[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5025039B2 - Battery temperature control device - Google Patents

Battery temperature control device Download PDF

Info

Publication number
JP5025039B2
JP5025039B2 JP19271099A JP19271099A JP5025039B2 JP 5025039 B2 JP5025039 B2 JP 5025039B2 JP 19271099 A JP19271099 A JP 19271099A JP 19271099 A JP19271099 A JP 19271099A JP 5025039 B2 JP5025039 B2 JP 5025039B2
Authority
JP
Japan
Prior art keywords
battery
heat transfer
refrigerant
transfer plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19271099A
Other languages
Japanese (ja)
Other versions
JP2001023703A (en
Inventor
祐一 坂上
啓仁 松井
貞久 鬼丸
完 福田
逸作 山田
準 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP19271099A priority Critical patent/JP5025039B2/en
Publication of JP2001023703A publication Critical patent/JP2001023703A/en
Application granted granted Critical
Publication of JP5025039B2 publication Critical patent/JP5025039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はバッテリ温調装置に関する。
【0002】
【従来の技術】
近年、電気自動車やハイブリッド車が省エネ、環境への配慮などから注目されている。電気自動車やハイブリッド車はバッテリを多数搭載し動力源としているので、バッテリの性能は重要である。バッテリがその性能を十分に発揮し維持するにはバッテリを適正な温度に温調することが必要である。特に、バッテリが充電時や放電時に多くの熱を発生し高温になることがあるため、冷却を行うことが必要になる。
【0003】
バッテリの温調は、従来は自然空冷によっていたが十分ではなく、特開平7−6796号公報には、バッテリを格納するケースの底壁およびバッテリ間の仕切り壁を中空構造にして通風路を形成し、ここに冷媒配管を挿通するとともに、送風ファンにより空気流を形成して、バッテリを冷却するようにしたものが開示されている。
【0004】
【発明が解決しようとする課題】
しかし、上記特開平7−6796号公報の技術では、ケースの底壁や仕切り壁が中空構造であり、また、冷却能力を上げるのに、バッテリを囲む壁全体に冷媒配管を挿通し、また送風ファンを用いているから、構成が複雑で、大型化するのは否めない。
【0005】
本発明は上記実情に鑑みなされたもので、温調効率がよく、しかも簡単な構成でコンパクトなバッテリ温調装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の発明では、バッテリを冷却するバッテリ温調装置において、バッテリの保持を、バッテリを載置する第1の伝熱板と、該伝熱板に立設しバッテリの側面に密着する第2の伝熱板と、第1の伝熱板の下面に密着せしめた管路とを有するバッテリ保持フレームにより行う。かつ、断熱材で構成された密閉ケースにより、バッテリ保持フレームをバッテリを保持した状態で格納する。流通手段により、上記管路内に管壁を介して上記伝熱板と熱交換する熱輸送物質を流通せしめる。そして、上記バッテリ保持フレームを、上記第1の伝熱板の上面に上記第2の伝熱板を配置して両者が熱的に接続される構成とするとともに、上記バッテリと上記第2の伝熱板を交互に配置して積層し、上記バッテリの両側面に上記第2の伝熱板を密接させ
上記流通手段は、熱輸送物質である冷媒を高温高圧にするコンプレッサと、高温高圧冷媒を液化せしめるコンデンサと、液化冷媒を膨張せしめて温度を下げる膨張弁とを具備し、上記管路とともに冷凍サイクルを形成してなり、上記膨張弁の設置部を上記密閉ケース内に配するとともに、上記冷媒が流通する冷媒配管内の圧力を検出する圧力検出手段を、上記密閉ケース内に位置する冷媒配管に設置した。
【0007】
熱輸送物質は、管路の管壁、伝熱板を介してバッテリと熱交換し、バッテリを温調する。この時、バッテリから管路への伝熱は、熱伝導の悪い空気を介さずに伝熱板における伝導のみで行われる。しかもバッテリ保持フレームそのものが密閉ケースにより断熱されているから、ケース外雰囲気温度の影響を受けない。したがって、効率よくバッテリを温調することができる。
【0008】
また、第1の伝熱板の下面に密着した管路自身がバッテリ保持フレーム全体の強度を高めており、また、ケース壁内部に通風路や送風ファンを設けないので、全体構成を簡単にかつコンパクトにすることができる。
そして、冷凍サイクルによって得られる低温の冷媒によりバッテリから発生する多量の熱を効率よく除去することができる。また、密閉ケース内は、バッテリ冷却中は比較的低温になるので、膨張弁における熱的ロスを抑えることができる。さらに、外気が低温になっても密閉ケース内の温度は外気にくらべると比較的高い。したがって、密閉ケース内におかれた圧力検出手段の検出圧力から冷媒配管内の冷媒抜けの有無を適正に判断することができる。
【0011】
請求項記載の発明では、上記バッテリと上記第2の伝熱板の対向面を密着させる部材を配置した。
【0019】
【発明の実施の形態】
基本形態)
図1,図2に本発明の基本形態であり、車両用に適用したバッテリ温調装置の基本構成を示す。バッテリ温調装置はバッテリ1を温調するための冷凍サイクルを備えており、コンプレッサ21、コンデンサ22、レシーバ23、膨張弁24a、バッテリ保持フレームたるバッテリ冷却器3aを備え、これらはこの順に冷媒配管4により接続されている。
【0020】
コンプレッサ21はエンジン71によりベルト72駆動されて作動し、気化冷媒を圧縮し高温高圧にする。コンデンサ22は高温高圧冷媒の熱を車両前方から供給される外気に放熱し高温高圧冷媒を液化する。レシーバ23は気液分離するとともに余剰の液化冷媒を貯留する。膨張弁24aは液化冷媒を減圧し低温低圧にする。これらコンプレッサ21、コンデンサ22、レシーバ23、膨張弁24aは流通手段2を構成し、膨張弁24aからの低温低圧冷媒がバッテリ冷却器3aにおいてバッテリ1の冷却に供される。
【0021】
また、コンプレッサ21、コンデンサ22、レシーバ23は、車室73内を冷房するエアコンと兼用で、冷媒配管4は途中で分岐し、膨張弁24aおよびバッテリ冷却器3aと並列に別の膨張弁24bおよびエバポレータ3bが設けてある。
【0022】
また、冷媒配管4には2つの電磁弁5a,5bが設けられ、電磁弁5aはバッテリ冷却器3aへの冷媒の流れを許容または禁止し、電磁弁5bはエバポレータ3bへの冷媒の流れを許容または禁止する。電磁弁5a,5bは図略のECUにより制御され、電磁弁5a,5bの開閉切り換えにより、バッテリ冷却器3a、エバポレータ3bのいずれか一方または両方に低温低圧の液化冷媒が流通するようになっている。
【0024】
エバポレータ3bは車室73内に開口するダクト74内に設けてある。ダクト74には上流側に送風用のブロワファン75が設けられ、エバポレータ3bに放熱した空気を車室73内に供給するようになっている。ブロワファン75が取り込む空気はダンパ76の切り換えにより内気か外気かに選択される。
【0025】
バッテリ冷却器3aはバッテリ1を格納する密閉ケース6にバッテリ1とともに格納されている。ケースは蓋をしたとき密閉状態となる構成のもので、バッテリ冷却器3aへの冷媒の往復は、ケース6の外壁面に付設した冷媒配管4のジョイント部43を介して行われ、ジョイント部43から、バッテリ冷却器3aに冷媒を供給する往路配管41と、バッテリ冷却器3aから冷媒を回収する復路配管42とが伸び、ケース6壁を貫通している。ケース6は断熱材により構成してあり、密閉構造としたことと相まってケース6内の断熱性を高めている。
【0026】
バッテリ冷却器3aは2種類のアルミニウム製の部材31,32によりバッテリ1を保持する。第1の部材31はケース6の平面形状よりも一回り小さい長方形の板状部材で水平に設置される。第2の部材32は略部材31と等幅のもので、断面L字に加工されている。第2の部材32は複数用いられ、その第2の伝熱板である長辺部321が、第1の伝熱板である部材31の上面に、衝立状に間隔をおいて立設する。部材31と部材32とは、部材31の表面に部材32の短辺部322がロウ付けされて一体化している。以下、部材31は伝熱基板といい、部材32の長辺部321は伝熱フィンという。
【0027】
伝熱フィン321の形状および配置間隔はバッテリ1の形状に合わせてあり、相隣れる2枚の伝熱フィン321間に1つずつバッテリ1が配置され、バッテリ1の底面が部材32の短辺部322と当接し、バッテリ1の側面101が伝熱フィン321と当接する。これら伝熱フィン321とバッテリ1の外周を囲み2つのコ字状のステー34が設けてある。両ステー34の端部341はL字に屈曲し、それぞれ他方のステー34の端部341と互いに対向している。対向する1対の端部341にボルト35を挿通しボルト35とナット36とを螺結することにより、バッテリ1をバッテリ冷却器3aに固定するとともに、バッテリ1と伝熱フィン321との対向面同志を互いに密着せしめて伝熱性を高めている。なお、バッテリ1と伝熱フィン321との対向面には伝熱グリスを塗布し、さらに伝熱性を高めるのもよい。また、伝熱フィン321に絶縁コーティングを形成し、バッテリ1が複数箇所で液漏れを生じたとき、良電導性である伝熱フィン321を介して生じる短絡に対する耐性を高めるのもよい。
【0028】
伝熱基板31の下方には、6本のフィンチューブ331,332が配設してある。フィンチューブ331,332は断面が矩形の管状部材で、その上面が伝熱基板31の下面にロウ付けしてある。フィンチューブ331,332の内周面からは多数のフィンが突出し受熱面積を広げてある。なお、フィンチューブ331,332と伝熱基板31との密着が十分であれば、フィンチューブ331,332、伝熱基板31をそれぞれケース6に固定するのでもよい。フィンチューブ331,332は等間隔に伝熱フィン321を交叉する方向に互いに平行に取り回してあり、バッテリ1の下方に均等に配置される。相隣れるフィンチューブ331とフィンチューブ332とはそれぞれ一方の端部にてターンパイプ333により繋いであり、これらはロウ付けにより一体化している。これら2本のフィンチューブ331,332およびターンパイプ333を1組として1本のU字状の熱交換用の管路33が形成される。
【0029】
この3組の管路33はそれぞれ一端が共通の往路配管41と接続され、往路配管41を介して膨張弁24aに通じている。また、他端が共通の復路配管42と接続され、復路配管42を介してコンプレッサ21に通じている。すなわち、膨張弁24aからの低温低圧冷媒は、往路配管41から3つの管路33に分流し、再び復路配管42で合流するようになっている。
【0030】
本バッテリ温調装置の作動を説明する。バッテリ1を冷却するには電磁弁5aを「開」にして、冷媒がコンプレッサ21からコンデンサ22〜レシーバ23〜膨張弁24a〜バッテリ冷却器3aを経て再びコンプレッサ21に戻る冷媒回路を開く。これにより、バッテリ冷却器3aのフィンチューブ331,332内を低温低圧の液化冷媒が図2中、矢印にて示すように流通する。液化冷媒は、伝熱基板31、フィンチューブ331,332壁を介して、または、伝熱フィン321、伝熱基板31、フィンチューブ331,332壁を介してバッテリ1が発生する熱を受熱し、バッテリ1を冷却する。この時、バッテリ1からフィンチューブ331,332への伝熱は、伝熱フィン321、伝熱基板31における伝導のみで行われる。しかもバッテリ冷却器3aそのものがケース6により断熱され、さらにケース6とバッテリ冷却器3aとの間に空隙601を設けてケース6壁からバッテリ冷却器3aへの熱の移動を規制している。したがって、効率よくバッテリ1を冷却することができる。
【0031】
また、熱交換用の管路33をU字状に形成することで、隣接するフィンチューブ331とフィンチューブ332とで冷媒の流れ方向が逆になり、往路配管41に近い上流部と復路配管42に近い下流部とが近接し、往路配管41、復路配管42のいずれからも離れている中流部同志が近接する。冷媒は熱交換を行いながら管路33内を流れ、冷媒の熱交換能力は管路33の下流にいくにしたがって低下するので、往路配管41、復路配管42に近い部分での熱交換能力と、往路配管41、復路配管42から離れた部分での熱交換能力とが略等しくなる。これにより、いずれのバッテリ1においても均等に冷却をすることができ、冷却不足や過冷却を防止することができる。
【0032】
しかも、伝熱基板31の下面に密着した管路33自身が伝熱基板31に梁を入れるかたちで補強しバッテリ冷却器3a全体の強度を高めており、また、ケース壁を中空構造とせず送風ファンも設けないので、全体構成を簡単にかつコンパクトにすることができる。
【0033】
なお、バッテリ冷却器は、バッテリを載置する第1の伝熱板と、伝熱板に立設しバッテリの側面に密着する第2の伝熱板と、第1の伝熱板の下面に密着せしめた熱交換配管とを具備する構成であればよく、図3にバッテリ冷却器の変形例を示す。図中、図1の構成のものと同じ番号を付した部分は実質的に同じ作動をするので、図1の構成のものとの相違点を中心に説明する。部材37は長方形のアルミニウム板を断面コ字形に屈曲したもので、対向する2つの長辺部371を有しており、伝熱フィンである長辺部371および短辺部372で挟まれる空間はバッテリ1の形状に合わせてある。部材37は、長辺部371の対向間隔と同じ間隔で伝熱基板31の表面に配置し、短辺部372が伝熱基板31にロウ付けしてある。2つの長辺部371の間にバッテリ1が配設される。
【0034】
この構成のバッテリ冷却器は実質的に図1のものと同じ形状となるが、各伝熱部材37に2つずつ伝熱フィン371が形成されているから、部品数を約半分にすることができる。
【0035】
また、図1、図3に示したバッテリ冷却器は伝熱基板と伝熱フィンとを別体としているが、一体の構成としてもよい。図4にかかるバッテリ冷却器の例を示す。部材38は、第1の伝熱板たる底板381と天板382との間に、これらを結合して複数の第2の伝熱板たる縦壁383が形成されたもので、縦壁383は互いに平行に配置してある。この一体部材38は例えば断面梯子状の金型にて押出成形により一時に製作できる。構造が頑丈で部品数をさらに減じることができる。バッテリ1は底板381と天板382と縦壁383とで画成される空間に嵌設される。
【0036】
(実施形態)
図5に本発明の実施形態になるバッテリ温調装置の構成を示す。図中、図1と同じ番号を付した部分は実質的に基本形態と同じ作動をするので、基本形態との相違点を中心に説明する。膨張弁24aは冷媒配管4のケース6内取り回し部分に設置してある。また、冷媒配管4のケース6内取り回し部分には、また、冷媒配管4の、バッテリ冷却器3aの直下流位置に圧力センサ8が設けてあり、コンプレッサ21の始動前に、すなわちバッテリ1冷却開始前に、ECUにおいて圧力センサ8の検出信号から冷媒配管4内の圧力を測定し、圧力値が予め設定した下限値を下回っていれば冷媒抜けと判断するようになっている。
【0037】
冷媒は膨張弁24aにおいて低温低圧となったときに膨張弁24aの設置雰囲気から吸熱し熱的なロスを生じるが、このロスは膨張弁24aの設置雰囲気温度が高いほど大きい。本実施形態において膨張弁24aが置かれるケース6内は断熱されており、バッテリ1冷却中はケース6外温度よりも低い温度で推移するから、膨張弁24aにおける熱的ロスを小さく抑えることができる。
【0038】
また、圧力センサ8により得られた圧力値が下限値以下でも、極寒地等において外気が大きく低下した時、その温度によっては冷媒の飽和蒸気圧が大気圧以下になる場合があり、その場合は通常、冷媒抜けとは判断できない。本実施形態において圧力センサ8が置かれるケース6内は、断熱されており、またバッテリ1の発熱もあり、コンプレッサ21始動前はケース6外よりも比較的温度が高く、圧力センサ8により適正に冷媒抜けを検出することができる。
【0039】
なお、上記実施形態において冷凍サイクルはバッテリ専用としてもよい
【0040】
また、熱交換用の管路はU字状に形成しているが、要求される熱交換能力の均一性によっては、ストレート管の一端を往路配管に接続し他端を復路配管に接続してもよい。
【図面の簡単な説明】
【図1】 (A)は本発明の基本構成となるバッテリ温調装置の全体構成図であり、(B)は(A)におけるB矢視図である。
【図2】 基本構成のバッテリ温調装置を構成するバッテリ冷却器の下面図である。
【図3】 基本構成のバッテリ温調装置を構成するバッテリ冷却器の変形例を示す図である。
【図4】 基本構成のバッテリ温調装置を構成するバッテリ冷却器の別の変形例を示す図である。
【図5】 本発明のバッテリ温調装置の全体構成図である。
【符号の説明】
1 バッテリ
2 流通手段
21 コンプレッサ
22 コンデンサ
23 レシーバ
24a,24b 膨張弁
3a バッテリ冷却器(バッテリ保持フレーム)
31,381 伝熱基板(第1の伝熱板)
321,371,383 伝熱フィン(第2の伝熱板)
33 管路
331,332 フィンチューブ
333 ターンパイプ
3b エバポレータ
4 冷媒配管
5a,5b 電磁弁
6 ケース
8 圧力センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery temperature control device.
[0002]
[Prior art]
In recent years, electric vehicles and hybrid vehicles have attracted attention because of energy saving and environmental considerations. Since electric vehicles and hybrid vehicles use a large number of batteries as power sources, the performance of the batteries is important. In order for the battery to fully perform and maintain its performance, it is necessary to adjust the temperature of the battery to an appropriate temperature. In particular, the battery needs to be cooled because it generates a lot of heat during charging or discharging and may become hot.
[0003]
Conventionally, the temperature of the battery has been controlled by natural air cooling, but this is not sufficient. Japanese Patent Application Laid-Open No. 7-6796 discloses that the bottom wall of the case for storing the battery and the partition wall between the batteries have a hollow structure to form a ventilation path. In addition, there is disclosed an apparatus in which a refrigerant pipe is inserted here and an air flow is formed by a blower fan to cool the battery.
[0004]
[Problems to be solved by the invention]
However, in the technique disclosed in Japanese Patent Laid-Open No. 7-6796, the bottom wall and the partition wall of the case have a hollow structure, and in order to increase the cooling capacity, the refrigerant pipe is inserted through the entire wall surrounding the battery, Since a fan is used, the structure is complicated and it cannot be denied that the size is increased.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a compact battery temperature control device with high temperature control efficiency and a simple configuration.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the battery temperature control device that cools the battery, the battery is held in a first heat transfer plate on which the battery is placed, and the heat transfer plate is erected and is in close contact with the side surface of the battery. This is performed by a battery holding frame having a second heat transfer plate and a pipe line in close contact with the lower surface of the first heat transfer plate. In addition, the battery holding frame is stored in a state where the battery is held by a sealed case made of a heat insulating material. The heat transport material that exchanges heat with the heat transfer plate is circulated in the pipe line through the pipe wall by the distribution means. The battery holding frame has a configuration in which the second heat transfer plate is arranged on the upper surface of the first heat transfer plate so that both are thermally connected, and the battery and the second heat transfer plate are also connected. The heat plates are alternately arranged and stacked, and the second heat transfer plates are brought into close contact with both side surfaces of the battery ,
The distribution means includes a compressor that heats a refrigerant, which is a heat transport material, at a high temperature and a high pressure, a condenser that liquefies the high temperature and pressure refrigerant, and an expansion valve that expands the liquefied refrigerant and lowers the temperature. The pressure detecting means for detecting the pressure in the refrigerant pipe through which the refrigerant flows is provided in the refrigerant pipe located in the sealed case. Installed .
[0007]
The heat transport material exchanges heat with the battery via the pipe wall of the pipe line and the heat transfer plate, and controls the temperature of the battery. At this time, heat transfer from the battery to the pipe line is performed only by conduction in the heat transfer plate without passing through air having poor heat conduction. Moreover, since the battery holding frame itself is insulated by the sealed case, it is not affected by the ambient temperature outside the case. Therefore, the temperature of the battery can be controlled efficiently.
[0008]
In addition, the duct itself that is in close contact with the lower surface of the first heat transfer plate increases the strength of the entire battery holding frame, and there is no ventilation path or blower fan inside the case wall. It can be made compact.
A large amount of heat generated from the battery can be efficiently removed by the low-temperature refrigerant obtained by the refrigeration cycle. Further, since the inside of the sealed case becomes relatively low during battery cooling, thermal loss in the expansion valve can be suppressed. Furthermore, even if the outside air becomes cold, the temperature in the sealed case is relatively high compared to the outside air. Therefore, it is possible to appropriately determine the presence or absence of the refrigerant in the refrigerant pipe from the detected pressure of the pressure detecting means placed in the sealed case.
[0011]
In the invention according to claim 2, the member which makes the battery and the opposing surface of the 2nd heat exchanger plate contact is arranged.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
( Basic form)
Figure 1 is a basic embodiment of the present invention in FIG. 2, showing the basic structure of battery-temperature control apparatus applied to a vehicle. The battery temperature control device includes a refrigeration cycle for controlling the temperature of the battery 1, and includes a compressor 21, a condenser 22, a receiver 23, an expansion valve 24a, and a battery cooler 3a as a battery holding frame, which are arranged in this order as refrigerant piping. 4 are connected.
[0020]
The compressor 21 is driven by the belt 71 driven by the engine 71 and operates to compress the vaporized refrigerant to a high temperature and high pressure. The capacitor 22 dissipates the heat of the high-temperature high-pressure refrigerant to the outside air supplied from the front of the vehicle and liquefies the high-temperature high-pressure refrigerant. The receiver 23 separates gas and liquid and stores excess liquefied refrigerant. The expansion valve 24a reduces the pressure of the liquefied refrigerant to low temperature and low pressure. The compressor 21, the condenser 22, the receiver 23, and the expansion valve 24a constitute the circulation means 2, and the low-temperature and low-pressure refrigerant from the expansion valve 24a is used for cooling the battery 1 in the battery cooler 3a.
[0021]
Further, the compressor 21, the condenser 22, and the receiver 23 are also used as an air conditioner for cooling the interior of the passenger compartment 73, and the refrigerant pipe 4 branches in the middle, and another expansion valve 24b in parallel with the expansion valve 24a and the battery cooler 3a An evaporator 3b is provided.
[0022]
The refrigerant pipe 4 is provided with two electromagnetic valves 5a and 5b. The electromagnetic valve 5a permits or prohibits the flow of refrigerant to the battery cooler 3a, and the electromagnetic valve 5b allows the flow of refrigerant to the evaporator 3b. Or ban. The solenoid valves 5a and 5b are controlled by an unillustrated ECU, and low temperature and low pressure liquefied refrigerant flows through one or both of the battery cooler 3a and the evaporator 3b by switching between opening and closing of the solenoid valves 5a and 5b. Yes.
[0024]
The evaporator 3 b is provided in a duct 74 that opens into the passenger compartment 73. The duct 74 is provided with a blower fan 75 for blowing air on the upstream side, so that air radiated to the evaporator 3 b is supplied into the passenger compartment 73. The air taken in by the blower fan 75 is selected between inside air and outside air by switching the damper 76.
[0025]
The battery cooler 3 a is stored together with the battery 1 in a sealed case 6 that stores the battery 1. The case 6 is configured to be in a hermetically sealed state when covered, and the reciprocation of the refrigerant to the battery cooler 3a is performed via the joint portion 43 of the refrigerant pipe 4 attached to the outer wall surface of the case 6, and the joint portion 43, an outward piping 41 for supplying the refrigerant to the battery cooler 3a and a return piping 42 for recovering the refrigerant from the battery cooler 3a extend through the wall of the case 6. The case 6 is made of a heat insulating material, and in combination with the sealed structure, the heat insulating property in the case 6 is enhanced.
[0026]
The battery cooler 3a holds the battery 1 with two types of aluminum members 31 and 32. The first member 31 is a rectangular plate-like member that is slightly smaller than the planar shape of the case 6 and is installed horizontally. The second member 32 is substantially equal in width to the member 31 and is processed to have an L-shaped cross section. A plurality of second members 32 are used, and the long side portion 321 that is the second heat transfer plate is erected on the upper surface of the member 31 that is the first heat transfer plate at intervals in the form of a screen. The member 31 and the member 32 are integrated by brazing the short side portion 322 of the member 32 to the surface of the member 31. Hereinafter, the member 31 is referred to as a heat transfer substrate, and the long side portion 321 of the member 32 is referred to as a heat transfer fin.
[0027]
The shape and arrangement interval of the heat transfer fins 321 are matched to the shape of the battery 1, the batteries 1 are arranged one by one between two adjacent heat transfer fins 321, and the bottom surface of the battery 1 is the short side of the member 32. The side surface 101 of the battery 1 is in contact with the heat transfer fin 321. Two U-shaped stays 34 are provided surrounding the heat transfer fins 321 and the outer periphery of the battery 1. The ends 341 of both stays 34 are bent in an L shape, and are opposed to the ends 341 of the other stay 34, respectively. Bolts 35 are inserted into a pair of opposed end portions 341 and bolts 35 and nuts 36 are screwed together to fix the battery 1 to the battery cooler 3 a and to face the battery 1 and the heat transfer fins 321. The comrades are in close contact with each other to increase heat transfer. Note that heat transfer grease may be applied to the opposing surfaces of the battery 1 and the heat transfer fins 321 to further enhance the heat transfer property. Further, an insulating coating may be formed on the heat transfer fins 321 so that when the battery 1 leaks liquid at a plurality of locations, it is possible to enhance resistance to a short circuit that occurs through the heat transfer fins 321 having good conductivity.
[0028]
Below the heat transfer substrate 31, six fin tubes 331 and 332 are arranged. The fin tubes 331 and 332 are tubular members having a rectangular cross section, and their upper surfaces are brazed to the lower surface of the heat transfer substrate 31. A large number of fins protrude from the inner peripheral surfaces of the fin tubes 331 and 332 to widen the heat receiving area. If the close contact between the fin tubes 331 and 332 and the heat transfer substrate 31 is sufficient, the fin tubes 331 and 332 and the heat transfer substrate 31 may be fixed to the case 6 respectively. The fin tubes 331 and 332 are routed in parallel to each other in the direction of crossing the heat transfer fins 321 at equal intervals, and are equally disposed below the battery 1. The fin tube 331 and the fin tube 332 adjacent to each other are connected to each other by a turn pipe 333 at one end, and these are integrated by brazing. The two fin tubes 331 and 332 and the turn pipe 333 are combined to form one U-shaped heat exchange pipe line 33.
[0029]
One end of each of the three sets of pipes 33 is connected to a common forward pipe 41 and communicates with the expansion valve 24 a via the forward pipe 41. The other end is connected to a common return line 42 and communicates with the compressor 21 via the return line 42. That is, the low-temperature and low-pressure refrigerant from the expansion valve 24a is divided into three pipe lines 33 from the forward pipe 41 and is joined again by the return pipe 42.
[0030]
The operation of the battery temperature control device will be described. In order to cool the battery 1, the electromagnetic valve 5a is opened, and the refrigerant circuit from the compressor 21 through the condenser 22, the receiver 23, the expansion valve 24a, and the battery cooler 3a is returned to the compressor 21 again. Thereby, the low-temperature and low-pressure liquefied refrigerant flows through the fin tubes 331 and 332 of the battery cooler 3a as shown by arrows in FIG. The liquefied refrigerant receives heat generated by the battery 1 through the heat transfer substrate 31 and the fin tubes 331 and 332 walls or through the heat transfer fins 321, the heat transfer substrate 31 and the fin tubes 331 and 332 walls, The battery 1 is cooled. At this time, heat transfer from the battery 1 to the fin tubes 331 and 332 is performed only by conduction in the heat transfer fins 321 and the heat transfer substrate 31. Moreover, the battery cooler 3a itself is insulated by the case 6, and a gap 601 is provided between the case 6 and the battery cooler 3a to restrict the movement of heat from the wall of the case 6 to the battery cooler 3a. Therefore, the battery 1 can be efficiently cooled.
[0031]
Further, by forming the heat exchange pipe line 33 in a U shape, the refrigerant flow direction is reversed between the adjacent fin tube 331 and the fin tube 332, and the upstream part near the forward pipe 41 and the return pipe 42. Near the downstream part, and the midstream parts that are separated from both the outgoing pipe 41 and the return pipe 42 come close. Since the refrigerant flows through the pipe line 33 while performing heat exchange, and the heat exchange capacity of the refrigerant decreases as it goes downstream of the pipe line 33, the heat exchange capacity in a portion close to the forward pipe 41 and the backward pipe 42, The heat exchanging capacity in the part away from the forward piping 41 and the backward piping 42 is substantially equal. Thereby, in any battery 1, it can cool equally and can prevent insufficient cooling and overcooling.
[0032]
In addition, the duct 33 that is in close contact with the lower surface of the heat transfer board 31 reinforces the heat transfer board 31 with a beam to enhance the overall strength of the battery cooler 3a, and the case wall does not have a hollow structure and blows air. Since no fan is provided, the overall configuration can be made simple and compact.
[0033]
The battery cooler includes a first heat transfer plate on which the battery is placed, a second heat transfer plate that stands on the heat transfer plate and is in close contact with the side surface of the battery, and a lower surface of the first heat transfer plate. A configuration including a heat exchange pipe that is in close contact with each other is sufficient, and FIG. 3 shows a modification of the battery cooler. In the figure, the parts denoted by the same reference numerals as those in the configuration of FIG. 1 operate substantially in the same manner, and therefore, differences from the configuration of FIG. 1 will be mainly described. The member 37 is formed by bending a rectangular aluminum plate into a U-shaped cross section, has two long side portions 371 facing each other, and a space sandwiched between the long side portion 371 and the short side portion 372 that are heat transfer fins is The shape of the battery 1 is adjusted. The member 37 is disposed on the surface of the heat transfer substrate 31 at the same interval as the opposing interval of the long side portion 371, and the short side portion 372 is brazed to the heat transfer substrate 31. The battery 1 is disposed between the two long side portions 371.
[0034]
The battery cooler having this configuration has substantially the same shape as that of FIG. 1, but two heat transfer fins 371 are formed on each heat transfer member 37, so that the number of parts can be reduced to about half. it can.
[0035]
Moreover, although the battery cooler shown to FIG. 1, FIG. 3 makes the heat-transfer board | substrate and the heat-transfer fin separate, it is good also as an integral structure. The example of the battery cooler concerning FIG. 4 is shown. The member 38 is formed by connecting a bottom plate 381 as a first heat transfer plate and a top plate 382 to form a plurality of vertical walls 383 as second heat transfer plates. They are arranged parallel to each other. This integral member 38 can be manufactured at a time, for example, by extrusion molding using a mold having a ladder shape in section. The structure is sturdy and the number of parts can be further reduced. The battery 1 is fitted in a space defined by the bottom plate 381, the top plate 382, and the vertical wall 383.
[0036]
(Implementation form)
It shows the configuration of a battery temperature control apparatus according to the implementation embodiments of the present invention in FIG. In the figure, the portion denoted by the same numbers as in FIG. 1 is the same operation as substantially the basic embodiment will be described focusing on differences from the basic form. The expansion valve 24 a is installed in the portion of the refrigerant pipe 4 that is routed inside the case 6. In addition, a pressure sensor 8 is provided at a portion around the case 6 of the refrigerant pipe 4 at a position immediately downstream of the battery cooler 3a of the refrigerant pipe 4, and before the compressor 21 is started, that is, the battery 1 starts cooling. Before, the pressure in the refrigerant pipe 4 is measured from the detection signal of the pressure sensor 8 in the ECU, and if the pressure value is below a preset lower limit value, it is determined that the refrigerant is missing.
[0037]
When the refrigerant becomes low temperature and low pressure in the expansion valve 24a, the refrigerant absorbs heat from the installation atmosphere of the expansion valve 24a and causes a thermal loss. The loss is larger as the installation atmosphere temperature of the expansion valve 24a is higher. In the present embodiment, the inside of the case 6 in which the expansion valve 24a is placed is insulated, and the battery 1 is cooled at a temperature lower than the outside temperature of the case 6, so that the thermal loss in the expansion valve 24a can be kept small. .
[0038]
Further, even when the pressure value obtained by the pressure sensor 8 is lower than the lower limit value, when the outside air is greatly reduced in extremely cold regions, the saturated vapor pressure of the refrigerant may be lower than the atmospheric pressure depending on the temperature. Normally, it cannot be determined that the refrigerant is missing. In the present embodiment, the inside of the case 6 where the pressure sensor 8 is placed is insulated, and the battery 1 also generates heat. The temperature is relatively higher than the outside of the case 6 before the compressor 21 is started. It is possible to detect the missing refrigerant.
[0039]
Incidentally, the refrigeration cycle in the above you facilities embodiment may be batteries only.
[0040]
In addition, the heat exchange pipe is formed in a U-shape, but depending on the required uniformity of heat exchange capacity, one end of the straight pipe is connected to the forward pipe and the other end is connected to the return pipe. Also good.
[Brief description of the drawings]
FIG. 1A is an overall configuration diagram of a battery temperature control device as a basic configuration of the present invention, and FIG. 1B is a view as viewed from an arrow B in FIG.
FIG. 2 is a bottom view of a battery cooler constituting a battery temperature control device having a basic configuration .
FIG. 3 is a view showing a modification of the battery cooler constituting the battery temperature control device of the basic configuration .
FIG. 4 is a view showing another modified example of the battery cooler constituting the battery temperature control device of the basic configuration .
Figure 5 is an overall configuration diagram of a battery-temperature control device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 2 Distribution means 21 Compressor 22 Condenser 23 Receiver 24a, 24b Expansion valve 3a Battery cooler (battery holding frame)
31,381 Heat transfer substrate (first heat transfer plate)
321, 371, 383 Heat transfer fin (second heat transfer plate)
33 Pipe line 331, 332 Fin tube 333 Turn pipe 3b Evaporator 4 Refrigerant piping 5a, 5b Solenoid valve 6 Case 8 Pressure sensor

Claims (2)

バッテリを冷却するバッテリ温調装置において、バッテリを載置する第1の伝熱板と、該伝熱板に立設しバッテリの側面に密着する第2の伝熱板と、第1の伝熱板の下面に密着せしめた管路とを有するバッテリ保持フレームを具備し、かつ、断熱材で構成され、バッテリ保持フレームをバッテリを保持した状態で格納する密閉ケースと、上記管路内に管壁を介して上記伝熱板と熱交換する熱輸送物質を流通せしめる流通手段とを具備し、
上記バッテリ保持フレームを、上記第1の伝熱板の上面に上記第2の伝熱板を配置して両者が熱的に接続される構成とするとともに、上記バッテリと上記第2の伝熱板を交互に配置して積層し、上記バッテリの両側面に上記第2の伝熱板を密接させ
上記流通手段は、熱輸送物質である冷媒を高温高圧にするコンプレッサと、高温高圧冷媒を液化せしめるコンデンサと、液化冷媒を膨張せしめて温度を下げる膨張弁とを具備し、上記管路とともに冷凍サイクルを形成してなり、上記膨張弁の設置部を上記密閉ケース内に配するとともに、上記冷媒が流通する冷媒配管内の圧力を検出する圧力検出手段を、上記密閉ケース内に位置する冷媒配管に設置したことを特徴とするバッテリ温調装置。
In the battery temperature control device cool the battery, first and heat transfer plate for mounting the battery, and a second heat transfer plate in close contact with the side surface of the upright to the heat transfer plate battery, first A battery holding frame having a pipe line in close contact with the lower surface of the heat transfer plate and made of a heat insulating material and storing the battery holding frame in a state of holding the battery; A distribution means for distributing a heat transport material that exchanges heat with the heat transfer plate through a tube wall;
The battery holding frame has a configuration in which the second heat transfer plate is disposed on the upper surface of the first heat transfer plate so that both are thermally connected. The battery and the second heat transfer plate Alternately arranged and laminated, the second heat transfer plate is brought into close contact with both side surfaces of the battery ,
The distribution means includes a compressor that heats a refrigerant, which is a heat transport material, at a high temperature and a high pressure, a condenser that liquefies the high temperature and pressure refrigerant, and an expansion valve that expands the liquefied refrigerant and lowers the temperature. The pressure detecting means for detecting the pressure in the refrigerant pipe through which the refrigerant flows is provided in the refrigerant pipe located in the sealed case. A battery temperature control device characterized by being installed .
請求項1記載のバッテリ温調装置において、上記バッテリと上記第2の伝熱板の対向面を密着させる部材を配置したバッテリ温調装置。  The battery temperature control apparatus of Claim 1 WHEREIN: The battery temperature control apparatus which has arrange | positioned the member which closely_contact | adheres the opposing surface of the said battery and a said 2nd heat exchanger plate.
JP19271099A 1999-07-07 1999-07-07 Battery temperature control device Expired - Fee Related JP5025039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19271099A JP5025039B2 (en) 1999-07-07 1999-07-07 Battery temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19271099A JP5025039B2 (en) 1999-07-07 1999-07-07 Battery temperature control device

Publications (2)

Publication Number Publication Date
JP2001023703A JP2001023703A (en) 2001-01-26
JP5025039B2 true JP5025039B2 (en) 2012-09-12

Family

ID=16295778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19271099A Expired - Fee Related JP5025039B2 (en) 1999-07-07 1999-07-07 Battery temperature control device

Country Status (1)

Country Link
JP (1) JP5025039B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029980B2 (en) * 2001-04-17 2012-09-19 株式会社ヴァレオジャパン Battery cooling system
JP4361229B2 (en) 2001-07-04 2009-11-11 日産自動車株式会社 Battery system
KR100937903B1 (en) * 2005-11-03 2010-01-21 주식회사 엘지화학 Sealed heat exchange system of battery pack
KR101250277B1 (en) 2006-09-20 2013-04-08 한라공조주식회사 A battery temperature arranging apparatus of electric vehicle
JP2009212059A (en) * 2008-03-06 2009-09-17 Toshiba Corp Battery device of electric light vehicle
JP5252966B2 (en) * 2008-03-27 2013-07-31 三洋電機株式会社 Power supply for vehicle
JP2010040345A (en) * 2008-08-06 2010-02-18 Sanyo Electric Co Ltd Battery system
FR2961445B1 (en) * 2010-06-17 2012-08-10 Valeo Systemes Thermiques THERMAL CONDITIONING SYSTEM OF AN ELECTRIC VEHICLE
WO2012004926A1 (en) * 2010-07-09 2012-01-12 株式会社ヴァレオジャパン Battery cooling apparatus
WO2012055044A1 (en) 2010-10-29 2012-05-03 Dana Canada Corporation Heat exchanger and battery unit structure for cooling thermally conductive batteries
EP2650960B1 (en) * 2011-01-26 2020-01-01 LG Chem, Ltd. Cooling element having improved assembly productivity and battery modules including same
WO2012115351A2 (en) 2011-02-22 2012-08-30 주식회사 엘지화학 Cooling member having improved cooling efficiency, and battery module including same
JPWO2012133707A1 (en) * 2011-03-31 2014-07-28 三洋電機株式会社 Power supply device and vehicle equipped with power supply device
JP5644648B2 (en) 2011-04-18 2014-12-24 株式会社デンソー Battery temperature control device
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9105950B2 (en) * 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9083066B2 (en) * 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
CA2898312C (en) * 2013-03-14 2021-10-26 Allison Transmission, Inc. System and method for thermally robust energy storage system
JP6213122B2 (en) * 2013-10-07 2017-10-18 株式会社デンソー Battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
JP6607137B2 (en) * 2016-04-21 2019-11-20 株式会社デンソー Power storage device
CN107196018B (en) * 2017-06-05 2019-05-03 海南路豪网络科技有限公司 A kind of new energy car battery case with high-efficient radiating function
JP2019040717A (en) * 2017-08-24 2019-03-14 株式会社デンソー Battery cooler
CN109037839B (en) * 2018-07-26 2020-09-15 宁波里尔汽车技术有限公司 Temperature regulating system for storage battery pack of electric automobile
CN109192890B (en) * 2018-08-10 2021-08-31 浙江康迪智能换电科技有限公司 A battery box for an electric vehicle
JP7339065B2 (en) * 2019-08-21 2023-09-05 マツダ株式会社 vehicle battery pack
JP7293979B2 (en) * 2019-08-21 2023-06-20 マツダ株式会社 vehicle battery pack
WO2021256365A1 (en) * 2020-06-16 2021-12-23 株式会社ヴァレオジャパン Battery cooling device
JP7375699B2 (en) * 2020-07-20 2023-11-08 株式会社豊田自動織機 Cooling device for electrical equipment
JP7447726B2 (en) * 2020-07-30 2024-03-12 トヨタ自動車株式会社 Power storage device
CN112864495A (en) * 2021-02-08 2021-05-28 云南电网有限责任公司丽江供电局 Multipurpose pipeline structure of battery energy storage system
CN114267907B (en) * 2021-12-24 2023-10-13 华北电力大学 A thermal safety management system, control method and application for battery energy storage
CN115020863B (en) * 2022-07-18 2022-11-01 山东奥鑫新能源车业股份有限公司 Automatic temperature control storage battery module based on electric vehicle
CN115621650B (en) * 2022-12-02 2023-03-14 北京艺玺科技有限公司 Solid-state battery module safety protection structure
CN117578001B (en) * 2024-01-17 2024-04-02 江苏智泰新能源科技有限公司 Heat management adjusting system and adjusting method for battery replacement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254153A (en) * 1991-02-05 1992-09-09 Nippondenso Co Ltd Refrigerating plant
JPH0740732A (en) * 1993-07-28 1995-02-10 Nippondenso Co Ltd Air-conditioner
JP3235808B2 (en) * 1993-12-27 2001-12-04 本田技研工業株式会社 Temperature control method for battery of electric vehicle and battery box
JPH09130917A (en) * 1995-10-31 1997-05-16 Suzuki Motor Corp Temperature control device of hybrid automobile
JPH1116610A (en) * 1997-06-23 1999-01-22 Yuasa Corp Storage battery
JPH1140191A (en) * 1997-07-24 1999-02-12 Tokyo Electric Power Co Inc:The Battery module for power storage

Also Published As

Publication number Publication date
JP2001023703A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP5025039B2 (en) Battery temperature control device
JP6724888B2 (en) Equipment temperature controller
JP6879122B2 (en) Battery temperature controller
US20080148755A1 (en) Cooling apparatus for on-vehicle electronic device
JPWO2016133145A1 (en) Battery temperature control device and battery temperature control system
WO2018235473A1 (en) Terminal cooling device
KR20120133737A (en) Cooling systems for electric vehicles
JP2014091463A (en) Battery support structure of vehicle
JP2004069228A (en) Heat exchanger
JPH09310935A (en) Heat exchanger
JP7099144B2 (en) Thermosiphon type temperature controller
KR20120067406A (en) Cold reserving heat exchanger
CN220021275U (en) Cooling plate, power battery assembly, thermal management system and electricity utilization device
JP2005164231A (en) Heat exchanger device
KR20110100002A (en) Dual evaporator with phase change material
JP2009024884A (en) Refrigeration cycle equipment and cold storage
WO2019097913A1 (en) Machine temperature adjustment device
CN218154529U (en) Outdoor unit and multi-connected heat pump air conditioning unit
JP3152175B2 (en) Refrigeration container
US20240270053A1 (en) Thermal energy module for vehicle
JPH04203891A (en) Heat exchanger for both cooling and heating
JP7313857B2 (en) Finned-tube heat exchanger and transportation refrigeration equipment equipped with the same
JPH1151544A (en) Freezing container
JP2010007986A (en) Cooling device
KR100643243B1 (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110613

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees