JP5017897B2 - Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery - Google Patents
Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP5017897B2 JP5017897B2 JP2006073875A JP2006073875A JP5017897B2 JP 5017897 B2 JP5017897 B2 JP 5017897B2 JP 2006073875 A JP2006073875 A JP 2006073875A JP 2006073875 A JP2006073875 A JP 2006073875A JP 5017897 B2 JP5017897 B2 JP 5017897B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- secondary battery
- negative electrode
- resin
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、炭素材、二次電池用負極材、及び、非水電解質二次電池に関するものである。 The present invention relates to a carbon material, a negative electrode material for a secondary battery, and a nonaqueous electrolyte secondary battery.
炭素材は、リチウムイオン二次電池用負極、コンデンサー用電極、電解用電極、活性炭等多様な範囲の用途に用いられており、今後更なる開発が期待されている。
これらの炭素材は、従来、椰子殻、石炭コークス、石炭又は石油ピッチ、フラン樹脂、フェノール樹脂等を原料としている(例えば、特許文献1参照)。
しかし、これらの原料から得られた従来の炭素材は、特に非水電解質二次電池用の負極材として用いた場合に、充放電容量やサイクル性等の充放電特性において、その特性が充分ではない場合があった。
Carbon materials are used in a wide range of applications such as negative electrodes for lithium ion secondary batteries, capacitor electrodes, electrodes for electrolysis and activated carbon, and further development is expected in the future.
These carbon materials are conventionally made from coconut husk, coal coke, coal or petroleum pitch, furan resin, phenol resin, or the like (see, for example, Patent Document 1).
However, the conventional carbon materials obtained from these raw materials are not sufficient in charge / discharge characteristics such as charge / discharge capacity and cycle characteristics, particularly when used as a negative electrode material for a non-aqueous electrolyte secondary battery. There was no case.
本発明は、充放電特性、特に低不可逆容量及び充放電サイクル性に優れた非水電解質二次電池用の負極材を製造することができる炭素材と、これを用いた二次電池用負極材、及び、非水電解質二次電池を提供するものである。 The present invention relates to a carbon material capable of producing a negative electrode material for a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics, particularly low irreversible capacity and charge / discharge cycle performance, and a negative electrode material for a secondary battery using the same. And a non-aqueous electrolyte secondary battery.
このような目的は、以下の本発明(1)〜(5)によって達成される。
(1)樹脂組成物を炭化処理してなる粒状の炭素材であって、該炭素材中の炭素含有率が99.9%以上であり、且つ直径1μm以下の該炭素材粒子の割合が該炭素材全体の1%以下であることを特徴とする炭素材。
(2)前記樹脂組成物は、フェノール類とアルデヒド類とを反応させてなるフェノール樹脂を含むものである、(1)に記載の炭素材。
(3)前記炭素材の窒素吸着によるBET3点法による比表面積が1.0m2/g以下である(1)又は(2)に記載の炭素材。
(4)(1)ないし(3)のいずれかに記載された炭素材を含有することを特徴とする二次電池用負極材。
(5)(4)に記載の二次電池負極材を用いることを特徴とする非水電解質二次電池。
Such an object is achieved by the following present inventions (1) to (5).
(1) A granular carbon material obtained by carbonizing a resin composition, wherein the carbon content in the carbon material is 99.9% or more and the ratio of the carbon material particles having a diameter of 1 μm or less is A carbon material characterized by being 1% or less of the total carbon material.
(2) The carbon material according to (1), wherein the resin composition includes a phenol resin obtained by reacting a phenol and an aldehyde.
(3) The carbon material according to (1) or (2), wherein the carbon material has a specific surface area of 1.0 m 2 / g or less by a BET three-point method by nitrogen adsorption.
(4) A negative electrode material for a secondary battery comprising the carbon material described in any one of (1) to (3).
(5) A non-aqueous electrolyte secondary battery using the secondary battery negative electrode material according to (4).
本発明の炭素材を用いることにより、充放電特性、特に低不可逆容量及び充放電サイクル性に優れた非水電解質二次電池用負極材を得ることができる。 By using the carbon material of the present invention, a negative electrode material for a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics, in particular, low irreversible capacity and charge / discharge cycle performance can be obtained.
以下に、本発明の炭素材と、これを用いた二次電池用負極材及び非水電解質二次電池について詳細に説明する。
本発明の炭素材は、樹脂組成物を炭化処理してなる粒状の炭素材であって、該炭素材中の炭素含有率が99.9%以上であり、且つ直径1μm以下の該炭素材粒子の割合が該炭素材全体の1%以下であることを特徴とする。
また、本発明の二次電池用負極材は、上記本発明の炭素材を含有することを特徴とする。
そして、本発明の非水電解質二次電池は、上記本発明の二次電池負極材を用いることを特徴とする。
Below, the carbon material of this invention, the negative electrode material for secondary batteries using the same, and a nonaqueous electrolyte secondary battery are demonstrated in detail.
The carbon material of the present invention is a granular carbon material obtained by carbonizing a resin composition, the carbon material particles having a carbon content in the carbon material of 99.9% or more and a diameter of 1 μm or less. The ratio is 1% or less of the entire carbon material.
Moreover, the negative electrode material for secondary batteries of this invention contains the carbon material of the said this invention, It is characterized by the above-mentioned.
And the nonaqueous electrolyte secondary battery of this invention uses the said secondary battery negative electrode material of this invention, It is characterized by the above-mentioned.
まず、本発明の炭素材について説明する。
本発明の炭素材に用いる樹脂組成物は、例えば、熱硬化性樹脂、熱可塑性樹脂、あるいは、その他の高分子材料から選ばれるもの(以下、これらを単に「主成分樹脂類」ということがある)を含有することができる。上記主成分樹脂類は、単独あるいは二種類以上を併用することができる。 また、上記主成分樹脂類とともに、適宜、硬化剤、添加剤等を併せて含有することができる。
First, the carbon material of the present invention will be described.
The resin composition used for the carbon material of the present invention is, for example, one selected from a thermosetting resin, a thermoplastic resin, or other polymer materials (hereinafter, these may be simply referred to as “main component resins”). ) Can be contained. The main component resins can be used alone or in combination of two or more. Moreover, a hardening agent, an additive, etc. can be suitably contained together with the said main component resin.
なお、本発明の炭素材において上記の樹脂組成物は、主成分樹脂類として一種類の樹脂のみを含有する場合もあるが、便宜上、これも樹脂組成物と呼称することとする。 In the carbon material of the present invention, the above resin composition may contain only one kind of resin as the main component resin, but this is also referred to as a resin composition for convenience.
上記樹脂組成物は、フェノール類とアルデヒド類とを反応させてなるフェノール樹脂を含むことが好ましい。上記フェノール樹脂としては特に限定されないが、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等のフェノール樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂等が挙げられる。また、これらが種々の成分で変性された変性樹脂を用いることもできる。 It is preferable that the said resin composition contains the phenol resin formed by making phenols and aldehydes react. Although it does not specifically limit as said phenol resin, For example, phenol resins, such as a novolak type phenol resin and a resol type phenol resin, epoxy resins, such as a bisphenol type epoxy resin and a novolak type epoxy resin, melamine resin, urea resin, aniline resin, cyanate Examples thereof include resins, furan resins, ketone resins, unsaturated polyester resins, urethane resins and the like. In addition, modified resins in which these are modified with various components can also be used.
上記の主成分樹脂類として熱硬化性樹脂を用いる場合には、通常、その硬化剤を併用することができる。
ここで用いられる硬化剤としては特に限定されないが、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、パラホルム等を用いることができる。また、エポキシ樹脂の場合は、例えば、脂肪族ポリアミン、芳香族ポリアミン等のポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂等を用いることができる。
なお、通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本発明で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで合成することもできる。
When a thermosetting resin is used as the main component resin, the curing agent can usually be used in combination.
Although it does not specifically limit as a hardening | curing agent used here, For example, in the case of a novolak-type phenol resin, a hexamethylenetetramine, paraform, etc. can be used. In the case of an epoxy resin, for example, polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac type phenol resins and the like can be used.
In addition, even if the thermosetting resin is usually used in combination with a predetermined amount of curing agent, the resin composition used in the present invention is synthesized with a smaller amount than usual or without using a curing agent in combination. You can also.
本発明の炭素材に用いられる上記主成分樹脂類としては、熱硬化性樹脂が好ましい。これにより、炭素材の残炭率をより高めることができる。 As said main component resin used for the carbon material of this invention, a thermosetting resin is preferable. Thereby, the remaining carbon rate of a carbon material can be raised more.
本発明の炭素材で用いる樹脂組成物においては、このほか、添加剤を配合することができる。
ここで用いられる添加剤としては特に限定されないが、例えば、200〜800℃にて炭化処理した炭素材前駆体、黒鉛及び黒鉛変性剤、有機酸、無機酸、含窒素化合物、含酸素化合物、含硫黄物、芳香族化合物、及び、非鉄金属元素等を挙げることができる。
上記添加剤は、用いる主成分樹脂類の種類や性状等により、単独あるいは二種類以上を併用することができる。
In addition to the above, an additive can be blended in the resin composition used in the carbon material of the present invention.
Although it does not specifically limit as an additive used here, For example, the carbon material precursor carbonized at 200-800 degreeC, a graphite and a graphite modifier, an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an oxygen-containing compound, Sulfur, an aromatic compound, a nonferrous metal element, etc. can be mentioned.
The above additives may be used alone or in combination of two or more depending on the type and properties of the main component resins used.
炭化処理条件においては特に限定されないが、例えば、常温から1〜200℃/時間で昇温して、800〜3000℃で0.1〜50時間、好ましくは0.5〜10時間保持して行うことができる。炭化処理時の雰囲気としては例えば、窒素、ヘリウムガス等の不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下で行うことができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。
Although it does not specifically limit in carbonization process conditions, For example, it heats up from normal temperature at 1-200 degreeC / hour, and it hold | maintains at 800-3000 degreeC for 0.1 to 50 hours, Preferably it carries out for 0.5 to 10 hours. be able to. As the atmosphere during the carbonization treatment, for example, it can be performed under an inert atmosphere such as nitrogen or helium gas, or under a substantially inert atmosphere such that a trace amount of oxygen is present in the inert gas.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
なお、上記炭化処理を行う前に、プレ炭化処理を行うことができる。
ここでプレ炭化処理の条件としては特に限定されないが、例えば、常温から1〜200℃/時間で昇温して、500〜1000℃で0.1〜50時間、好ましくは0.5〜10時間保持して行うことができる。
In addition, before performing the said carbonization process, a pre carbonization process can be performed.
Although it does not specifically limit as conditions for pre carbonization here, For example, it heats up from 1 degreeC / hour from normal temperature, and is 0.1 to 50 hours at 500 to 1000 degreeC, Preferably it is 0.5 to 10 hours Can be held.
また、樹脂組成物の主成分樹脂類として熱硬化性樹脂や重合性高分子化合物を用いた場合には、このプレ炭化処理の前に、樹脂組成物の硬化処理を行うこともできる。
硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、主成分樹脂類と硬化剤とを併用する方法等により行うことができる。
Further, when a thermosetting resin or a polymerizable polymer compound is used as the main component resin of the resin composition, the resin composition can be cured before the pre-carbonization treatment.
Although it does not specifically limit as a hardening processing method, For example, it can carry out by the method of giving the calorie | heat amount which can perform hardening reaction to a resin composition, the method of thermosetting, or the method of using together main component resin and a hardening | curing agent. .
なお、上記炭化処理あるいはプレ炭化処理を行う場合には、上記樹脂組成物に、金属、顔料、滑剤、帯電防止剤、酸化防止剤等を添加することもできる。 In addition, when performing the said carbonization process or a pre carbonization process, a metal, a pigment, a lubricant, an antistatic agent, antioxidant etc. can also be added to the said resin composition.
上記硬化処理及び/又はプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておくことが好ましい。これにより、炭化処理時の熱履歴や表面状態の均一性を高めることができるとともに、処理物の取り扱い性を良好なものにすることができる。 When the said hardening process and / or pre carbonization process are performed, it is preferable to grind | pulverize a processed material before the said carbonization process after that. Thereby, the uniformity of the heat history and the surface state during carbonization can be improved, and the handleability of the processed product can be improved.
本発明の炭素材は、炭素材中の炭素含有率が99.9%以上であり、且つ直径1μm以下の炭素材粒子の割合が上記炭素材全体の1%以下であることを特徴とする。
こうすることで、充放電効率を高くすることができると共に、不可逆容量を大きく減少させることができる。
更に二次電池に用いた場合には、充放電サイクル特性を向上させる効果を高めることができる。
The carbon material of the present invention is characterized in that the carbon content in the carbon material is 99.9% or more and the ratio of carbon material particles having a diameter of 1 μm or less is 1% or less of the whole carbon material.
By doing so, the charge / discharge efficiency can be increased and the irreversible capacity can be greatly reduced.
Further, when used in a secondary battery, the effect of improving charge / discharge cycle characteristics can be enhanced.
上記のように充放電特性を向上させることができる理由としては以下の如く推測される。
第一に、ヘテロ原子含有量が少ない為にリチウムイオンとの吸着により生じるサイクル特性低下を防ぐことが出来、炭素含有率が99.9%以上である炭素材を用いることにより、良好なサイクル性を有する炭素材を得ることができるものと考えられる。
第二に、炭素材構造は三次元架橋性を有している為、黒鉛材と比較してサイクル数を増加させた場合でも炭素層間の剥離等物理的損失が起こりにくい為サイクル性を向上させることができるものと考えられる。
第三に、炭素材粒子の直径が1μm以下の割合が炭素材全体の1%以下である炭素材を用いることにより、炭素材と電解液との接触面積が小さくすることで電解液の分解反応を抑制することが可能となるものと考えられる。ここで、炭素材粒子の直径が1μm以下の割合は、更に好ましくは0.5%以下、特に好ましくは0.1%以下である。こうすることで、上記特性の向上効果を高めることができる。
The reason why the charge / discharge characteristics can be improved as described above is presumed as follows.
First, since the heteroatom content is low, it is possible to prevent deterioration of cycle characteristics caused by adsorption with lithium ions, and by using a carbon material having a carbon content of 99.9% or more, good cycleability is achieved. It is thought that the carbon material which has can be obtained.
Second, because the carbon material structure has three-dimensional crosslinkability, even when the number of cycles is increased compared to graphite materials, physical loss such as delamination between carbon layers is unlikely to occur, improving cycleability. Can be considered.
Third, by using a carbon material in which the ratio of the carbon material particle diameter is 1 μm or less is 1% or less of the total carbon material, the decomposition area of the electrolyte solution is reduced by reducing the contact area between the carbon material and the electrolyte solution. It is thought that it becomes possible to suppress this. Here, the proportion of the carbon material particles having a diameter of 1 μm or less is more preferably 0.5% or less, and particularly preferably 0.1% or less. By doing so, the effect of improving the characteristics can be enhanced.
本発明の炭素材の窒素吸着によるBET3点法による比表面積が1.0m2/g以下であることが好ましい。更に好ましくは0.5m2/g以下であり、特に好ましくは0.1m2/g以下である。こうすることで、上記特性の向上効果を高めることができる。 It is preferable that the specific surface area by the BET three point method by nitrogen adsorption of the carbon material of the present invention is 1.0 m 2 / g or less. More preferably, it is 0.5 m < 2 > / g or less, Most preferably, it is 0.1 m < 2 > / g or less. By doing so, the effect of improving the characteristics can be enhanced.
ここで、本発明の炭素材の形状としては、略球状のものが好ましい。略球状のものを用いることにより、より電解液との接触面積を小さくすることができる。 Here, the shape of the carbon material of the present invention is preferably substantially spherical. By using a substantially spherical one, the contact area with the electrolytic solution can be further reduced.
この炭化条件の基準としては前述したように 用いた樹脂種や使用量により条件が異なるが、全般的に昇温速度が10℃〜100℃/時間程度が好ましい。これより遅い場合は炭化過程が長時間に渡ることにより雰囲気中の酸素等による酸化反応が生じやすくなり、よって酸素原子が導入されやすくなるため酸素によるリチウム吸着が起こり、充電容量が高くなるものの充放電効率は低下する場合がある。またこれより早いと熱履歴による樹脂骨格の制御が十分に行われにくくなり、本材料の特性によるメリットを十分に生かすことが出来なくなる場合がある。 The standard for this carbonization condition varies depending on the type of resin used and the amount used, as described above, but generally the rate of temperature increase is preferably about 10 ° C. to 100 ° C./hour. If it is slower than this, the carbonization process takes a long time, so that an oxidation reaction due to oxygen or the like in the atmosphere tends to occur. The discharge efficiency may decrease. If it is earlier than this, it becomes difficult to sufficiently control the resin skeleton by the thermal history, and it may not be possible to fully utilize the merit of the characteristics of the material.
次に、本発明の二次電池用負極材について説明する。
本発明の二次電池用負極材は、上記本発明の炭素材を含有することを特徴とするものである。
Next, the negative electrode material for secondary batteries of the present invention will be described.
The negative electrode material for secondary batteries of the present invention is characterized by containing the carbon material of the present invention.
本発明の二次電池用負極材は特に限定されないが、例えば、本発明の炭素材100重量部に対し、ポリエチレン、ポリプロピレン等を含むフッ素系高分子、ブチルゴム,ブタジエンゴム等のゴム状高分子等の有機高分子結着剤1〜30重量部、及びN−メチル−2−ピロリドン、ジメチルホルムアミド等の粘度調整用溶剤を適量添加して混練し、ペースト状にした混合物を圧縮成形、ロール成形等によりシート状、ペレット状等に成形して得ることができる。また、粘度調整用溶剤にてスラリー状にした混合物を銅箔、ニッケル箔等の集電体に塗布成形して得ることもできる。 The negative electrode material for a secondary battery of the present invention is not particularly limited. For example, a fluorine-based polymer containing polyethylene, polypropylene, etc., a rubbery polymer such as butyl rubber, butadiene rubber, etc. with respect to 100 parts by weight of the carbon material of the present invention. 1 to 30 parts by weight of an organic polymer binder and an appropriate amount of a viscosity adjusting solvent such as N-methyl-2-pyrrolidone and dimethylformamide are added and kneaded to form a paste-like mixture by compression molding, roll molding, etc. Can be obtained by molding into a sheet shape, a pellet shape or the like. Moreover, it can also obtain by apply | coating shaping | molding the mixture made into the slurry form with the solvent for viscosity adjustments on collectors, such as copper foil and nickel foil.
次に、本発明の非水電解質二次電池について説明する。
本発明の非水電解質二次電池は、上記本発明の二次電池負極材を用いることを特徴とするものである。
Next, the nonaqueous electrolyte secondary battery of the present invention will be described.
The nonaqueous electrolyte secondary battery of the present invention is characterized by using the secondary battery negative electrode material of the present invention.
本発明の非水電解質二次電池に上記二次電池用負極材を適用する場合は特に限定されないが、例えば、二次電池用負極材を、セパレータを介して正極材と対向して配置し、電解液を用いることにより非水電解質二次電池が得られる。
正極材としては特に限定されないが、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等の複合酸化物やポリアニリン、ポリピロール等の導電性高分子等を用いることができる。セパレータとしては特に限定されないが、例えば、ポリエチレン、ポリプロピレン等の微多孔質フィルム、不織布等を用いることができる。電解液としては特に限定されないが、例えば、非水系溶媒に電解質となるリチウム塩を溶解したものを用いることができる。電解質としては、例えば、LiClO4,LiPF6等のリチウム金属塩、テトラアルキルアンモニウム塩等を用いることができる。非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の環状エステル類、ジエチルカーボネート等の鎖状エステル類、ジメトキシエタン等のエーテル類等の混合物等を用いることができる。また、上記塩類を例えば、ポリエチレンオキサイド、ポリアクリロニトリル等に混合された固体電解質を用いることもできる。
When the above-mentioned negative electrode material for a secondary battery is applied to the nonaqueous electrolyte secondary battery of the present invention, it is not particularly limited.For example, the negative electrode material for a secondary battery is disposed to face the positive electrode material via a separator, A nonaqueous electrolyte secondary battery can be obtained by using the electrolytic solution.
Although it does not specifically limit as a positive electrode material, For example, conductive polymers, such as complex oxides, such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, polyaniline, polypyrrole, etc. can be used. Although it does not specifically limit as a separator, For example, microporous films, such as polyethylene and a polypropylene, a nonwoven fabric, etc. can be used. Although it does not specifically limit as electrolyte solution, For example, what melt | dissolved lithium salt used as electrolyte in a non-aqueous solvent can be used. As the electrolyte, for example, lithium metal salts such as LiClO 4 and LiPF 6 , tetraalkylammonium salts, and the like can be used. As the non-aqueous solvent, for example, cyclic esters such as propylene carbonate, ethylene carbonate, and γ-butyrolactone, chain esters such as diethyl carbonate, ethers such as dimethoxyethane, and the like can be used. Moreover, the solid electrolyte which mixed the said salts with polyethylene oxide, polyacrylonitrile, etc. can also be used, for example.
以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。又、実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “part” indicates “part by weight”, and “%” indicates “% by weight”.
1.炭素材の製造
<実施例1>
(1)樹脂組成物の調製
フェノール1000重量部、50%ホルムアルデヒド水溶液829重量部、30%アンモニア水10重量部を100℃3時間反応させることにより樹脂を作製した。その後、100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理した後、振動ボールミルで粉砕して、樹脂組成物Aを得た。
(2)炭素材の製造
上記で得られた硬化した樹脂組成物Aを、室温から2500℃の間を10℃/時間で昇温して、2500℃に到達後、さらに10時間保持して炭化処理し、炭素材A1を得た。
得られた炭素材A1を、栗本鐵工所製・クロスジェットミルKJ50を用いて微粒子の分級・カットを行うことにより、所定の粒度分布を有する炭素材A2を得た。
1. Production of carbon material <Example 1>
(1) Preparation of Resin Composition A resin was prepared by reacting 1000 parts by weight of phenol, 829 parts by weight of 50% aqueous formaldehyde solution, and 10 parts by weight of 30% aqueous ammonia at 100 ° C. for 3 hours. Thereafter, the temperature was raised from 100 ° C. over 5 hours, reached 200 ° C., held for 1 hour, cured, and then pulverized with a vibration ball mill to obtain a resin composition A.
(2) Production of carbon material The cured resin composition A obtained above was heated at 10 ° C./hour between room temperature and 2500 ° C., and after reaching 2500 ° C., held for another 10 hours for carbonization. The carbon material A1 was obtained by processing.
The obtained carbon material A1 was classified and cut using a cross jet mill KJ50 manufactured by Kurimoto Steel Works, thereby obtaining a carbon material A2 having a predetermined particle size distribution.
<実施例2>
(1)炭素材の製造
実施例1で得られた炭素材A1を、栗本鐵工所製・クロスジェットミルKJ50を用いて微粒子の分級・カットを行うことにより所定の粒度分布を有する炭素材A3を得た。
<Example 2>
(1) Production of carbon material A carbon material A3 having a predetermined particle size distribution is obtained by classifying and cutting the carbon material A1 obtained in Example 1 using a cross jet mill KJ50 manufactured by Kurimoto Steel Works. Got.
<実施例3>
(1)組成物の調製
フェノール1000重量部、50%ホルムアルデヒド水溶液829重量部、30%アンモニア水10重量部、ポリビニルアルコール100重量部、水1000重量部をフラスコ反応にてエマルジョンを作製した後に、反応中で硬化させることにより、球状樹脂硬化物を作製した。その後100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理を行い、樹脂組成物Bを得た。
(2)炭素材の製造
上記で得られた硬化した樹脂組成物Bを、室温から2500℃の間を10℃/時間で昇温して、2500℃に到達後、さらに10時間保持して炭化処理を行い、炭素材B1を得た。
<Example 3>
(1) Preparation of composition 1000 parts by weight of phenol, 829 parts by weight of 50% formaldehyde aqueous solution, 10 parts by weight of 30% aqueous ammonia, 100 parts by weight of polyvinyl alcohol, and 1000 parts by weight of water were prepared after an emulsion was prepared by a flask reaction. By curing in a spherical resin cured product. Thereafter, the temperature was raised from 100 ° C. over 5 hours, and after reaching 200 ° C., the resin was further cured for 1 hour to obtain a resin composition B.
(2) Production of carbon material The cured resin composition B obtained above was heated from room temperature to 2500 ° C. at a rate of 10 ° C./hour, and after reaching 2500 ° C., it was kept for another 10 hours and carbonized. Processing was performed to obtain a carbon material B1.
<比較例1>
(1)炭素材の製造
実施例1により炭素材A1を得た。
<Comparative Example 1>
(1) Production of carbon material Carbon material A1 was obtained in Example 1.
<比較例2>
(1)炭素材の製造
樹脂組成物Aを、室温から1000℃の間を10℃/時間で昇温して、1000℃に到達後、さらに10時間保持して炭化処理を行い、炭素材A4を得た。
<Comparative example 2>
(1) Production of carbon material The resin composition A was heated from room temperature to 1000 ° C. at 10 ° C./hour, and after reaching 1000 ° C., the resin composition A was further carbonized by holding for 10 hours. Got.
<比較例3>
(1)炭素材の製造
比較例2にて得られた炭素材A4を、栗本鐵工所製・クロスジェットミルKJ50を用いて微粒子の分級・カットを行うことにより所定の粒度分布を有する炭素材A5を得た。
<Comparative Example 3>
(1) Manufacture of carbon material The carbon material A4 obtained in Comparative Example 2 is classified and cut using a cross jet mill KJ50 manufactured by Kurimoto Steel Works and has a predetermined particle size distribution. A5 was obtained.
2.樹脂組成物及び炭素材の評価
実施例及び比較例で得られた樹脂組成物及び炭素材について下記の評価を行った。
2. Evaluation of Resin Composition and Carbon Material The following evaluation was performed on the resin compositions and carbon materials obtained in Examples and Comparative Examples.
(1)炭素材の炭素含有量の評価
炭素含有量は、パーキンエルマー社製・元素分析測定装置「PE2400」を用いて、熱伝導度法により測定した。
(1) Evaluation of carbon content of carbon material The carbon content was measured by a thermal conductivity method using an elemental analysis measuring device “PE2400” manufactured by PerkinElmer.
(2)炭素材の粒度分布の評価
粒度分布は、堀場製作所製・LA−920を用いて、湿式法により測定した。1μm以下の割合においては、各粒子径の頻度に基づいて計算を行った。
(2) Evaluation of particle size distribution of carbon material The particle size distribution was measured by a wet method using LA-920 manufactured by Horiba. In the ratio of 1 μm or less, calculation was performed based on the frequency of each particle size.
(3)炭素材の比表面積の測定
比表面積は、ユアサアイオニクス社製・比表面積測定装置「NOVA1200」を用いて、窒素ガスによるBET3点測定法に基づいて測定を行った。
(3) Measurement of specific surface area of carbon material The specific surface area was measured based on a BET three-point measurement method using nitrogen gas using a specific surface area measuring device “NOVA1200” manufactured by Yuasa Ionics.
3.二次電池用負極材としての評価
(1)二次電池評価用二極式コインセルの製造
実施例及び比較例で得られた炭素材100部に対して、結合剤としてポリフッ化ビニリデン10部、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径16.156mmの円形として切り出し負極を作製した。
正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチレンカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。
3. Evaluation as negative electrode material for secondary battery (1) Production of bipolar coin cell for secondary battery evaluation 10 parts of polyvinylidene fluoride as a binder with respect to 100 parts of carbon material obtained in Examples and Comparative Examples, diluted An appropriate amount of N-methyl-2-pyrrolidone as a solvent was added and mixed to prepare a slurry-like negative electrode mixture. The prepared negative electrode slurry-like mixture was applied to both sides of 18 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut out as a circle having a diameter of 16.156 mm to produce a negative electrode.
The positive electrode was evaluated with a bipolar coin cell using lithium metal. As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethylene carbonate having a volume ratio of 1: 1 was used.
(2)充電容量、放電容量の評価
充電条件は電流25mAh/gの定電流で1mVになるまで保持した後に20時間保持し、放電条件は 1.25mAh/g以下に電流が減衰するまでとした。また、放電条件のカットオフ電位は 2.5Vとし、100サイクルまで充放電サイクルを繰り返した。
(2) Evaluation of charge capacity and discharge capacity Charge conditions were maintained at a constant current of 25 mAh / g until 1 mV and then held for 20 hours, and discharge conditions were set until the current decayed to 1.25 mAh / g or less. . The cut-off potential in the discharge conditions was 2.5 V, and the charge / discharge cycle was repeated up to 100 cycles.
(3)充放電効率の評価
上記(2)で得られた値をもとに、下記式により算出した。
充放電効率(%)=[放電容量/充電容量]×100
(3) Evaluation of charge / discharge efficiency Based on the value obtained in the above (2), the charge / discharge efficiency was calculated by the following formula.
Charge / discharge efficiency (%) = [discharge capacity / charge capacity] × 100
(4)不可逆容量
上記(2)で得られた値をもとに、下記式により算出した。
不可逆容量(mAh/g)=充電容量−放電容量
(4) Irreversible capacity Based on the value obtained in (2) above, the irreversible capacity was calculated by the following formula.
Irreversible capacity (mAh / g) = charge capacity-discharge capacity
(5)充放電サイクルの評価
上記(2)で得られた値をもとに、下記式により算出した。
容量維持率(%)=[100回目の放電容量/10回目の放電容量]×100
(5) Evaluation of charge / discharge cycle Based on the value obtained in the above (2), calculation was performed according to the following formula.
Capacity retention rate (%) = [100th discharge capacity / 10th discharge capacity] × 100
上記評価の結果を表1に示す。
実施例1〜3はいずれも、炭素材中の炭素含有率が99.9%以上であり、且つ直径1μm以下の炭素材粒子の割合が炭素材全体の1%以下である本発明の炭素材、これを含有する二次電池用負極材、及びこれを用いた非水電解質二次電池であり、この範囲にない炭素材を用いた比較例に比較し、充放電効率に優れると共に不可逆容量が低く、且つ良好な充放電サイクル性を示すものとなった。
Examples 1 to 3 all have a carbon content in the carbon material of 99.9% or more, and the ratio of carbon material particles having a diameter of 1 μm or less is 1% or less of the entire carbon material. , A negative electrode material for a secondary battery containing the same, and a non-aqueous electrolyte secondary battery using the same, as compared with a comparative example using a carbon material not in this range, has excellent charge / discharge efficiency and irreversible capacity. It became low and showed favorable charge / discharge cycle property.
Claims (3)
A nonaqueous electrolyte secondary battery using the negative electrode material for a secondary battery according to claim 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006073875A JP5017897B2 (en) | 2006-03-17 | 2006-03-17 | Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006073875A JP5017897B2 (en) | 2006-03-17 | 2006-03-17 | Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007246359A JP2007246359A (en) | 2007-09-27 |
JP5017897B2 true JP5017897B2 (en) | 2012-09-05 |
Family
ID=38591039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006073875A Expired - Fee Related JP5017897B2 (en) | 2006-03-17 | 2006-03-17 | Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5017897B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004900A1 (en) * | 2009-07-09 | 2011-01-13 | 住友化学株式会社 | Carbon material |
JP5440308B2 (en) * | 2010-03-23 | 2014-03-12 | 住友ベークライト株式会社 | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
JP5454272B2 (en) * | 2010-03-23 | 2014-03-26 | 住友ベークライト株式会社 | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155568A (en) * | 1986-12-19 | 1988-06-28 | Asahi Glass Co Ltd | Storage device of non-aqueous electrolyte energy |
JP3546612B2 (en) * | 1996-10-22 | 2004-07-28 | 住友金属工業株式会社 | Graphite suitable for negative electrode material of lithium secondary battery |
JP2001243953A (en) * | 2000-02-29 | 2001-09-07 | Osaka Gas Co Ltd | Non-aqueous secondary battery |
JP4896381B2 (en) * | 2003-06-05 | 2012-03-14 | 昭和電工株式会社 | Carbon material for battery electrode, production method and use thereof |
EP1683219B1 (en) * | 2003-10-31 | 2015-12-23 | Showa Denko K.K. | Carbon material for battery electrode and production method and use thereof |
-
2006
- 2006-03-17 JP JP2006073875A patent/JP5017897B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007246359A (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Nanoporous Li 2 S and MWCNT-linked Li 2 S powder cathodes for lithium-sulfur and lithium-ion battery chemistries | |
JP5455211B2 (en) | Conductive auxiliary agent composition for lithium ion battery, method for producing the same, electrode mixture composition for lithium ion battery, method for producing the same, and lithium ion battery | |
JP5365611B2 (en) | Carbon material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
EP2797142A1 (en) | Anode for lithium secondary battery and lithium secondary battery including same | |
JP5761008B2 (en) | Negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2006264993A (en) | Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell | |
JP5454272B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP4660146B2 (en) | Carbon material, secondary battery negative electrode material and non-aqueous electrolyte secondary battery | |
JP5017897B2 (en) | Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery | |
JP2008047456A (en) | Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery | |
JP5655396B2 (en) | Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2013182706A (en) | Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery | |
JP5050604B2 (en) | Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery | |
JP4170006B2 (en) | Carbon material and negative electrode material for secondary battery using the same | |
KR20150107928A (en) | Aqueous binder composition for negative electrode of lithium battery comprising lithiumpolyacrylate and conductive polymer | |
JP4899396B2 (en) | Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same | |
JP4838991B2 (en) | Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery | |
JP4087138B2 (en) | Carbon material and silicon-containing carbon material using the same | |
JP5031981B2 (en) | Carbon material precursor, carbon material, negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same | |
WO2017110796A1 (en) | Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery | |
JP2006089349A (en) | Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery | |
JP2006264991A (en) | Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell | |
JP2016136452A (en) | Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode | |
JP2017091784A (en) | Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and method of manufacturing secondary battery | |
JP2015049996A (en) | Electrode material for lithium ion batteries, manufacturing method thereof, electrode for lithium ion batteries and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120515 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120528 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5017897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |