[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5018670B2 - Single crystal growth method - Google Patents

Single crystal growth method Download PDF

Info

Publication number
JP5018670B2
JP5018670B2 JP2008173054A JP2008173054A JP5018670B2 JP 5018670 B2 JP5018670 B2 JP 5018670B2 JP 2008173054 A JP2008173054 A JP 2008173054A JP 2008173054 A JP2008173054 A JP 2008173054A JP 5018670 B2 JP5018670 B2 JP 5018670B2
Authority
JP
Japan
Prior art keywords
single crystal
crucible
melt
pulling
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008173054A
Other languages
Japanese (ja)
Other versions
JP2010013303A (en
Inventor
伸光 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008173054A priority Critical patent/JP5018670B2/en
Publication of JP2010013303A publication Critical patent/JP2010013303A/en
Application granted granted Critical
Publication of JP5018670B2 publication Critical patent/JP5018670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン等の半導体原料の単結晶をチョクラルスキー法(以下、CZ法という)により引上げて育成する方法に関するものである。   The present invention relates to a method for pulling and growing a single crystal of a semiconductor raw material such as silicon by the Czochralski method (hereinafter referred to as CZ method).

従来、この種の単結晶の育成方法として、単結晶の原料融液を充填するるつぼと、この融液表面に種結晶を接触させて単結晶を成長させる引上げ手段と、単結晶の引上げ域の周囲を囲繞して輻射熱の遮蔽とともに不活性ガス流れを整える整流治具とを具備する装置を用いて、単結晶を引上げる方法が開示されている(例えば、特許文献1参照。)。この単結晶の引上げ方法では、るつぼ内の融液表面に種結晶を接触させ、ネック部を形成する際に、整流治具の下端と融液表面とのギャップ(距離(1))を30〜130mmに設定して単結晶のネック部を直径6〜15mmで形成し、結晶を無転位化した後、整流治具の下端と融液表面とのギャップ(距離(2))を15〜30mmに変更し、そののち単結晶のショルダーを形成し、次いでボディ部を育成する。この単結晶の引上げ方法では、ネック部の形成段階で増大したギャップ(距離(1))を用いて、単結晶の無転位化と落下防止が図れるネック部を形成し、ショルダ部及びボディ部の引上げに移行すると、採用するギャップ(距離(2))を選択することによって、種々の育成条件を選択できる。この結果、大重量の単結晶を引上げる場合であっても、引上げ過程においてギャップを変更することによって、単結晶を無転位に育成するとともに、落下事故を発生することなく安全に引上げられるようになっている。
特許第3698080号公報(請求項1、段落[0021]、段落[0044])
Conventionally, as a method for growing this type of single crystal, a crucible filled with a raw material melt of the single crystal, a pulling means for growing the single crystal by bringing the seed crystal into contact with the surface of the melt, and a pulling region of the single crystal A method of pulling a single crystal is disclosed using an apparatus that includes a rectifying jig that surrounds the periphery and shields radiant heat and regulates the flow of an inert gas (see, for example, Patent Document 1). In this single crystal pulling method, when the seed crystal is brought into contact with the melt surface in the crucible and the neck portion is formed, the gap (distance (1)) between the lower end of the rectifying jig and the melt surface is set to 30 to 30. After setting the neck portion of the single crystal to a diameter of 6 to 15 mm and making the crystal dislocation-free, the gap (distance (2)) between the lower end of the rectifying jig and the melt surface is set to 15 to 30 mm. After that, a single crystal shoulder is formed, and then the body part is grown. In this single crystal pulling method, a gap (distance (1)) increased in the stage of forming the neck is used to form a neck that can prevent the dislocation of the single crystal and prevent the fall of the single crystal. When shifting to pulling, various growth conditions can be selected by selecting a gap to be adopted (distance (2)). As a result, even when pulling a heavy single crystal, by changing the gap in the pulling process, the single crystal can be grown without dislocation and can be safely pulled without causing a fall accident. It has become.
Japanese Patent No. 3698080 (Claim 1, paragraph [0021], paragraph [0044])

しかし、上記従来の特許文献1に示された単結晶の引上げ方法では、種結晶の融液への浸漬前にギャップを大きくしているけれども、ネック部の成長時にギャップを小さくしているため、ネック部が長くなり、チャンバが長大化するか或いは単結晶の引上げ長さが制限されてしまう問題点があった。
本発明の目的は、ネック部が長くなるのを阻止することにより、チャンバが長大化するのを防止でき、また単結晶の引上げ長さが制限されるのを防止できる、単結晶の育成方法を提供することにある。
However, in the pulling method of the single crystal shown in the above-mentioned conventional Patent Document 1, although the gap is increased before the seed crystal is immersed in the melt, the gap is reduced during the growth of the neck portion. There is a problem that the neck becomes long and the chamber becomes long or the pulling length of the single crystal is limited.
An object of the present invention is to provide a method for growing a single crystal, which can prevent the chamber from becoming long by preventing the neck portion from becoming long, and can prevent the pulling length of the single crystal from being limited. It is to provide.

請求項1に係る発明は、チャンバに収容されたるつぼに融液を貯留し、この融液に種結晶を浸漬して引上げることにより単結晶を成長させ、更に融液表面より上方に設けられた熱遮蔽体が成長中の単結晶外周面を包囲してヒータによる単結晶外周面への輻射熱の照射を遮るシリコン単結晶の育成方法の改良である。その特徴ある構成は、融液表面と熱遮蔽体下端とのギャップが50mm〜200mmになるようにるつぼを下降させるか或いは熱遮蔽体を上昇させた後に、融液表面に種結晶を浸漬して単結晶のネック部を成長させ、融液表面から単結晶の肩部を成長させている間に、ギャップが15mm〜100mmになるようにるつぼを上昇させるか或いは熱遮蔽体を下降させるところにある。
請求項2に係る発明は、請求項1に係る発明であって、熱遮蔽体をチャンバに固定しかつるつぼの昇降により融液表面と熱遮蔽体下端とのギャップを調整し、単結晶の肩部の成長時に、るつぼを種結晶の引上げ速度より遅い速度で上昇させることにより、融液表面を熱遮蔽体下端に近付けることを特徴とする。
According to the first aspect of the present invention, the melt is stored in a crucible housed in a chamber, a seed crystal is immersed in the melt and pulled up to grow a single crystal, and further provided above the melt surface. This is an improvement of the method for growing a silicon single crystal in which the thermal shield surrounds the outer peripheral surface of the growing single crystal and shields the irradiation of the radiant heat to the outer peripheral surface of the single crystal by the heater. The characteristic configuration is that the crucible is lowered or the heat shield is raised so that the gap between the melt surface and the lower end of the heat shield is 50 mm to 200 mm, and then the seed crystal is immersed in the melt surface. While growing the neck of the single crystal and growing the shoulder of the single crystal from the melt surface, the crucible is raised or the heat shield is lowered so that the gap is 15 mm to 100 mm. .
The invention according to claim 2 is the invention according to claim 1, wherein the thermal shield is fixed to the chamber, and the gap between the melt surface and the lower end of the thermal shield is adjusted by raising and lowering the crucible, so that the shoulder of the single crystal During the growth of the part, the crucible is raised at a speed slower than the pulling speed of the seed crystal to bring the melt surface closer to the lower end of the heat shield.

請求項1に係る発明では、ネック部の成長時にギャップを小さくしているため、ネック部が長くなり、チャンバが長大化するか或いは単結晶の引上げ長さが制限されてしまう問題点があった従来の単結晶の引上げ方法と比較して、本発明では、肩部の成長時にギャップを小さくするので、ネック部が長くなるのを阻止することができる。この結果、本発明では、チャンバが長大化するのを防止でき、また単結晶の引上げ長さが制限されるのを防止できる。   In the invention according to claim 1, since the gap is made small at the time of growing the neck portion, there is a problem that the neck portion becomes long and the chamber becomes long or the pulling length of the single crystal is limited. Compared with the conventional pulling method of the single crystal, in the present invention, since the gap is reduced during the growth of the shoulder portion, it is possible to prevent the neck portion from becoming long. As a result, in the present invention, it is possible to prevent the chamber from becoming long, and to prevent the pulling length of the single crystal from being limited.

次に本発明を実施するための最良の形態を図面に基づいて説明する。図1に示すように、シリコン単結晶11の育成装置10は、内部の圧力を調整可能な水冷式のチャンバ12と、このチャンバ12内に設けられたるつぼ13とを備える。チャンバ12は、大径の有底円筒状のメインチャンバ12aと、メインチャンバ12aの上端に接続された小径の円筒状のプルチャンバ12bとを有し、るつぼ13はメインチャンバ12aに収容される。またるつぼ13は、石英により形成されシリコン融液14が貯留される有底円筒状の内層容器13aと、黒鉛により形成され上記内層容器13aの外側に嵌合された有底円筒状の外層容器13bとからなる。外層容器13bの底面にはシャフト16の上端が接続され、このシャフト16の下部にはシャフト16を介してるつぼ13を回転させかつ昇降させるるつぼ駆動手段17が設けられる。更にるつぼ13の外周面は抵抗加熱式の円筒状のヒータ18により所定の間隔をあけて包囲され、このヒータ18の外周面は円筒状の保温筒19により所定の間隔をあけて包囲される。なお、この実施の形態では、融液としてシリコン融液を挙げ、単結晶としてシリコン単結晶を挙げたが、GaAs融液及びGaAs単結晶,InP融液及びInP単結晶,ZnS融液及びZnS単結晶、或いはZnSe融液及びZnSe単結晶でもよい。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the growth apparatus 10 for a silicon single crystal 11 includes a water-cooled chamber 12 capable of adjusting the internal pressure, and a crucible 13 provided in the chamber 12. The chamber 12 has a large-diameter bottomed cylindrical main chamber 12a and a small-diameter cylindrical pull chamber 12b connected to the upper end of the main chamber 12a, and the crucible 13 is accommodated in the main chamber 12a. The crucible 13 includes a bottomed cylindrical inner layer container 13a formed of quartz and storing the silicon melt 14, and a bottomed cylindrical outer layer container 13b formed of graphite and fitted to the outside of the inner layer container 13a. It consists of. The upper end of the shaft 16 is connected to the bottom surface of the outer layer container 13b, and a crucible driving means 17 for rotating and raising / lowering the crucible 13 through the shaft 16 is provided at the lower portion of the shaft 16. Further, the outer peripheral surface of the crucible 13 is surrounded by a resistance heating type cylindrical heater 18 at a predetermined interval, and the outer peripheral surface of the heater 18 is surrounded by a cylindrical heat insulating cylinder 19 at a predetermined interval. In this embodiment, a silicon melt is used as the melt, and a silicon single crystal is used as the single crystal. However, a GaAs melt and a GaAs single crystal, an InP melt and an InP single crystal, a ZnS melt and a ZnS single crystal are used. A crystal, or a ZnSe melt and a ZnSe single crystal may be used.

一方、プルチャンバ12bの上端にはシード引上げ手段21が設けられ、このシード引上げ手段21は下端がるつぼ13内のシリコン融液14表面に達する引上げ軸21aを昇降させるように構成される。また上記引上げ軸21aはシード引上げ手段21とともにシード回転手段(図示せず)により引上げ軸21aの軸線を中心として回転するように構成される。更に引上げ軸21aの下端にはシードチャック22が設けられ、このチャック22は種結晶23を把持するように構成される。なお、上記引上げ軸21aはワイヤ或いは引上げ棒等により構成される。メインチャンバ12a内にはアルゴンガスのみからなる不活性ガスを流通される。不活性ガスはプルチャンバ12bの側壁に接続されたガス供給パイプ(図示せず)を通ってプルチャンバ12b内に導入され、メインチャンバ12aの下壁に接続されたガス排出パイプ(図示せず)を通ってメインチャンバ12a外に排出されるように構成される。メインチャンバ12a内には、シリコン単結晶11外周面へのヒータ18の輻射熱の照射を遮るとともに、上記不活性ガスを整流するための熱遮蔽体24が設けられる。この熱遮蔽体24は、下方に向うに従って直径が次第に小さくなりかつシリコン融液14から引上げられるシリコン単結晶11の外周面をこの外周面から所定の間隔をあけて包囲する円錐台状の筒体24aと、この筒体24aの上縁に連設され外方に略水平方向に張り出すフランジ部24bとを有する。また熱遮蔽体24は、フランジ部24bを保温筒19上にリング板24cを介して載置することにより、筒体24aの下縁がシリコン融液14表面から所定のギャップGをあけて上方に位置するようにメインチャンバ12a内に固定される。このギャップGはるつぼ駆動手段17によりるつぼ13を昇降させることにより調整される。なお、上記ギャップは、るつぼの昇降ではなく、熱遮蔽体の昇降により調整されるように構成してもよい。この場合、熱遮蔽体は熱遮蔽体駆動手段により昇降されるように構成される。   On the other hand, a seed pulling means 21 is provided at the upper end of the pull chamber 12b. The seed pulling means 21 is configured to move up and down a pulling shaft 21a whose lower end reaches the surface of the silicon melt 14 in the crucible 13. The pulling shaft 21a is configured to rotate around the axis of the pulling shaft 21a by a seed rotating means (not shown) together with the seed pulling means 21. Further, a seed chuck 22 is provided at the lower end of the pulling shaft 21a, and this chuck 22 is configured to hold the seed crystal 23. The pulling shaft 21a is constituted by a wire or a pulling rod. An inert gas consisting only of argon gas is circulated in the main chamber 12a. The inert gas is introduced into the pull chamber 12b through a gas supply pipe (not shown) connected to the side wall of the pull chamber 12b, and passes through a gas discharge pipe (not shown) connected to the lower wall of the main chamber 12a. And is configured to be discharged out of the main chamber 12a. A heat shield 24 is provided in the main chamber 12a to block the irradiation of the radiant heat of the heater 18 to the outer peripheral surface of the silicon single crystal 11 and to rectify the inert gas. The heat shield 24 has a truncated cone-shaped cylinder that gradually decreases in diameter as it goes downward and surrounds the outer peripheral surface of the silicon single crystal 11 pulled up from the silicon melt 14 at a predetermined interval from the outer peripheral surface. 24a and a flange portion 24b that is connected to the upper edge of the cylindrical body 24a and projects outward in a substantially horizontal direction. Further, the heat shield 24 is configured such that the flange 24b is placed on the heat retaining cylinder 19 via the ring plate 24c so that the lower edge of the cylinder 24a is spaced upward from the surface of the silicon melt 14 with a predetermined gap G. It is fixed in the main chamber 12a so as to be positioned. This gap G is adjusted by raising and lowering the crucible 13 by the crucible driving means 17. The gap may be adjusted not by raising or lowering the crucible but by raising and lowering the heat shield. In this case, the heat shield is configured to be raised and lowered by the heat shield driving means.

メインチャンバ12aの上部外面には、シリコン融液14と種結晶23との境界部、シリコン融液14とネック部11aとの境界部、シリコン融液14と肩部11bとの境界部、或いはシリコン融液14と直胴部との境界部である固液界面を臨むように2次元CCDカメラ26が設置される。この2次元CCDカメラ26は、種結晶23のシリコン融液14への浸漬時や、シリコン融液14からのネック部11a、肩部11b、直胴部及びテール部の引上げ時における固液界面の高さを撮影するように構成される。ここで、2次元CCDカメラ26とは、半導体基板上に酸化膜を介して金属膜の電極を並べて作製したコンデンサに、光により生じた信号電荷を蓄積して、画像処理手段27からの駆動パルスにより一方向に順次転送させ、電気信号である画像信号を得るカメラである。上記2次元CCDカメラ26の撮影した2次元の画像は画像処理手段27により処理される。2次元CCDカメラ26の検出出力は画像処理手段27のカメラ制御入力に接続され、画像処理手段27のカメラ制御出力は2次元CCDカメラ26の制御入力に接続される。また画像処理手段27の制御入出力はコントローラ28の制御入出力に接続され、コントローラ28の制御出力はヒータ18、シード引上げ手段21、シード回転手段及びるつぼ駆動手段17に接続される。   The upper outer surface of the main chamber 12a has a boundary between the silicon melt 14 and the seed crystal 23, a boundary between the silicon melt 14 and the neck 11a, a boundary between the silicon melt 14 and the shoulder 11b, or silicon. A two-dimensional CCD camera 26 is installed so as to face a solid-liquid interface that is a boundary portion between the melt 14 and the straight body portion. The two-dimensional CCD camera 26 has a solid-liquid interface when the seed crystal 23 is immersed in the silicon melt 14 or when the neck portion 11a, the shoulder portion 11b, the straight body portion, and the tail portion are pulled up from the silicon melt 14. Configured to shoot height. Here, the two-dimensional CCD camera 26 accumulates signal charges generated by light in a capacitor formed by arranging electrodes of a metal film on a semiconductor substrate via an oxide film, and a drive pulse from the image processing means 27. The camera obtains an image signal that is an electric signal by sequentially transferring the image signal in one direction. The two-dimensional image taken by the two-dimensional CCD camera 26 is processed by the image processing means 27. The detection output of the two-dimensional CCD camera 26 is connected to the camera control input of the image processing means 27, and the camera control output of the image processing means 27 is connected to the control input of the two-dimensional CCD camera 26. The control input / output of the image processing means 27 is connected to the control input / output of the controller 28, and the control output of the controller 28 is connected to the heater 18, the seed pulling means 21, the seed rotating means and the crucible driving means 17.

このように構成された育成装置10を用いてシリコン単結晶11を育成する方法を説明する。先ずチャンバ12内を減圧した後、アルゴンガス等の不活性ガスを導入してチャンバ12内を減圧した不活性ガス雰囲気とし、るつぼ13内の結晶用原料をヒータ18により溶解する。次いで引上げ軸21aをシャフト16の軸線と同一軸線上であってシャフト16の回転方向とは逆方向に所定の速度で回転させながら、シードチャック22に取付けられた種結晶23を下降させてその先端部をシリコン融液14表面の直上に位置させる。この状態でシリコン融液14と熱遮蔽体24下端とのギャップGが50mm〜200mm、好ましくは70mm〜150mmになるようにるつぼ13をるつぼ駆動手段17により下降させる(図1)。ここで、種結晶23をシリコン融液14に浸漬する前のシリコン融液14と熱遮蔽体24下端とのギャップGを50mm〜200mmの範囲内に限定したのは、50mm未満ではシリコン融液14と種結晶23の温度差が大きすぎて種結晶23に転位が導入されるおそれがあり、200mmを超えると石英製の内層容器13aへのヒータ18の輻射熱の照射面積が増大して内層容器13aが変形するおそれがあるからである。なお、るつぼ13に貯留されたシリコン融液14の液面位置は、画像処理手段27が2次元CCDカメラ26に駆動パルスを送信して2次元CCDカメラ26を走査することにより電気信号である画像信号を取込み、コントローラ28がこの画像信号から上記シリコン融液14の液面位置を算出することにより検出される。   A method for growing the silicon single crystal 11 using the growth apparatus 10 configured as described above will be described. First, after reducing the pressure in the chamber 12, an inert gas such as argon gas is introduced to create a reduced inert gas atmosphere in the chamber 12, and the crystal raw material in the crucible 13 is melted by the heater 18. Next, while the pulling shaft 21a is on the same axis as the axis of the shaft 16 and is rotated at a predetermined speed in the direction opposite to the rotation direction of the shaft 16, the seed crystal 23 attached to the seed chuck 22 is lowered and its tip is moved. The part is positioned immediately above the surface of the silicon melt 14. In this state, the crucible 13 is lowered by the crucible driving means 17 so that the gap G between the silicon melt 14 and the lower end of the heat shield 24 is 50 mm to 200 mm, preferably 70 mm to 150 mm (FIG. 1). Here, the gap G between the silicon melt 14 before immersing the seed crystal 23 in the silicon melt 14 and the lower end of the heat shield 24 is limited to the range of 50 mm to 200 mm. There is a possibility that dislocation is introduced into the seed crystal 23 because the temperature difference between the seed crystal 23 and the seed crystal 23 is too large. This is because there is a risk of deformation. The liquid surface position of the silicon melt 14 stored in the crucible 13 is an image that is an electric signal when the image processing means 27 transmits a drive pulse to the two-dimensional CCD camera 26 to scan the two-dimensional CCD camera 26. The signal is taken in, and the controller 28 detects the liquid level position of the silicon melt 14 from the image signal.

その後、シリコン融液14表面に種結晶23を浸漬してシリコン単結晶11のネック部11aを成長させる。シリコン融液14表面に種結晶23を浸漬するとき、大きなギャップGからのヒータ18の輻射熱により種結晶23が効率良く加熱されるので、シリコン融液14の温度よりは低いけれどもシリコン融液14との温度差は100℃以下、好ましくは70℃以下になる。このため種結晶23のシリコン融液14への浸漬時における熱応力を軽減でき、種結晶23に転位が導入され難くなる。また上記ギャップGを大きくすることにより、ネック部11aでの温度勾配が小さくなるとともに等温線が平面に近くなり、ネック部11aでの径方向の温度勾配が小さくなって、ネック部11aにおける熱応力が軽減されると同時に転位運動速度が低下するので、ネック部11aでの転位除去能力が増大する。この結果、ネック部11aの直径を大きくしても、転位の除去が可能となり、転位を伝播させることなく重量の増加したシリコン単結晶11を成長させることができる。具体的には、直径5mm〜10mmと比較的太いネック部11aを成長させることができる。   Thereafter, the seed crystal 23 is immersed in the surface of the silicon melt 14 to grow the neck portion 11 a of the silicon single crystal 11. When the seed crystal 23 is immersed in the surface of the silicon melt 14, the seed crystal 23 is efficiently heated by the radiant heat of the heater 18 from the large gap G, so that the temperature of the silicon melt 14 is lower than the temperature of the silicon melt 14. The temperature difference is 100 ° C. or less, preferably 70 ° C. or less. For this reason, the thermal stress at the time of immersion of the seed crystal 23 in the silicon melt 14 can be reduced, and dislocations are hardly introduced into the seed crystal 23. Further, by increasing the gap G, the temperature gradient at the neck portion 11a is reduced, the isotherm is close to a flat surface, the temperature gradient in the radial direction at the neck portion 11a is reduced, and the thermal stress in the neck portion 11a is reduced. Since the dislocation motion speed is reduced at the same time as dislocation is reduced, the dislocation removal capability at the neck portion 11a increases. As a result, dislocations can be removed even when the diameter of the neck portion 11a is increased, and the silicon single crystal 11 having an increased weight can be grown without propagating the dislocations. Specifically, a relatively thick neck portion 11a having a diameter of 5 mm to 10 mm can be grown.

次にシリコン単結晶11の肩部11bの成長に移行し、この肩部11bを成長させている間に、ギャップGが15mm〜100mm、好ましくは25mm〜80mmになるようにるつぼ13を上昇させる(図2)。即ち、シリコン単結晶11の肩部11bの成長時に、るつぼ13を種結晶23の引上げ速度より遅い速度で上昇させることにより、シリコン融液14表面を熱遮蔽体24下端に近付けてギャップGを小さくする。通常、ギャップGを変更せずにシリコン単結晶11の肩部11bを成長させるときは、肩部11bの成長により減少したシリコン融液14分だけるつぼ13を図4の破線で示すように押上げることにより、シリコン融液14表面を一定の高さに保持している。一方、ギャップGを小さくしながらシリコン単結晶11の肩部11bを成長させるには、肩部11bの成長により減少したシリコン融液14分に、肩部11b成長時のギャップG減少分を加えた速度でるつぼを押上げる(図3の二点鎖線の略台形状部分)とともに、種結晶23の引上げ速度を肩部11b成長のために上記るつぼ13の上昇速度より高くする(図3の実線の略凸状部分)。なお、図3において、肩部11bの成長時に、るつぼ13の上昇速度を略台形状に変化させ、種結晶23の引上げ速度を略凸状に変化させたのは、急激な速度変動を抑制するためである。   Next, the process proceeds to the growth of the shoulder portion 11b of the silicon single crystal 11, and the crucible 13 is raised so that the gap G is 15 mm to 100 mm, preferably 25 mm to 80 mm while the shoulder portion 11b is grown ( Figure 2). That is, during the growth of the shoulder 11b of the silicon single crystal 11, the crucible 13 is raised at a speed slower than the pulling speed of the seed crystal 23, thereby bringing the surface of the silicon melt 14 closer to the lower end of the heat shield 24 and reducing the gap G. To do. Normally, when the shoulder portion 11b of the silicon single crystal 11 is grown without changing the gap G, the crucible 13 is pushed up by the silicon melt 14 reduced by the growth of the shoulder portion 11b as shown by the broken line in FIG. Thus, the surface of the silicon melt 14 is held at a certain height. On the other hand, in order to grow the shoulder 11b of the silicon single crystal 11 while reducing the gap G, the gap G decrease at the time of growing the shoulder 11b was added to the silicon melt 14 minutes reduced by the growth of the shoulder 11b. The crucible is pushed up at a speed (substantially trapezoidal portion of the two-dot chain line in FIG. 3), and the pulling speed of the seed crystal 23 is made higher than the rising speed of the crucible 13 for growth of the shoulder 11b (shown by the solid line in FIG. 3). (Substantially convex part). In FIG. 3, when the shoulder portion 11b is grown, the rising speed of the crucible 13 is changed to a substantially trapezoidal shape, and the pulling speed of the seed crystal 23 is changed to a substantially convex shape to suppress rapid speed fluctuations. Because.

このように本実施の形態の肩部11bの成長時に、るつぼ13の上昇速度を略台形状に変化させかつ種結晶23の引上げ速度を略凸状に変化させた理由を、従来の肩部の成長時におけるるつぼの上昇速度及び種結晶の引上げ速度と対比して具体的に説明する。従来のネック部でギャップGを小さくする調整を行わない場合、先ず小径のネック部の成長工程で種結晶の引上げ速度が大きい状態から肩部の成長工程に移行する。このときシリコン単結晶の直径を拡げるために種結晶の引上げ速度及びシリコン融液の温度を下げる。しかしシリコン融液の温度低下の効果は即座に現れない。シリコン融液の温度低下の効果が現れてきたときに、種結晶の引上げ速度を徐々に上げて(図4の(1)で示す部分)、肩部の直径が拡がり過ぎるのを防止する。次に平衡状態になったときに種結晶の引上げ速度をほぼ一定に保持する(図4の(2)で示す部分)。その後、シリコン融液の温度を上げて肩部の直径の拡がりを抑えるとともに、種結晶の引上げ速度を下げて(図4の(3)で示す部分)これから成長させる直胴部の直径に合わせる。なお、るつぼの上昇速度はシリコン融液の表面を常に所定の高さに位保つように設定される。   Thus, during the growth of the shoulder portion 11b of the present embodiment, the reason why the rising speed of the crucible 13 is changed to a substantially trapezoidal shape and the pulling speed of the seed crystal 23 is changed to a substantially convex shape is that of the conventional shoulder portion. A specific explanation will be given in comparison with the ascending speed of the crucible and the pulling speed of the seed crystal during growth. When the adjustment to reduce the gap G at the conventional neck portion is not performed, first, the growth process of the small-diameter neck portion shifts from the state where the pulling rate of the seed crystal is high to the shoulder growth step. At this time, in order to increase the diameter of the silicon single crystal, the pulling rate of the seed crystal and the temperature of the silicon melt are lowered. However, the effect of lowering the temperature of the silicon melt does not appear immediately. When the effect of lowering the temperature of the silicon melt appears, the pulling rate of the seed crystal is gradually increased (portion shown by (1) in FIG. 4) to prevent the diameter of the shoulder from being excessively expanded. Next, when the equilibrium state is reached, the pulling speed of the seed crystal is kept almost constant (portion (2) in FIG. 4). Thereafter, the temperature of the silicon melt is raised to suppress the expansion of the diameter of the shoulder portion, and the pulling rate of the seed crystal is lowered (the portion indicated by (3) in FIG. 4) to match the diameter of the straight body portion to be grown. The ascending speed of the crucible is set so as to always keep the surface of the silicon melt at a predetermined height.

これに対して、本実施の形態の肩部11bでギャップGを小さくする調整を行う場合、先ず小径のネック部11aの成長工程で種結晶23の引上げ速度が大きい状態から肩部11bの成長工程に移行する。このときシリコン単結晶11の直径を拡げるために種結晶23の引上げ速度及びシリコン融液14の温度を下げる。しかしシリコン融液14の温度低下の効果は即座に現れない。シリコン融液14の温度低下の効果が現れてきたときに、種結晶23の引上げ速度及びるつぼ13の上昇速度を比較的急激に上げた後(図3の(1-1)及び(2-1)で示す部分)、種結晶23の引上げ速度の上昇率を緩やかにする(図3の(1-2)で示す部分)とともに、るつぼ13の上昇速度をほぼ一定に保つことにより(図3の(2-2)で示す部分)、肩部11bの直径が拡がり過ぎるのを防止する。次に平衡状態になったときに種結晶23の引上げ速度をほぼ一定に保持する(図3の(1-3)及び(2-2)で示す部分)。その後、シリコン融液14の温度を上げて肩部11bの直径の拡がりを抑えるとともに、種結晶23の引上げ速度及びるつぼ13の上昇速度を下げて(図3の(1-4)及び(2-3)で示す部分)、これから成長させる直胴部の直径に合わせる。これによりギャップGが所定の小さい値になる。なお、肩部11bの成長時に小さくした最終的なギャップG、即ち直胴部を成長させるときのギャップGを15mm〜100mmの範囲内に限定したのは、15mm未満ではシリコン単結晶11の直胴部が急冷されてシリコン単結晶11が破壊し易くなり、100mmを超えるとシリコン単結晶11が徐冷されてシリコン単結晶11の成長が難しくなるからである。   On the other hand, when the gap G is adjusted to be reduced by the shoulder portion 11b of the present embodiment, first, the growth step of the shoulder portion 11b from the state in which the pulling speed of the seed crystal 23 is high in the growth step of the small-diameter neck portion 11a. Migrate to At this time, in order to increase the diameter of the silicon single crystal 11, the pulling speed of the seed crystal 23 and the temperature of the silicon melt 14 are lowered. However, the effect of lowering the temperature of the silicon melt 14 does not appear immediately. When the effect of lowering the temperature of the silicon melt 14 appears, the pulling speed of the seed crystal 23 and the rising speed of the crucible 13 are increased relatively rapidly ((1-1) and (2-1 in FIG. 3). ), The rate of increase of the pulling rate of the seed crystal 23 is moderated (portion indicated by (1-2) in FIG. 3), and the rising rate of the crucible 13 is kept substantially constant (in FIG. 3). (Part indicated by (2-2)), preventing the diameter of the shoulder portion 11b from expanding too much. Next, when the equilibrium state is reached, the pulling speed of the seed crystal 23 is kept substantially constant (portions indicated by (1-3) and (2-2) in FIG. 3). Thereafter, the temperature of the silicon melt 14 is raised to prevent the diameter of the shoulder 11b from expanding, and the pulling speed of the seed crystal 23 and the rising speed of the crucible 13 are lowered (see (1-4) and (2- 3) Match the diameter of the straight body to be grown. As a result, the gap G becomes a predetermined small value. It should be noted that the final gap G that was reduced during the growth of the shoulder portion 11b, that is, the gap G when the straight body portion was grown was limited to the range of 15 mm to 100 mm. This is because the silicon single crystal 11 is easily broken by being rapidly cooled, and when the thickness exceeds 100 mm, the silicon single crystal 11 is gradually cooled and it is difficult to grow the silicon single crystal 11.

更にシリコン単結晶11の直胴部を成長させた後、急激な温度変化によりシリコン単結晶11に高密度の転位が導入されないよう、シリコン単結晶11の直径を徐々に絞ってシリコン単結晶11全体の温度を徐々に降下させることによりテール部を形成して、シリコン単結晶11をシリコン融液14から切り離す。その後、冷却することにより、シリコン単結晶11の引上げが完了する。従って、ネック部の成長時にギャップを小さくしているため、ネック部が長くなり、チャンバが長大化するか或いはシリコン単結晶の引上げ長さが制限されてしまう問題点があった従来の単結晶の引上げ方法と比較して、本実施の形態では、肩部11bの成長時にギャップGを小さくするので、ネック部11aが長くなるのを阻止することができる。この結果、本実施の形態では、チャンバ12が長大化するのを防止でき、またシリコン単結晶11の引上げ長さが制限されるのを防止できる。   Further, after the straight body portion of the silicon single crystal 11 is grown, the diameter of the silicon single crystal 11 is gradually reduced so that high-density dislocations are not introduced into the silicon single crystal 11 due to a rapid temperature change. The tail portion is formed by gradually lowering the temperature of the silicon single crystal 11 to separate the silicon single crystal 11 from the silicon melt 14. Thereafter, the pulling of the silicon single crystal 11 is completed by cooling. Therefore, since the gap is reduced during the growth of the neck portion, the neck portion becomes longer, the chamber becomes longer, or the pulling length of the silicon single crystal is limited. Compared with the pulling method, in the present embodiment, the gap G is reduced during the growth of the shoulder portion 11b, so that the neck portion 11a can be prevented from becoming longer. As a result, in the present embodiment, it is possible to prevent the chamber 12 from becoming long and to prevent the pulling length of the silicon single crystal 11 from being limited.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1及び図2に示す育成装置10を用いて、直径308mmのシリコン単結晶11を育成した。具体的には、先ずチャンバ12内を減圧した後、アルゴンガス等の不活性ガスを導入してチャンバ12内を減圧した不活性ガス雰囲気とし、るつぼ13内の結晶用原料をヒータ18により溶解した。次いで引上げ軸21aをシャフト16の軸線と同一軸線上であってシャフト16の回転方向とは逆方向に所定の速度で回転させながら、シードチャック22に取付けられた種結晶23を下降させてその先端部をシリコン融液14表面の直上に位置させた。この状態でシリコン融液14と熱遮蔽体24下端とのギャップGが150mmになるようにるつぼ13をるつぼ駆動手段17により下降させた(図1)。そして種結晶23の温度がシリコン融液14の温度よりは低いけれども、その温度差が70℃になったときに、シリコン融液14表面に種結晶23を浸漬してシリコン単結晶11のネック部11aを成長させた。ネック部の直径は6.5mmであった。次にシリコン単結晶11の肩部11bの成長に移行し、この肩部11bを成長させている間に、ギャップGが80mmになるようにるつぼ13を上昇させた(図2)。このときの種結晶23の引上げ速度及びるつぼ13の上昇速度のプロファイルを図3に示す。更にシリコン単結晶11の直胴部を成長させた後、シリコン単結晶11の直径を徐々に絞ってテール部を形成し、シリコン単結晶11をシリコン融液14から切り離した。このシリコン単結晶11を実施例1とした。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A silicon single crystal 11 having a diameter of 308 mm was grown using the growth apparatus 10 shown in FIGS. Specifically, first, the pressure inside the chamber 12 is reduced, and then an inert gas atmosphere such as argon gas is introduced to reduce the pressure inside the chamber 12, and the crystal raw material in the crucible 13 is melted by the heater 18. . Next, while the pulling shaft 21a is on the same axis as the axis of the shaft 16 and is rotated at a predetermined speed in the direction opposite to the rotation direction of the shaft 16, the seed crystal 23 attached to the seed chuck 22 is lowered and its tip is moved. The part was positioned immediately above the surface of the silicon melt 14. In this state, the crucible 13 was lowered by the crucible driving means 17 so that the gap G between the silicon melt 14 and the lower end of the heat shield 24 was 150 mm (FIG. 1). Although the temperature of the seed crystal 23 is lower than the temperature of the silicon melt 14, when the temperature difference reaches 70 ° C., the seed crystal 23 is immersed in the surface of the silicon melt 14 and the neck portion of the silicon single crystal 11. 11a was grown. The diameter of the neck part was 6.5 mm. Next, it shifted to the growth of the shoulder portion 11b of the silicon single crystal 11, and while the shoulder portion 11b was grown, the crucible 13 was raised so that the gap G was 80 mm (FIG. 2). A profile of the pulling speed of the seed crystal 23 and the rising speed of the crucible 13 at this time is shown in FIG. Further, after the straight body portion of the silicon single crystal 11 was grown, the diameter of the silicon single crystal 11 was gradually reduced to form a tail portion, and the silicon single crystal 11 was separated from the silicon melt 14. This silicon single crystal 11 was taken as Example 1.

<比較例1>
実施例1と同様に、種結晶をシリコン融液に浸漬する前に、シリコン融液と熱遮蔽体下端とのギャップGが150mmになるようにるつぼを下降させ、種結晶の温度がシリコン融液の温度よりは低いけれども、その温度差が70℃になったときに、シリコン融液表面に種結晶を浸漬してシリコン単結晶のネック部11aを成長させた。そしてネック部の後半の成長時にギャップGが80mmになるようにるつぼを上昇させた。次にシリコン単結晶の肩部の成長に移行し、この肩部を成長させている間は、ギャップGを一定(80mm)に保った。このときの種結晶の引上げ速度及びるつぼの上昇速度のプロファイルを図4に示す。更にシリコン単結晶の直胴部を成長させた後、実施例1と同様に、シリコン単結晶の直径を徐々に絞ってテール部を形成し、シリコン単結晶をシリコン融液から切り離した。このシリコン単結晶を比較例1とした。
<Comparative Example 1>
As in Example 1, before immersing the seed crystal in the silicon melt, the crucible is lowered so that the gap G between the silicon melt and the lower end of the heat shield is 150 mm, and the temperature of the seed crystal is changed to the silicon melt. When the temperature difference reached 70 ° C., the seed crystal was immersed in the surface of the silicon melt to grow the neck portion 11a of the silicon single crystal. The crucible was raised so that the gap G was 80 mm during the latter half of the neck. Next, it shifted to the growth of the shoulder portion of the silicon single crystal, and the gap G was kept constant (80 mm) during the growth of the shoulder portion. A profile of the pulling rate of the seed crystal and the rising rate of the crucible at this time is shown in FIG. Further, after growing a straight body portion of the silicon single crystal, similarly to Example 1, the diameter of the silicon single crystal was gradually reduced to form a tail portion, and the silicon single crystal was separated from the silicon melt. This silicon single crystal was designated as Comparative Example 1.

<比較試験及び評価>
実施例1及び比較例1のシリコン単結晶のネック部、肩部、直胴部及びテール部を含む全長を測定したところ、比較例1のシリコン単結晶の全長は3000mmと長かったのに対し、実施例1のシリコン単結晶の全長は2500mmと短くなった。
<Comparison test and evaluation>
When the total length of the silicon single crystal of Example 1 and Comparative Example 1 including the neck portion, shoulder portion, straight body portion and tail portion was measured, the total length of the silicon single crystal of Comparative Example 1 was as long as 3000 mm, The total length of the silicon single crystal of Example 1 was as short as 2500 mm.

本発明実施形態のシリコン単結晶のネック部を引上げている状態を示す縦断面構成図である。It is a longitudinal section lineblock diagram showing the state where the neck part of the silicon single crystal of the embodiment of the present invention is pulled up. そのシリコン単結晶の肩部を引上げている状態を示す図1に対応する縦断面構成図である。It is a longitudinal cross-section block diagram corresponding to FIG. 1 which shows the state which has pulled up the shoulder part of the silicon single crystal. 実施の形態及び実施例1のシリコン単結晶の肩部の引上げ長さの変化に対するシリコン単結晶の引上げ速度及びるつぼの上昇速度の変化を示す図である。It is a figure which shows the change of the pulling-up speed of a silicon single crystal, and the raising speed of a crucible with respect to the change of the pulling length of the shoulder part of the silicon | silicone single crystal of embodiment and Example 1. FIG. 従来例及び比較例1のシリコン単結晶の肩部の引上げ長さの変化に対するシリコン単結晶の引上げ速度及びるつぼの上昇速度の変化を示す図である。It is a figure which shows the change of the pulling-up speed of a silicon single crystal, and the raising speed of a crucible with respect to the change of the pulling length of the shoulder part of the silicon single crystal of a prior art example and the comparative example 1. FIG.

符号の説明Explanation of symbols

11 シリコン単結晶
11a ネック部
11b 肩部
12 チャンバ
13 るつぼ
14 シリコン融液
18 ヒータ
23 種結晶
24 熱遮蔽体
DESCRIPTION OF SYMBOLS 11 Silicon single crystal 11a Neck part 11b Shoulder part 12 Chamber 13 Crucible 14 Silicon melt 18 Heater 23 Seed crystal 24 Heat shield

Claims (2)

チャンバに収容されたるつぼに融液を貯留し、この融液に種結晶を浸漬して引上げることにより単結晶を成長させ、更に前記融液表面より上方に設けられた熱遮蔽体が前記成長中の単結晶外周面を包囲してヒータによる前記単結晶外周面への輻射熱の照射を遮るシリコン単結晶の育成方法において、
前記融液表面と前記熱遮蔽体下端とのギャップが50mm〜200mmになるように前記るつぼを下降させるか或いは前記熱遮蔽体を上昇させた後に、前記融液表面に前記種結晶を浸漬して前記単結晶のネック部を成長させ、
前記融液表面から前記単結晶の肩部を成長させている間に、前記ギャップが15mm〜100mmになるように前記るつぼを上昇させるか或いは前記熱遮蔽体を下降させる
ことを特徴とする単結晶の育成方法。
A melt is stored in a crucible accommodated in a chamber, a seed crystal is immersed in the melt and pulled up to grow a single crystal, and a heat shield provided above the melt surface further grows the crystal. In the method for growing a silicon single crystal that surrounds the outer peripheral surface of the single crystal and shields the irradiation of radiant heat to the outer peripheral surface of the single crystal by a heater,
After lowering the crucible or raising the heat shield so that the gap between the melt surface and the lower end of the heat shield is 50 mm to 200 mm, the seed crystal is immersed in the melt surface. Growing the neck of the single crystal;
While growing the shoulder portion of the single crystal from the melt surface, the crucible is raised or the heat shield is lowered so that the gap is 15 mm to 100 mm. How to train.
熱遮蔽体をチャンバに固定しかつるつぼの昇降により融液表面と前記熱遮蔽体下端とのギャップを調整し、単結晶の肩部の成長時に、前記るつぼを種結晶の引上げ速度より遅い速度で上昇させることにより、前記融液表面を前記熱遮蔽体下端に近付ける請求項1記載の単結晶の育成方法。   The thermal shield is fixed to the chamber, and the gap between the melt surface and the lower end of the thermal shield is adjusted by raising and lowering the crucible. The method for growing a single crystal according to claim 1, wherein the melt surface is brought close to the lower end of the heat shield by raising.
JP2008173054A 2008-07-02 2008-07-02 Single crystal growth method Active JP5018670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173054A JP5018670B2 (en) 2008-07-02 2008-07-02 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173054A JP5018670B2 (en) 2008-07-02 2008-07-02 Single crystal growth method

Publications (2)

Publication Number Publication Date
JP2010013303A JP2010013303A (en) 2010-01-21
JP5018670B2 true JP5018670B2 (en) 2012-09-05

Family

ID=41699782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173054A Active JP5018670B2 (en) 2008-07-02 2008-07-02 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP5018670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104072B1 (en) * 2018-01-19 2020-04-23 에스케이실트론 주식회사 Method and apparatus for silicon single crystal growth

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3267225B2 (en) * 1997-12-26 2002-03-18 住友金属工業株式会社 Single crystal pulling method and single crystal pulling apparatus
WO2002016678A1 (en) * 2000-08-18 2002-02-28 Shin-Etsu Handotai Co.,Ltd. Method for producing silicon single crystal
JP3698080B2 (en) * 2001-09-11 2005-09-21 三菱住友シリコン株式会社 Single crystal pulling method
JP2005281018A (en) * 2004-03-29 2005-10-13 Toshiba Ceramics Co Ltd Silicon single crystal pulling method
JP2007045662A (en) * 2005-08-10 2007-02-22 Sumco Corp Semiconductor silicon wafer and method for manufacturing the same
JP2007204305A (en) * 2006-02-01 2007-08-16 Toshiba Ceramics Co Ltd Single crystal pulling apparatus
JP5204415B2 (en) * 2006-03-03 2013-06-05 国立大学法人 新潟大学 Method for producing Si single crystal ingot by CZ method
JP2007308335A (en) * 2006-05-18 2007-11-29 Covalent Materials Corp Method for pulling single crystal

Also Published As

Publication number Publication date
JP2010013303A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
US7588638B2 (en) Single crystal pulling apparatus
KR20180101586A (en) Manufacturing method of silicon single crystal
JP5176915B2 (en) Method for growing silicon single crystal
JP2008063165A (en) Manufacturing method of silicon single crystal
EP1614774A1 (en) Process for producing single crystal
CN114929951B (en) Single crystal manufacturing apparatus
JP5018670B2 (en) Single crystal growth method
JP5417735B2 (en) Method for growing silicon single crystal
KR101540863B1 (en) Apparatus for controlling diameter of single crystal ingot and Ingot growing apparatus having the same and method thereof
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP5375636B2 (en) Method for producing silicon single crystal
CN101403137A (en) Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
KR101571958B1 (en) Apparatus and method for growing ingot
JP5805527B2 (en) Method for producing silicon single crystal
KR101609465B1 (en) Apparatus of growth of silicon single crystal ingot
JP4341379B2 (en) Single crystal manufacturing method
JP4785762B2 (en) Single crystal manufacturing method
JP2011057460A (en) Method for growing silicon single crystal
JP5819185B2 (en) Method for producing silicon single crystal
US20240018689A1 (en) Crystal Puller for Pulling Monocrystalline Silicon Ingots
JP2007197300A (en) Method for pulling silicon single crystal
JP2024055609A (en) Single crystal pulling method
WO2022254885A1 (en) Method for producing silicon monocrystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250