[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5018211B2 - Organic electroluminescence panel and lighting device using the same - Google Patents

Organic electroluminescence panel and lighting device using the same Download PDF

Info

Publication number
JP5018211B2
JP5018211B2 JP2007116552A JP2007116552A JP5018211B2 JP 5018211 B2 JP5018211 B2 JP 5018211B2 JP 2007116552 A JP2007116552 A JP 2007116552A JP 2007116552 A JP2007116552 A JP 2007116552A JP 5018211 B2 JP5018211 B2 JP 5018211B2
Authority
JP
Japan
Prior art keywords
group
light
organic
layer
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007116552A
Other languages
Japanese (ja)
Other versions
JP2008277009A (en
Inventor
雄史 小野
慶一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007116552A priority Critical patent/JP5018211B2/en
Publication of JP2008277009A publication Critical patent/JP2008277009A/en
Application granted granted Critical
Publication of JP5018211B2 publication Critical patent/JP5018211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、有機エレクトロルミネッセンスパネルとそれを用いた照明装置に関する。   The present invention relates to an organic electroluminescence panel and a lighting device using the same.

消費電力が少なく、容積が小さい面発光素子のニーズが高まり、このような面発光素子の一つとしてエレクトロルミネッセンス素子(以下、「EL素子」と略す。)が注目されている。そして、このようなEL素子は使用する材料によって無機エレクトロルミネッセンス素子(「無機EL素子」)と有機エレクトロルミネッセンス素子(「有機EL素子」)とに大別される。   The need for a surface light-emitting element with low power consumption and a small volume has increased, and an electroluminescence element (hereinafter abbreviated as “EL element”) has attracted attention as one of such surface light-emitting elements. Such EL elements are roughly classified into inorganic electroluminescent elements (“inorganic EL elements”) and organic electroluminescent elements (“organic EL elements”) depending on the materials used.

ここで、無機EL素子は一般に発光部に高電界を作用させ、電子をこの高電界中で加速して発光中心に衝突させ、これにより発光中心を励起させて発光させるようになっている。一方、有機EL素子は電子注入電極とホール注入電極とからそれぞれ電子とホールとを発光層内に注入し、このように注入された電子とホールとを発光層内で結合させて、有機材料を励起状態にし、この有機材料が励起状態から基底状態に戻るときに発光するようになっており、無機EL素子に比べて、低い電圧で駆動できるという利点がある。面で発光するという利点を活かして、薄型でフレキシブルな照明用途としての展開が期待されている。   Here, the inorganic EL element generally applies a high electric field to the light emitting portion, accelerates the electrons in the high electric field and collides with the light emission center, thereby exciting the light emission center to emit light. On the other hand, the organic EL element injects electrons and holes from the electron injection electrode and the hole injection electrode, respectively, into the light emitting layer, and combines the injected electrons and holes in the light emitting layer. Light is emitted when the organic material returns to the ground state from the excited state in the excited state, and there is an advantage that it can be driven at a lower voltage than the inorganic EL element. Taking advantage of the fact that it emits light on its surface, it is expected to be developed as a thin and flexible lighting application.

照明用途として応用した場合、有機エレクトロルミネッセンス素子(以下において、「有機エレクトロルミネッセンスパネル」又は「有機ELパネル」ともいう。)は駆動時間が経過するにつれて輝度が低下するために使用者が有機ELパネルを交換する必要が生じる。そのため、使用者が自ら有機ELパネルを交換するという観点での開発が求められている。これに対し、特許文献1、特許文献2では使用者が着脱可能な照明取り付け具と照明装置についての発明が開示されている。また、特許文献3では使用者が安全に有機ELパネルを交換できるパネル、照明装置についての発明が開示されている。   When applied as a lighting application, the organic electroluminescence element (hereinafter also referred to as “organic electroluminescence panel” or “organic EL panel”) decreases in luminance as the drive time elapses. Need to be replaced. Therefore, the development from the viewpoint that the user replaces the organic EL panel himself is required. On the other hand, Patent Document 1 and Patent Document 2 disclose inventions relating to a lighting fixture and a lighting device that can be attached and detached by a user. Patent Document 3 discloses an invention about a panel and a lighting device that allow a user to safely replace an organic EL panel.

しかしながら、有機ELパネルの輝度低下は緩やかに起こるため使用者は適切な明るさ以下になった場合も気付かずに使い続けることが起こりうる。JIS−Z9110規格の“照度基準”で作業の内容と明るさについての基準があり、作業場所全体の明るさについては作業する場所や仕事の内容に適した照明の明るさを確保しなければならない。また、使用者の視力低下を引き起こす等の問題を招来する。したがって、照明装置の適切な輝度や色度という観点から、使用者が有機ELパネルを交換する適切なタイミングを把握できることが望ましい。
特開2004−31341号公報 特開2004−55535号公報 特開2007−5227号公報
However, since the luminance of the organic EL panel is gradually lowered, the user may continue to use it without noticing even when the brightness becomes lower than the appropriate brightness. JIS-Z9110 standard “illuminance standard” has standards for work content and brightness, and the brightness of the entire work place must ensure the brightness of lighting suitable for the work place and work content. . In addition, problems such as a reduction in the user's visual acuity are caused. Therefore, it is desirable that the user can grasp the appropriate timing for replacing the organic EL panel from the viewpoint of appropriate luminance and chromaticity of the lighting device.
JP 2004-31341 A JP 2004-55535 A JP 2007-5227 A

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、使用者が適切な交換時期を視覚的に認知・把握できる有機エレクトロルミネッセンスパネル及びそれを用いた照明装置を提供することである。   The present invention has been made in view of the above-described problems and situations, and a solution to the problem is to provide an organic electroluminescence panel that allows a user to visually recognize and grasp an appropriate replacement time, and an illumination device using the same. It is to be.

本発明に係る上記課題は下記の手段により解決される。   The above-mentioned problem according to the present invention is solved by the following means.

1.同一の基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、該パネルは有機エレクトロルミネッセンス素子である、照明部及びインジケーター部を有し、該照明部と該インジケーター部はそれぞれの駆動経時での色度変化量が異なり、該照明部の色度と該インジケーター部の色度との差が該照明部の経時による劣化度を示すことを特徴とする有機エレクトロルミネッセンスパネル。 1. An organic electroluminescence panel comprising an anode, a light emitting layer, and a cathode on the same substrate, the panel being an organic electroluminescence element, having an illumination part and an indicator part, and the illumination part and the indicator part Ri Do different chromaticity variation of each of the driving time, an organic electroluminescence difference between chromaticity chromaticity and the indicator portion of the illumination unit, characterized in that it presents a degree of deterioration over time of the illuminating unit panel.

2.同一の基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、該パネルは有機エレクトロルミネッセンス素子である、照明部及びインジケーター部を有し、該照明部と該インジケーター部はそれぞれの駆動経時での輝度変化量が異なり、該照明部の輝度と該インジケーター部の輝度との差が該照明部の経時による劣化度を示すことを特徴とする有機エレクトロルミネッセンスパネル。 2. An organic electroluminescence panel comprising an anode, a light emitting layer, and a cathode on the same substrate, the panel being an organic electroluminescence element, having an illumination part and an indicator part, and the illumination part and the indicator part each of the luminance variation of the driving time is Ri Do different, organic electroluminescence panel difference between the luminance brightness and the indicator portion of the illumination unit, characterized in that it presents a degree of deterioration over time of the illumination portion.

3.前記照明部と前記インジケーター部それぞれの有機層構成が異なることを特徴とする前記1又は2のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 3. The organic electroluminescence panel according to any one of 1 or 2 , wherein the organic layer configuration of the illumination unit and the indicator unit is different.

4.前記照明部と前記インジケーター部ではそれぞれの有機層構成が同じであることを特徴とする前記1又は2のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 4). Wherein 1 or 2 organic electroluminescent panel according to any one of, wherein said at the illumination unit the indicator unit is a respective organic layer configuration same.

5.前記照明部と前記インジケーター部それぞれの駆動する際の電流密度が異なることを特徴とする前記1〜4のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 5. The organic electroluminescence panel according to any one of claims 1 to 4 , wherein the lighting units and the indicator units have different current densities when driven.

6.前記インジケーター部が2以上の発光部を有し、当該2以上の発光部の駆動経時での輝度変化量及び色度変化量が異なることを特徴とする前記1〜5のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 6). The said indicator part has two or more light emission parts, The brightness | luminance change amount and chromaticity change amount of the said two or more light emission parts at the time of a drive time differ, The said 1-5 characterized by the above-mentioned. Organic electroluminescence panel.

7.前記1〜6のいずれか一項に記載の有機エレクトロルミネッセンスパネルを用いたことを特徴とする照明装置。 7). An illuminating device using the organic electroluminescence panel according to any one of 1 to 6 above.

本発明の上記手段により使用者が適切な交換時期を視覚的に認知・把握できる有機エレクトロルミネッセンスパネル及びそれを用いた照明装置を提供することができる。   The above-described means of the present invention can provide an organic electroluminescence panel that allows a user to visually recognize and grasp an appropriate replacement time, and a lighting device using the same.

以下、本発明とその構成要素等について詳細な説明をする。   Hereinafter, the present invention and its components will be described in detail.

(本発明の有機エレクトロルミネッセンスパネルの好ましい形態と特徴)
本発明の有機エレクトロルミネッセンスパネルは、同一の基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、照明部とインジケーター部を有することを特徴とする。又は、基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、前記照明部とインジケーター部が、相互に異なる基板上に設けられていることを特徴とする。この特徴は、請求項1〜9に係る発明に共通する技術的特徴である。
(Preferred embodiments and features of the organic electroluminescence panel of the present invention)
The organic electroluminescence panel of the present invention is an organic electroluminescence panel in which an anode, a light emitting layer, and a cathode are provided on the same substrate, and has an illumination part and an indicator part. Or it is an organic electroluminescent panel which provides an anode, a light emitting layer, and a cathode on a board | substrate, Comprising: The said illumination part and indicator part are provided on the mutually different board | substrate, It is characterized by the above-mentioned. This feature is a technical feature common to the inventions according to claims 1 to 9.

なお、前記照明部と前記インジケーター部それぞれの駆動経時での輝度変化量が異なることが好ましい。また、前記照明部と前記インジケーター部それぞれの駆動経時での色度変化量が異なることが好ましい。   In addition, it is preferable that the luminance change amount with the driving time of each of the illumination unit and the indicator unit is different. Moreover, it is preferable that the amount of chromaticity change with the passage of time is different between the illumination unit and the indicator unit.

本発明においては、使用する発光性化合物の性能に応じて、前記照明部と前記インジケーター部それぞれの有機層構成が異なる態様にすること、或いは、前記照明部と前記インジケーター部では有機層構成を同じにする態様にすることが好ましい。   In the present invention, depending on the performance of the luminescent compound to be used, the lighting unit and the indicator unit have different organic layer configurations, or the lighting unit and the indicator unit have the same organic layer configuration. It is preferable to adopt an embodiment.

更に、前記照明部と前記インジケーター部それぞれの駆動する際の電流密度が異なる態様にすることが好ましい。   Furthermore, it is preferable that the current density when driving the illumination unit and the indicator unit is different.

また、上記の態様とは異なる態様として、前記インジケーター部が2以上の発光部を有し、当該2以上の発光部の駆動経時での発光状況変化(輝度変化量及び色度変化量)が異なる態様にすることも好ましい。更に、照明部とインジケーター部の発光状況変化が相異し、かつインジケーター部の複数の発光部内での当該発光状況変化が相異する態様にすることも好ましい。   Further, as an aspect different from the above aspect, the indicator unit has two or more light emitting units, and the light emission state changes (luminance change amount and chromaticity change amount) with the driving time of the two or more light emitting units are different. It is also preferable to make it an aspect. Furthermore, it is also preferable to adopt a mode in which the light emission state changes of the illumination unit and the indicator unit are different and the light emission state changes in the plurality of light emitting units of the indicator unit are different.

以下、図を参照しながら、更に詳細な説明をする。図1に、本発明の有機エレクトロルミネッセンスパネルの概念図を示す。本発明の特徴は、図1に示すような照明部(照明用有機EL発光部)とそれと比較し面積が小さいインジケーター部(発光部)を有することである。本発明の好ましい形態の一つは、照明部とインジケーター部では有機層構成が異なるようにする。その際、インジケーター部は照明部と比較し色度の経時変化が大きくなるような構成をとる。そうすることにより、有機ELパネルが取りかえ時期であることをインジケーター部の経時での色度変動(色度のズレΔEが0.05以上、好ましくは0.1以上、ここでΔE=(x2+y21/2とする。)により、視覚的に使用者が認識できる。また、インジケーター部を照明部と比較して駆動経時での劣化が著しい有機層構成にすると、インジケーターと照明部の輝度の差(インジケーター部が実質的に消灯)により照明の取りかえ時期であることを使用者が認識できる(図2のa及びb参照)。 Hereinafter, further detailed description will be given with reference to the drawings. In FIG. 1, the conceptual diagram of the organic electroluminescent panel of this invention is shown. The feature of the present invention is that it has an illumination part (illumination organic EL light-emitting part) as shown in FIG. 1 and an indicator part (light-emitting part) having a smaller area than that. In one preferred embodiment of the present invention, the organic layer structure is different between the illumination unit and the indicator unit. At this time, the indicator unit is configured to have a larger change in chromaticity with time than the illumination unit. By doing so, it is confirmed that it is time to replace the organic EL panel, and the chromaticity variation with time of the indicator portion (chromaticity deviation ΔE is 0.05 or more, preferably 0.1 or more, where ΔE = (x 2 + Y 2 ) 1/2 ), the user can visually recognize. In addition, if the indicator part has an organic layer structure that is significantly degraded over time compared to the illumination part, it is time to replace the illumination due to the difference in brightness between the indicator and the illumination part (the indicator part is substantially extinguished). It can be recognized by the user (see a and b in FIG. 2).

また、他の好ましい形態としては照明部とインジケーター部の有機層構成は同一とし、照明部とインジケーター部で駆動する際の電流密度を変えることである。インジケーター部の電流密度を照明部より大きくすることにより駆動時初期では照明部よりインジケーター部の輝度は大きくなる。しかし、このとき、インジケーター部での経時での劣化は照明部より大きいために、経時での輝度低下は照明部より大きくなる。有機ELパネルが取りかえ時期であることをインジケーター部の経時での輝度変化(照明部に対するインジケーター部の輝度の差が10%以上、望ましくは20%以上)により、視覚的に使用者が認識できる(図2のc参照)。   In another preferred embodiment, the organic layer configuration of the illumination unit and the indicator unit is the same, and the current density when driven by the illumination unit and the indicator unit is changed. By making the current density of the indicator part larger than that of the illumination part, the brightness of the indicator part becomes larger than that of the illumination part in the initial stage of driving. However, at this time, the deterioration over time in the indicator section is larger than that in the illumination section, so that the luminance decrease over time is greater than that in the illumination section. The user can visually recognize that it is time to replace the organic EL panel by the change in luminance of the indicator portion over time (the difference in luminance of the indicator portion with respect to the illumination portion is 10% or more, preferably 20% or more) ( (See c in FIG. 2).

なお、図1では、インジケーター部と照明部が同一パネル、即ち同一の基板上に存在するが、インジケーター部と照明部が同一のパネル上でなく、異なるパネル(基板)上にあっても良い。   In FIG. 1, the indicator unit and the illumination unit exist on the same panel, that is, the same substrate, but the indicator unit and the illumination unit may be on different panels (substrates) instead of on the same panel.

また、上記の形態では照明部とインジケーター部の経時での発光状況(輝度差、色度差)により取りかえ時期を認識するものであるが、インジケーターに複数の発光部を設けて取りか時期を認識できるようにしても良い。   In the above-mentioned form, the replacement time is recognized by the light emission status (luminance difference, chromaticity difference) over time of the illumination unit and the indicator unit. However, a plurality of light emitting units are provided on the indicator to recognize the replacement time. You may be able to do it.

《有機エレクトロルミネッセンスパネルの構成》
本発明の有機エレクトロルミネッセンスパネルは、基板(支持基盤)、電極、種々の機能を有する有機層等の構成要素によって構成される。好ましい構成の具体例を以下に示すが、本発明はこれらに限定されない。
<Structure of organic electroluminescence panel>
The organic electroluminescence panel of the present invention is composed of components such as a substrate (support base), electrodes, and organic layers having various functions. Specific examples of preferred configurations are shown below, but the present invention is not limited thereto.

(i)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(ii)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(iii)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(iv)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
《発光層ユニット》
本発明に係る「発光層ユニット」とは、複数の発光層を有する構成単位であって、最も陽極側の発光層から最も陰極側の発光層まで積層された有機層をいう。すなわち、各発光層は、異なる発光色の発光性化合物を含有する有機層からなる。
(I) Anode / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode (ii) Anode / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / Electron transport layer / cathode buffer layer / cathode (iii) anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode (iv) anode / anode buffer layer / Hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode << light emitting layer unit >>
The “light emitting layer unit” according to the present invention is a structural unit having a plurality of light emitting layers, and refers to an organic layer laminated from the light emitting layer closest to the anode side to the light emitting layer closest to the cathode side. That is, each light emitting layer is composed of an organic layer containing a light emitting compound having a different emission color.

当該発光層ユニットの代表例を以下に例示するが、これらに限定されない。   Although the typical example of the said light emitting layer unit is illustrated below, it is not limited to these.

(i)発光層A/発光層B
(ii)発光層A/中間層/発光層B
(iii)発光層A/正孔阻止層/発光層B
(iv)発光層A/電子阻止層/発光層B
(v)発光層A/発光層B/発光層C
(vi)発光層A/中間層/発光層B/中間層/発光層C
(vii)発光層A/中間層/発光層B/正孔阻止層/発光層C
(viii)発光層A/電子阻止層/発光層B/中間層/発光層C
なお、本発明に係る発光層は、電極、電子輸送層、又は正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(I) Light emitting layer A / light emitting layer B
(Ii) Light emitting layer A / intermediate layer / light emitting layer B
(Iii) Light emitting layer A / hole blocking layer / light emitting layer B
(Iv) Light emitting layer A / electron blocking layer / light emitting layer B
(V) Light emitting layer A / light emitting layer B / light emitting layer C
(Vi) Light emitting layer A / intermediate layer / light emitting layer B / intermediate layer / light emitting layer C
(Vii) Light emitting layer A / intermediate layer / light emitting layer B / hole blocking layer / light emitting layer C
(Viii) Light emitting layer A / electron blocking layer / light emitting layer B / intermediate layer / light emitting layer C
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Even the interface between the light emitting layer and the adjacent layer may be used.

本発明に係る発光層ユニットは、発光極大波長が各々440nm〜480nm、500nm〜540nm、600nm〜640nmの範囲にある発光極大波長の異なる2種以上の発光性化合物を含有する複数の発光層で構成することもできる。当該ユニットは各発光層間に非発光性の中間層を有して複数の発光層で構成しても、単層の中に発光極大波長の異なる2種以上の発光性化合物を含有することで発光極大波長が異なる少なくとも2種以上の異なる発光をさせても良い。   The light emitting layer unit according to the present invention is composed of a plurality of light emitting layers containing two or more kinds of luminescent compounds having different light emission maximum wavelengths each having a light emission maximum wavelength in the range of 440 nm to 480 nm, 500 nm to 540 nm, and 600 nm to 640 nm. You can also Even if the unit has a non-light emitting intermediate layer between each light emitting layer and is composed of a plurality of light emitting layers, it emits light by containing two or more light emitting compounds having different light emission maximum wavelengths in a single layer. Two or more different types of light emission having different maximum wavelengths may be emitted.

なお、本発明に係る有機ELパネルの発光色を白色にする場合には、上記発光層ユニットが、少なくとも三つの発光層を有することが好ましい。   In addition, when making the luminescent color of the organic electroluminescent panel which concerns on this invention white, it is preferable that the said light emitting layer unit has at least three light emitting layers.

《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.

(ホスト化合物)
本発明に係る有機ELパネルの発光層に含まれるホスト化合物とは、その化合物上のキャリアの再結合によって生成した励起子のエネルギーを発光性化合物(発光性ドーパント:ゲスト化合物)に移動し、その結果、当該発光性化合物を発光させる化合物、及び当該ホスト化合物上のキャリアを発光性化合物にトラップさせ、当該発光性化合物上で励起子を生成させ、その結果、当該発光性化合物を発光させる化合物をいう。
(Host compound)
The host compound contained in the light emitting layer of the organic EL panel according to the present invention transfers the energy of excitons generated by recombination of carriers on the compound to the light emitting compound (light emitting dopant: guest compound), and As a result, a compound that emits the luminescent compound and a carrier that traps the carrier on the host compound in the luminescent compound, generates excitons on the luminescent compound, and as a result, a compound that emits the luminescent compound. Say.

本発明においては、発光層に含有される化合物の中で、そのホスト化合物の比率は20質量%以上であることが好ましい。   In the present invention, the ratio of the host compound among the compounds contained in the light emitting layer is preferably 20% by mass or more.

ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機ELパネルを高効率化することができる。また、後述する発光性ドーパントとして用いられるリン光性化合物等を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ドープ量を調整することが可能であり、照明、バックライトへの応用もできる。   As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL panel can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of phosphorescent compounds etc. which are used as a luminescent dopant mentioned later, Thereby, arbitrary luminescent colors can be obtained. It is possible to adjust the kind of phosphorescent compound and the amount of doping, and it can be applied to illumination and backlight.

本発明に用いられる発光ホスト化合物としては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。   The light-emitting host compound used in the present invention is not particularly limited in terms of structure, but typically, a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, Those having a basic skeleton such as an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative means that at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is nitrogen Represents an atom substituted with an atom.) And the like.

本発明に用いられるホスト化合物としては下記一般式(a)で表されるホスト化合物が好ましい。   The host compound used in the present invention is preferably a host compound represented by the following general formula (a).

Figure 0005018211
Figure 0005018211

(式中、Xは、NR’、O、S、CR’R”またはSiR’R”を表す。R’、R”は、各々水素原子または置換基を表す。Arは芳香環を表す。nは0から8の整数を表す。)
一般式(a)のXにおいて、R’、R”で、各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
(In the formula, X represents NR ′, O, S, CR′R ″ or SiR′R ″. R ′ and R ″ each represents a hydrogen atom or a substituent. Ar represents an aromatic ring. N Represents an integer of 0 to 8.)
In X of the general formula (a), as substituents represented by R ′ and R ″, an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, Hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group, etc.), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic carbocyclic group, aryl group) For example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl Group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc., aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group) , Triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) Phthalazinyl group etc.), heterocyclic group (eg pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyl) Oxy group, octylo Si group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group) Propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (Eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxy Sulfonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecyl) Aminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (example) For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group ( For example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclo Xylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethyl) Ureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group) Cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridyl Rufinyl group, etc.), alkylsulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, Phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, Anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg fluoromethyl group, trifluoromethyl group, pentaf) Fluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group, etc. Is mentioned.

これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。   These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.

一般式(a)において好ましいXは、NR‘またはOであり、R’としては芳香族炭化水素基、芳香族複素環基が特に好ましい。   X in the general formula (a) is preferably NR ′ or O, and R ′ is particularly preferably an aromatic hydrocarbon group or an aromatic heterocyclic group.

一般式(a)において、Arで表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも、後述するような置換基を有していてもよい。   In the general formula (a), examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent as described later.

一般式(a)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に置換基を有していてもよい。   In the general formula (a), examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, Examples include a pyranthrene ring and anthraanthrene ring. These rings may further have a substituent.

一般式(a)において、Arで表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は更に置換基を有していてもよい。   In the general formula (a), examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. , Benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indazole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline Ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (showing a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom), etc. Can be mentioned. These rings may further have a substituent.

上記の中でも、一般式(a)において、Arで表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、特に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環である。   Among the above, in the general formula (a), the aromatic ring represented by Ar is preferably a carbazole ring, a carboline ring, a dibenzofuran ring, or a benzene ring, and particularly preferably used is a carbazole ring, A carboline ring or a benzene ring.

上記の中でも、置換基を有するベンゼン環が好ましく、特に好ましくは、カルバゾリル基を有するベンゼン環が好ましい。   Among these, a benzene ring having a substituent is preferable, and a benzene ring having a carbazolyl group is particularly preferable.

また、一般式(a)において、Arで表される芳香環としては、下記に示すような、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。   Further, in the general formula (a), the aromatic ring represented by Ar is preferably a condensed ring having 3 or more rings, as shown below, and is an aromatic hydrocarbon condensed in which 3 or more rings are condensed. Specific examples of the ring include naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene Ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen ring, picene ring, pyranthrene ring, coronene ring, Naphthocoronene ring, Ovalene ring, Ansula Ntoren ring and the like.

尚、これらの環は更に、置換基を有していてもよい。   In addition, these rings may further have a substituent.

また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。尚、これらの環は更に置換基を有していてもよい。   Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, A Tiger thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan Tren ring (naphthaldehyde thiophene ring), and the like. In addition, these rings may further have a substituent.

ここで、一般式(a)において、Arで表される芳香環が有してもよい置換基は、R’、R”で、各々表される置換基と同義である。   Here, in the general formula (a), the substituent that the aromatic ring represented by Ar may have is the same as the substituent represented by R ′ and R ″.

また、一般式(a)において、nは0〜8の整数を表すが、0〜2であることが好ましく、特にXがO,Sである場合には1〜2であることが好ましい。   In the general formula (a), n represents an integer of 0 to 8, preferably 0 to 2, and particularly preferably 1 to 2 when X is O or S.

ここで、一般式(a)において、Arで表される芳香環が有してもよい置換基は、R’、R”で、各々表される置換基と同義である。   Here, in the general formula (a), the substituent that the aromatic ring represented by Ar may have is the same as the substituent represented by R ′ and R ″.

以下に一般式(a)で表される発光ホスト化合物の具体例を示すが、これらに限定されるものではない。   Specific examples of the luminescent host compound represented by the general formula (a) are shown below, but are not limited thereto.

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

また、本発明に用いるホスト化合物は、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。   The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .

ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。   As the host compound, a compound having a hole transporting ability and an electron transporting ability, which prevents emission of longer wavelengths and has a high Tg (glass transition temperature) is preferable.

本発明に係るホスト化合物としては、更に、公知のホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種もちいることで、電荷の移動を調整することが可能であり、有機ELパネルを高効率化することができる。また、リン光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。   As the host compound according to the present invention, a plurality of known host compounds may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL panel can be made highly efficient. In addition, by using a plurality of phosphorescent compounds, it is possible to mix different light emission, thereby obtaining an arbitrary emission color. White light emission is possible by adjusting the kind of phosphorescent compound and the amount of doping, and can also be applied to illumination and backlight.

従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等
(発光性ドーパント)
本発明に係る発光性ドーパントとしては、リン光性化合物(「リン光発光性化合物」、「リン光発光体」等ともいう。)及び蛍光性化合物を用いることが出来るが、より発光効率の高い有機ELパネルを得る観点からは、本発明の有機ELパネルの発光層や発光ユニットに使用される発光性ドーパント(単に、「発光材料」ということもある。)としては、上記のホスト化合物を含有すると同時に、少なくとも1種以上のリン光発光体を含有することを要する。蛍光発光体を併用する場合は、青色を選択することが好ましい。
As specific examples of conventionally known host compounds, compounds described in the following documents are suitable. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787 gazette, 2002-15871 gazette, 2002-334788 gazette, 2002-43056 gazette, 2002-334789 gazette, 2002-75645 gazette, 2002-338579 gazette. No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. 2002-302516, 2002-305083, 2002-305084, 2002-308837, etc. (Luminescent dopant)
As the luminescent dopant according to the present invention, a phosphorescent compound (also referred to as “phosphorescent compound”, “phosphorescent substance”, or the like) and a fluorescent compound can be used, but the emission efficiency is higher. From the viewpoint of obtaining an organic EL panel, the light-emitting dopant used in the light-emitting layer or light-emitting unit of the organic EL panel of the present invention (sometimes simply referred to as “light-emitting material”) contains the above host compound. At the same time, it is necessary to contain at least one phosphorescent emitter. When using a fluorescent emitter together, it is preferable to select blue.

(リン光性化合物:リン光発光体)
本発明に係るリン光性化合物(「リン光発光体」、「リン光性ドーパント」ともいう。)は、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(Phosphorescent compound: phosphorescent emitter)
The phosphorescent compound according to the present invention (also referred to as “phosphorescent emitter” or “phosphorescent dopant”) is a compound in which light emission from an excited triplet is observed, specifically, room temperature (25 The phosphorescence quantum yield is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., but a preferred phosphorescence quantum yield is 0.1 or more.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光体は、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。リン光発光体の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光体に移動させることでリン光発光体からの発光を得るというエネルギー移動型、もう一つはリン光発光体がキャリアトラップとなり、リン光発光体上でキャリアの再結合が起こりリン光発光体からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光体の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。リン発光体は、有機ELパネルの発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に係るリン光発光体としては、好ましくは元素の周期表で8族〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。本発明では、特に赤色はイリジウム化合物から選択されることが好ましい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitter according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it. There are two types of light emission of phosphorescent emitters in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent emitter. The energy transfer type that emits light from the phosphorescent emitter by moving to the other, the phosphorescent emitter becomes a carrier trap, carrier recombination occurs on the phosphorescent emitter, and from the phosphorescent emitter Although it is a carrier trap type in which light emission is obtained, in any case, it is a condition that the excited state energy of the phosphorescent emitter is lower than the excited state energy of the host compound. The phosphor luminescent material can be appropriately selected from known materials used for the light emitting layer of the organic EL panel. The phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound. In the present invention, it is particularly preferable that red is selected from iridium compounds.

以下に、リン光発光体として用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。   Although the specific example of the compound used as a phosphorescent body is shown below, this invention is not limited to these. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711, and the like.

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

(蛍光性化合物:蛍光発光体)
蛍光性化合物(「蛍光発光体」、「蛍光性ドーパント」等ともいう。)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002−280178号公報、特開2001−181616号公報、特開2002−280179号公報、特開2001−181617号公報、特開2002−280180号公報、特開2001−247859号公報、特開2002−299060号公報、特開2001−313178号公報、特開2002−302671号公報、特開2001−345183号公報、特開2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、特開2002−50484号公報、特開2002−332292号公報、特開2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、特開2002−338588号公報、特開2002−170684号公報、特開2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、特開2002−100476号公報、特開2002−173674号公報、特開2002−359082号公報、特開2002−175884号公報、特開2002−363552号公報、特開2002−184582号公報、特開2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、特開2002−226495号公報、特開2002−234894号公報、特開2002−235076号公報、特開2002−241751号公報、特開2001−319779号公報、特開2001−319780号公報、特開2002−62824号公報、特開2002−100474号公報、特開2002−203679号公報、特開2002−343572号公報、特開2002−203678号公報等が挙げられる。
(Fluorescent compound: Fluorescent substance)
Representative examples of fluorescent compounds (also referred to as “fluorescent emitters”, “fluorescent dopants”, etc.) are coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes. Examples thereof include dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors. In addition, conventionally known dopants can also be used in the present invention. For example, WO 00/70655 pamphlet, JP 2002-280178 A, JP 2001-181616 A, JP 2002-280179 A, JP 2001-181617 A, JP 2002-280180 A, JP 2001-247859 A, JP 2002-299060 A, JP 2001-313178 A, JP 2002-302671 A, JP JP 2001-345183 A, JP 2002-324679 A, WO 02/15645 Pamphlet, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-2002 A. -83684 publication, special table 2002 JP 40572, JP 2002-117978, JP 2002-338588, JP 2002-170684, JP 2002-352960, WO 01/93642, JP 2002-50483. JP, JP-A No. 2002-1000047, JP-A No. 2002-173684, JP-A No. 2002-359082, JP-A No. 2002-175854, JP-A No. 2002-363552, JP-A No. 2002-184582 JP, 2003-7469, JP 2002-525808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP JP 2002-234894, JP No. 002-235076, JP 2002-241751, JP 2001-319779, JP 2001-319780, JP 2002-62824, JP 2002-1000047, JP 2002 No. 203679, JP-A No. 2002-343572, JP-A No. 2002-203678, and the like.

《非発光性の中間層》
本発明においては、キャリア制御層として、非発光性の中間層を設けても良い。非発光性の中間層の層厚としては、1〜15nmの範囲にあるのが好ましく、更には3〜10nmの範囲にあることが、隣接発光層間のエネルギー移動など相互作用を抑制し、且つ、パネルの電流電圧特性に大きな負荷を与えないという観点から好ましい。
<Non-light emitting intermediate layer>
In the present invention, a non-light emitting intermediate layer may be provided as the carrier control layer. The layer thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, more preferably in the range of 3 to 10 nm, to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the panel.

この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層のすくなくとも一方の発光層のホスト化合物と同一であることが好ましい。   The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host compound of at least one of the adjacent light emitting layers. preferable.

非発光性の中間層は、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト化合物(ここで、共通ホスト化合物が用いられるとは、リン光発光エネルギー、ガラス転移温度等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層−非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。また、電圧(電流)をかけたときの色ずれが改善されるという効果が得られることも判った。   The non-light emitting intermediate layer may contain a compound common to each light emitting layer (for example, a host compound). Each of the common host compounds (where a common host compound is used) means phosphorescence emission. In which the physicochemical characteristics such as energy and glass transition temperature are the same or the molecular structure of the host compound is the same.) Thus, even if the voltage (current) is changed, the effect of easily maintaining the injection balance of holes and electrons can be obtained. It has also been found that the effect of improving the color shift when a voltage (current) is applied can be obtained.

更に、上記のように、共通ホスト化合物の最低励起三重項エネルギー準位T1が、リン光発光体の最低励起三重項エネルギー準位T2よりも高い励起三重項エネルギーを有する化合物を用いることで、発光層の三重項励起子を効果的に発光層内に閉じ込めるので高効率なパネルを得られることが判った。   Furthermore, as described above, by using a compound in which the lowest excited triplet energy level T1 of the common host compound is higher than the lowest excited triplet energy level T2 of the phosphorescent emitter, light emission is achieved. It was found that a highly efficient panel can be obtained because the triplet excitons of the layer are effectively confined in the light emitting layer.

また、青・緑・赤の3色の有機ELパネルにおいては、各々の発光材料にリン光発光体を用いる場合、青色のリン光発光体の励起3重項エネルギーが一番大きくなるが、前記青色のリン光発光体よりも大きい励起3重項エネルギーを有するホスト化合物を発光層と非発光性の中間層とが共通のホスト化合物として含んでいてもよい。   In addition, in the organic EL panel of three colors of blue, green, and red, when a phosphorescent emitter is used for each light emitting material, the excited triplet energy of the blue phosphorescent emitter is the largest, A light emitting layer and a non-light emitting intermediate layer may contain a host compound having an excited triplet energy larger than that of a blue phosphorescent emitter as a common host compound.

本発明の有機ELパネルにおいては、ホスト化合物はキャリアの輸送を担うため、キャリア輸送能を有する化合物が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機化合物のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすい為、中間層材料、ホスト化合物は移動度の電界強度依存性の少ない材料を用いることが好ましい。また、一方では、正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は、阻止層即ち、正孔阻止層、電子阻止層として機能することも好ましい態様としてあげられる。   In the organic EL panel of the present invention, since the host compound is responsible for carrier transport, a compound having carrier transport ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, and the carrier mobility of an organic compound generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance of hole and electron injection / transport, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host compound. On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer. It is done.

《正孔輸送層》
正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するもので有機物、無機物のいずれでもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明ではより高効率の発光パネルが得られることからこれらの材料を用いることが好ましい。正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。本発明ではこのようなp性の高い正孔輸送層を用いることがより低消費電力のパネルを作製することができるため好ましい。   The hole transporting material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and two more described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) etc. Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. An inorganic compound such as SiC can also be used as a hole injecting material and a hole transporting material, and also disclosed in Japanese Patent Application Laid-Open No. 11-251067, J. Huang et al. (Applied Physics Letters 80 (2002), p.139), a so-called p-type hole transport material can also be used. It is preferable to use these materials from the used. The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5 nm-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials. Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. In the present invention, it is preferable to use such a hole transport layer having a high p property because a panel with lower power consumption can be produced.

《電子輸送層》
電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含む。電子輸送層は単層または複数層設けることができる。従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料は従来公知の化合物の中から任意のものを選択して用いることができ、例えばニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることができる。また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができ、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。電子輸送層は上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。また不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開平10−270172号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力のパネルを作製することができるため好ましい。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and includes an electron injection layer and a hole blocking layer in a broad sense. The electron transport layer can be provided as a single layer or a plurality of layers. Conventionally, in the case of a single-layer electron transport layer and a plurality of layers, the electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer was injected from the cathode. Any material can be used as long as it has a function of transferring electrons to the light-emitting layer, and any material can be selected from conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrans can be used. Dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can be used. In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as an electron transport material. Similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used. It can be used as an electron transport material. The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials. Further, an electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. In the present invention, it is preferable to use such an electron transport layer having a high n property because a panel with lower power consumption can be produced.

《注入層:電子注入層、正孔注入層》
注入層は、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its forefront of industrialization (issued on November 30, 1998 by NTS Corporation) 2 of Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

注入層は必要に応じて設け、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。   The injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer as described above.

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1〜5μmの範囲が好ましい。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 to 5 μm, although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
正孔阻止層は、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、前述した電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。本発明の有機ELパネルの正孔阻止層は、発光層に隣接して設けられていることが好ましい。
<Blocking layer: hole blocking layer, electron blocking layer>
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons but having a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer of the organic EL panel of the present invention is preferably provided adjacent to the light emitting layer.

阻止層は、上記の如く、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。   As described above, the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

本発明においては、正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対し、そのイオン化ポテンシャルが0.2eV以上大きいことが好ましい。本発明に係る正孔阻止層は、前記エレクトロンドナーを含有すると、電子密度が増加するので、更なる低電圧化のために好ましい。   In the present invention, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer has an ionization potential of 0.2 eV or more larger than the host compound of the shortest wave emitting layer. When the hole blocking layer according to the present invention contains the electron donor, the electron density increases, which is preferable for further lowering the voltage.

なお、イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。   The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.

(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G * . This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.

(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。   (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a method known as ultraviolet photoelectron spectroscopy can be suitably used by using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。本発明に好ましく用いられる電子阻止層は、前記正孔輸送層の材料である。更に前記エレクトロンアクセプターを含有すると更なる低電圧化の効果が得られる。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. The electron blocking layer preferably used in the present invention is a material for the hole transport layer. Further, when the electron acceptor is contained, the effect of further lowering the voltage can be obtained.

本発明に係わる正孔阻止層、電子輸送層の膜厚としては好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。   The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.

《基板》
本発明の有機ELパネルに係る基板(以下、基体、支持基盤、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機ELパネルにフレキシブル性を与えることが可能な樹脂フィルムである。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
"substrate"
There are no particular limitations on the type of glass, plastic, etc., as the substrate related to the organic EL panel of the present invention (hereinafter also referred to as “base”, “support base”, “base”, “support”, etc.). It may be opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film that can give flexibility to the organic EL panel. Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned. On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability measured by a method in accordance with JIS K 7129-1992 (25 ± 0.5 ° C., It is preferable that the relative humidity (90 ± 2)% RH) is a barrier film of 1 × 10 −3 g / (m 2 · 24 h) or less, and further measured by a method based on JIS K 7126-1987. The oxygen permeability is 1 × 10 −3 ml / m 2 · 24 h · atm or less, and the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × 10 −3. It is preferable that it is a high barrier film of g / (m 2 · 24h) or less.

高バリア性フィルムとするために樹脂フィルム表面に形成されるバリア膜を形成する材料としては、水分や酸素などパネルの劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming a barrier film formed on the surface of the resin film in order to obtain a high barrier film, any material may be used as long as it has a function of suppressing intrusion of water or oxygen that causes panel deterioration. Silicon, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

《バリア膜の形成方法》
バリア膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。不透明な支持基盤としては、例えばアルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
<Method for forming barrier film>
The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weighting. A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable. Examples of the opaque support base include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.

本発明の有機ELパネルの発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機ELパネル外部に発光した光子数/有機ELパネルに流した電子数×100である。また、カラーフィルター等の色相改良フィルター等を併用しても、有機ELパネルからの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。   The external extraction efficiency at room temperature of light emission of the organic EL panel of the present invention is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL panel / the number of electrons sent to the organic EL panel × 100. In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL panel into multiple colors using a phosphor may be used in combination.

《封止》
本発明の有機ELパネルの封止に用いられる封止手段としては、例えば封止部材と、電極、支持基盤とを接着剤で接着する方法を挙げることができる。封止部材としては、有機ELパネルの表示領域を覆うように配置されておればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
<Sealing>
As a sealing means used for sealing the organic EL panel of the present invention, for example, a method of adhering a sealing member, an electrode, and a support base with an adhesive can be mentioned. As a sealing member, it should just be arrange | positioned so that the display area of an organic electroluminescent panel may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.

また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、パネルを薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下の高バリア性フィルムであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the panel can be thinned. Furthermore, the polymer film has a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method in accordance with JIS K 7129-1992, 1 × 10 −3 g / (M 2 · 24h) It is preferable that the film has a barrier property of not more than 1, and furthermore, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / m 2 · 24h ·. It is preferable that the film has a high barrier property with a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of 1 × 10 −3 g / (m 2 · 24 h) or less. .

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化および熱硬化型接着剤、2−シアノアクリル酸エステルなどの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱および化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。なお、有機ELパネルが熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   Specific examples of the adhesive include photocuring and thermosetting adhesives having a reactive vinyl group of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate. be able to. Moreover, the heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. In addition, since an organic electroluminescent panel may deteriorate with heat processing, what can be adhesively cured from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.

また、有機層を挟み支持基盤と対向する側の電極の外側に、該電極と有機層を被覆し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素などパネルの劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることが好ましい。   In addition, it is also preferable to coat the electrode and the organic layer on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film. it can. In this case, as a material for forming the film, any material may be used as long as it has a function of suppressing intrusion of water or oxygen that causes panel deterioration. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. it can. Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.

これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができる。封止部材と有機ELパネルの表示領域との間隙には、気相および液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。吸湿性化合物としては例えば金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等があげられ、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用いられる。   The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. In the gap between the sealing member and the display area of the organic EL panel, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase. Is preferred. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.). Metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, barium perchlorate, In particular, anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基盤と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、パネルの機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the panel, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used. Is preferably used.

《陽極》
有機ELパネルにおける陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
"anode"
As the anode in the organic EL panel, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method. ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.

《陰極》
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機ELパネルの陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL panel is transparent or translucent, the emission luminance is advantageously improved.

また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有するパネルを作製することができる。   Moreover, after producing the said metal with a film thickness of 1-20 nm on a cathode, a transparent or semi-transparent cathode can be produced by producing the electroconductive transparent material quoted by description of the anode on it, By applying this, a panel in which both the anode and the cathode are transmissive can be manufactured.

《光取り出し及び/又は集光シート》
特にバックライト用の有機エレクトロルミネッセンスパネルにおいては、通常、全方位に光が放射され視野角が変わっても明るさが変わらないような特性が望ましいが、使用形態によっては、正面輝度をより高くし、大きな視野角(斜め方向から観察する角度)においては輝度を低下させることが望ましい。そのために、有機エレクトロルミネッセンスパネルの上に、放射角を制御する拡散板、プリズムシート等が組み合わされることが好ましい。
<< Light extraction and / or condensing sheet >>
In particular, for organic electroluminescence panels for backlights, it is usually desirable for the light to be emitted in all directions so that the brightness does not change even if the viewing angle changes. It is desirable to reduce the luminance at a large viewing angle (an angle observed from an oblique direction). Therefore, it is preferable that a diffusion plate, a prism sheet, and the like for controlling the radiation angle are combined on the organic electroluminescence panel.

通常、基板(ガラス基板、樹脂基板など)から光を放射するような有機エレクトロルミネッセンスパネルにおいては、発光層から放射された光の一部が基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。   Usually, in an organic electroluminescence panel that emits light from a substrate (glass substrate, resin substrate, etc.), part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, and the light is emitted. The problem of loss occurs. In order to solve this problem, the prism surface or lens sheet is processed on the surface of the substrate, or the prism sheet or lens sheet is attached to the surface of the substrate, thereby suppressing total reflection and improving the light extraction efficiency. .

以下に、光取り出し及び/又は集光シートの好ましい形態を説明するが、本発明では目的効果を損なわない範囲内であれば、これらを用いて光取りだし効率を向上させることが出来る。   Although the preferable form of a light extraction and / or condensing sheet | seat is demonstrated below, if it is in the range which does not impair the objective effect in this invention, light extraction efficiency can be improved using these.

(1)ガラス基板の上に拡散板とプリズムシートを置く構成
例えば、ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレクトロルミネッセンスパネルにおいて、ガラス基板の発光層とは反対側の基板表面に接するように第1の拡散板を置く。拡散板に接するように第1のレンズシート(例えば、3M製 BEF II)をレンズ面がガラス基板と反対側に向くように配置し、さらに第2のレンズシートをレンズのストライプが第1のレンズのストライプと直交し、かつそのレンズ面がガラス基板と反対側に向くように配置する。次に第2のレンズシートに接するように第2の拡散板を配置する。第1ならびに第2のレンズシートの形状としては、PET基材上にアクリル樹脂で頂角90度、ピッチ50μmの△状のストライプが形成されたものである。頂角が丸みを帯びた形状(3M製 RBEF)、ピッチをランダムに変化させた形状(3M製 BEF III)、その他類似の形状であっても良い。第1の拡散板としては、約100μmのPET基材上に光を拡散するビーズを混ぜた膜を形成したもので、透過率は約85%で、ヘイズ値は約75%である。第2の拡散板としては、約100μmのPET基材上に光を拡散するビーズを混ぜた膜を形成したもので、透過率は約90%で、ヘイズ値は約30%である。ガラス基板に接して配置する拡散板は、ガラス基板に光学接着剤を介して接着されていても良い。また、ガラス基板表面に光を拡散する層を直接塗布する、もしくはガラス基板の表面に光を拡散するための微細な構造が設けられたものであってもよい。以上、ガラス基板で説明したが、基板は樹脂基板であってもよい。
(1) Configuration in which a diffusing plate and a prism sheet are placed on a glass substrate For example, in an organic electroluminescence panel comprising a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, it is opposite to the light emitting layer of the glass substrate The first diffusion plate is placed in contact with the substrate surface on the side. A first lens sheet (for example, 3M BEF II) is arranged so as to be in contact with the diffusion plate so that the lens surface faces the opposite side of the glass substrate, and the second lens sheet is formed with a stripe of the first lens. It is arranged so as to be orthogonal to the stripe of the lens and the lens surface thereof facing away from the glass substrate. Next, a second diffusion plate is disposed so as to be in contact with the second lens sheet. As the shape of the first and second lens sheets, a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm is formed of acrylic resin on a PET base material. A shape with a rounded apex angle (3M RBEF), a shape with a randomly changed pitch (3M BEF III), or other similar shapes may be used. As the first diffusion plate, a film in which beads for diffusing light are mixed is formed on a PET substrate of about 100 μm, and the transmittance is about 85% and the haze value is about 75%. As the second diffusion plate, a film in which beads for diffusing light are mixed is formed on a PET substrate of about 100 μm, and the transmittance is about 90% and the haze value is about 30%. The diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer for diffusing light may be directly applied to the surface of the glass substrate, or a fine structure for diffusing light may be provided on the surface of the glass substrate. The glass substrate has been described above, but the substrate may be a resin substrate.

(2)基板の表面にマイクロレンズアレイを形成する場合
ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレクトロルミネッセンスパネルにおいて、ガラス基板の有機発光層が設けられた面とは反対側の表面にマイクロレンズアレイシートを光学接着剤を介して貼り付ける。マイクロレンズアレイシートは、各々50μmの四角垂(ピラミッドの形状)でその頂角が90度のマイクロレンズを、50μmピッチで整列させた形状をしている。シートの製造方法としては、マイクロレンズアレイの母型となる金属の金型と、0.5mmのスペーサをはさんで設置されたガラス平板の間にUV硬化樹脂を注入し、ガラス基板からUV露光することで樹脂を硬化させてマイクロレンズアレイシートを得る。ここで、各々のマイクロレンズの形状としては、円錐形状、三角錐形状、凸レンズ形状等を適用可能である。ガラス基板にマイクロレンズアレイシートを貼り付ける構造として説明したが、樹脂基板にマイクロレンズアレイシートを貼り付けるでもよい。また、マイクロレンズアレイシートのマイクロレンズアレイが設けられた面と反対面に透明電極/有機発光層/電極/封止層を設ける、という構成でもよい。
(2) When forming a microlens array on the surface of a substrate In an organic electroluminescence panel comprising a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, the surface of the glass substrate on which the organic light emitting layer is provided; Attach a microlens array sheet to the opposite surface via an optical adhesive. Each microlens array sheet has a shape in which microlenses each having a square apex of 50 μm (pyramid shape) and an apex angle of 90 degrees are aligned at a pitch of 50 μm. The sheet is manufactured by injecting UV curable resin between a metal mold that is the mother mold of the microlens array and a glass plate placed between 0.5 mm spacers, and UV exposure from the glass substrate. By doing so, the resin is cured to obtain a microlens array sheet. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable. Although described as a structure in which the microlens array sheet is attached to the glass substrate, the microlens array sheet may be attached to the resin substrate. Moreover, the structure of providing a transparent electrode / organic light emitting layer / electrode / sealing layer on the surface opposite to the surface provided with the microlens array of the microlens array sheet may be used.

(3)基板の表面にマイクロレンズアレイシートを下向きに接着する構造
ガラス基板/透明導電膜/有機発光層/電極/封止層からなる有機エレクトロルミネッセンスデバイスにおいて、ガラス基板の有機発光層が設けられた面とは反対側の表面にマイクロレンズアレイシートを、マイクロレンズの凹凸面がガラス基板側に向くように光学接着剤を介して貼り付ける。マイクロレンズアレイシートは、各々一辺が50μmの四角垂形状の頂点を平坦にした構造をしたマイクロレンズをピッチ50μmで整列した形状をしている。平坦となった頂点部分がガラス基板の表面に接着される。ここで、各々のマイクロレンズの形状としては、円錐形状、三角錐形状、凸レンズ形状等を適用可能である。ガラス基板にマイクロレンズアレイシートを貼り付ける構造として説明したが、樹脂基板にマイクロレンズアレイシートを貼り付けてもよい。
(3) Structure for adhering the microlens array sheet downward on the surface of the substrate In an organic electroluminescence device comprising a glass substrate / transparent conductive film / organic light emitting layer / electrode / sealing layer, an organic light emitting layer of the glass substrate is provided. The microlens array sheet is attached to the surface opposite to the surface on which the concave and convex surfaces of the microlens face the glass substrate side via an optical adhesive. The microlens array sheet has a shape in which microlenses having a structure in which the apexes of a rectangular shape each having a side of 50 μm are flat are arranged at a pitch of 50 μm. The flat top portion is adhered to the surface of the glass substrate. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable. Although described as a structure in which the microlens array sheet is attached to the glass substrate, the microlens array sheet may be attached to the resin substrate.

光取り出し効率を更に高めるためには、透明電極と透明基板の間に低屈折率層を挿入することが好ましい。透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。また、低屈折率媒質の厚みは、光の媒質中の波長よりも長い厚み、好ましくは2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。以下に本発明に係る低屈折率層の例を説明するが、本発明では目的効果を損なわない範囲内であれば、これらに限定されない。   In order to further increase the light extraction efficiency, it is preferable to insert a low refractive index layer between the transparent electrode and the transparent substrate. When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. . Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less. The thickness of the low refractive index medium is preferably longer than the wavelength in the light medium, preferably twice or more. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate. Examples of the low refractive index layer according to the present invention will be described below. However, the present invention is not limited to these examples as long as the object effects are not impaired.

(1)中空シリカを分散させる場合
ゾル−ゲル法により中空シリカを分散させ低屈折率層を形成したガラス基板の作製方法を説明する。ガラス基板上に以下の手順で低屈折率層を形成することができる。原料化合物として金属アルコキシド(正珪酸四エチルSi(OC254:「TEOS」と略す。)、溶媒としてエタノール、触媒として酢酸、それに加水分解に必要な水を加えた調合液に、低屈折率材料(触媒化成工業製、シリカ粒子(屈折率1.35))をイソプロピルアルコールに加えた液を混合させ、数十℃に保って加水分解と重縮合反応を起こさせ、液体のゾルを生成する。作製されたゾルをスピンコートでガラス基板上に塗布して反応させるとゲルとして固化する。これをさらに150度の雰囲気中で乾燥させて乾燥ゲルとし、その時の膜厚が0.5μmとなるように、溶液の調合とスピンコートの条件を設定する。その結果、膜厚0.5μm、屈折率1.37の低屈折率層が形成される。ここで、溶液の塗布方法としてスピンコートと記述したがディップコート他、均一な膜厚を得られる手法であればよい。基板としてガラス基板の例を示したが、プロセス温度が150度以下であるので、樹脂基板の上に直接塗布することも可能である。また、原料化合物や低屈折率材料としてさらに低い屈折率を選択し、得られる低屈折率層の屈折率が1.37以下にすることでさらなる効果が期待できる。膜厚については0.5μm以上が望ましく、1μm以上であればさらに好ましい。
(1) Dispersing hollow silica A method for producing a glass substrate in which a hollow silica is dispersed by a sol-gel method to form a low refractive index layer will be described. A low refractive index layer can be formed on a glass substrate by the following procedure. Metal alkoxide (original tetrasilicate Si (OC 2 H 5 ) 4 : abbreviated as “TEOS”) as a raw material compound, ethanol as a solvent, acetic acid as a catalyst, and water required for hydrolysis are added to a preparation liquid. A liquid obtained by adding a refractive index material (catalyst chemical industry, silica particles (refractive index: 1.35)) to isopropyl alcohol is mixed and kept at several tens of degrees C to cause hydrolysis and polycondensation reaction. Generate. When the prepared sol is applied on a glass substrate by spin coating and allowed to react, it solidifies as a gel. This is further dried in an atmosphere of 150 ° C. to obtain a dry gel, and the conditions of the solution preparation and spin coating are set so that the film thickness at that time becomes 0.5 μm. As a result, a low refractive index layer having a thickness of 0.5 μm and a refractive index of 1.37 is formed. Here, spin coating is described as the solution coating method, but any method that can obtain a uniform film thickness may be used, such as dip coating. Although an example of a glass substrate is shown as the substrate, since the process temperature is 150 ° C. or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index as a raw material compound or a low refractive index material, and setting the refractive index of the resulting low refractive index layer to 1.37 or less. The film thickness is preferably 0.5 μm or more, more preferably 1 μm or more.

中空シリカの作製は、例えば、特開2001−167637号公報、特開2001−233611号公報、特開2002−79616号公報等に記載されている。   Production of hollow silica is described in, for example, Japanese Patent Application Laid-Open Nos. 2001-167637, 2001-233611, and 2002-79616.

(2)シリカエアロゲルの場合
透明低屈折率層は、シリコンアルコキシドのゾルゲル反応により形成される湿潤ゲルを超臨界乾燥することによって得られるシリカエアロゲルによって形成される。シリカエアロゲルとは、均一な超微細構造を持った光透過性の多孔質体である。テトラメトキシシランのオリゴマーとメタノールを混合してA液を調製し、また水、アンモニア水、メタノールを混合してB液を調製した。A液とB液を混合して得たアルコキシシラン溶液を、基板2上に塗布する。アルコキシシランをゲル化させた後、水、アンモニア水、メタノールの養生溶液中に浸漬し、室温にて1昼夜養生する。次に、養生を行なった薄膜状のゲル状化合物を、ヘキサメチルジシラザンのイソプロパノール溶液中に浸漬し、疎水化処理をし、その後、超臨界乾燥を行って、シリカエアロゲルを形成する。
(2) In the case of silica airgel The transparent low refractive index layer is formed of silica airgel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide. Silica airgel is a light-transmitting porous body having a uniform ultrafine structure. Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol, and liquid B was prepared by mixing water, aqueous ammonia and methanol. An alkoxysilane solution obtained by mixing the A liquid and the B liquid is applied onto the substrate 2. After the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia, and methanol and cured at room temperature for one day. Next, the cured gel-like compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica airgel.

(3)多孔質シリカの場合
低屈折率材料として、撥水性を有するヘキサメチルジシロキサンやヘキサメチルジシラザンを含有した低比誘電率物質の溶液を、基板上に塗布して成膜を行う。ここで用いる低比誘電率物質の溶液には、ヘキサメチルジシロキサンやヘキサメチルジシラザンのような撥水性の物質以外にも、必要に応じてアルコールや酢酸ブチルなどを添加物として加えても良い。そして、焼成処理などにより、上記低比誘電率物質の溶液中の溶媒や水、酸またはアルカリ触媒や界面活性剤などを蒸発させながら多孔質シリカ材料から成る低屈折率膜を形成する。これを洗浄し、低屈折率膜を得る。
(3) In the case of porous silica As a low refractive index material, a film of a low relative dielectric constant material containing hexamethyldisiloxane or hexamethyldisilazane having water repellency is applied on a substrate to form a film. In addition to a water-repellent material such as hexamethyldisiloxane or hexamethyldisilazane, alcohol or butyl acetate may be added as an additive to the solution of the low relative dielectric constant material used here. . Then, a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant, or the like in the solution of the low relative dielectric constant material by firing treatment or the like. This is washed to obtain a low refractive index film.

この様に基板上に低屈折率膜を形成した後、低屈折率膜上に、直接、又は、例えばRFスパッタ法等によりSiO2膜からなる透明絶縁膜で中間層を形成し、その後、中間層の上にDCスパッタ法によりITO膜の成膜を行い、透明電極付き基板とする。 After forming the low refractive index film on the substrate in this way, an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO 2 film by, for example, RF sputtering, and then the intermediate layer is formed. An ITO film is formed on the layer by DC sputtering to form a substrate with a transparent electrode.

また、更に光取り出し効率を高めるためには、例えば、特開平11−283751号、特願2005−48686号明細書等に記載されたように、全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法を併用するのが好ましい。例えば、ガラス基板上に回折格子を形成する。   Further, in order to further increase the light extraction efficiency, for example, as described in Japanese Patent Application Laid-Open No. 11-283951, Japanese Patent Application No. 2005-48686, etc., diffraction occurs in the interface or any medium that causes total reflection. It is preferable to use a method of introducing a lattice together. For example, a diffraction grating is formed on a glass substrate.

この方法は、回折格子が1次の回折や、2次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。回折格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、増幅する光の媒質中の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。   This method is generated from the light emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. Of the light, light that cannot go out due to total reflection between layers, etc., is diffracted by introducing a diffraction grating in any layer or medium (in the transparent substrate or transparent electrode) It tries to take out light. The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased. As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

例えば、ガラス基板上に回折格子を形成するには、ガラス基板を洗浄後、表面にポジ型のレジストを塗布する。次にレジスト上に基板垂直方向からθ度の角度で対向するように互いにコヒーレントな波長λの2つの平行光を照射する。このとき、レジストにはピッチdの干渉縞が形成される。ここで、d=λ/(2cosθ)となる。波長488nmのアルゴンレーザを用いると、フォトニック結晶のピッチとして300nmを作製するとき、2つの光束ともに基板に垂直な方向から角度35.6度で露光すると、ピッチ300nmの第1の干渉縞が形成される。次に基板を基板の面内に90度回転させて、第1の干渉縞に直交するように第2の干渉縞を形成する。露光する光束をそのまま維持しておけばピッチ300nmで第2の干渉縞が形成される。レジストには2つの干渉縞が重畳されて露光され、格子状の露光パターンが形成される。露光パワーと現像条件を適切に設定することにより、2つの干渉縞が重なりあって強く露光された部分のみレジストが除去されるように現像する。ガラス基板上には縦横のピッチが各々300nmの格子の重なりあった部分にほぼ円形にレジストが除去されたようなパターンが形成される。円の直径は、例えば、220nmとする。次にドライエッチングを施すことによりレンジストが除去された部分に深さ200nmの孔を形成する。その後レジストを除去しガラス基板を洗浄する。以上により、表面に深さ200nm、直径220nmの孔が縦横300nmピッチの正方格子の頂点に並んだガラス基板が形成される。次に、穴の底から測って膜厚300nm程度のITO膜をバイアススパッタリングにより成膜し、バイアススパッタリングの条件を適切にコントロールすることで、表面の凹凸を50nm以下に平坦にすることができる。以上のように作製されたITO付きのガラス基板の表面に研磨を施すことで、有機EL用のITO付きガラス基板が形成される。ガラス基板にフォトレジストを塗布してパターニングし、ガラス基板をエッチングする方法のほか、同様の手法でガラス型を形成し、ガラス基板上にUV硬化のレジストをナノインプリントの手法で転写してガラス基板をエッチングする方法も可能である。また、ガラス基板に形成されたパターンをニッケル電鋳などの手法で金型に転写し、その金型をナノインプリントの手法で樹脂に転写したものを基板として用いるこで、樹脂基板でも本発明を実施することが可能である。   For example, in order to form a diffraction grating on a glass substrate, a positive resist is applied to the surface after cleaning the glass substrate. Next, two parallel lights having a wavelength λ that are coherent with each other are irradiated on the resist so as to face each other at an angle of θ degrees from the vertical direction of the substrate. At this time, interference fringes having a pitch d are formed in the resist. Here, d = λ / (2 cos θ). When an argon laser having a wavelength of 488 nm is used and a 300 nm pitch is formed as a photonic crystal, if both light beams are exposed at an angle of 35.6 degrees from a direction perpendicular to the substrate, a first interference fringe having a pitch of 300 nm is formed. Is done. Next, the substrate is rotated 90 degrees in the plane of the substrate to form a second interference fringe so as to be orthogonal to the first interference fringe. If the light beam to be exposed is maintained as it is, second interference fringes are formed at a pitch of 300 nm. Two interference fringes are superimposed on the resist and exposed to form a grid-like exposure pattern. By appropriately setting the exposure power and the development conditions, the development is performed so that the resist is removed only at the portion where the two interference fringes overlap and is strongly exposed. On the glass substrate, a pattern in which the resist is removed in a substantially circular shape is formed in the overlapping portion of the lattices each having a vertical and horizontal pitch of 300 nm. The diameter of the circle is, for example, 220 nm. Next, dry etching is performed to form a hole having a depth of 200 nm in the portion where the range is removed. Thereafter, the resist is removed and the glass substrate is washed. As described above, a glass substrate in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the apexes of a square lattice having a pitch of 300 nm in length and width is formed on the surface. Next, an ITO film having a thickness of about 300 nm as measured from the bottom of the hole is formed by bias sputtering, and the surface unevenness can be flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. By polishing the surface of the glass substrate with ITO produced as described above, a glass substrate with ITO for organic EL is formed. In addition to patterning by applying a photoresist to a glass substrate and etching the glass substrate, a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprinting method. An etching method is also possible. In addition, the pattern formed on the glass substrate is transferred to a mold by a technique such as nickel electroforming, and the mold is transferred to a resin by a nanoimprint technique. Is possible.

上記のような光取り出し及び/又は集光シートを用いた有機ELパネルにおいては、正面輝度増幅率が高められている。このようにして取り出された光は、白色光であるように調整される。   In the organic EL panel using the light extraction and / or condensing sheet as described above, the front luminance amplification factor is increased. The light thus extracted is adjusted to be white light.

通常、発光色は440nm以上500nm未満の発光を青色、500nm以上540nm未満の発光を緑色、600nm以上〜640nm未満の発光を赤色に区分する。従って、発光する材料(実質的にドーパント)によっても異なるが、本発明において、光取り出し及び/又は集光シートが無い場合の有機エレクトロルミネッセンスパネルの正面輝度ピーク値は、該シートがある場合に対して、定性的には青色が最も小さい比率となる。   Usually, the emission color is classified into blue light emission of 440 nm to less than 500 nm, green light emission of 500 nm to less than 540 nm, and red light emission of 600 nm to less than 640 nm. Therefore, although depending on the material (substantially dopant) that emits light, in the present invention, the front luminance peak value of the organic electroluminescence panel when there is no light extraction and / or light collecting sheet is compared with the case where the sheet is present. Qualitatively, blue is the smallest ratio.

連続駆動等における寿命においては、一般的に青色が律速になるので、この様な光取りだし及び又は集光シートを用いた場合、有機エレクトロルミネッセンスパネルにおいてより高寿命が可能となる。また、駆動電圧の制約となるのは、HOMOとLUMOのエネルギーギャップが最も大きい青色であるため、前記光取り出しを向上させた有機ELパネルは、青色の正面輝度が少なくて済む設計となり、駆動電圧を下げることが可能となる。   Since the blue color is generally rate-determined in the lifetime in continuous driving or the like, when such a light extraction and / or condensing sheet is used, a longer lifetime can be achieved in the organic electroluminescence panel. Also, the driving voltage is limited by blue, which has the largest energy gap between HOMO and LUMO. Therefore, the organic EL panel with improved light extraction has a design that requires less blue front luminance. Can be lowered.

即ち、青色発光層の膜厚が薄くでき、かつ駆動電圧が下げられるため、光取り出し及び/又は集光シートがない場合に比べ、高寿命が可能となり、この組み合わせにより、トータルで白色光を得るようにすることができる。   In other words, since the blue light emitting layer can be made thin and the driving voltage can be lowered, a longer life can be achieved compared to the case where there is no light extraction and / or light collecting sheet, and this combination provides a total of white light. Can be.

ここにおいて、光取り出し及び/又は集光シートによる正面輝度の増幅率は、分光放射輝度計(例えば、CS−1000(コニカミノルタセンシング社製))等を用い、正面からの発光輝度(2℃視野角正面輝度)を、光取出し及び/又は集光シートがある状態ともたない状態で、発光面からの法線に分光放射輝度計の光軸が一致するようにして、必要な可視光波長範囲で測定、積算し比をとればよい。   Here, the amplification factor of the front luminance by the light extraction and / or condensing sheet is determined by using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)) or the like, and the emission luminance from the front (2 ° C. field of view). The visible wavelength range is required so that the optical axis of the spectral radiance meter coincides with the normal from the light-emitting surface, with or without light extraction and / or condensing sheet. Measure and integrate the values and take the ratio.

《有機エレクトロルミネッセンスパネルの発光、正面輝度、色度》
本発明の有機エレクトロルミネッセンスパネルや当該パネルに係る化合物の発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
《Light emission, front luminance, chromaticity of organic electroluminescence panel》
The emission color of the organic electroluminescence panel of the present invention and the compound related to the panel is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (Edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

本願で言うところの白色とは、色温度が2500K以上8000K以下、かつ、UCS色度図(CIE1976)上でので、黒体軌跡・昼光軌跡との偏差を表すΔuvが、−0.01以上、+0.01以下のことを言う。   In this application, white means a color temperature of 2500 K or more and 8000 K or less, and a Δuv representing a deviation from a black body locus / daylight locus on a UCS chromaticity diagram (CIE1976) is −0.01 or more. , +0.01 or less.

ここで、Δuv=(Δu*2+Δv*2(1/2)
Δu*、Δv*はそれぞれ、UCS色度(CIE1976)座標u*、v*の黒体軌跡・昼光軌跡との偏差を示す。
Here, Δuv = (Δu * 2 + Δv * 2 ) (1/2)
Δu * and Δv * indicate deviations of the UCS chromaticity (CIE 1976) coordinates u * and v * from the black body locus and the daylight locus, respectively.

《有機ELパネルの作製方法》
本発明の有機ELパネルの作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機ELパネルの作製法について説明する。
<< Method for producing organic EL panel >>
As an example of the method for producing the organic EL panel of the present invention, a method for producing an organic EL panel comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.

まず適当な支持基盤上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機ELパネル材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。   First, a desired electrode material, for example, a thin film made of a material for an anode is formed on a suitable support base by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm, thereby producing an anode. To do. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL panel materials, is formed thereon.

この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。   As a method for thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer.

製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。これらの層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機ELパネルが得られる。 When employing a vapor deposition method for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm. After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL panel can be obtained.

この有機ELパネルの作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   The organic EL panel is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

《用途》
本発明の有機エレクトロルミネッセンスパネルは、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に、カラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。本発明の有機エレクトロルミネッセンスパネルにおいては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、パネル全層をパターニングしてもよい。
<Application>
The organic electroluminescence panel of the present invention can be used as a display device, a display, and various light sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used especially as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination. In the organic electroluminescence panel of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire panel may be patterned.

《照明装置》
本発明の有機ELパネルを適用した照明装置について説明する。
《Lighting device》
A lighting device to which the organic EL panel of the present invention is applied will be described.

本発明の有機ELパネルは、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。   The organic EL panel of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used. The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.

本発明に用いられる有機エレクトロルミネッセンスパネルにおいては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、パネル全層をパターニングしてもよい。発光層に用いる発光ドーパントとしては特に制限はなく、例えば、液晶表示パネルにおけるバックライトであれば、CF(カラーフィルタ)特性に対応した波長範囲に適合するように、本発明に係る白金錯体、また公知の発光ドーパントの中から任意のものを選択して組み合わせて、また本発明に係る光取り出し及び/または集光シートと組み合わせて、白色化すればよい。   In the organic electroluminescence panel used in the present invention, patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire panel may be patterned. The light emitting dopant used in the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display panel, the platinum complex according to the present invention is adapted so as to fit the wavelength range corresponding to the CF (color filter) characteristics, Any one of known light-emitting dopants may be selected and combined, and combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.

このように、本発明の有機ELパネルは、CF(カラーフィルタ)と組み合わせて、また、CF(カラーフィルタ)パターンに合わせ素子及び駆動トランジスタ回路を配置することで、有機エレクトロルミネッセンスパネルから取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光を得ることで、低駆動電圧で長寿命のフルカラーの有機エレクトロルミネッセンスディスプレイができ、好ましい。   As described above, the organic EL panel of the present invention is combined with a CF (color filter) and arranged in the CF (color filter) pattern so that the element and the driving transistor circuit are arranged, and thus the white color extracted from the organic electroluminescence panel. By obtaining blue light, green light, and red light through a blue filter, a green filter, and a red filter using light as a backlight, a full-color organic electroluminescence display with a low driving voltage and a long life can be obtained, which is preferable.

《本発明の有機ELパネルを適用した産業分野》
本発明の有機ELパネルは、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルタや光拡散板、光取り出しフィルムなどと組み合わせた各種表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<< Industrial field to which the organic EL panel of the present invention is applied >>
The organic EL panel of the present invention can be used as a display device, a display, and various light emission sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for backlights of various display devices combined with color filters, light diffusion plates, light extraction films, etc., and as a light source for illumination.

本発明の有機ELパネルの特徴を活かして、以下に示すような様々な照明器具や発光表示体等への適用が可能である。   Taking advantage of the characteristics of the organic EL panel of the present invention, it can be applied to various lighting fixtures and light-emitting display bodies as shown below.

〔商品展示・ディスプレイ用〕
商品展示・ディスプレイ用としては、店舗の商品ディスプレイ、冷凍・冷蔵ショーケース、博物館・美術館・展示会場などの展示品のライトアップ、自動販売機、遊戯台、交通広告などがある。
[For product display and display]
For product display and display, there are store product display, freezer / refrigerated showcase, light up of exhibits in museums, art galleries, exhibition halls, vending machines, play tables, traffic advertisements, etc.

店舗の商品ディスプレイは店舗自体の装飾的なディスプレイやショーケース、POPやサインなどがある。店舗の中でも高級ブランドショップや貴金属、ファッション系、高級飲食店など、そのブランドイメージを重視するような店舗では照明が与える店舗イメージへの影響は非常に大きいことから、強い拘りをもって照明が選択されている分野である。有機ELを用いることによって、今までは直接光源が見えないよう建築物の構造に工夫を凝らすことで雰囲気を作り出していた間接照明の分野で光源・機器分のスペースが省略でき複雑な構造が不要になったり、インテリアやサインなどで拡散光を作り出す際に光源の形が透けて見えないために必要な光源と拡散板の間のスペースが省略できるなど、施工性が上がることがあげられる。また、店舗のイメージを変える際のツールとしても、ディスプレイ棚、床、什器として組み込むなどスペースを取らず、軽量な光源であるという特徴を活かし、デザイン自由度があり、施工性がよく、手軽に採用できるという利点がある。   Store merchandise displays include decorative displays, showcases, POPs and signs for the store itself. Among stores, high-end brand shops, precious metals, fashion, high-end restaurants, and other stores that place emphasis on the brand image have a great influence on the store image that lighting gives, so lighting has been selected with strong attention This is a field. By using organic EL, the space for the light source and equipment can be omitted in the field of indirect lighting, which has created an atmosphere by devising the structure of the building so that the light source can not be seen directly, and no complicated structure is required The space between the light source and the diffusion plate can be omitted because the shape of the light source cannot be seen through when creating diffused light in interiors or signs, and so on. Also, as a tool for changing the image of the store, it takes advantage of the feature that it is a light source that does not take up space such as display shelves, floors, fixtures, etc., and it has design freedom, easy workability, and easy There is an advantage that it can be adopted.

冷凍・冷蔵ショーケースはスーパーやコンビニエンスストアなどに置かれ、野菜や果物、鮮魚、精肉などの鮮食品を“美しさ”や“鮮度”にあふれる商品として、より見やすく、鮮やかに、取りやすくするために照明設備も重要な部品の1つである。有機EL光源を用いることによって、低温発光のため冷却機能への影響が小さく、薄型であるので光源スペースを大幅に削減ことができることから収納スペースを拡大でき、スマートなデザインで食品を選びやすく、取りやすくすることができる。また、食品の良さが判りやすい色光で消費者に自然とアピールすることができ、売上に貢献できる。   Frozen and refrigerated showcases are placed in supermarkets and convenience stores to make fresh foods such as vegetables, fruits, fresh fish, meat, etc. full of beauty and freshness, making them easier to see, vivid, and easier to take. Lighting equipment is another important component. By using an organic EL light source, low temperature emission has little effect on the cooling function, and since it is thin, the light source space can be greatly reduced, so the storage space can be expanded, and it is easy to select food with a smart design. It can be made easier. In addition, it can appeal to consumers with colored light that makes it easy to understand the goodness of food, contributing to sales.

博物館・美術館・展示会場などでの展示品のライトアップでは、展示物への視認や日焼けなどの観点から使用条件に適した光源を選ぶ必要があり、退色防止型で紫外線比率の低いで蛍光ランプが開発されている。有機EL光源は紫外線を含まないこと、発熱量が低いことから展示物に悪影響がなく、面光源で均一に光ることによりグレアがなく、高い演色性によって展示物のありのままを忠実に鑑賞することができる。また、大きな光源器具を必要としないため、視界に余計な機材の出っ張りが入ることなく、展示物だけに注目することができる。またショーなど大規模な展示会場においては、注目を集める大型電飾装飾もその軽量・薄型という特徴から比較的簡易に組み立てることができる。   In order to light up exhibits in museums, art galleries, exhibition halls, etc., it is necessary to select a light source that is suitable for the conditions of use from the viewpoint of visual recognition and sunburn. Has been developed. Since the organic EL light source does not contain ultraviolet rays and the calorific value is low, there is no adverse effect on the exhibit, it is uniform glare with the surface light source, and it is possible to faithfully appreciate the display as it is with high color rendering. it can. In addition, since a large light source device is not required, it is possible to focus only on the exhibits without the need for extra equipment protruding in the field of view. Also, in large-scale exhibition halls such as shows, large-sized electric decorations that attract attention can be assembled relatively easily due to their lightweight and thin features.

自動販売機では、押しボタン、商品サンプル、販売機前面のポスター部に光源が使われている。   Vending machines use light sources for push buttons, product samples, and posters on the front of the vending machine.

機器全体の大きさに対し、取り込みたい追加機能の為のスペースと収納スペースの取り合いとなっていることから、薄く光源のスペースをとらない有機ELの利点が活かせる分野であり、特に取り出し口上のポスタースペースでニーズが高い。また、近年は販売と共に当たり/はずれなどゲーム性を持たせた機器も多く見られ、前面のポスターに部分に画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。   It is a field where the advantage of organic EL that does not take up a thin light source space can be utilized because the space for the additional function to be taken in and the storage space are combined with the size of the entire device, especially on the outlet Needs are high in poster space. In recent years, there are many devices that have game characteristics such as hit / miss along with sales, and it is possible to make further use of the benefits by installing a light source (video display) with a pixel control function on the front poster. Can do.

遊戯台にはパチンコ・パチスロなどがある。これら遊戯台では、利用者にアミューズメント性(ゲーム性・ギャンブル性など)を体感し、楽しんでいただくことが最も重要。光源を薄くする事で1台の機器の厚みを低減できる薄さのメリットもあるが、自動販売機同様、画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。   There are pachinko and pachislots at the playground. At these playgrounds, it is most important for users to experience and enjoy amusement (games, gambling, etc.). Although there is a merit of thinness that can reduce the thickness of one device by thinning the light source, like the vending machine, it can make further use of the merit by installing a light source (video display) with a pixel control function. Can do.

交通広告には公共スペースにあるポスターや看板、電車・バスなどの社内のポスターや画面、車体に張られている広告などがある。特にポスターや看板は蛍光灯をバックライトを用いたボックスタイプのものがあり、有機ELに変えることでボックス自体を薄く、軽量にすることができる。   Traffic advertisements include posters and signboards in public spaces, internal posters and screens such as trains and buses, and advertisements on the body. In particular, posters and billboards are box-type fluorescent lamps using a backlight, and the box itself can be made thinner and lighter by changing to organic EL.

また、吊り下げ看板についてはボックスを薄くすることで、埃、ゴミの蓄積がなくなることや鳥による糞害の防止にもなる。   In addition, by thinning the box for hanging signboards, dust and dirt can be prevented from being accumulated, and bird damage caused by birds can be prevented.

〔インテリア・家具・建築材料用の組み込み照明〕
建築関係では、床・壁・天井などと照明とを融合して一体化したものは「建築化照明」と呼ばれる。「建築化照明」の代表的なものとしては、その方式により、コーニス照明、トロファ照明、コーブ照明、光天井、ルーバ天井などがある。これらは照明光源が天井・壁・床に組み込まれ、照明としての存在や気配を消し、建築素材自体が光を発することを求めている。
[Built-in lighting for interior, furniture and building materials]
In terms of architecture, a combination of floors, walls, ceilings, etc. and lighting is called “architectural lighting”. Typical examples of “architectural lighting” include cornice lighting, troffer lighting, cove lighting, light ceiling, and louver ceiling, depending on the method. These require lighting sources to be built into the ceiling, walls and floors, extinguish their presence and signs as lighting, and the building materials themselves to emit light.

有機ELパネルを用いた光源は、「建築化照明」に対して、その薄さ、軽さ、色調整、デザイン可変性から最も適した光源であり、さらにインテリア、家具、什器にまで適用が可能である。従来は店舗や美術館のみで用いられてきたこのような建築化照明を、有機EL光源の展開によって一般住宅にまで広げることができ、新たな需要を発掘することができる。   Light sources using organic EL panels are the most suitable light sources for “architecture lighting” due to their thinness, lightness, color adjustment, and design variability, and can be applied to interiors, furniture, and furniture. It is. Conventionally, such architectural lighting, which has been used only in stores and museums, can be extended to ordinary houses by developing organic EL light sources, and new demand can be found.

商業施設においては、半地下店舗、アーケードの天井などに有機EL光源を採用し、照明の明るさや色温度を変化させることで、天候や昼夜に左右されない最適な商業空間を構築することができる。   In commercial facilities, organic EL light sources are used in semi-underground stores, arcade ceilings, etc., and by changing the brightness and color temperature of illumination, it is possible to construct an optimal commercial space that is not affected by the weather or day and night.

インテリア・什器・家具の一例としては、机や椅子、食器棚・靴箱・ロッカーなどの収納、洗面化粧台、仏壇・祭壇、ベッドライト、フットライト、手すり、ドア、障子・襖などが挙げられるが、それに限定されるものではない。   Examples of interior / furniture / furniture include desks and chairs, storage of cupboards / shoeboxes / lockers, vanities, altars, bed lights, footlights, handrails, doors, shoji screens, shojis, etc. It is not limited to that.

一方で、有機EL光源に透明な電極を用い消灯/発光させることで、透明/不透明を切り替えることもできる。それによって、あらゆる窓、ドア、カーテンやブラインド、パーテーションとしての利用も可能となる。   On the other hand, it is possible to switch between transparent and opaque by using a transparent electrode for the organic EL light source and turning it off / emitting light. As a result, it can be used as any window, door, curtain, blind, and partition.

〔自動車用照明、発光表示体〕
自動車用としては、外部の照明器具や発光表示体、車内の照明器具や発光表示体などに、有機ELパネルが利用できる。前者は、前部に(小分類)ヘッドランプ、補助灯、車幅灯、フォッグランプ、方向指示灯など、後部にはリアコンビネーションランプとしてストップランプ、車幅灯、バック灯、方向指示灯、およびナンバープレート灯などがある。特に、有機ELパネルを用いてリアコンビネーションランプを1枚で形成し、後部に貼り付けることによって、後部ランプのためのスペースを削減して、トランクルームを広くすることが可能となる。また、雨や霧で見通しが悪い時には、車幅灯やストップランプの面積を広くして、視認性を高めることもできる。一方、ホイールを有機ELパネルで発光させることによって、側面からの視認性を高めることもできる。さらには、ボデイ全体を有機ELパネルで形成して発光させ、ボデイカラーやデザインに新たな発想を盛り込むことが可能となる。
[Automotive lighting, luminous display]
For automobiles, organic EL panels can be used for external lighting fixtures and light-emitting display bodies, in-vehicle lighting fixtures and light-emitting display bodies, and the like. The former is a front (sub-classification) headlamp, auxiliary light, vehicle width light, fog lamp, direction indicator light, etc., and the rear is a rear combination lamp as stop lamp, vehicle width light, back light, direction indicator light, and There are license plate lights. In particular, by forming the rear combination lamp by using an organic EL panel and attaching it to the rear part, it becomes possible to reduce the space for the rear lamp and widen the trunk room. In addition, when the visibility is poor due to rain or fog, the visibility of the vehicle can be increased by widening the area of the vehicle width lights and stop lamps. On the other hand, visibility from the side surface can be enhanced by causing the wheel to emit light with the organic EL panel. Furthermore, the entire body can be formed with an organic EL panel to emit light, and new ideas can be incorporated into the body color and design.

後者の車内の照明器具や発光表示体としては、室内灯、マップライト、ドア下部の乗降ライト、メーター類表示、カーナビゲーションディスプレイ、警告灯などがある。特に、有機ELパネルの透明性を活かして、昼間はサンルーフとし、夜間は発光させて面光源の穏やかな室内灯とすることもできる。またタクシーなどでは、前部座席の背面に有機ELパネルからなる照明器具を貼り付けることによって、ドライバーの運転に支障なく、かつ室内空間を犠牲にすることなく、顧客が利用しやすい手元照明システムを構築できる。   Examples of the latter in-vehicle lighting fixtures and light-emitting displays include indoor lights, map lights, boarding lights at the bottom of doors, meter displays, car navigation displays, warning lights, and the like. In particular, taking advantage of the transparency of the organic EL panel, it is possible to use a sunroof during the daytime and emit a light at night to provide a calm indoor light with a surface light source. For taxis, etc., a lighting system consisting of an organic EL panel is attached to the back of the front seat, creating an easy-to-use lighting system that is easy for customers to use without sacrificing driver's driving and sacrificing indoor space. Can be built.

〔公共交通機関〕
電車、地下鉄、バス、航空機、船舶などの公共交通機関における車内の照明や表示体において、本発明の有機ELは、その特徴を活かすことができる。
〔Public transport〕
The characteristics of the organic EL of the present invention can be utilized in lighting and display bodies in vehicles in public transportation such as trains, subways, buses, airplanes, and ships.

航空機には多くの照明器具が搭載されているが、機体内部に搭載されている、客室照明、貨物室照明、操縦室照明などのうち特に客室の間接照明については有機EL照明のメリットが充分発揮される。   Many lighting fixtures are installed in aircraft, but the benefits of organic EL lighting are fully demonstrated, especially for cabin indirect lighting among cabin lighting, cargo cabin lighting, cockpit lighting, etc. that are mounted inside the aircraft. Is done.

客室照明には蛍光灯や電球が使われているが、これらは天井は側面に反射した間接照明が使われており、客室に落ち着いた雰囲気を与えると共に万が一のトラブルの際にも割れてガラス破片が客席に降りかからないような工夫がされている。   Fluorescent lamps and light bulbs are used for room lighting, but these ceilings use indirect lighting reflected from the sides, giving the room a calm atmosphere and breaking glass in the event of a trouble. Has been devised so that does not fall into the audience seats.

有機EL光源を用いれば、その薄さから間接照明が作りやすくなり、また直接照明にした場合でも割れて破片が飛び散る危険がなく、拡散光で落ち着いた雰囲気をつくることもできる。   If an organic EL light source is used, it is easy to make indirect illumination because of its thinness, and even if it is directly illuminated, there is no risk of cracking and scattering of fragments, and it is possible to create a calm atmosphere with diffuse light.

また、航空機には電力消費量や機体軽量化が重要である面から考えても、消費電力が小さく、軽量な有機EL光源は好ましい。このようなメリットは、お客様を照らすだけでなく、手荷物収納内の照明でも発揮され、荷物の取り残しの低減に貢献することもできる。   Moreover, even if it considers from the aspect that power consumption and weight reduction of an airframe are important for an aircraft, a light-weight organic EL light source with low power consumption is preferable. These benefits not only illuminate the customer, but are also demonstrated in the lighting inside the baggage storage, and can contribute to the reduction of leftovers.

公共交通機関に付属する駅やバス停、空港などの施設にも、顧客を誘導するための表示や照明が利用できる。また、夜間、屋外のバス停などにおいては、バス待ちの人を検出して照明を明るくし、防犯に寄与することもできる。   Display and lighting to guide customers can also be used at facilities such as stations, bus stops, and airports attached to public transportation. In addition, at night or at an outdoor bus stop, a person waiting for the bus can be detected to brighten the lighting, thereby contributing to crime prevention.

〔OA機器用光源〕
OA機器用光源としては、読み取り用センサーが搭載されているファクシミリ、複写機、スキャナ、プリンタ、それらの複合機などがあげられる。
[Light source for OA equipment]
Examples of light sources for office automation equipment include facsimiles, copying machines, scanners, printers, and multi-function machines equipped with reading sensors.

読み取り用センサーは等倍光学系と組合せる密着型センサー(CIS)と縮小光学系と組み合わせる縮小型センサー(CCDリニア)とに分かれる。   The reading sensor is divided into a contact type sensor (CIS) combined with an equal magnification optical system and a reduction type sensor (CCD linear) combined with a reduction optical system.

CISについてはメーカーによっては定義が異なり、センサ・ロッドレンズアレイ・LED基盤をモジュール化したものをCISと呼ぶ場合や、モジュール化したものをCISM(コンタクトイメージセンサモジュール)と呼びモジュールの中に入っているセンサチップをCISと呼ぶ場合もある。それらの光源にはLED、キセノン、CCFLランプ、LDなどが使われている。   The definition of CIS differs depending on the manufacturer. When the sensor, rod lens array, and LED base are modularized, the module is called CIS, or the modularized module is called CISM (contact image sensor module). The existing sensor chip may be called CIS. For these light sources, LEDs, xenon, CCFL lamps, LDs and the like are used.

OA機器としては、更なる小型化、低電圧駆動の要望があり、有機ELの厚みがなく、低発熱量・低電圧で駆動可能であるという特徴は、それらの要望に応えることが可能である。   There is a demand for further miniaturization and low-voltage driving as an OA device, and the feature that the organic EL does not have a thickness and can be driven with a low calorific value and low voltage can meet those demands. .

〔産業用検査システム〕
製造会社では、かつては目視による検品工程に多くの工数と人力をかけていたが、それを撮影画像を利用し欠品判定することで自動化をはかっている。CCDカメラでとらえた対象物の画像をデジタル信号に変換し、種々の演算処理を行なうことで、対象物の面積、長さ、個数、位置などの特徴を抽出し、設定された基準をもとに判定結果を出力するものが、その画像撮影の為に光源が必要。このような検査システムはパッケージや形状サイズ検査、マイクロ部品の検査などでも利用される。
[Industrial inspection system]
In the past, manufacturing companies used a lot of man-hours and manpower for the visual inspection process, but this is automated by using a photographed image to determine missing items. The image of the object captured by the CCD camera is converted into a digital signal, and various arithmetic processes are performed to extract features such as the area, length, number, and position of the object. The one that outputs the result of the determination is that a light source is required to capture the image. Such an inspection system is also used for package, shape size inspection, micro component inspection, and the like.

画像センサ用に使用される照明光源には、蛍光灯、LED、ハロゲンなどがある。その中でも、透明容器やリードフレームなどを背景から照らすバックライトとしては面状に均一な光が必要である。   Illumination light sources used for image sensors include fluorescent lamps, LEDs, and halogens. Among them, as a backlight for illuminating a transparent container or a lead frame from the background, uniform light is required in a planar shape.

また、シートの汚れ検出には直線状に均一な光でシートの幅方向前面を照らせる光が必要であるなど、検査する物品により光源への要求が異なる。   In addition, the detection of the stain on the sheet requires light that can illuminate the front surface in the width direction of the sheet with linearly uniform light.

この分野に有機EL光源を採用することによって、例えば、ボトリングの工程などではボトル周囲360度全方位に照明を配置し、一度に照明し撮影することも可能となり、短時間での検品が可能となる。また検査機器内で光源自体に取られるスペースを大幅に小さくすることができる。また、面光源であることで、光反射により撮影画像が判定しにくくなることによる検知ミスを回避可能である。   By adopting an organic EL light source in this field, for example, in the bottling process, it is possible to illuminate all 360 degrees around the bottle and illuminate and shoot at once, enabling inspection in a short time Become. Moreover, the space taken by the light source itself in the inspection equipment can be greatly reduced. Further, since the surface light source is used, it is possible to avoid a detection error due to difficulty in determining a captured image due to light reflection.

〔農産物栽培用光源〕
植物工場とは『環境制御や自動化などハイテクを利用した植物の周年生産システム』である。植物栽培の環境をコンピューターにより制御することで、天候に左右されることなく、人手を必要とせずに作物を自動的に生産する技術。今後の世界の人口増、環境問題を考えると、農業にハイテクを導入することで、安定な食糧生産につながるいわゆる農業の工業化が必要になる。最近はLED、LDが、植物栽培の光源としての可能性が高まってきた。従来からよく使われている高圧ナトリウムランプなどの光源は赤色光と青色光のスペクトルバランスが悪く、また多量の熱放射が空調負荷を大きくし、植物との距離を十分にとる必要があるために、施設が大型化する欠点がある。
[Light source for agricultural products]
The plant factory is “an annual plant production system using high technology such as environmental control and automation”. A technology that automatically produces crops by controlling the plant cultivation environment with a computer, without being affected by the weather, and without the need for manpower. Considering the world's population growth and environmental issues in the future, the introduction of high technology to agriculture will require the so-called agricultural industrialization that leads to stable food production. Recently, LED and LD have been increasingly used as light sources for plant cultivation. Light sources such as high-pressure sodium lamps that have been widely used in the past have a poor spectral balance between red light and blue light, and a large amount of heat radiation increases the air conditioning load and requires a sufficient distance from the plant. There is a drawback that the facility becomes larger.

有機EL光源は光源の厚みがなく、多くの棚を設置でき、また発熱量が少ないことから植物に近接させことで高効率であり栽培量を増やすことができる。   Since the organic EL light source has no light source thickness, many shelves can be installed, and since the calorific value is small, it is highly efficient and can increase the amount of cultivation by being close to the plant.

また、一般家庭においても省スペースのメリットを活かし、キッチンなど室内の狭い場所に家庭菜園を作ることができ、庭やベランダ、屋上などの屋外スペースのみで可能であった家庭菜園の概念を変えて、広く人々が楽しむことを可能とする。   Also, taking advantage of space-saving in ordinary households, you can create a kitchen garden in a small indoor space such as a kitchen, changing the concept of a kitchen garden that was possible only in outdoor spaces such as gardens, verandas, and rooftops. It allows people to enjoy widely.

〔避難用照明〕
消防法や建築基準法で規定されている防災照明設備は、建築物火災に際して非難の為の出口や経路を示す誘導灯と、避難経路の明るさを確保し、迅速な避難を担保する非常灯とがある。
[Evacuation lighting]
Disaster prevention lighting equipment stipulated in the Fire Service Law and Building Standard Law is an emergency light that guarantees quick evacuation by ensuring the brightness of the evacuation route and the guide light that shows the exit and route for blame in case of building fire There is.

FA・民生用に用いられるシグナルや誘導灯・非常灯などは、見やすいことが前提となるが、その為の大型化は設置場所によっては建物と不釣合いになり、建築化やデザイナーから指摘されることが多かった。その対策として、1目でわかる表示のプクトグラフ化や、光源で誘目効果を高める対処が取られている。従来誘導灯の光源には、蛍光ランプが用いられることが多いが、最近ではLEDを使用した誘導灯も出てきている。   Signals, guide lights, emergency lights, etc. used for FA / consumer use are premised on being easy to see, but the enlargement for that is unbalanced with the building depending on the installation location, and it is pointed out by architects and designers There were many things. As countermeasures, measures are taken to make the display a practicable graph that can be seen at a glance and to increase the attractive effect with a light source. Conventionally, a fluorescent lamp is often used as a light source of a guide lamp, but recently, a guide lamp using an LED has also come out.

これらの誘導灯に有機EL光源を用いることで、輝度班、角度特性による輝度低下がなく、視認性を向上でき、低電力で、薄型であるために特別な工事の必要がなく設置が容易で、従来の蛍光灯を使うタイプに比べ交換の必要がなく、メンテナンスを容易することができる。また発熱も少ない為発光面の色焼けも少ない。したがって、避難経路の床、階段の手すり、防火扉など、多くの場所に設置して安全性を高めることができる。また現在、蛍光灯で問題視されている水銀の問題もなく、割れにくく、安全性に優れている。更に省スペース薄型設計で美観を損ねることなく、誘目効果を高めることができる光源と言える。   By using an organic EL light source for these guide lights, there is no reduction in brightness due to brightness spots and angular characteristics, visibility can be improved, and low power consumption and thinness make it easy to install without special work. Compared to conventional fluorescent lamp types, there is no need for replacement, and maintenance can be facilitated. In addition, since there is little heat generation, there is little color burn on the light emitting surface. Therefore, it can be installed in many places such as floors of evacuation routes, stairs handrails, fire doors, etc. to improve safety. In addition, there is no problem of mercury, which is currently regarded as a problem with fluorescent lamps, it is difficult to break, and it has excellent safety. Furthermore, it can be said that it is a light source that can enhance the attractive effect without impairing the beauty of the space-saving thin design.

〔撮影用照明〕
写真館やスタジオ、照明写真ボックスなどで使われる光源には、ハロゲン、タングステン、ストロボ、蛍光灯などが用いられている。これらの光源を被写体に直接直線的に当て陰影を強くつける、もしくは光を拡散させ、あまり陰影のない柔らかな光をつくるという、大きくは2つの光の種類を色々な角度から組み合わせて1つの絵がつくられている。光を拡散させるためには、光源と被写体の間にディフューザーを挟むこと、または他の面(レフ板など)に当てた反射光を用いるなどの方法がある。
[Lighting for shooting]
Halogen, tungsten, strobe light, fluorescent light, etc. are used as light sources used in photo studios, studios, and lighting photo boxes. Applying these light sources directly to the subject to add a strong shadow, or diffuse light to create soft light with little shadow, a combination of two types of light from various angles. Is made. In order to diffuse light, there are methods such as sandwiching a diffuser between a light source and a subject, or using reflected light applied to another surface (reflective plate or the like).

有機EL光源は拡散光であり、この前者に対応する光をディフューザーを用いることなく発光することができる。その際には、既存光源で必要な光源とディフューザーの間の空間が不用になることや、レフ板などで光の向きを微妙な角度で調整し、細かな陰影を調整していたものをフレキシブルタイプの有機EL自体を曲げることで実施することができるなどのメリットがある。   The organic EL light source is diffuse light, and can emit light corresponding to the former without using a diffuser. In that case, the space between the light source and the diffuser required by the existing light source becomes unnecessary, and the light that has been adjusted with a fine angle by adjusting the direction of the light with a reflex plate etc. is flexible There is an advantage that it can be implemented by bending the type of organic EL itself.

撮影で利用される光源には、演色性が求められることがある。太陽光線で見たときとの色の見え方の差が大きいと演色性が悪く、その差が少なければ演色性が良いと評価される。一般家庭で使用されている蛍光灯はその波長特性から撮影には好ましいとは言えず、光があたっている部分が緑色に偏る傾向がある。肌やメイキャップ、髪、着物、宝石などの色は、そのもの自体の色で写ることが求められる場合が多く、演色性はライトにとって重要なファクターの1つである。有機EL光源は演色性に優れ、前述のような色の忠実さが求められる撮影に好ましい。この特徴は印刷・染色関連など色を忠実に評価したい場所でも同様に活かされる。   A color rendering property may be required for a light source used for photographing. If the difference in the color appearance when viewed with sunlight is large, the color rendering is poor, and if the difference is small, the color rendering is evaluated as good. Fluorescent lamps used in general households are not preferable for photographing because of their wavelength characteristics, and the portions that are exposed to light tend to be green. The color of skin, makeup, hair, kimono, jewelry, etc. is often required to be reflected in its own color, and color rendering is one of the important factors for light. An organic EL light source is excellent in color rendering, and is preferable for photographing that requires color fidelity as described above. This feature is also used in places where it is desired to faithfully evaluate colors such as printing and dyeing.

有機EL光源のような面光源をスタジオの天井一面に配置することによって、子供やペットの撮影などでは子供やペットを室内で自由に遊ばせておき、自由・自然な表情を光源移動の煩わしさなく、自然な色で撮影することができる。   By placing a surface light source such as an organic EL light source on the entire ceiling of the studio, children and pets can freely play indoors when shooting children and pets, etc., and free and natural expressions do not have to bother moving the light source Can shoot with natural colors.

〔家電製品〕
家電製品には細部の見易さ、作業のしやすさ、デザインの為、光源がつけられている場合が多い。一例を挙げると、ミシン、電子レンジ、食器洗浄乾燥機、冷蔵庫、AV機器などは従来より光源が付いているが、新しいものでは洗濯乾燥機は横型モデルで取り残しが増えたことから光源が付けられるようになった。既存のものには白熱電球やLEDがつけられている場合が多い。今後、掃除機の先端に照明を設置して家具などの影の部分の清掃状況を確認したり、シェーバーに特定波長光の光源を設置して、髭剃り状況を確認したりするなど、色々と展開が考えられる。
〔Home appliances〕
Household appliances are often equipped with light sources for ease of viewing details, ease of work, and design. For example, sewing machines, microwave ovens, dishwashers / dryers, refrigerators, AV equipment, etc. have a light source than before, but in the new ones, the washing / dryer is a horizontal model, and the light source is attached because it is left behind. It became so. In many cases, incandescent bulbs and LEDs are attached to existing ones. In the future, we will install lighting at the tip of the vacuum cleaner to check the cleaning status of shadow parts such as furniture, install a light source of specific wavelength light on the shaver, and check the shaving status, etc. Development is possible.

このような家電製品は、全体を軽量・小型化し、更に収納スペースが大きいことが求められ、光源部分はできるだけスペースをとらずに全体を照明できることが求められる。有機ELの薄い面光源はその要望に充分応えることができる。   Such home appliances are required to be light and small as a whole and have a large storage space, and the light source part is required to be able to illuminate the whole without taking up as much space as possible. The organic EL thin surface light source can sufficiently meet the demand.

〔遊技施設〕
スケートリンクの氷の下に有機ELを用いた照明を配置することによって、上からのスポットライトとは異なる演出が可能である。有機ELは発光温度が低いので特に有利である。また、スケーターの位置を検知して、その動きに合わせて発光させるようなことも可能である。スポットライトとの組み合わせ効果や、音楽のリズムに連動させた発光などもショーアップに有効である。
[Amusement facilities]
By arranging lighting using organic EL under the ice of the skating rink, it is possible to produce an effect different from the spotlight from above. Organic EL is particularly advantageous because of its low emission temperature. It is also possible to detect the position of the skater and emit light according to the movement of the skater. Combination effects with spotlights and light emission linked to the rhythm of music are also effective for show-ups.

プラネタリウムにおいては、従来のような下からの投影ではなく、ドーム全体に有機ELの微細ピクセルを配置して、ドームそのものが星々を発光する方式が可能であり、投影機のないプラネタリウムが実現できる。   In the planetarium, instead of the conventional projection from the bottom, a system in which fine pixels of organic EL are arranged on the entire dome and the dome itself emits stars is possible, and a planetarium without a projector can be realized.

〔イルミネーション用照明〕
一般的にイルミネーションというと樹木へのイルミネーションのことを指していることが大半であったが、近年環境保護の観点から家屋や門、垣根などの造形物への装飾に移行する事例も数多くなっている。これは点光源を多数利用、ライン状に装飾したものが主流であり、LEDの出現により一層広がりを見せると見られている。
[Illumination lighting]
In general, the term “illumination” generally refers to illumination of trees, but in recent years there have been many cases of transition to decoration of objects such as houses, gates, and fences from the viewpoint of environmental protection. Yes. The mainstream of this is the use of a large number of point light sources, decorated in a line shape, and is expected to be even more widespread with the advent of LEDs.

この分野に有機EL照明を用いることによって、今までは点光源をつなげることでの表現のみであったものが、同じ樹木へのイルミネーションにおいても、葉形の照明をつけることや、樹木に巻きつけ樹木全体を光らせる、また逆に定型面モジュールとして点光源同様につなぎ合わせ、様々な色に光らせるカクテルパレットとして用いて全体として文字や絵を映し出すなどのバリエーションが出せ、より一層照明による演出効果を高めることが可能となる。   By using organic EL lighting in this field, what was previously expressed only by connecting point light sources, it is possible to use leaf-shaped lighting or wrap around trees for illumination of the same tree. Light up the whole tree, or conversely, connect it like a point light source as a standard surface module, and use it as a cocktail palette to shine in various colors to project characters and pictures as a whole, further enhancing the lighting effect by lighting It becomes possible.

〔持ち物・衣服につける照明〕
夜間屋外の歩行や運動で自動車・バイクなどから認識されやすくする目的で、自分の持ち物や靴、衣服に添付し、ヘッドライトの光を反射することで歩行者の安全を守る反射材製品(反射シートなど)が販売、利用されている。
[Lighting for belongings and clothes]
Reflective products that protect the safety of pedestrians by reflecting the light from the headlights attached to their belongings, shoes, and clothes for the purpose of making it easier to be recognized by cars and motorcycles during night walking and exercise. Sheet etc.) are sold and used.

ガラスビーズタイプの場合、細かなガラスビーズが表面に存在し入ってきた光がこのレンズの役目で光源の方向に再帰反射し、車からヘッドライトの光があたるとドライバーの目の位置に光が帰っていき強く輝いて見える。プリズムタイプの場合も機能は同じだがレンズの構造がことなる。ガラスビーズタイプとプリズムタイプの特長は、ガラスビーズタイプは、斜めからの光に対して高い反射効果があり、プリズムタイプは正面からの光に対しては、ガラスビーズタイプより反射するが、斜めからの光には比較的反射効果が低いことがある。また、貼り付ける場所の硬度によって、素材と接着方法を選ぶこともできる。従来の場合はいずれにしても、歩行者を認識させるためには、光が当たることが必要であり、背設置場所なども下に向いたヘッドライトができるだけ早く当たり認識してもらうために足に貼り付けるなどの工夫が必要であった。   In the case of the glass bead type, fine glass beads are present on the surface, and the incoming light is retroreflected in the direction of the light source by the role of this lens. It seems to shine strongly when I return. The prism type also has the same function, but the lens structure is different. The glass bead type and the prism type feature that the glass bead type has a high reflection effect on light from an oblique direction, and the prism type reflects light from the front than the glass bead type, but from an oblique direction. The light may have a relatively low reflection effect. The material and the bonding method can also be selected depending on the hardness of the place to be attached. In any case, in order to make pedestrians aware of light, it is necessary to be exposed to light. It was necessary to devise such as pasting.

これらの代替に有機EL光源を用いることで、ヘッドライトがあたる範囲になる前から、運転者に歩行者を認識させることができ、より安全を確保できる。また他の光源に対しては軽量で薄くシート状にできる点からも、シールのメリットを維持したままで効果をあげることができる。これらは人間だけでなく、ペットの衣服などにも利用できる。また、歩くことで発電して衣服などを発光させることも、低消費電力の有機ELであれば可能である。特に、人物特定用衣服に応用することもでき、例えば徘徊者の早期保護に役立てることもできる。ダイビング用のウェットスーツを発光させることによって、ダイバーの所在確認や、鮫などから身を守ることにも可能性がある。もちろん、ショーなどでの舞台衣装、ウェデイングドレスなどにも利用できる。   By using an organic EL light source for these alternatives, the driver can be made to recognize the pedestrian before the headlight hits the area, and safety can be ensured. Further, from the point of being light and thin with respect to other light sources, the effect can be obtained while maintaining the merit of the seal. These can be used not only for humans but also for pet clothes. In addition, it is possible to generate electricity by walking to emit light from clothes, etc., with an organic EL with low power consumption. In particular, the present invention can be applied to clothes for identifying a person, and can be used for early protection of a deaf person, for example. By making the wet suit for diving emit light, there is a possibility of confirming the location of the diver and protecting himself from the trap. Of course, it can also be used for stage costumes and wedding dresses at shows.

〔通信用光源〕
有機ELパネルを用いた発光体は、可視光を使って簡単なメッセージや情報などを送る「可視光タグ」にも有効に活用できる。すなわち、極めて短時間の明滅による信号を発光させることによって、それを受信する側に多量の情報を送ることができる。
[Communication light source]
Luminescent bodies using organic EL panels can be effectively used for “visible light tags” that send simple messages and information using visible light. That is, by emitting a signal due to blinking for an extremely short time, a large amount of information can be sent to the receiving side.

発光体が信号を発光させていても、極めて短時間であることから、人間の視覚上は単なる照明として認識される。道路、店舗、展示場、ホテル、アミューズメントパークなど、場所毎に設置された照明が、それぞれ場所特有の情報信号を発信して、必要な情報を受信者に提供できる。また有機ELの場合は、1つの発光体中に波長の異なる複数の発光ドーパントを組み込んでおいて、異なる波長ごとに異なる信号を発生させることによって、1つの発光体が複数の異なる情報を提供することもできる。この場合も、発光波長や色調が安定している有機ELは優位である。   Even if the illuminant emits a signal, since it is extremely short time, it is recognized as simple illumination in human vision. Lighting installed at each location, such as roads, stores, exhibition halls, hotels, and amusement parks, can send information signals specific to each location and provide necessary information to the receiver. In the case of organic EL, a single light emitter provides a plurality of different information by incorporating a plurality of light emitting dopants having different wavelengths into one light emitter and generating different signals for different wavelengths. You can also. Also in this case, the organic EL having a stable emission wavelength and color tone is superior.

音声、電波、赤外光などによる情報提供と異なり、「可視光タグ」は照明設備として一緒に組み込めるので、煩雑な追加設置工事なども不要である。   Unlike providing information by voice, radio waves, infrared light, etc., the “visible light tag” can be incorporated together as a lighting facility, so there is no need for complicated additional installation work.

〔医療用光源〕
現在はハロゲンランプなどが使用されている内視鏡や、ワイヤーを挿入して手術する腹腔手術用の照明などに有機ELを利用することによって、小型、軽量化、用途拡大に貢献する。特に近年注目されている、体内検査や治療に用いられる内視鏡カプセル(飲む内視鏡)などにも利用が可能で、期待されている。
[Medical light source]
The use of organic EL for endoscopes that currently use halogen lamps and illumination for abdominal surgery that operates with a wire inserted will contribute to miniaturization, weight reduction, and application expansion. In particular, it can be used for endoscope capsules (drinking endoscopes) that are attracting attention in recent years and are used for in-vivo examinations and treatments.

〔その他〕
さらに本発明の有機ELパネルを組み込んだ発光体は、色調を容易に選択でき、蛍光灯のような明滅がなく、低消費電力で色調が安定しているので、特開2001−269105号公報に示されるような害虫防除装置として、特開2001−286373号公報に示されるような鏡用の照明として、特開2003−288995号公報に示されるような浴室照明システムとして、特開2004−321074号公報に示される植物育成用人工光源として、特開2004−354232号公報に示されるような水質汚れ測定装置の発光体として、特開2004−358063号公報に示されるような光感受性薬剤を用いた治療用被着体として、特開2005−322602号公報に示されるような医療用無影灯として、有用である。
[Others]
Furthermore, the phosphor incorporating the organic EL panel of the present invention can easily select the color tone, does not flicker like a fluorescent lamp, and has a stable color tone with low power consumption. As a pest control apparatus as shown, as a mirror illumination as shown in JP-A-2001-286373, as a bathroom lighting system as shown in JP-A-2003-28895, as JP-A-2004-321074 As an artificial light source for plant growth shown in the official gazette, a photosensitizer as shown in Japanese Patent Application Laid-Open No. 2004-358063 was used as a light emitter of a water pollution measuring device as shown in Japanese Patent Application Laid-Open No. 2004-354232. As a treatment adherend, it is useful as a medical surgical light as disclosed in JP-A-2005-322602.

以下、実施例により本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.

実施例1
80×80mm、厚み1.0→0.7mmのITO(厚み280nm)付きガラス基板を用いて、発光サイズ50mm×50mmの照明部および2mm×2mmのインジケーター部となるようにITOをパターニングした。
Example 1
Using a glass substrate with ITO (thickness 280 nm) of 80 × 80 mm and thickness 1.0 → 0.7 mm, the ITO was patterned so as to be an illumination portion of emission size 50 mm × 50 mm and an indicator portion of 2 mm × 2 mm.

次いで、この基板を洗浄し市販の真空蒸着装置の基板ホルダーに固定し、それぞれ真空蒸着装置内の蒸着用るつぼの各々に、有機層各層の構成材料を最適の量を充填した。蒸着は真空度4×10-4Paまで減圧し、蒸着した。 Next, this substrate was washed and fixed to a substrate holder of a commercially available vacuum deposition apparatus, and each of the deposition crucibles in the vacuum deposition apparatus was filled with an optimal amount of the constituent material of each organic layer. Vapor deposition was performed under reduced pressure to a vacuum degree of 4 × 10 −4 Pa.

シャドーメタルマスクを用いて、照明部およびインジケーター部が以下の構成となるように有機層、陰極バッファ層、陰極を順次積層した。   Using a shadow metal mask, an organic layer, a cathode buffer layer, and a cathode were sequentially laminated so that the illumination unit and the indicator unit had the following configuration.

照明部構成:正孔注入層(銅フタルシアニン:CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層A(CBP、Ir(ppy)3(10%)、Ir(piq)3(2%):10nm)/発光層B(H−1、Ir−A(10%):20nm)/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
インジケーター部:正孔注入層(CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層A(CBP、Ir(ppy)3(10%)、Ir(piq)3(2%):10nm)/発光層B(H−1、Ir−A(13%):20→15nm)/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
Illumination part configuration: hole injection layer (copper phthalocyanine: CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light-emitting layer A (CBP, Ir (ppy) 3 (10%), Ir (piq) 3 (2%): 10 nm) / light-emitting layer B (H-1, Ir-A (10%): 20 nm) / hole blocking layer (E-1: 5 nm) / electron transport layer (E-1, CsF ( 20%): 45 nm) / Al (100 nm)
Indicator section: hole injection layer (CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light emitting layer A (CBP, Ir (ppy) 3 (10%), Ir (piq) 3 (2%) : 10 nm) / light-emitting layer B (H-1, Ir-A (13%): 20 → 15 nm) / hole blocking layer (E-1: 5 nm) / electron transport layer (E-1, CsF (20%)) : 45 nm) / Al (100 nm)

Figure 0005018211
Figure 0005018211

Figure 0005018211
Figure 0005018211

[測定]
有機ELパネルの駆動電源源・測定モニタとして、株式会社エーディーシー社製R6243、また、輝度特定装置として、コニカミノルタセンシング社製CS1000Aを使用した。照明部の測定は中央部とした。
[Measurement]
R6243 made by ADC Co., Ltd. was used as the drive power source / measurement monitor for the organic EL panel, and CS1000A made by Konica Minolta Sensing was used as the brightness specifying device. The measurement of the illumination part was made into the center part.

照明部が初期輝度3000cd/m2となるように定電流駆動したときの、輝度変化とインジケーター部の色度(x,y)を表1に示す。 Table 1 shows the change in luminance and the chromaticity (x, y) of the indicator unit when the illumination unit is driven at a constant current so that the initial luminance is 3000 cd / m 2 .

Figure 0005018211
Figure 0005018211

照明部が初期輝度に対し80%のとき、インジケーターの色は照明部より若干違いは感じられる程度である。照明部が70%のとき、インジケーターの色は照明部より明らかに違いが感じられ暖色に見える。   When the illumination unit is 80% of the initial luminance, the color of the indicator is slightly different from the illumination unit. When the illumination part is 70%, the color of the indicator is clearly different from the illumination part and looks warm.

したがって、インジケーター部と照明部を比較することにより照明部が80%〜70%であることが視覚的に認識できた。インジケーター部がない場合、使用者は有機ELパネルが初期輝度に対しどの程度輝度低下をしたのかが分からず、適切な明るさ以下になっても使い続けることが起こりうる。しかし、本発明を利用することにより使用者は有機ELパネルを交換する適切なタイミングを把握できる。   Therefore, it was visually recognized that the illumination portion was 80% to 70% by comparing the indicator portion and the illumination portion. When there is no indicator part, the user does not know how much the organic EL panel has decreased in luminance with respect to the initial luminance, and may continue to use even if the brightness is lower than the appropriate brightness. However, by utilizing the present invention, the user can grasp the appropriate timing for replacing the organic EL panel.

実施例2
80×80mm、厚み1.0→0.7mmのITO(厚み280nm)付きガラス基板を用いて、発光サイズ50mm×50mmの照明部および2mm×2mmのインジケーター部となるようにITOをパターニングした。
Example 2
Using a glass substrate with ITO (thickness 280 nm) of 80 × 80 mm and thickness 1.0 → 0.7 mm, the ITO was patterned so as to be an illumination portion of emission size 50 mm × 50 mm and an indicator portion of 2 mm × 2 mm.

次いで、この基板を洗浄し市販の真空蒸着装置の基板ホルダーに固定し、それぞれ真空蒸着装置内の蒸着用るつぼの各々に、有機層各層の構成材料を最適の量を充填した。蒸着は真空度4×10-4Paまで減圧し、蒸着した。 Next, this substrate was washed and fixed to a substrate holder of a commercially available vacuum deposition apparatus, and each of the deposition crucibles in the vacuum deposition apparatus was filled with an optimal amount of the constituent material of each organic layer. Vapor deposition was performed under reduced pressure to a vacuum degree of 4 × 10 −4 Pa.

照明部およびインジケーター部が同一の構成となるように有機層、陰極バッファ層、陰極を順次積層した。   An organic layer, a cathode buffer layer, and a cathode were sequentially laminated so that the illumination unit and the indicator unit had the same configuration.

正孔注入層(CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層A(CBP、Ir(ppy)3(10%)、Ir(piq)3(2%):10nm)/発光層B(H−1、Ir−A(10%):20nm)/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
照明部が初期輝度3000cd/m2、インジケーター部が初期輝度6000cd/m2となるように定電流駆動した。そのときの、輝度変化(3000cd/m2を100%とする)を表2に示す。
Hole injection layer (CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light emitting layer A (CBP, Ir (ppy) 3 (10%), Ir (piq) 3 (2%): 10 nm) / Light-emitting layer B (H-1, Ir-A (10%): 20 nm) / Hole blocking layer (E-1: 5 nm) / Electron transport layer (E-1, CsF (20%): 45 nm) / Al (100 nm)
Lighting unit initial luminance 3000 cd / m 2, the indicator unit is driven with a constant current so that the initial luminance 6000 cd / m 2. The luminance change (3000 cd / m 2 is assumed to be 100%) at that time is shown in Table 2.

Figure 0005018211
Figure 0005018211

照明部が初期輝度に対し70%のとき、インジケーターの輝度は照明部よりも明るく感じられる。照明部が60%のとき、インジケーターの輝度は照明部より暗く感じる。したがって、インジケーター部と照明部を比較することにより、照明部が70%〜60%であることが視覚的に認識できた。インジケーター部がない場合、使用者は有機ELパネルが初期輝度に対しどの程度輝度低下をしたのかが分からず、適切な明るさ以下になっても使い続けることが起こりうる。しかし、本発明を利用することにより使用者は有機ELパネルを交換する適切なタイミングを把握できる。   When the illumination unit is 70% of the initial luminance, the luminance of the indicator is felt brighter than the illumination unit. When the illumination part is 60%, the brightness of the indicator feels darker than the illumination part. Therefore, by comparing the indicator part and the illumination part, it was visually recognized that the illumination part was 70% to 60%. When there is no indicator part, the user does not know how much the organic EL panel has decreased in luminance with respect to the initial luminance, and may continue to use even if the brightness is lower than the appropriate brightness. However, by utilizing the present invention, the user can grasp the appropriate timing for replacing the organic EL panel.

実施例3
100×100mm、厚み1.0→0.7mmのITO(厚み280nm)付きガラス基板を用いて、発光サイズ30mm×30mmの発光部が4個とれる照明部となるようにITOをパターニングした。20×20mm、厚み1.0→0.7mmのITO(厚み280nm)付きガラス基板を用いて、発光サイズ3mm×3mmの発光部が2個とれるインジケーター部となるようにITOをパターニングした。
Example 3
Using a glass substrate with ITO (thickness: 280 nm) having a thickness of 100 × 100 mm and a thickness of 1.0 → 0.7 mm, the ITO was patterned so as to be an illuminating portion having four light emitting portions with a light emitting size of 30 mm × 30 mm. Using a glass substrate with ITO (thickness 280 nm) of 20 × 20 mm and thickness 1.0 → 0.7 mm, ITO was patterned so as to be an indicator portion where two light emitting portions having a light emitting size of 3 mm × 3 mm could be taken.

次いで、この照明部となる基板を洗浄し市販の真空蒸着装置の基板ホルダーに固定し、それぞれ真空蒸着装置内の蒸着用るつぼの各々に、有機層各層の構成材料を最適の量を充填した。蒸着は真空度4×10−4Paまで減圧し、蒸着した。照明部(青発光)の構成が下記となるように有機層、陰極バッファ層、陰極を順次積層した。 Next, the substrate serving as the illumination unit was washed and fixed to a substrate holder of a commercially available vacuum deposition apparatus, and each of the deposition crucibles in the vacuum deposition apparatus was filled with an optimal amount of the constituent material of each organic layer. Deposition under vacuum to a vacuum degree 4 × 10- 4 Pa, and deposition. An organic layer, a cathode buffer layer, and a cathode were sequentially laminated so that the configuration of the illumination unit (blue light emission) was as follows.

次いで、インジケーター部となる基板についても照明部同様に、蒸着した。インジケーター部(白色発光)が下記の構成となるように有機層、陰極バッファ層、陰極を順次積層した。   Next, the substrate serving as the indicator part was also deposited in the same manner as the illumination part. An organic layer, a cathode buffer layer, and a cathode were sequentially laminated so that the indicator portion (white light emission) had the following configuration.

照明部構成:正孔注入層(CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層(H−1、Ir−A(10%):30nm)/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
インジケーター部:正孔注入層(CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層A(CBP、Ir(ppy)3(10%)、Ir(piq)3(2%):10nm)/発光層B(H−1、Ir−A(10%))/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
照明部が初期輝度1500cd/m2、インジケーター部は2個ある発光部のうち一つがが初期輝度6000cd/m2、もう一方が初期輝度3000cd/m2となるように定電流駆動した。そのときの、輝度変化(発光部では1500cd/m2を100%、インジケーター部では3000cd/m2を100%とする)を表3に示す。
Illumination part configuration: hole injection layer (CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light emitting layer (H-1, Ir-A (10%): 30 nm) / hole blocking layer (E −1: 5 nm) / electron transport layer (E-1, CsF (20%): 45 nm) / Al (100 nm)
Indicator section: hole injection layer (CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light emitting layer A (CBP, Ir (ppy) 3 (10%), Ir (piq) 3 (2%) : 10 nm) / light-emitting layer B (H-1, Ir-A (10%)) / hole blocking layer (E-1: 5 nm) / electron transport layer (E-1, CsF (20%): 45 nm) / Al (100 nm)
Lighting unit initial luminance 1500 cd / m 2, the indicator unit is one of the two is the light emitting portion is an initial luminance 6000 cd / m 2, the other is driven with a constant current so that the initial luminance 3000 cd / m 2. At that time, (100% 1500 cd / m 2 at the light emitting portion, the 3000 cd / m 2 is 100% in the indicator portion) brightness change are shown in Table 3.

Figure 0005018211
Figure 0005018211

駆動初期ではインジケーター部BがインジケーターAよりも明るい。照明部が初期輝度に対し79%のとき、インジケーター部Bはインジケーター部Aよりも明るく感じられる。照明部が72%のとき、インジケーターの輝度は照明部より暗く感じる。したがって、インジケーター部Aとインジケーター部Bを比較することにより、照明部が初期輝度に対して70%程度であることが視覚的に認識できた。インジケーター部がない場合、使用者は有機ELパネルが初期輝度に対しどの程度輝度低下をしたのかが分からず、適切な明るさ以下になっても使い続けることが起こりうる。しかし、本発明を利用することにより使用者は有機ELパネルを交換する適切なタイミングを把握できる。   In the initial stage of driving, the indicator B is brighter than the indicator A. When the illumination part is 79% of the initial luminance, the indicator part B feels brighter than the indicator part A. When the illumination part is 72%, the brightness of the indicator feels darker than the illumination part. Therefore, by comparing the indicator part A and the indicator part B, it was visually recognized that the illumination part was about 70% of the initial luminance. When there is no indicator part, the user does not know how much the organic EL panel has decreased in luminance with respect to the initial luminance, and may continue to use even if the brightness is lower than the appropriate brightness. However, by utilizing the present invention, the user can grasp the appropriate timing for replacing the organic EL panel.

実施例4
100×100mm、厚み1.0→0.7mmのITO(厚み280nm)付きガラス基板を用いて、発光サイズ30mm×30mmの発光部が4個とれる照明部および発光サイズ3mm×3mmの発光部が2個とれるインジケーター部となるようにITOをパターニングした。
Example 4
Using a glass substrate with ITO (thickness 280 nm) of 100 × 100 mm and thickness 1.0 → 0.7 mm, there are two illumination portions that can take four light emission portions with a light emission size 30 mm × 30 mm and two light emission portions with a light emission size 3 mm × 3 mm. ITO was patterned so as to be an indicator part that can be taken individually.

次いで、この照明部となる基板を洗浄し市販の真空蒸着装置の基板ホルダーに固定し、それぞれ真空蒸着装置内の蒸着用るつぼの各々に、有機層各層の構成材料を最適の量を充填した。蒸着は真空度4×10-4Paまで減圧し、蒸着した。照明部とインジケーター部の構成が下記となるように有機層、陰極バッファ層、陰極を順次積層した。 Next, the substrate serving as the illumination unit was washed and fixed to a substrate holder of a commercially available vacuum deposition apparatus, and each of the deposition crucibles in the vacuum deposition apparatus was filled with an optimal amount of the constituent material of each organic layer. Vapor deposition was performed under reduced pressure to a vacuum degree of 4 × 10 −4 Pa. An organic layer, a cathode buffer layer, and a cathode were sequentially laminated so that the configuration of the illumination unit and the indicator unit was as follows.

照明部とインジケーター部:正孔注入層(CuPC:10nm)/正孔輸送層(α−NPD:30nm)/発光層A(CBP、Ir(ppy)3(10%)、Ir(piq)3(2%):10nm)/発光層B(H−01、Ir−A(10%))/正孔阻止層(E−1:5nm)/電子輸送層(E−1、CsF(20%):45nm)/Al(100nm)
照明部が初期輝度3000cd/m2、インジケーター部は2個ある発光部のうち一つがが初期輝度6000cd/m2(インジケーター部B)、もう一方が初期輝度3000cd/m2(インジケーター部A)となるように定電流駆動した。そのときの、輝度変化(3000cd/m2を100%とする)を表4に示す。
Illumination part and indicator part: hole injection layer (CuPC: 10 nm) / hole transport layer (α-NPD: 30 nm) / light emitting layer A (CBP, Ir (ppy) 3 (10%), Ir (piq) 3 ( 2%): 10 nm) / light emitting layer B (H-01, Ir-A (10%)) / hole blocking layer (E-1: 5 nm) / electron transport layer (E-1, CsF (20%)): 45 nm) / Al (100 nm)
The illumination unit has an initial luminance of 3000 cd / m 2 , one of the two light emitting units has an initial luminance of 6000 cd / m 2 (indicator unit B), and the other has an initial luminance of 3000 cd / m 2 (indicator unit A). It was driven at a constant current so that Table 4 shows the luminance change (3000 cd / m 2 is assumed to be 100%).

Figure 0005018211
Figure 0005018211

駆動初期ではインジケーター部BがインジケーターAよりも明るい。駆動時間が経過し、インジケーター部Aが初期輝度に対して70%から60%に推移する過程で、インジケーター部Bはインジケーター部Aよりも暗く感じられるようになる。インジケーター部Aと照明部は輝度の経時変化が同等であるため、インジケーター部Aとインジケーター部Bを比較することにより、照明部が初期輝度に対して60%程度であることが視覚的に認識できた。インジケーター部がない場合、使用者は有機ELパネルが初期輝度に対しどの程度輝度低下をしたのかが分からず、適切な明るさ以下になっても使い続けることが起こりうる。しかし、本発明を利用することにより使用者は有機ELパネルを交換する適切なタイミングを把握できる。   In the initial stage of driving, the indicator B is brighter than the indicator A. In the process in which the driving time elapses and the indicator part A changes from 70% to 60% with respect to the initial luminance, the indicator part B becomes felt darker than the indicator part A. Since the change in luminance with time is the same between the indicator part A and the illumination part, it is possible to visually recognize that the illumination part is about 60% of the initial luminance by comparing the indicator part A and the indicator part B. It was. When there is no indicator part, the user does not know how much the organic EL panel has decreased in luminance with respect to the initial luminance, and may continue to use even if the brightness is lower than the appropriate brightness. However, by utilizing the present invention, the user can grasp the appropriate timing for replacing the organic EL panel.

《照明装置としての評価》
なお、本発明に係る上記の各種有機エレクトロルミネッセンスパネルは、照明装置として使用することができる。図3は照明装置の概略図を示し、有機ELパネル11は、ガラスカバー12で覆われている。尚、ガラスカバーでの封止作業は、有機ELパネル11を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。図4は照明装置の断面図を示し、図4において、15は陰極、16は有機EL層、17は透明電極付きガラス基板を示す。尚、ガラスカバー12内には窒素ガス18が充填され、捕水剤19が設けられている。
<< Evaluation as lighting equipment >>
In addition, said various organic electroluminescent panel which concerns on this invention can be used as an illuminating device. FIG. 3 is a schematic view of the lighting device, and the organic EL panel 11 is covered with a glass cover 12. The sealing operation with the glass cover was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL panel 11 into contact with the atmosphere. FIG. 4 is a cross-sectional view of the lighting device. In FIG. 4, 15 is a cathode, 16 is an organic EL layer, and 17 is a glass substrate with a transparent electrode. The glass cover 12 is filled with nitrogen gas 18 and a water catching agent 19 is provided.

得られた照明装置に通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。   When the obtained illuminating device was energized, almost white light was obtained, and it was found that the illuminating device could be used.

本発明の有機エレクトロルミネッセンスパネルの概念図Conceptual diagram of the organic electroluminescence panel of the present invention 照明部とインジケーター部の輝度の駆動時間経時変化を示す概念図Conceptual diagram showing the change over time in the luminance of the illumination unit and indicator unit 照明装置の概略図Schematic of lighting device 照明装置の断面図Cross section of the lighting device

符号の説明Explanation of symbols

1 照明部
2 インジケーター部
a インジケーター部の輝度変化(輝度差が明確になることで認識)
b インジケーター部の輝度変化(消灯することにより認識)
c インジケーター部の輝度変化(輝度が逆転することで認識)
d 照明部の輝度変化
e 照明部の取り替え時期の範囲
11 有機ELパネル
12 ガラスカバー
15 陰極
16 有機EL層
17 透明電極付きガラス基板
18 窒素ガス
19 捕水剤
1 Illumination unit 2 Indicator unit a Change in luminance of the indicator unit (recognized when the luminance difference becomes clear)
b Change in brightness of indicator (recognized by turning off)
c Luminance change in the indicator (recognized when the luminance is reversed)
d Luminance change of illumination section e Range of replacement period of illumination section 11 Organic EL panel 12 Glass cover 15 Cathode 16 Organic EL layer 17 Glass substrate with transparent electrode 18 Nitrogen gas 19 Water catching agent

Claims (7)

同一の基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、該パネルは有機エレクトロルミネッセンス素子である、照明部及びインジケーター部を有し、該照明部と該インジケーター部はそれぞれの駆動経時での色度変化量が異なり、該照明部の色度と該インジケーター部の色度との差が該照明部の経時による劣化度を示すことを特徴とする有機エレクトロルミネッセンスパネル。 An organic electroluminescence panel comprising an anode, a light emitting layer, and a cathode on the same substrate, the panel being an organic electroluminescence element, having an illumination part and an indicator part, and the illumination part and the indicator part Ri Do different chromaticity variation of each of the driving time, an organic electroluminescence difference between chromaticity chromaticity and the indicator portion of the illumination unit, characterized in that it presents a degree of deterioration over time of the illuminating unit panel. 同一の基板上に陽極、発光層、及び陰極を設けて成る有機エレクトロルミネッセンスパネルであって、該パネルは有機エレクトロルミネッセンス素子である、照明部及びインジケーター部を有し、該照明部と該インジケーター部はそれぞれの駆動経時での輝度変化量が異なり、該照明部の輝度と該インジケーター部の輝度との差が該照明部の経時による劣化度を示すことを特徴とする有機エレクトロルミネッセンスパネル。 An organic electroluminescence panel comprising an anode, a light emitting layer, and a cathode on the same substrate, the panel being an organic electroluminescence element, having an illumination part and an indicator part, and the illumination part and the indicator part each of the luminance variation of the driving time is Ri Do different, organic electroluminescence panel difference between the luminance brightness and the indicator portion of the illumination unit, characterized in that it presents a degree of deterioration over time of the illumination portion. 前記照明部と前記インジケーター部それぞれの有機層構成が異なることを特徴とする請求項1又は請求項2のいずれか一項に記載の有機エレクトロルミネッセンスパネル。   The organic electroluminescence panel according to claim 1, wherein the organic layer configuration of each of the illumination unit and the indicator unit is different. 前記照明部と前記インジケーター部ではそれぞれの有機層構成が同じであることを特徴とする請求項1又は請求項2のいずれか一項に記載の有機エレクトロルミネッセンスパネル。   3. The organic electroluminescence panel according to claim 1, wherein the organic layer configuration is the same between the illumination unit and the indicator unit. 4. 前記照明部と前記インジケーター部それぞれの駆動する際の電流密度が異なることを特徴とする請求項1〜4のいずれか一項に記載の有機エレクトロルミネッセンスパネル。   The organic electroluminescence panel according to any one of claims 1 to 4, wherein the current density at the time of driving the illumination unit and the indicator unit is different. 前記インジケーター部が2以上の発光部を有し、当該2以上の発光部の駆動経時での輝度変化量及び色度変化量が異なることを特徴とする請求項1〜5のいずれか一項に記載の有機エレクトロルミネッセンスパネル。   The said indicator part has two or more light emission parts, The brightness | luminance change amount and the chromaticity change amount in the driving time-lapse of the said two or more light emission parts differ, The claim 1 characterized by the above-mentioned. The organic electroluminescence panel described. 請求項1〜6のいずれか一項に記載の有機エレクトロルミネッセンスパネルを用いたことを特徴とする照明装置。   An illuminating device using the organic electroluminescence panel according to claim 1.
JP2007116552A 2007-04-26 2007-04-26 Organic electroluminescence panel and lighting device using the same Expired - Fee Related JP5018211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116552A JP5018211B2 (en) 2007-04-26 2007-04-26 Organic electroluminescence panel and lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116552A JP5018211B2 (en) 2007-04-26 2007-04-26 Organic electroluminescence panel and lighting device using the same

Publications (2)

Publication Number Publication Date
JP2008277009A JP2008277009A (en) 2008-11-13
JP5018211B2 true JP5018211B2 (en) 2012-09-05

Family

ID=40054744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116552A Expired - Fee Related JP5018211B2 (en) 2007-04-26 2007-04-26 Organic electroluminescence panel and lighting device using the same

Country Status (1)

Country Link
JP (1) JP5018211B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138731A (en) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp Lighting device
JP5617525B2 (en) * 2010-10-25 2014-11-05 セイコーエプソン株式会社 LIGHTING DEVICE AND ELECTRONIC DEVICE
WO2012070366A1 (en) * 2010-11-26 2012-05-31 コニカミノルタホールディングス株式会社 Illuminating apparatus
JP5659009B2 (en) * 2010-12-29 2015-01-28 パナソニックIpマネジメント株式会社 lighting equipment
JP6091166B2 (en) * 2012-11-08 2017-03-08 株式会社カネカ Organic EL device
DE102015110071B4 (en) * 2015-06-23 2023-09-07 Pictiva Displays International Limited Organic light emitting diode and operating method for an organic light emitting diode
JP6513609B2 (en) * 2016-07-25 2019-05-15 三菱電機株式会社 Lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341286A (en) * 1992-06-04 1993-12-24 Ricoh Co Ltd Luminance controller of liquid crystal indicator
JP2005157202A (en) * 2003-11-28 2005-06-16 Tohoku Pioneer Corp Self light emitting display device
JP2006267557A (en) * 2005-03-24 2006-10-05 Seiko Epson Corp Display panel, display device and display module for traveling object

Also Published As

Publication number Publication date
JP2008277009A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5522230B2 (en) White organic electroluminescence element and lighting device
JP5532605B2 (en) Multicolor phosphorescent organic electroluminescence device and lighting device
US7745990B2 (en) White light emitting organic electroluminescent element and lighting device
JP5194456B2 (en) Method for manufacturing organic electroluminescence element and method for manufacturing lighting device
WO2012153603A1 (en) Phosphorescent organic electroluminescent element and lighting device
WO2012137640A1 (en) Organic electroluminescent element and lighting device
JP5381992B2 (en) Surface emitting panel
JP5870782B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5261755B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
EP2677561B1 (en) Organic electroluminescent element, lighting device, and display device
JP4962113B2 (en) LIGHTING DEVICE USING OPTICAL MEMBER AND ORGANIC ELECTROLUMINESCENCE ELEMENT
JP5018211B2 (en) Organic electroluminescence panel and lighting device using the same
JP2013048190A (en) Organic electroluminescent element and lighting device
JP2008159741A (en) Light emitting body
JP5771965B2 (en) Multicolor phosphorescent organic electroluminescence device and lighting device
JP5831459B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5760415B2 (en) Organic electroluminescence device
JP2010040967A (en) Organic electroluminescence element, method of manufacturing polymerized film, white organic electroluminescence element, display, and illuminating apparatus
JP5772835B2 (en) Multicolor phosphorescent organic electroluminescence device, method for producing the same, and lighting device
JP2010080473A (en) Organic electroluminescent element
JP2013008492A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees