[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5025275B2 - Polishing tool - Google Patents

Polishing tool Download PDF

Info

Publication number
JP5025275B2
JP5025275B2 JP2007019565A JP2007019565A JP5025275B2 JP 5025275 B2 JP5025275 B2 JP 5025275B2 JP 2007019565 A JP2007019565 A JP 2007019565A JP 2007019565 A JP2007019565 A JP 2007019565A JP 5025275 B2 JP5025275 B2 JP 5025275B2
Authority
JP
Japan
Prior art keywords
permanent magnet
polishing
polishing tool
magnetic
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007019565A
Other languages
Japanese (ja)
Other versions
JP2007313634A (en
Inventor
輝久 中村
玲 花村
慶太 山本
良夫 松尾
幹雄 北岡
敏隆 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007019565A priority Critical patent/JP5025275B2/en
Publication of JP2007313634A publication Critical patent/JP2007313634A/en
Application granted granted Critical
Publication of JP5025275B2 publication Critical patent/JP5025275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨対象との間に磁気研磨液を存在させて流体研磨を行うための研磨バイトに関するもので、より具体的には、精密機械部品や金型や樹脂製品などの表面を鏡面に研磨するため、研磨バイトについての磁場分布および運動動作の改良に関する。 The present invention relates to a polishing bytes for performing a fluid polishing in the presence of a magnetic polishing liquid between the polishing object, and more specifically, a surface such as a precision machine parts or mold or resin products The present invention relates to an improvement in magnetic field distribution and motion behavior of a polishing tool for polishing to a mirror surface.

研磨対象の表面を鏡面に仕上げる技術として、例えば特許文献1,2などに見られるように、磁界を作用させることで研磨を行う磁気研磨の技術が知られている。特許文献1には、磁気研磨液における分散粒子を調整することにより研磨液の性能を改善し、精密な研磨、仕上げ加工に適用し得るような技術の提案がある。特許文献2には、磁性砥粒からなる粒子ブラシと研磨対象との間で適正に相対運動を行わせること、および磁性砥粒に非磁性層を被覆することにより研磨の挙動を改善し、精密な研磨、仕上げ加工に適用し得るような技術の提案がある。そうした磁気研磨は、いわゆる非接触の研磨が行えるため強度が弱い研磨対象でも応力なく研磨が行えるメリットがあり、精密仕上げの用途に好まれている。   As a technique for finishing a surface to be polished into a mirror surface, a magnetic polishing technique is known in which polishing is performed by applying a magnetic field as seen in Patent Documents 1 and 2, for example. Patent Document 1 proposes a technique that improves the performance of the polishing liquid by adjusting dispersed particles in the magnetic polishing liquid, and can be applied to precise polishing and finishing. In Patent Document 2, the behavior of polishing is improved by causing the relative movement between the particle brush made of magnetic abrasive grains and the object to be polished appropriately, and by coating the magnetic abrasive grains with a nonmagnetic layer. There are proposals of techniques that can be applied to smooth polishing and finishing. Such magnetic polishing has a merit that it can perform so-called non-contact polishing and can perform polishing without stress even on a polishing object having low strength, and is preferred for use in precision finishing.

磁気研磨にあっては、磁性砥粒(粒子ブラシ)つまり研削工具は磁界により活性化するため、研磨は磁場発生源の磁極が研磨対象に対して向き合う対面部位については良好に進む特性を持つ。そこで、磁場発生源は例えば永久磁石とし、これを研磨バイトに組み付けて駆動手段により回転させる構成を採り、対面させた研磨対象との間には磁気研磨液を存在させて流体研磨を行う鏡面研磨の技術がある。
特開2002−170791号公報 特開2002−283216号公報
In magnetic polishing, magnetic abrasive grains (particle brushes), that is, grinding tools, are activated by a magnetic field. Therefore, polishing has a characteristic that the facing portion where the magnetic pole of the magnetic field generation source faces the object to be polished proceeds well. Therefore, the magnetic field generating source is, for example, a permanent magnet, which is assembled to a polishing tool and rotated by a driving means, and a mirror polishing is performed in which a magnetic polishing liquid is present between the polishing objects facing each other and fluid polishing is performed. There is a technology.
JP 2002-170791 A JP 2002-283216 A

しかしながら、係る従来の鏡面研磨の技術では以下に示すような問題がある。すなわち、研磨対象が凹凸を多数有した複雑形状(複雑形状体)である場合に適正に研磨できないことがあり、その表面形状に沿った均一な鏡面仕上げが行えずに意図しない形状に研磨してしまうことがある。これには研磨バイトによる磁場の分布が大きく影響し、例えば磁場発生源の永久磁石を角柱形状あるいは円柱形状とした場合に顕著であり、そうした磁場発生源では、研磨対象との距離が均一でないことが多々あることから、凹部と凸部との研磨レイトの差から意図しない形状変化を生じることがある。   However, the conventional mirror polishing technique has the following problems. In other words, if the object to be polished is a complex shape with many irregularities (complex shape body), it may not be able to polish properly, and it will not be able to perform a uniform mirror finish along its surface shape and will be polished to an unintended shape May end up. This is greatly affected by the distribution of the magnetic field generated by the polishing tool, for example, when the permanent magnet of the magnetic field source has a prismatic or cylindrical shape, and the distance from the object to be polished is not uniform in such a magnetic field source. Therefore, an unintended shape change may occur due to a difference in polishing rate between the concave portion and the convex portion.

この発明は上記した課題を解決するもので、その目的は、研磨対象が凹凸を多数有した複雑形状体であっても、それら表面の凹凸に対して均一に研磨が行えて、適正な鏡面に仕上げることができる研磨バイトを提供することにある。 The object of the present invention is to solve the above-described problems. The object of the present invention is to make it possible to polish evenly on the unevenness of the surface even if the object to be polished is a complex shape having a large number of unevenness, and to obtain an appropriate mirror surface. it is to provide a polishing bytes that can be finished.

上記した目的を達成するために、本発明に係る研磨バイトは、研磨対象に対して非接触の状態を保ち、周辺に存在させた磁気研磨液を連動することにより流体研磨を行う研磨バイトであって、研磨バイトには磁場の発生源として永久磁石を設け、当該永久磁石の形状を球体形状あるいは適宜な曲面を有した曲面体形状とし、前記永久磁石を支持した支持体の内部へ第2永久磁石を埋め込み状態に配置し、当該第2永久磁石は前記永久磁石と接触する所定位置に配置するIn order to achieve the above-described object, the polishing tool according to the present invention is a polishing tool that performs fluid polishing by keeping a non-contact state with respect to an object to be polished and interlocking with a magnetic polishing liquid existing in the periphery. Then, the polishing tool is provided with a permanent magnet as a magnetic field generation source, and the shape of the permanent magnet is changed to a spherical shape or a curved surface shape having an appropriate curved surface, and the second inside the support body supporting the permanent magnet. A permanent magnet is disposed in an embedded state, and the second permanent magnet is disposed at a predetermined position in contact with the permanent magnet .

また、永久磁石は磁化の向きを、研磨バイトの回転軸に対して略一致または略平行としたり、あるいは研磨バイトの回転軸に対して傾く設定とし、傾き角度は回転軸に対して90度以下のはさみ角とする。永久磁石は、磁化の向きを複数有した多極着磁の構成とする。   In addition, the permanent magnet is set so that the magnetization direction is substantially coincident with or substantially parallel to the rotation axis of the polishing tool, or is inclined with respect to the rotation axis of the polishing tool, and the inclination angle is 90 degrees or less with respect to the rotation axis. The scissor angle. The permanent magnet has a multipolar magnetization configuration having a plurality of magnetization directions.

また、永久磁石を支持した支持体は、研磨バイトの軸部に対して横方向のゆれ動きを許容する柔軟性連結手段を介在させて連結する構成とする。柔軟性連結手段は、支持体の端部と軸部の端部とに永久磁石をそれぞれ埋め込み設け、それら両者の磁気的な吸引力により連結する構成とする。あるいはまた、柔軟性連結手段は棒状の弾性部材を有し、当該弾性部材を支持体の端部と軸部の端部とに埋め込み状態に渡すことにより連結する構成としたり、柔軟性連結手段は筒状の弾性部材を有し、当該弾性部材を支持体の端部と軸部の端部とに被せ渡すことにより連結する構成とする。弾性部材はゴムあるいはコイル状スプリングとすることができる。   Further, the support body supporting the permanent magnet is configured to be coupled to the shaft portion of the polishing tool by interposing a flexible coupling means that allows lateral movement. The flexible connecting means has a configuration in which permanent magnets are embedded in the end portion of the support and the end portion of the shaft portion, respectively, and are connected by the magnetic attraction force of both. Alternatively, the flexible connecting means has a rod-like elastic member, and the elastic member is connected to the end portion of the support body and the end portion of the shaft portion in an embedded state. A cylindrical elastic member is provided, and the elastic member is connected by being placed over the end of the support and the end of the shaft. The elastic member can be a rubber or a coiled spring.

また、上記の研磨バイトを用いた鏡面研磨方法としては、研磨バイトは駆動手段と連係させ、研磨対象に対して永久磁石が非接触に対面する配置とし、研磨対象との間に磁気研磨液を存在させて当該磁気研磨液には砥粒を混合しておき、駆動手段を起動することにより研磨バイトには所定の運動動作を行わせ、永久磁石の磁場により磁気研磨液に時間的に定常的あるいは変動的な磁場を加えて流体研磨を行う。 Also, as a mirror polishing method using the above polishing tool , the polishing tool is linked with the driving means, and the permanent magnet is disposed so as to face the object to be polished in a non-contact manner, and a magnetic polishing liquid is placed between the object to be polished. Abrasive grains are mixed in the magnetic polishing liquid, and the driving means is activated to cause the polishing tool to perform a predetermined motion, and the magnetic polishing liquid is constantly timed by the magnetic field of the permanent magnet. Alternatively, fluid polishing is performed by applying a variable magnetic field.

駆動手段は少なくともx軸,y軸,z軸について多軸制御の機能を有し、当該駆動手段を起動することにより研磨バイトには3次元的に移動する運動動作を行わせる。研磨バイトの3次元的な運動動作は、研磨対象について等高線を順次に上昇していく動作としたり、あるいは研磨対象について投影面をくまなく走査する動作とする。また、研磨バイトには当該軸方向において正逆反転する回転動作を行わせ、あるいは正逆移動する振動動作を行わせる。   The driving means has a multi-axis control function for at least the x-axis, y-axis, and z-axis, and when the driving means is activated, the polishing tool is caused to perform a three-dimensional movement motion. The three-dimensional movement operation of the polishing tool is an operation of sequentially raising the contour line for the polishing object, or an operation of scanning the projection surface all over the polishing object. Further, the polishing tool is caused to rotate in the forward and reverse directions in the axial direction, or to vibrate in a forward and reverse direction.

したがって本発明では、研磨バイトには球体形状あるいは曲面体形状の永久磁石を有し、これには駆動手段により所定の運動動作を行わせる。   Therefore, in the present invention, the polishing tool has a spherical or curved permanent magnet, which is caused to perform a predetermined motion by the driving means.

研磨バイトと研磨対象との間には磁気研磨液が存在し、当該磁気研磨液は砥粒を含み、永久磁石により磁気研磨液に時間的に定常的あるいは変動的な磁場が加わると磁気クラスタが生成する。すなわち、磁気研磨液中の強磁性粒子(例えば鉄粒子),マグネタイト粒子が、磁気吸引力により多数凝集して磁気クラス夕となる。磁気クラス夕は、磁束に沿うので研磨対象に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する砥粒が研磨対象の表面に抑えつけられる。このとき、研磨バイトと研磨対象とは相対運動することから、砥粒は研磨対象の表面上を接触しつつ運動して切削(研削)を行う。   There is a magnetic polishing liquid between the polishing tool and the object to be polished, and the magnetic polishing liquid contains abrasive grains. When a permanent or variable magnetic field is applied to the magnetic polishing liquid by a permanent magnet, a magnetic cluster is formed. Generate. That is, a large number of ferromagnetic particles (eg, iron particles) and magnetite particles in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. Since the magnetic class is along the magnetic flux, a large number of needles are arranged in opposition to the object to be polished, so that the abrasive grains present in the magnetic polishing liquid are suppressed to the surface of the object to be polished. At this time, since the polishing tool and the object to be polished move relative to each other, the abrasive grains move and cut (grind) while contacting the surface of the object to be polished.

ところで磁気研磨では、研磨バイトと研磨対象との距離が一定であっても、永久磁石における磁束分布には形状に応じて集中部位と非集中部位とがあり、その結果、研削作用の量に差が生じる。永久磁石の角部分などは特に磁化等高線の密度が高く、磁束密度が高いことから、研削作用の量が顕著に変化する傾向にありムラを生じやすい。   By the way, in the magnetic polishing, even if the distance between the polishing tool and the object to be polished is constant, the magnetic flux distribution in the permanent magnet has a concentrated portion and a non-concentrated portion depending on the shape, resulting in a difference in the amount of grinding action. Occurs. The corner portion of the permanent magnet has a particularly high density of magnetic contour lines and a high magnetic flux density. Therefore, the amount of grinding action tends to change significantly, and unevenness tends to occur.

しかし本発明にあっては、研磨バイトの永久磁石は球体形状あるいは曲面体形状としているので、磁化等高線が過密になる場所が少なく、これは角部を有する円柱形状や角柱形状の永久磁石による磁束分布と比べて格段に少なくなる。このため、砥粒による研削作用を場所によらずに均一化させることができる。   However, in the present invention, since the permanent magnet of the polishing tool has a spherical shape or a curved shape, there are few places where the magnetization contour lines become overcrowded, and this is a magnetic flux generated by a cylindrical or prismatic permanent magnet having corners. Remarkably less than the distribution. For this reason, the grinding action by the abrasive grains can be made uniform regardless of the place.

また、研磨バイトを3次元的に運動動作させることでは、研磨対象の凹凸形状に対応させて研磨バイトを動かすことができ、表面の全域に対して研磨を適正に行える。   Further, by moving the polishing tool in a three-dimensional manner, the polishing tool can be moved in accordance with the uneven shape of the object to be polished, so that the entire surface can be properly polished.

また、永久磁石を支持した支持体の内部へ第2永久磁石を埋め込み状態に配置することでは、第2永久磁石は永久磁石と接触する所定位置に配置するので、第2永久磁石の埋め込み位置に対応して永久磁石の磁化の向きが自動的に定まる。   Further, when the second permanent magnet is disposed in the embedded state inside the support that supports the permanent magnet, the second permanent magnet is disposed at a predetermined position in contact with the permanent magnet. Correspondingly, the magnetization direction of the permanent magnet is automatically determined.

また、永久磁石を支持した支持体について柔軟性連結手段を介在させて軸部へ連結する構成では、先端部位へ外力が作用した際にはその先端側がゆれ動くことになる。   Further, in the configuration in which the support supporting the permanent magnet is connected to the shaft portion with the flexible connecting means interposed, when an external force is applied to the tip portion, the tip side is swayed.

本発明に係る研磨バイトでは、磁場発生源の永久磁石を球体形状あるいは曲面体形状としているので、磁化等高線が過密になる場所が少なく、このため、砥粒による研削作用を場所によらずに均一化させることができる。また、研磨バイトを3次元的に運動動作させることでは、研磨対象の凹凸形状に対応させて研磨バイトを動かすことができ、表面の全域に対して研磨を適正に行える。その結果、研磨対象が凹凸を多数有した複雑形状体であっても、それら表面の凹凸に対して均一に研磨が行えて、適正な鏡面に仕上げることができる。   In the polishing tool according to the present invention, since the permanent magnet of the magnetic field generation source has a spherical shape or a curved surface shape, there are few places where the magnetization contour lines become overcrowded, and therefore the grinding action by the abrasive grains is uniform regardless of the place. It can be made. Further, by moving the polishing tool in a three-dimensional manner, the polishing tool can be moved in accordance with the uneven shape of the object to be polished, so that the entire surface can be properly polished. As a result, even if the object to be polished is a complex shape having a large number of irregularities, the irregularities on the surface can be uniformly polished and finished to an appropriate mirror surface.

また、永久磁石を支持した支持体の内部へ第2永久磁石を埋め込み状態に配置することでは、第2永久磁石は永久磁石と接触する所定位置に配置するので、第2永久磁石の埋め込み位置に対応して永久磁石の磁化の向きが自動的に定まる。したがって、支持体の端面に永久磁石を埋め込み設ける際は位置合わせの調整は特に必要なく、永久磁石については磁化の方向を正しく設定することができ、位置決めが容易に行える。   Further, when the second permanent magnet is disposed in the embedded state inside the support that supports the permanent magnet, the second permanent magnet is disposed at a predetermined position in contact with the permanent magnet. Correspondingly, the magnetization direction of the permanent magnet is automatically determined. Therefore, when the permanent magnet is embedded in the end face of the support, adjustment of the alignment is not particularly necessary, and the direction of magnetization of the permanent magnet can be set correctly and positioning can be performed easily.

また、永久磁石を支持した支持体について柔軟性連結手段を介在させて軸部へ連結する構成では、先端部位へ外力が作用した際にはその先端側がゆれ動くことになり、このため各部の損傷を防ぐことができる。   In addition, in the configuration in which the support supporting the permanent magnet is connected to the shaft portion with a flexible connecting means interposed, when an external force is applied to the tip portion, the tip side is swayed. Can be prevented.

(参考例)
図1は本発明の参考例を示している。本参考例において、研磨バイトは、先端に永久磁石1を設けて磁場の発生源とし、研磨対象に対して非接触の状態を保ち、周辺に存在させた磁気研磨液を連動することにより流体研磨を行う構成になっている。
(Reference example)
FIG. 1 shows a reference example of the present invention. In this reference example , the polishing tool is provided with a permanent magnet 1 at its tip to serve as a magnetic field generation source. The polishing tool maintains a non-contact state with respect to the object to be polished, and fluid polishing is performed by interlocking with a magnetic polishing liquid existing in the periphery. It is the composition which performs.

永久磁石1は、球体形状あるいは適宜な曲面を有した曲面体形状に形成し、円柱形状の支持体2の端面に埋め込み設けて略半分が露出する状態とし、その支持体2を軸部3の先端に一体に連結させている。   The permanent magnet 1 is formed in a spherical shape or a curved surface shape having an appropriate curved surface, embedded in the end surface of the cylindrical support body 2 so that substantially half is exposed, and the support body 2 is attached to the shaft portion 3. It is integrally connected to the tip.

この永久磁石1は磁化の向きを、図2(a)に示すように、研磨バイトの回転軸sに対して略一致とし、これはズレ位置で略平行となる関係にすることもよい。また、永久磁石1の磁化の向きは、図2(b)に示すように、研磨バイトの回転軸sに対して傾く設定とし、傾き角度は回転軸sに対して90度以下のはさみ角としてもよい。さらにまた、永久磁石1は、磁化の向きを複数有した多極着磁の構成としてもよい。   As shown in FIG. 2A, the permanent magnet 1 may have a magnetization direction that is substantially coincident with the rotation axis s of the polishing tool, and may have a relationship that is substantially parallel at the shift position. Further, as shown in FIG. 2B, the magnetization direction of the permanent magnet 1 is set to be inclined with respect to the rotation axis s of the polishing tool, and the inclination angle is a scissor angle of 90 degrees or less with respect to the rotation axis s. Also good. Furthermore, the permanent magnet 1 may have a multipolar magnetization configuration having a plurality of magnetization directions.

この研磨バイトは駆動手段と連係し、その駆動手段の駆動により所定の運動動作を行うようになっている。つまり、研磨対象の表面を鏡面に仕上げる鏡面研磨においては、研磨対象に対して永久磁石1が非接触に対面する配置とし、研磨対象との間に磁気研磨液を存在させて当該磁気研磨液には砥粒を混合しておき、駆動手段を起動することにより研磨バイトには所定の運動動作を行わせ、永久磁石1の磁場により磁気研磨液に時間的に定常的あるいは変動的な磁場を加えて磁気研磨液に生成した磁気クラスタにより流体研磨を行う。   The polishing tool is linked to driving means, and performs a predetermined motion by driving the driving means. That is, in the mirror polishing that finishes the surface of the polishing object into a mirror surface, the permanent magnet 1 is disposed so as to face the polishing object in a non-contact manner, and the magnetic polishing liquid is present between the polishing object and the magnetic polishing liquid. Is mixed with abrasive grains, and the driving means is started to cause the polishing tool to perform a predetermined motion, and a permanent or variable magnetic field is applied to the magnetic polishing liquid by the magnetic field of the permanent magnet 1 in time. Then, fluid polishing is performed with the magnetic clusters generated in the magnetic polishing liquid.

磁気研磨液は非磁性の砥粒を含有し、具体的には、動粘度0.01〜100mm/s程度の水やケロシン等の分散媒中に、粒子径1〜80μmの強磁性粒子を10〜95wt%分散させた流体に対して、粒子径10〜50nmの球形マグネタイト粒子が、電気絶縁性を有する水やケロシン等の分散媒に一様に分散した流体を5〜90wt%混合した複合流体に、粒子径0.01〜100μmの非磁性の砥粒を混合し、さらに増粘剤としてαセルロースなどの繊維状物質あるいはポリビニルアルコール等の樹脂を5〜90wt%混合している。この磁気研磨液は研磨対象と研磨バイトとの狭間へ供給手段により供給するようになっている。 なお、永久磁石1の形状は適宜な曲面を有した曲面体形状になっていればよく、例えば図3(a)に示すように、まゆ型形状に形成することもよい。また、支持体2へ埋め込み設けた際に露出側が曲面体形状であればよいので、図3(b)に示すように、まゆ型形状のものを半割りして使用することもよい。 The magnetic polishing liquid contains nonmagnetic abrasive grains. Specifically, ferromagnetic particles having a particle diameter of 1 to 80 μm are dispersed in a dispersion medium such as water or kerosene having a kinematic viscosity of about 0.01 to 100 mm 2 / s. A composite in which spherical magnetite particles having a particle diameter of 10 to 50 nm are mixed with 5 to 90 wt% of a fluid in which water is uniformly dispersed in a dispersion medium such as water or kerosene having electrical insulation properties with respect to 10 to 95 wt% of the dispersed fluid. Non-fluid abrasive grains having a particle diameter of 0.01 to 100 μm are mixed in the fluid, and a fibrous substance such as α-cellulose or a resin such as polyvinyl alcohol is mixed as a thickener in an amount of 5 to 90 wt%. This magnetic polishing liquid is supplied by a supply means between the object to be polished and the polishing tool. The shape of the permanent magnet 1 may be a curved body shape having an appropriate curved surface. For example, as shown in FIG. Further, since the exposed side only needs to have a curved body shape when embedded in the support body 2, as shown in FIG.

駆動手段は、少なくともx軸,y軸,z軸について多軸制御の機能を有するものとし、当該駆動手段を起動することにより研磨バイトには3次元的に移動する運動動作を行わせる。駆動手段としては例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に研磨バイトの軸部3を取り付けし、着脱を行うようにする。   The driving means is assumed to have a multi-axis control function for at least the x-axis, y-axis, and z-axis, and when the driving means is activated, the polishing tool is caused to perform a three-dimensional movement motion. As the driving means, for example, an NC machine tool may be used, and the grinding tool shaft 3 is attached to a rotating shaft (chuck part) of a drilling machine, a lathe, an NC lathe, a milling machine, etc., and is attached or detached.

研磨バイトの3次元的な運動動作は、例えば図4(a),(b)に示すように、研磨対象4について等高線を順次に上昇していく動作とする。あるいは図5(a),(b)に示すように、研磨対象4について投影面をくまなく走査する動作とする。このとき、研磨バイトの周辺には磁気研磨液5を供給し、研磨バイトには当該軸方向において正逆反転する回転動作を行わせ、あるいは正逆移動する振動動作を行わせる。   The three-dimensional movement operation of the polishing tool is an operation in which the contour lines of the polishing object 4 are sequentially raised as shown in FIGS. 4 (a) and 4 (b), for example. Alternatively, as shown in FIGS. 5A and 5B, the projection surface of the object to be polished 4 is scanned all over. At this time, the magnetic polishing liquid 5 is supplied to the periphery of the polishing tool, and the polishing tool is caused to rotate in the forward and reverse directions in the axial direction, or to be vibrated to move forward and backward.

研磨バイトの3次元的な動作制御にはNC(Numerical Control)が有効であり、研磨対象の3次元形状データ(例えばIGESファイル)などがあれば汎用のCAD/CAMソフトを用い、研磨対象から一定の距離オフセットさせたNCコードに変換する。作成したNCプログラムからNC工作機を動作させ、研磨バイトを用いて磁気研磨を行う。   NC (Numerical Control) is effective for three-dimensional operation control of the polishing tool. If there is three-dimensional shape data (eg IGES file) to be polished, general-purpose CAD / CAM software can be used. It is converted into an NC code offset by a distance. An NC machine tool is operated from the created NC program, and magnetic polishing is performed using a polishing tool.

このように本発明では、研磨バイトには球体形状あるいは曲面体形状の永久磁石1を設け、これには駆動手段により所定の運動動作を行わせる。   As described above, in the present invention, the polishing tool is provided with the spherical or curved permanent magnet 1, and a predetermined moving operation is performed by the driving means.

研磨バイトと研磨対象4との間には磁気研磨液5が存在し、当該磁気研磨液5は非磁性の砥粒を含み、永久磁石1により磁気研磨液に時間的に定常的あるいは変動的な磁場が加わると磁気クラスタが生成する。すなわち、磁気研磨液中の強磁性粒子(例えば鉄粒子),マグネタイト粒子が、磁気吸引力により多数凝集して磁気クラス夕となる。磁気クラス夕は、磁束に沿うので研磨対象4に対立して針状に多数が立ち並び、これにより磁気研磨液中に存在する砥粒が研磨対象4の表面に抑えつけられる。このとき、研磨バイトと研磨対象4とは相対運動することから、砥粒は研磨対象4の表面上を接触しつつ運動して切削(研削)を行う。   A magnetic polishing liquid 5 exists between the polishing tool and the object 4 to be polished, and the magnetic polishing liquid 5 contains nonmagnetic abrasive grains. The permanent magnet 1 makes the magnetic polishing liquid constant or variable in time. When a magnetic field is applied, a magnetic cluster is generated. That is, a large number of ferromagnetic particles (eg, iron particles) and magnetite particles in the magnetic polishing liquid are aggregated by the magnetic attractive force to form a magnetic class. Since the magnetic class is along the magnetic flux, a large number of needles are arranged in opposition to the object 4 to be polished, so that the abrasive grains present in the magnetic polishing liquid are suppressed on the surface of the object 4 to be polished. At this time, since the polishing tool and the object 4 to be polished move relative to each other, the abrasive grains move and cut (grind) while contacting the surface of the object 4 to be polished.

ところで磁気研磨では、研磨バイトと研磨対象4との距離が一定であっても、永久磁石1における磁束分布には形状に応じて集中部位と非集中部位とがあり、その結果、研削作用の量に差が生じる。永久磁石1の角部分などは特に磁化等高線の密度が高く、磁束密度が高いことから、研削作用の量が顕著に変化する傾向にありムラを生じやすい。このことはモデル解析により確認しており、図6は、研磨バイトの永久磁石について解析モデルを示し、(a)は球体形状モデルの詳細を示す説明図、(b)は円柱形状モデルの詳細を示す説明図である。同図に示す条件により解析を行ったところ、球体形状モデルでは図7に示すように磁束分布は均一化しており、これに対して円柱形状モデルでは図8に示すように角部で磁束の集中が見られることを確認した。   By the way, in the magnetic polishing, even if the distance between the polishing tool and the object to be polished 4 is constant, the magnetic flux distribution in the permanent magnet 1 has a concentrated portion and a non-concentrated portion depending on the shape. There will be a difference. The corner portion of the permanent magnet 1 has a particularly high density of magnetic contour lines and a high magnetic flux density. Therefore, the amount of grinding action tends to change significantly, and unevenness tends to occur. This has been confirmed by model analysis. FIG. 6 shows an analysis model for the permanent magnet of the polishing tool, (a) is an explanatory diagram showing details of the spherical shape model, and (b) shows details of the cylindrical shape model. It is explanatory drawing shown. When the analysis is performed under the conditions shown in the figure, in the spherical shape model, the magnetic flux distribution is uniform as shown in FIG. 7, whereas in the cylindrical shape model, the magnetic flux is concentrated at the corners as shown in FIG. It was confirmed that is seen.

本発明にあっては、研磨バイトの永久磁石1は球体形状あるいは曲面体形状としているので、磁化等高線が過密になる場所が少なく、これは角部を有する円柱形状や角柱形状の永久磁石による磁束分布と比べて格段に少なくなる。このため、砥粒による研削作用を場所によらずに均一化させることができる。また、研磨バイトを3次元的に運動動作させることでは、研磨対象4の凹凸形状に対応させて研磨バイトを動かすことができ、表面の全域に対して研磨を適正に行える。その結果、研磨対象が凹凸を多数有した複雑形状体であっても、それら表面の凹凸に対して均一に研磨が行えて、適正な鏡面に仕上げることができる。もちろん、磁気クラスタによる研磨なので研磨対象4に大きな応力をかけることなく研磨が行える。   In the present invention, since the permanent magnet 1 of the polishing tool has a spherical shape or a curved surface shape, there are few places where the magnetization contour lines become overcrowded, and this is a magnetic flux generated by a cylindrical or prismatic permanent magnet having corners. Remarkably less than the distribution. For this reason, the grinding action by the abrasive grains can be made uniform regardless of the place. Further, by moving the polishing tool in a three-dimensional manner, the polishing tool can be moved in accordance with the concavo-convex shape of the object 4 to be polished, so that the entire surface can be properly polished. As a result, even if the object to be polished is a complex shape having a large number of irregularities, the irregularities on the surface can be uniformly polished and finished to an appropriate mirror surface. Of course, since the polishing is performed by the magnetic cluster, the polishing can be performed without applying a large stress to the polishing object 4.

第1の実施の形態)
図9(a),(b)は本発明の第1の実施の形態を示している。本形態において、研磨バイトは、上記の参考例と同様に先端に永久磁石1を設けて磁場の発生源とする構成を採るが、永久磁石1を支持した支持体2の内部へ第2永久磁石6を埋め込み状態に配置し、当該第2永久磁石6は永久磁石1と接触する所定位置に配置する構成にしている。
( First embodiment)
9 (a) and 9 (b) show a first embodiment of the present invention. In this embodiment, the polishing tool has a configuration in which the permanent magnet 1 is provided at the tip as the magnetic field generation source in the same manner as in the above reference example, but the second permanent magnet is provided inside the support 2 that supports the permanent magnet 1. 6 is arranged in an embedded state, and the second permanent magnet 6 is arranged at a predetermined position in contact with the permanent magnet 1.

この場合、第2永久磁石6は永久磁石1と接触する所定位置に配置するので、永久磁石1の磁化の向きは第2永久磁石6を埋め込む位置に対応して決まることになる。つまり、第2永久磁石6の埋め込みを図9(a)に示すように、回転軸sと同心とした場合は永久磁石1の磁化の向きを回転軸sと略一致となる関係に設定できる。また、第2永久磁石6の埋め込みを図9(b)に示すように、回転軸sに対して傾けた場合は永久磁石1の磁化の向きを回転軸sに対して所定の傾き角度となる関係に設定できる。   In this case, since the second permanent magnet 6 is disposed at a predetermined position in contact with the permanent magnet 1, the magnetization direction of the permanent magnet 1 is determined corresponding to the position where the second permanent magnet 6 is embedded. That is, when the embedding of the second permanent magnet 6 is concentric with the rotation axis s as shown in FIG. 9A, the magnetization direction of the permanent magnet 1 can be set to a relationship that is substantially coincident with the rotation axis s. Further, as shown in FIG. 9B, when the embedding of the second permanent magnet 6 is inclined with respect to the rotation axis s, the magnetization direction of the permanent magnet 1 becomes a predetermined inclination angle with respect to the rotation axis s. Can be set to relationship.

ところで、永久磁石1は形状を球体形状あるいは曲面体形状とするので、支持体2の端面に埋め込み設ける際は磁化の向きを設計仕様の向きへ正しく調整する必要がある。これには測定器を用いて磁場を測定することにより永久磁石1の姿勢(位置)を調整する方法や、あるいはジグとして用意した永久磁石を所定に向き合わせて永久磁石1の姿勢(位置)を調整する方法を採るなど、何れにしても磁化の向きの調整には多少の手間がかかる。   By the way, since the permanent magnet 1 has a spherical shape or a curved surface shape, when the permanent magnet 1 is embedded in the end surface of the support 2, it is necessary to correctly adjust the magnetization direction to the design specification. For this, a method of adjusting the attitude (position) of the permanent magnet 1 by measuring a magnetic field using a measuring instrument, or the attitude of the permanent magnet 1 by facing a predetermined permanent magnet prepared as a jig (position). In any case, adjustment of the direction of magnetization takes some effort, such as adopting an adjustment method.

そこで本形態にあっては、第2永久磁石6を永久磁石1と接触する所定位置に配置するので、永久磁石1の磁化の向きを調整することができる。第2永久磁石6の埋め込み位置は、支持体2に対して設計仕様に応じて予め所定に決定しており、したがって、支持体2の端面に永久磁石1を埋め込み設ける際は位置合わせの調整は特に必要なく、第2永久磁石6の埋め込み位置に対応して自動的に定まる。すなわち、第2永久磁石6を付設するので、永久磁石1については磁化の方向を正しく設定することができ、位置決めが容易に行える。   Therefore, in this embodiment, since the second permanent magnet 6 is disposed at a predetermined position in contact with the permanent magnet 1, the magnetization direction of the permanent magnet 1 can be adjusted. The embedding position of the second permanent magnet 6 is determined in advance for the support 2 according to the design specifications. Therefore, when the permanent magnet 1 is embedded in the end surface of the support 2, the alignment adjustment is performed. There is no particular need, and it is automatically determined according to the embedded position of the second permanent magnet 6. That is, since the second permanent magnet 6 is attached, the magnetization direction of the permanent magnet 1 can be set correctly and positioning can be performed easily.

第2の実施の形態)
図10から図12は本発明の第2の実施の形態を示している。本形態において、研磨バイトは、先端に永久磁石1を設けて磁場の発生源とする構成を採るが、永久磁石1を支持した支持体2は軸部3に対して横方向のゆれ動きを許容する柔軟性連結手段を介在させて連結する構成にしている。
( Second Embodiment)
10 to 12 show a second embodiment of the present invention. In this embodiment, the polishing tool has a configuration in which the permanent magnet 1 is provided at the tip to serve as a magnetic field generation source. However, the support 2 supporting the permanent magnet 1 is allowed to swing in the lateral direction with respect to the shaft portion 3. The flexible connecting means is used for connection.

柔軟性連結手段としては図10(a),(b)に示すように、支持体2の端部と軸部3の端部とに永久磁石7,7をそれぞれ埋め込み設け、それら両者の磁気的な吸引力により連結する構成を採ることができる。永久磁石7はネオジウムなどから形成することが好ましい。   As the flexible connecting means, as shown in FIGS. 10A and 10B, permanent magnets 7 and 7 are embedded in the end portion of the support 2 and the end portion of the shaft portion 3, respectively. It is possible to adopt a configuration in which connection is made by a simple suction force. The permanent magnet 7 is preferably formed from neodymium or the like.

また、柔軟性連結手段としては図11(a),(b)に示すように、棒状の弾性部材8を備え、当該弾性部材8を支持体2の端部と軸部3の端部とに埋め込み状態に渡すことにより連結する構成にすることもよい。あるいは図12(a),(b)に示すように、筒状の弾性部材9を備え、当該弾性部材9を支持体2の端部と軸部3の端部とに被せ渡すことにより連結する構成にすることもできる。弾性部材8,9は、例えばゴムあるいはコイル状スプリングから形成することが好ましい。   Further, as shown in FIGS. 11A and 11B, the flexible connecting means includes a rod-like elastic member 8, and the elastic member 8 is attached to the end of the support 2 and the end of the shaft portion 3. It is good also as a structure connected by passing to an embedding state. Alternatively, as shown in FIGS. 12A and 12B, a cylindrical elastic member 9 is provided, and the elastic member 9 is connected to the end portion of the support 2 and the end portion of the shaft portion 3. It can also be configured. The elastic members 8 and 9 are preferably formed of, for example, rubber or a coil spring.

ところで、この研磨バイトは流体研磨に使用することから、基本的には先端部位等へは外力は作用しないはずである。しかし、実際には流体研磨の際に何かのはずみで先端部位が研磨対象4へ接触してしまうことがあり、先端部位に対して外力が作用した際は損傷を起こすおそれがある。   By the way, since this polishing tool is used for fluid polishing, an external force should not basically act on the tip portion or the like. However, in actuality, the tip part may come into contact with the object to be polished 4 due to some chance during fluid polishing, and damage may occur when an external force acts on the tip part.

そこで本形態にあっては、支持体2と軸部3とは柔軟性連結手段を介在させて連結するので、先端部位へ外力が作用した際には、図10(b),図11(b),図12(b)に示すように、その先端側がゆれ動くことになり、各部の損傷を防ぐことができる。   Therefore, in the present embodiment, the support body 2 and the shaft portion 3 are connected by interposing a flexible connecting means. Therefore, when an external force is applied to the tip portion, FIG. 10 (b) and FIG. 11 (b) ), As shown in FIG. 12 (b), the tip end side thereof moves and can be prevented from being damaged.

図10(a),(b)に示すように、2つの永久磁石7を柔軟性連結手段とする構成では、先端部位へ外力が作用した際に、軸部3から支持体2が分離してしまうこともあるが、支持体2,軸部3は何れも損傷はないので、支持体2はそのまま軸部3に対して再度連結させればよい。2つの永久磁石7を柔軟性連結手段とする構成の場合、軸部3に対して支持体2の着脱が容易であり、例えば先端ビットとして、それぞれ永久磁石1の形状や磁化の向きが異なる複数の支持体2を用意しておき、それら支持体2(先端ビット)は研磨工程の要求に応じてワンタッチで容易に付け替えるといった磁気研磨が行える。   As shown in FIGS. 10A and 10B, in the configuration in which the two permanent magnets 7 are flexible connection means, when an external force is applied to the tip portion, the support 2 is separated from the shaft portion 3. However, since neither the support body 2 nor the shaft portion 3 is damaged, the support body 2 may be reconnected to the shaft portion 3 as it is. In the case of the configuration in which the two permanent magnets 7 are flexible connection means, the support 2 can be easily attached to and detached from the shaft portion 3. For example, as the tip bit, a plurality of shapes and magnetization directions of the permanent magnet 1 are different. The support 2 is prepared, and the support 2 (tip bit) can be subjected to magnetic polishing such that it can be easily replaced with one touch according to the demand of the polishing process.

図11,図12に示すように、弾性部材8,9を柔軟性連結手段とする構成では、先端部位へ外力が作用した際は弾性部材8,9がたわみ変形するので各部の損傷を防止でき、外力の作用がなくなるとともにたわみ変形がもとに戻るので、研磨バイトはそのまま自動で通常の使用が行える。   As shown in FIGS. 11 and 12, in the configuration in which the elastic members 8 and 9 are flexible connection means, the elastic members 8 and 9 are bent and deformed when an external force is applied to the distal end portion, so that each part can be prevented from being damaged. As the external force disappears and the deformation is restored, the polishing tool can be automatically used as it is.

図1に示す研磨バイトを用いて試料の研磨を行った。つまり、本発明の効果を実証するため、表1に示す所定の研磨条件において試料の研磨を行い、その試料について表面粗さを評価した。

Figure 0005025275
The sample was polished using the polishing tool shown in FIG. That is, in order to verify the effect of the present invention, the sample was polished under the predetermined polishing conditions shown in Table 1, and the surface roughness of the sample was evaluated.
Figure 0005025275

本発明に係る研磨バイトは、同時3軸自動制御が行える3軸研磨装置のチャック部へ装着し、研磨バイトに対して磁気研磨液(または磁気研磨ペースト)を馴染ませ、その磁気研磨液が遠心力で飛散しない回転速度(500rpm)により自転させる設定とし、この研磨バイトを試料から一定の距離(約1mm)オフセットした状態を保って研磨を行った。研磨バイトの運動動作は、試料について投影面をくまなく走査する動作とした。その結果、凹凸を多数有した試料であっても、均一に研磨が行えて適正な鏡面が得られることを確認した。   The polishing tool according to the present invention is attached to a chuck portion of a three-axis polishing apparatus capable of performing simultaneous three-axis automatic control, and a magnetic polishing liquid (or magnetic polishing paste) is acclimated to the polishing tool, and the magnetic polishing liquid is centrifuged. Polishing was performed while maintaining a state in which the polishing tool was offset by a certain distance (about 1 mm) from the sample, with the setting of rotating at a rotational speed (500 rpm) that was not scattered by force. The movement operation of the polishing tool was an operation of scanning the projection surface throughout the sample. As a result, it was confirmed that even a sample having many irregularities could be polished uniformly and an appropriate mirror surface could be obtained.

本発明に係る研磨バイトの参考例を示す側面図である。It is a side view which shows the reference example of the grinding | polishing tool based on this invention. 研磨バイトの永久磁石を説明する側面図であり、磁化の向きが回転軸と略一致(a),傾き(b)の2例を示している。It is a side view explaining the permanent magnet of the grinding tool, and shows two examples in which the direction of magnetization is substantially coincident with the rotation axis (a) and tilt (b). 永久磁石の他例(a),(b)による研磨バイトを示す側面図である。It is a side view which shows the grinding | polishing bite by other examples (a) and (b) of a permanent magnet. 研磨バイトの運動動作の一例を示す側面図(a)および平面図(b)説明図である。It is side view (a) and top view (b) explanatory drawing which show an example of the movement operation | movement of a grinding | polishing tool. 研磨バイトの運動動作の他例を示す側面図(a)および平面図(b)説明図である。It is side view (a) and top view (b) explanatory drawing which show the other example of the movement operation | movement of a grinding | polishing tool. 研磨バイトの永久磁石について解析モデルを示し、(a)は球体形状モデルの詳細を示す説明図、(b)は円柱形状モデルの詳細を示す説明図である。An analysis model is shown about the permanent magnet of a grinding tool, (a) is an explanatory view showing details of a spherical shape model, and (b) is an explanatory view showing details of a cylindrical shape model. 球体形状モデルの解析結果を示し、磁束分布のグラフ図である。It is a graph of magnetic flux distribution showing the analysis result of the sphere shape model. 円柱形状モデルの解析結果を示し、磁束分布のグラフ図である。It is a graph of magnetic flux distribution showing an analysis result of a cylindrical shape model. 本発明に係る研磨バイトの第1の実施の形態を示す側面図であり、磁化の向きが回転軸と略一致(a),傾き(b)の2例を示している。It is a side view which shows 1st Embodiment of the grinding | polishing byte | cutting_tool based on this invention, and has shown two examples with the direction of magnetization being substantially the same (a) and inclination (b) with a rotating shaft. 本発明に係る研磨バイトの第2の実施の形態を示す側面図であり、柔軟性連結手段の第1例(a)と、外力の作用時における動作(b)である。It is a side view which shows 2nd Embodiment of the grinding | polishing bite which concerns on this invention, and is the operation | movement (b) at the time of the 1st example (a) of a flexible connection means, and the effect | action of external force. 本発明に係る研磨バイトの第2の実施の形態を示す側面図であり、柔軟性連結手段の第2例(a)と、外力の作用時における動作(b)である。It is a side view which shows 2nd Embodiment of the grinding | polishing tool | tool according to this invention, and is the operation | movement (b) at the time of the 2nd example (a) of a flexible connection means, and the effect | action of external force. 本発明に係る研磨バイトの第2の実施の形態を示す側面図であり、柔軟性連結手段の第3例(a)と、外力の作用時における動作(b)である。It is a side view which shows 2nd Embodiment of the grinding | polishing cutting tool which concerns on this invention, and is the operation | movement (b) at the time of the action of the 3rd example (a) of a flexible connection means, and an external force.

符号の説明Explanation of symbols

1,7 永久磁石
2 支持体
3 軸部
4 研磨対象
5 磁気研磨液
6 第2永久磁石
8,9 弾性部材
s 回転軸
DESCRIPTION OF SYMBOLS 1,7 Permanent magnet 2 Support body 3 Shaft part 4 Polishing object 5 Magnetic polishing liquid 6 2nd permanent magnet 8, 9 Elastic member s Rotating shaft

Claims (8)

研磨対象に対して非接触の状態を保ち、周辺に存在させた磁気研磨液を連動することにより流体研磨を行う研磨バイトであって、
前記研磨バイトには磁場の発生源として永久磁石を設け、当該永久磁石の形状を球体形状あるいは適宜な曲面を有した曲面体形状とし、
前記永久磁石を支持した支持体の内部へ第2永久磁石を埋め込み状態に配置し、当該第2永久磁石は前記永久磁石と接触する所定位置に配置することを特徴とする研磨バイト。
A polishing tool that maintains a non-contact state with respect to the object to be polished and performs fluid polishing by interlocking with a magnetic polishing liquid existing in the periphery,
The polishing tool is provided with a permanent magnet as a magnetic field generation source, and the shape of the permanent magnet is a spherical shape or a curved body shape having an appropriate curved surface ,
A polishing tool , wherein a second permanent magnet is disposed in an embedded state within a support that supports the permanent magnet, and the second permanent magnet is disposed at a predetermined position in contact with the permanent magnet .
前記永久磁石は磁化の向きを、前記研磨バイトの回転軸に対して略一致または略平行とすることを特徴とする請求項1に記載の研磨バイト。   The polishing tool according to claim 1, wherein the permanent magnet has a magnetization direction substantially coincident or substantially parallel to a rotation axis of the polishing tool. 前記永久磁石は磁化の向きを、前記研磨バイトの回転軸に対して傾く設定とし、傾き角度は前記回転軸に対して90度以下のはさみ角とすることを特徴とする請求項1に記載の研磨バイト。   2. The permanent magnet according to claim 1, wherein the direction of magnetization of the permanent magnet is set to be inclined with respect to the rotation axis of the polishing tool, and the inclination angle is a scissor angle of 90 degrees or less with respect to the rotation axis. Polishing tool. 前記永久磁石は、磁化の向きを複数有した多極着磁の構成とすることを特徴とする請求項1に記載の研磨バイト。   2. The polishing tool according to claim 1, wherein the permanent magnet has a multipolar magnetization configuration having a plurality of magnetization directions. 前記永久磁石を支持した支持体は、前記研磨バイトの軸部に対して横方向のゆれ動きを許容する柔軟性連結手段を介在させて連結するものであり、
前記柔軟性連結手段は、前記支持体の端部と前記軸部の端部とに永久磁石をそれぞれ埋め込み設け、それら両者の磁気的な吸引力により連結する構成であることを特徴とする請求項1から4の何れかに記載の研磨バイト。
The support that supports the permanent magnet is connected via a flexible connecting means that allows lateral movement of the shaft of the polishing tool,
The flexible connecting means is configured such that a permanent magnet is embedded in an end portion of the support and an end portion of the shaft portion, and the both are connected by a magnetic attraction force of both. The polishing bit according to any one of 1 to 4.
前記永久磁石を支持した支持体は、前記研磨バイトの軸部に対して横方向のゆれ動きを許容する柔軟性連結手段を介在させて連結するものであり、
前記柔軟性連結手段は棒状の弾性部材を有し、当該弾性部材を前記支持体の端部と前記軸部の端部とに埋め込み状態に渡すことにより連結する構成であることを特徴とする請求項1から4の何れかに記載の研磨バイト。
The support that supports the permanent magnet is connected via a flexible connecting means that allows lateral movement of the shaft of the polishing tool,
The flexible connecting means includes a rod-like elastic member, and the elastic member is connected to the end portion of the support body and the end portion of the shaft portion by being embedded in an embedded state. Item 5. A polishing tool according to any one of Items 1 to 4.
前記永久磁石を支持した支持体は、前記研磨バイトの軸部に対して横方向のゆれ動きを許容する柔軟性連結手段を介在させて連結するものであり、
前記柔軟性連結手段は筒状の弾性部材を有し、当該弾性部材を前記支持体の端部と前記軸部の端部とに被せ渡すことにより連結する構成であることを特徴とする請求項1から4の何れかれに記載の研磨バイト。
The support that supports the permanent magnet is connected via a flexible connecting means that allows lateral movement of the shaft of the polishing tool,
The said flexible connection means has a cylindrical elastic member, It is the structure connected by covering the said elastic member to the edge part of the said support body, and the edge part of the said shaft part, It is characterized by the above-mentioned. The polishing bit according to any one of 1 to 4.
前記弾性部材が、ゴムあるいはコイル状スプリングであることを特徴とする請求項6あるいは7の何れかに記載の研磨バイト。   8. The polishing tool according to claim 6, wherein the elastic member is rubber or a coiled spring.
JP2007019565A 2006-04-28 2007-01-30 Polishing tool Expired - Fee Related JP5025275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019565A JP5025275B2 (en) 2006-04-28 2007-01-30 Polishing tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006125452 2006-04-28
JP2006125452 2006-04-28
JP2007019565A JP5025275B2 (en) 2006-04-28 2007-01-30 Polishing tool

Publications (2)

Publication Number Publication Date
JP2007313634A JP2007313634A (en) 2007-12-06
JP5025275B2 true JP5025275B2 (en) 2012-09-12

Family

ID=38847953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019565A Expired - Fee Related JP5025275B2 (en) 2006-04-28 2007-01-30 Polishing tool

Country Status (1)

Country Link
JP (1) JP5025275B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166199A (en) * 2008-01-18 2009-07-30 Fdk Corp Surface processing method using fine cutting action
JP5886596B2 (en) * 2011-10-28 2016-03-16 Fdk株式会社 Polishing tool and surface treatment apparatus using the same
CN115990817B (en) * 2023-02-16 2023-06-02 安徽羲禾航空科技有限公司 Screw blade tip coping equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201869A (en) * 1984-03-26 1985-10-12 インスチツ−ト,スベルフトベルドウイフ,マテリアロフ,アカデミ−,ナウク,ウクラインスコイ,エスエスエル Magnetism utilizing grinding machining device
JPS62113962U (en) * 1986-01-10 1987-07-20
JPH0441175A (en) * 1990-06-01 1992-02-12 Matsushita Electric Ind Co Ltd Micropolishing method and micropolishing tool
JPH04365553A (en) * 1991-06-11 1992-12-17 Daido Steel Co Ltd Head for magnetic polishing and automatic magnetic polishing device employing this head
JPH05162064A (en) * 1991-12-11 1993-06-29 Matsushita Electric Ind Co Ltd Microterritory polishing device
JPH05177535A (en) * 1992-01-09 1993-07-20 Toshiba Corp Method and device for polishing
JPH09314450A (en) * 1996-05-29 1997-12-09 Hitachi Ltd Machining equipment, machining method, and lens
JP2000141209A (en) * 1998-11-04 2000-05-23 Asahi Optical Co Ltd Polishing head and magnetic polishing device
JP2001246540A (en) * 2000-03-02 2001-09-11 Olympus Optical Co Ltd Grinding and polishing work device for lens
JP2003048144A (en) * 2001-08-08 2003-02-18 Olympus Optical Co Ltd Arm shaft mechanism of lens grinding machine
JP2005230973A (en) * 2004-02-19 2005-09-02 Seiko Epson Corp Polishing tool, polishing device and polishing method
JP2007098541A (en) * 2005-10-07 2007-04-19 Olympus Corp Polishing tool and polish method

Also Published As

Publication number Publication date
JP2007313634A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JPH0777704B2 (en) Micro polishing method
JP5025275B2 (en) Polishing tool
CN106271968A (en) A kind of magnetorheological elastic polished take turns, small-bore aspherical mirror machining device and method
JPH04336954A (en) Minute grinding method and minute grinding tool
JPS59161262A (en) Magnetic attraction type method for abrasion
CN107498446B (en) A kind of elastic polished equipment and method of special-shaped workpiece
JP2002263995A (en) Method and device for grinding spherical surface
KR101391810B1 (en) Polishing system using of mr fluid
WO2013130379A1 (en) System and method of magnetic abrasive surface processing
JP2006224227A (en) Magnetic polishing method
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2007021660A (en) Method of mirror-polishing complicated shape body, and mirror-polishing device
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JP6809310B2 (en) Control method of electromagnetic chuck device and electromagnetic chuck device
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP2006082213A (en) Method of cutting work and cutting work/mirror polishing device
CN102990500B (en) Magnetorheological polishing device with vertical shaft and tilting shaft with rotary table hung upside down
JP2011036974A (en) Polishing method and polishing device
JP2008264920A (en) Grinding tool, magnetic grinding method, and magnetic grinding device
JP5110678B2 (en) Magnetic polishing method
US20150034494A1 (en) Electro-chemically machining with a motor part including an electrode
JP2009166199A (en) Surface processing method using fine cutting action
WO2018003767A1 (en) Cushion pad and robot arm using same
JP5093474B2 (en) Object polishing method and object polishing apparatus
JP2016137553A (en) Polishing apparatus and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees