity 99%) was used as the negative electrode active material. This was designated as battery A12.

[実施例13]
負極活物質にSnO粉末(高純度化学社製)の表面を炭素でコートした材料を用いたこと以外は実施例10と同様にして、実施例13の非水電解液二次電池を作製した。これを電池A13とした。
[Example 13]
A nonaqueous electrolyte secondary battery of Example 13 was produced in the same manner as in Example 10 except that a material obtained by coating the surface of SnO powder (manufactured by Koyo Chemical Co., Ltd.) with carbon as the negative electrode active material was used. This was designated as battery A13.

[実施例14]
負極活物質をゲルマニウム(純度99.999%)としたこと以外は実施例1と同様にして、実施例14の非水電解液二次電池を作製した。これを電池A14とした。
[Example 14]
A nonaqueous electrolyte secondary battery of Example 14 was produced in the same manner as Example 1 except that the negative electrode active material was germanium (purity 99.999%). This was designated as battery A14.

[実施例15]
負極活物質を鉛(純度99.9%)としたこと以外は実施例1と同様にして、実施例15の非水電解液二次電池を作製した。これを電池A15とした。
[Example 15]
A nonaqueous electrolyte secondary battery of Example 15 was produced in the same manner as Example 1 except that the negative electrode active material was lead (purity 99.9%). This was designated as battery A15.

[特性測定]
実施例11〜15の電池A11〜A15各2個を用いて、実施例1のA1の場合と同様の条件で、初期化成をおこない、初期化成終了後、1個の電池を解体して電解液を抽出し、ICP分光分析法で電解液中の鉄濃度を定量した。その結果、電池A11〜A15の電解液中の鉄の濃度はすべて100ppmであった。
[Characteristic measurement]
Using each of the two batteries A11 to A15 of Examples 11 to 15 under the same conditions as in the case of A1 of Example 1, after completion of the initialization, one battery is disassembled and the electrolyte solution Was extracted, and the iron concentration in the electrolyte was quantified by ICP spectroscopy. As a result, the concentration of iron in the electrolytes of batteries A11 to A15 was 100 ppm.

また、解体した電池とは別の電池を用いて、実施例1の電池A1の場合と同様の条件で、容量確認のための充放電試験および60℃で72時間保持した後のインピーダンスR(Ω)を測定した。電池A11〜A15の内容と試験結果を表2にまとめた。   Further, using a battery other than the disassembled battery, under the same conditions as in the case of the battery A1 of Example 1, the impedance R (Ω after the charge / discharge test for capacity confirmation and holding at 60 ° C. for 72 hours was performed. ) Was measured. The contents and test results of the batteries A11 to A15 are summarized in Table 2.

表2より、負極活物質の種類が異なる場合でも、電解液中の鉄を100ppm含むことにより、電池のインピーダンスを著しく低減できることがわかった。   From Table 2, it was found that the impedance of the battery can be remarkably reduced by containing 100 ppm of iron in the electrolytic solution even when the type of the negative electrode active material is different.

[実施例16〜20]
[実施例16]
正極活物質をLiCo0.8Ni0.2としたこと以外は実施例1と同様にして、実施例16の非水電解液二次電池を作製した。これを電池A16とした。
[Examples 16 to 20]
[Example 16]
A nonaqueous electrolyte secondary battery of Example 16 was produced in the same manner as Example 1 except that the positive electrode active material was LiCo 0.8 Ni 0.2 O 2 . This was designated as battery A16.

[実施例17]
正極活物質をLiCo0.8Mn0.2としたこと以外は実施例1と同様にして、実施例17の非水電解液二次電池を作製した。これを電池A17とした。
[Example 17]
A nonaqueous electrolyte secondary battery of Example 17 was produced in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.8 Mn 0.2 O 2 . This was designated as battery A17.

[実施例18]
正極活物質をLiCo0.2Ni0.8としたこと以外は実施例1と同様にして、実施例18の非水電解液二次電池を作製した。これを電池A18とした。
[Example 18]
A nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as Example 1 except that the positive electrode active material was LiCo 0.2 Ni 0.8 O 2 . This was designated as battery A18.

[実施例19]
正極活物質をLiCo0.8Ni0.1Mg0.1としたこと以外は実施例1と同様にして、実施例19の非水電解液二次電池を作製した。これを電池A19とした。
[Example 19]
A non-aqueous electrolyte secondary battery of Example 19 was produced in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.8 Ni 0.1 Mg 0.1 O 2 . This was designated as battery A19.

[実施例20]
正極活物質をLiCo0.4Ni0.3Mn0.3としたこと以外は実施例1と同様にして、実施例20の非水電解液二次電池を作製した。これを電池A20とした。
[Example 20]
A nonaqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 1 except that the positive electrode active material was LiCo 0.4 Ni 0.3 Mn 0.3 O 2 . This was designated as battery A20.

[特性測定]
実施例16〜20の電池A16〜A20各2個を用いて、実施例1のA1の場合と同様の条件で、初期化成をおこない、初期化成終了後、1個の電池を解体して電解液を抽出し、ICP分光分析法で電解液中の鉄濃度を定量した。その結果、電池A16〜A20の電解液中の鉄の濃度はすべて100ppmであった。
[Characteristic measurement]
Using each of the two batteries A16 to A20 of Examples 16 to 20 under the same conditions as in the case of A1 of Example 1, after completion of the initialization, one battery was disassembled and the electrolyte solution Was extracted, and the iron concentration in the electrolyte was quantified by ICP spectroscopy. As a result, the concentration of iron in the electrolytes of batteries A16 to A20 was 100 ppm.

また、解体した電池とは別の電池を用いて、実施例1の電池A1の場合と同様の条件で、容量確認のための充放電試験および60℃で72時間保持した後のインピーダンスR(Ω)を測定した。電池A16〜A20の内容と試験結果を表3にまとめた。   Further, using a battery other than the disassembled battery, under the same conditions as in the case of the battery A1 of Example 1, the impedance R (Ω after the charge / discharge test for capacity confirmation and holding at 60 ° C. for 72 hours was performed. ) Was measured. Table 3 summarizes the contents and test results of the batteries A16 to A20.

表3より、正極活物質の種類が異なる場合でも、電解液中の鉄を100ppm含むことにより、電池のインピーダンスを著しく低減できることがわかった。   From Table 3, it was found that the impedance of the battery can be remarkably reduced by containing 100 ppm of iron in the electrolytic solution even when the type of the positive electrode active material is different.

[実施例21〜24]
[実施例21]
電解液溶媒としてECとDECの体積比1:1の混合溶媒を用いたこと以外は実施例1と同様にして、実施例21の非水電解液二次電池を作製した。これを電池A21とした。
[Examples 21 to 24]
[Example 21]
A non-aqueous electrolyte secondary battery of Example 21 was fabricated in the same manner as in Example 1 except that a mixed solvent with a volume ratio of EC and DEC of 1: 1 was used as the electrolyte solvent. This was designated as battery A21.

[実施例22]
電解液溶媒としてプロピレンカーボネート(PC)とDECの体積比1:1の混合溶媒を用いたこと以外は実施例1と同様にして、実施例22の非水電解液二次電池を作製した。これを電池A22とした。
[Example 22]
A non-aqueous electrolyte secondary battery of Example 22 was fabricated in the same manner as in Example 1 except that a mixed solvent of propylene carbonate (PC) and DEC in a volume ratio of 1: 1 was used as the electrolyte solvent. This was designated as battery A22.

[実施例23]
電解液溶媒としてECとDMCの体積比1:1の混合溶媒を用いたこと以外は実施例1と同様にして、実施例23の非水電解液二次電池を作製した。これを電池A23とした。
[Example 23]
A non-aqueous electrolyte secondary battery of Example 23 was fabricated in the same manner as in Example 1 except that a mixed solvent with a volume ratio of 1: 1 EC and DMC was used as the electrolyte solvent. This was designated as battery A23.

[実施例24]
電解液溶媒としてECとEMCの体積比1:1の混合溶媒を用いたこと以外は実施例1と同様にして、実施例24の非水電解液二次電池を作製した。これを電池A24とした。
[Example 24]
A non-aqueous electrolyte secondary battery of Example 24 was fabricated in the same manner as in Example 1 except that a mixed solvent having a volume ratio of EC and EMC of 1: 1 was used as the electrolyte solvent. This was designated as battery A24.

[特性測定]
実施例21〜24の電池A21〜A24各2個を用いて、実施例1のA1の場合と同様の条件で、初期化成をおこない、初期化成終了後、1個の電池を解体して電解液を抽出し、ICP分光分析法で電解液中の鉄濃度を定量した。その結果、電池A21〜A24の電解液中の鉄の濃度はすべて100ppmであった。
[Characteristic measurement]
Using each two batteries A21 to A24 of Examples 21 to 24, initialization was performed under the same conditions as in A1 of Example 1, and after completion of initialization, one battery was disassembled and an electrolyte solution Was extracted, and the iron concentration in the electrolyte was quantified by ICP spectroscopy. As a result, the concentration of iron in the electrolytes of batteries A21 to A24 was 100 ppm.

また、解体した電池とは別の電池を用いて、実施例1の電池A1の場合と同様の条件で、容量確認のための充放電試験および60℃で72時間保持した後のインピーダンスR(Ω)を測定した。電池A21〜A24の内容と試験結果を表4にまとめた。   Further, using a battery other than the disassembled battery, under the same conditions as in the case of the battery A1 of Example 1, the impedance R (Ω after the charge / discharge test for capacity confirmation and holding at 60 ° C. for 72 hours was performed. ) Was measured. Table 4 summarizes the contents and test results of the batteries A21 to A24.

表4より、電解液溶媒の種類が異なる場合でも、電解液中の鉄を100ppm含むことにより、電池のインピーダンスを著しく低減できることがわかった。   From Table 4, it was found that the impedance of the battery can be significantly reduced by containing 100 ppm of iron in the electrolytic solution even when the type of the electrolytic solution solvent is different.

Claims (1)

珪素、ゲルマニウム、錫、鉛の少なくとも1種を含む物質を活物質とする負極と、チウムコバルト系複合酸化物を活物質とする正極と、非水電解液とを備えた非水電解液二次電池において、前記電解液中に鉄を25ppm以上5000ppm以下の濃度で含むことを特徴とする非水電解液二次電池(但し、負極がケイ素粉末を含有するものであり、非水電解液が鉄イオンをトリス(ヘキサフルオロアセチルアセトナト)鉄(III)換算で溶媒に対して0.3質量%含有するリチウム二次電池を除く。)。 Silicon, germanium, tin, and negative electrode material containing at least one lead and an active material, a positive electrode and an active material of Li Chiumukobaruto based composite oxide, and a nonaqueous electrolyte solution non-aqueous electrolyte secondary In the secondary battery, a non-aqueous electrolyte secondary battery comprising iron in the electrolyte at a concentration of 25 ppm or more and 5000 ppm or less (provided that the negative electrode contains silicon powder and the non-aqueous electrolyte is (Excluding lithium secondary batteries containing 0.3% by mass of iron ions with respect to the solvent in terms of tris (hexafluoroacetylacetonato) iron (III)).
JP2006307730A 2006-11-14 2006-11-14 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5028965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307730A JP5028965B2 (en) 2006-11-14 2006-11-14 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307730A JP5028965B2 (en) 2006-11-14 2006-11-14 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008123892A JP2008123892A (en) 2008-05-29
JP5028965B2 true JP5028965B2 (en) 2012-09-19

Family

ID=39508416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307730A Expired - Fee Related JP5028965B2 (en) 2006-11-14 2006-11-14 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5028965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251416B2 (en) * 2008-10-16 2013-07-31 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2010097756A (en) * 2008-10-15 2010-04-30 Sony Corp Secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP3644106B2 (en) * 1995-12-26 2005-04-27 宇部興産株式会社 Non-aqueous secondary battery
JP2002231306A (en) * 2001-01-30 2002-08-16 Denso Corp Electrolyte for battery, and nonaqueous electrolyte battery
JP4221932B2 (en) * 2002-01-21 2009-02-12 ソニー株式会社 Non-aqueous electrolyte battery
JP3992708B2 (en) * 2003-10-31 2007-10-17 日立マクセル株式会社 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP2006172726A (en) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4739781B2 (en) * 2005-03-11 2011-08-03 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2008123892A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
US10673046B2 (en) Separator for lithium metal based batteries
JP5050452B2 (en) Nonaqueous electrolyte secondary battery
US20080299457A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
US20070190408A1 (en) Separator and method of manufacturing non-aqueous electrolyte secondary battery using the same
US20190245244A1 (en) Electrolyte Additive And Non-aqueous Electrolyte Solution For Lithium Secondary Battery Comprising The Same
US20110045357A1 (en) Electrolyte and cell
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
US20110250505A1 (en) Non-aqueous electrolyte secondary battery
KR100763218B1 (en) Negative electrode for non-aqueous secondary battery
JP5066831B2 (en) Nonaqueous electrolyte secondary battery
CN113795464B (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the method
CN115917827A (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
JP5217281B2 (en) Nonaqueous electrolyte secondary battery
US10700381B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2013131427A (en) Laminated battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP6634966B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, positive electrode material used therefor, secondary battery using the same, and method of manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP5224158B2 (en) Nonaqueous electrolyte secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP5028965B2 (en) Non-aqueous electrolyte secondary battery
KR101640288B1 (en) Lithium secondary battery with improved output performance
JP4581503B2 (en) Non-aqueous electrolyte battery
US9960425B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2007294654A (en) Electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees