[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5017755B2 - Method for producing high purity xylylenediamine - Google Patents

Method for producing high purity xylylenediamine Download PDF

Info

Publication number
JP5017755B2
JP5017755B2 JP2001215005A JP2001215005A JP5017755B2 JP 5017755 B2 JP5017755 B2 JP 5017755B2 JP 2001215005 A JP2001215005 A JP 2001215005A JP 2001215005 A JP2001215005 A JP 2001215005A JP 5017755 B2 JP5017755 B2 JP 5017755B2
Authority
JP
Japan
Prior art keywords
phthalonitrile
xylylenediamine
reaction
ammonia
ammoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001215005A
Other languages
Japanese (ja)
Other versions
JP2003026638A (en
Inventor
健一 中村
和彦 天川
琢治 設楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001215005A priority Critical patent/JP5017755B2/en
Publication of JP2003026638A publication Critical patent/JP2003026638A/en
Application granted granted Critical
Publication of JP5017755B2 publication Critical patent/JP5017755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はキシレンから高純度キシリレンジアミンを製造する方法に関する。キシリレンジアミンはポリアミド樹脂、エポキシ硬化剤等の原料、およびイソシアネートの中間原料として有用である。
【0002】
【従来の技術】
キシレンとアンモニアおよび分子状酸素を触媒の存在下に反応(アンモ酸化)させてフタロニトリルを製造する方法はよく知られている。例えば特開平11−209332号には、V〜Cr〜B〜Mo系の酸化物を含有する触媒を用いてアンモ酸化する方法が記載されている。こうして得られたフタロニトリルをアンモニアの存在下水素化してキシリレンジアミンが製造される。
キシレンをアンモ酸化してフタロニトリルを製造する際に得られる反応生成ガスは、目的生成物であるフタロニトリル以外にアンモニア、炭酸ガス、一酸化炭素、シアン化水素、芳香族アミド、芳香族カルボン酸、空気および水蒸気などを含んでいる。このため、反応生成ガスからフタロニトリルを捕集分離した上で、水素化工程に供する必要がある。
【0003】
反応生成ガスからフタロニトリルを捕集分離するひとつの方法としては表面積の大きい冷却器にガスを導き、冷却面にフタロニトリルを付着固化し、溶融して取り出す方法がある。しかし、フタロニトリルは高温において重合などの変質を起こしやすく、溶融取り出し時に変質を起こし製品の純度低下をきたす。
類似の方法として、冷却器にガスを導き、冷却面にフタロニトリルを付着固化し、この固体状ニトリルに溶媒を添加し水素化反応器に供給する方法がある(化学工学、32巻7号658−660頁(1968年))。しかし、この方法ではフタロニトリルが冷却器の冷却面で重合などの変質を起こしやすく、添加した溶媒に不溶の重合物を生成し、ついには重合物の蓄積により装置の安定運転に支障が生じる。
【0004】
他の捕集方法としてはフタロニトリルを含む反応生成ガスを直接水と接触し、フタロニトリル結晶を水に懸濁した状態で捕集し、この懸濁液から固液分離してフタロニトリルを得る方法が提案されている(石油学会編プロセスハンドブック(1978年))。この方法ではフタロニトリルの捕集は満足に行えるが、フタロニトリルの懸濁液中でのかさ比重が小さいためスラリーがかさばり、スラリー水溶液から濾過などの方法で固液を分離する場合、非常に大きな濾過装置を必要とするばかりでなく、分離された結晶の含水率が高く、これを乾燥するのに多大な熱負荷を必要とする。
フタロニトリルは高温で水と比較的容易に反応して高沸点のアミドに変化するので、水存在下での長時間加熱はフタロニトリルの純度低下の原因となる。また水を捕集溶媒とする方法は、副生物である青酸を高温で水に接触させることとなり、青酸は熱履歴により容易にホルムアミド、ギ酸アミド、重合物等に変質し排水中に含まれ、排水のTOD負荷増や着色の要因となる。
【0005】
また、アンモ酸化反応生成ガスを有機溶媒と接触し、フタロニトリルを捕集分離する方法も提案されている(石油学会編プロセスハンドブック(1976年))。この方法ではフタロニトリル捕集液を蒸留して溶媒回収を行った後、フタロニトリルの精留が行われており、精製に多大のエネルギーを要すると共に、フタロニトリルの損失も多い。
一方、アンモ酸化で生成したフタロニトリルは次工程において、アンモニアや有機溶媒に溶解させて水素化反応が行われる。
固体あるいは溶融状態でフタロニトリルを取得した場合には、水素化に先立ち溶媒を加え液相均一にするための溶解槽もしくは混合槽を設置しなけらばならない。
【0006】
【発明が解決しようとする課題】
以上のように従来技術では、反応生成ガス中のフタロニトリルを分離する際に副生物を新たに生成し純度の低下をきたしたり、廃棄物や排水の増加を招くことや、多大のエネルギーを要するなどの欠点を有している。
本発明者らは、キシレンのアンモ酸化反応によりフタロニトリルを合成し、水素化してキシリレンジアミンを製造する方法において、アンモ酸化で生成したフタロニトリルを簡便な方法で収率よく反応ガスから回収し、水素化反応を実施する方法を提案している(特願2000-290459)。
【0007】
この方法では、アンモ酸化反応ガスを有機溶媒と直接接触させることによりフタロニトリルを有機溶媒中に捕集し、有機溶媒に捕集したフタロニトリルを分離することなく液体アンモニアを加えて水素化反応を行うことにより、新たな設備の設置なしにフタロニトリルを収率よく簡便に反応ガスから回収し、水素化反応でキシリレンジアミンを効率よく製造できる。
ここで得られるキシリレンジアミンは純度的には通常の用途への使用は満足のいくものであるが、近年、ポリアミド樹脂等において、より着色の少ないものが求められている。その為には更に高純度のキシリレンジアミンが望まれている。
本発明の目的は、キシレンのアンモ酸化反応によりフタロニトリルを合成し、フタロニトリルを水素化してキシリレンジアミンを製造する方法において、高純度のキシリレンジアミンを収率よく得る方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、アンモ酸化反応ガス中のフタロニトリルを特定の有機溶媒中に捕集し、更に液体アンモニアを加えて水素化した反応物から該有機溶媒とアンモニアを分離して得られた粗キシリレンジアミンに対して、特定の溶媒と水を用いて抽出操作を行うことにより、高純度キシリレンジアミンを効率よく製造できることを見出し、本発明に到達した。
即ち本発明は、メタキシレンまたはパラキシレンからアンモ酸化反応によりそれぞれのフタロニトリルを合成し、当該フタロニトリルを水素化してキシリレンジアミンを製造する方法であって、以下の(1)〜(6)の工程を含むことを特徴とする高純度キシリレンジアミンの製造方法である。
(1)原料キシレンをアンモニアおよび酸素含有ガスとの気相接触反応によりアンモ酸化させてフタロニトリルを製造するアンモ酸化工程
(2)アンモ酸化反応ガスを有機溶媒と直接接触させ、フタロニトリルを該有機溶媒中に捕集する捕集工程
(3)有機溶媒に捕集したフタロニトリルを分離することなく液体アンモニアを加えて水素化反応を行う水素化工程
(4)水素化反応生成物から有機溶媒とアンモニアを分離して粗キシリレンジアミンを得る分離工程
(5)粗キシリレンジアミンに芳香族炭化水素または飽和炭化水素から選ばれる少なくとも1種の溶媒と水を加えた後、溶媒相と水相に分離する抽出工程
(6)抽出分離された水相から高純度キシリレンジアミンを回収する回収工程
【0009】
【発明の実施の形態】
本発明の原料としては、メタキシレンまたはパラキシレンが用いられる。メタキシレン、パラキシレンからはアンモ酸化反応により対応するイソフタロニトリル、テレフタロニトリルが製造され、更に引き続く水素化反応によりメタキシリレンジアミン、パラキシリレンジアミンに変換される。
【0010】
<アンモ酸化工程>
アンモ酸化反応は反応熱が大きく、反応器内の均一の温度分布を得るため気相流動床反応として実施されるのが好ましい。触媒としては、基本組成がバナジウム、モリブテンおよび鉄から選ばれる一種以上の金属酸化物から構成される触媒が好適に用いられる。触媒の活性、強度および寿命を高めるために、該金属酸化物にMg,Ca,Ba,La, Ti,Zr,Cr,W, Co,Ni,B,Al,Ge,Sn,Pb,P,Sb,Bi,Li,Na,K,RbおよびCsの群から選ばれた少なくとも一種を含む金属酸化物を加えて修飾された複数の金属酸化物から構成された触媒が用いられ、以下の組成式で示される。
組成式: (V)a(Mo)b(Fe)c(X)d(Y)e(O)f
ただし、XはMg,Ca,Ba,La,Ti,Zr,Cr,W,CoおよびNiよりなる群より選ばれた少なくとも一種類の元素、YはB,Al,Ge,Sn,P,b,P,Sb,Li,Na,K,RbおよびCsよりなる群から選ばれた少なくとも一種の元素、添字のa,b,c,dおよびeは原子比を各々示し、a=0.01〜1(好ましくは0.1〜0.7)、b=0.01〜1(好ましくは0.05〜0.7)、c=0〜1、d=0〜1(好ましくは0.05〜0.7)、e=0〜1(好ましくは0.05〜0.7)およびfは上記元素が結合して得られる酸化物の酸素数である。
【0011】
アンモ酸化に用いる酸素含有ガスとしては、通常、空気が好適に用いられ、これに酸素を富化しても良い。また、窒素、炭酸ガス等の希釈剤を併用することもできる。酸素の使用量は原料キシレン1モルに含まれるメチル基1個に対して1.5倍モル以上、好ましくは2〜50倍モルの範囲である。これより使用量が少ないとニトリル化合物の収率は低下し、一方これより多いと空時収率が小さくなる。
空気を用いてアンモ酸化を行う場合の反応器に供給される原料ガス中のキシレンの濃度は0.2〜10容量%、好ましくは0.5〜5容量%の範囲である。この濃度より高いとニトリル化合物の収率は低下し、一方、これより低いと空時収率は小さくなる。
【0012】
アンモ酸化に用いるアンモニアには工業用グレードのものを用いることができる。アンモニア使用量は原料キシレンに含まれるメチル基に対して1〜10倍モル、好ましくは3〜7倍モルの範囲である。これより使用量が少ないとニトリル化合物の収率が低下し、これより多いと空時収率が小さくなる。
アンモ酸化は流動床反応器が好適であり、種々の形式の流動床反応器を用いることができる。アンモニアは原料キシレンと混合して供給することも、別々に供給することもでき、またアンモニアおよび原料キシレンに酸素含有ガスの一部を混合して供給することもできる。
アンモ酸化の反応温度は300〜500℃、好ましくは330〜470℃の範囲である。この範囲より反応温度が低いと転化率が低く、この範囲より反応温度が高いと炭酸ガス、シアン化水素等の副生が増加しニトリル化合物の収率が低下する。反応圧力は常圧、加圧或いは減圧のいずれでも良いが、常圧付近から0.2MPaの範囲が好ましい。反応ガスと触媒の接触時間は、原料の種類、原料に対するアンモニアおよび酸素含有ガスの仕込みモル比、反応温度等の条件に依存するが、通常は0.3〜30秒の範囲である。
アンモ酸化反応器からの反応生成ガス中には、未反応の原料キシレン、フタロニトリル等のニトリル化合物、アンモニア、シアン化水素、炭酸ガス、水、一酸化炭素、窒素、酸素等が含まれる。
【0013】
<捕集工程>
捕集工程において、反応生成ガスはフタロニトリル捕集器で有機溶媒と接触させることにより有機溶媒にフタロニトリルを溶解し分離する。この有機溶媒は、フタロニトリルを溶解するものであり、具体的には、トルエン、メタキシレン、パラキシレン、メシチレン、プソイドキュメン、テトラメチルベンゼン等の芳香族炭化水素が挙げられる。これらの溶媒は単独または2種以上の混合物として使用できる。また、原料キシレンより沸点が高い有機溶媒を用いるとガスに同伴される溶媒量が少ないので好ましい。更にフタロニトリルの溶解度が高く、またフタロニトリルに対して不活性で、水素化される官能基を有しない有機溶媒を用いるとより好ましい。
これらの有機溶媒の中でメシチレン、プソイドキュメン、およびこれらの混合物が好適に使用される。
【0014】
フタロニトリル捕集器の操作温度は、液相部が組成液の沸点以下となる条件で行われる。その圧力は、常圧、加圧または減圧の何れでも実施できるが、通常は常圧からアンモ酸化反応圧力の範囲で実施される。
アンモ酸化反応生成ガス中に含まれるアンモニア、シアン化水素、炭酸ガス、水、一酸化炭素、窒素、酸素等は、有機溶媒に吸収されず、フタロニトリル捕集器よりガスとして排出される。
有機溶媒に吸収されたフタロニトリルは、有機溶媒と分離することなく、液体アンモニアを加え水素化反応に供される。
【0015】
<水素化工程>
水素化工程におけるフタロニトリルの水素化反応によるキシリレンジアミンの製造はニッケルおよび/またはコバルトを主成分とする触媒により好適に実施される。フタロニトリルのアンモニア共存下における水素化反応は白金族系金属触媒を用いても実施できるが、ルテニウムなどを用いると溶媒として用いる芳香族炭化水素(メシチレンやプソイドキュメン等)および生成したキシリレンジアミンの核水素化が進行するため好ましくない。本発明の様にアンモ酸化生成ガスからのフタロニトリル捕集溶媒と水素化反応の反応溶媒を同一とする場合には、ニッケルやコバルトを主成分とする触媒が好適である。
【0016】
水素化反応器に入る原料の組成は適時決められるが、基質であるフタロニトリルの濃度がなるべく低い方が、溶媒であるアンモニア濃度がなるべく高い方が、キシリレンジアミンの収率は高くなる。十分な収率と生産量を上げられるように有機溶媒を更に加えたり、アンモニアを加えることにより調整される。好ましい原料組成としては、フタロニトリル 1〜10wt%、有機溶媒 1〜50wt%、アンモニア 20〜97wt%の範囲から決められる。
反応は回分式でも連続式でも可能であり、槽型反応器にニッケルやコバルトのラネー金属粉体状触媒を入れ完全混合型でも可能であるが、工業的には管状反応器を用い、成形された触媒を固定床とし原料溶液と水素ガスを反応器上部から並列で供給する潅液タイプの連続反応器を用いる方法が簡便である。
【0017】
水素化触媒としては、ニッケルおよび/またはコバルトを担体に担持したものが好適である。担体としてはケイソウ土、酸化珪素、アルミナ、シリカ−アルミナ、酸化チタン、酸化ジルコニウム、炭素などが用いられる。
ニッケル系触媒の場合、反応温度は60〜130℃であり、反応圧力は4〜15MPaである。
【0018】
<分離工程>
水素化反応により、キシリレンジアミンを含む反応液が得られる。この反応液からアンモニア、有機溶媒を分離することで、粗キシリレンジアミンを得ることができる。分離は蒸留操作により好適に行うことができる。必要に応じて複数の蒸留塔を用いてもよい。分離されたアンモニアは、アンモ酸化工程や水素化工程に循環し、再使用することができる。また、分離された溶媒は、捕集工程に循環し、再使用することができる。アンモニアや溶媒の再使用に際しては、別途、これらの精製工程を設けてもよい。
【0019】
<抽出工程>
粗キシリレンジアミン中には蒸留操作により分離できない不純物が含まれている。この粗キシリレンジアミンに溶媒と水を加えて不純物を溶媒に抽出する。キシリレンジアミンは水相側に回収される。
ここで使用する溶媒は、水と相分離するものであれば特に制限はないが芳香族炭化水素や飽和炭化水素が好適であり、具体的にはベンゼン、トルエン、メタキシレン、パラキシレン、メシチレン、プソイドキュメン、ヘキサン、シクロヘキサン等が挙げられる。これらの溶媒は単独でも2種以上の混合物としても使用できる。中でも原料キシレン(例えばメタキシリレンジアミン製造ではメタキシレン)を用いると取扱い化合物数が増えないので有利である。
溶媒使用量は、粗キシリレンジアミン1重量部に対し、0.01〜100重量部の範囲で選択されるが、0.2〜10重量部の範囲は抽出効率がよく、好適である。
水使用量は、粗キシリレンジアミン1重量部に対し、0.01〜100重量部の範囲で選択されるが、溶媒の場合と同様に、0.2〜10重量部の範囲が好適である。
抽出操作を実施する温度は特に制限はなく、室温でも充分に効果を発揮する。
また、抽出操作は繰り返し実施することができ、不純物を含有する溶媒相を分液により除去した後、更に溶媒を加え、同様な操作を実施することでキシリレンジアミンの純度を向上させることができる。
【0020】
<回収工程>
抽出工程で得られたキシリレンジアミン−水相は、精製操作を実施することにより、高純度のキシリレンジアミンを得ることができる。精製は、通常の回分蒸留や連続蒸留により好適に実施することができる。
一方、溶媒相から溶媒を回収し、抽出工程で再使用することができる。
【0021】
次に図面を用いて本発明を具体的に説明する。図1は本発明の実施形態を示すフロー図の一例である。
アンモ酸化工程Aでは、触媒が充填されたアンモ酸化反応器に空気、アンモニアおよびキシレンが供給される。反応生成ガス中には、未反応のキシレン、フタロニトリル等のニトリル化合物、アンモニア、シアン化水素、炭酸ガス、水、一酸化炭素、窒素および酸素等が含まれる。
反応生成ガスは捕集工程Bに導入し、有機溶媒と接触させる。ここで、有機溶媒にフタロニトリルが溶解し分離される。有機溶媒に吸収されなかったアンモニア、シアン化水素、炭酸ガス、水、一酸化炭素、窒素、酸素等は捕集器頂部より排出される。有機溶媒に吸収されたフタロニトリルは捕集器底部より抜き出され、液体アンモニアを加え水素化工程Cに送られる。
水素化工程Cでは、触媒が充填された水素化反応器に前述のフタロニトリル液と水素が供給され、キシリレンジアミンを含む反応液が排出される。
この反応液は分離工程Dに送られ、有機溶媒、アンモニア等を分離し、粗キシリレンジアミンが得られる。
この粗キシリレンジアミンに溶媒と水を加え、抽出工程Eに送る。ここで、溶媒相に不純物が抽出され、水相にキシリレンジアミンが回収される。
回収工程Fで、この水相から高純度キシリレンジアミンを回収する。
【0022】
【実施例】
以下に実施例により、本発明を具体的に説明する。但し、本発明はこれら実施例に制限されるものではない。
尚、以下の実施例において、組成分析はガスクロマトグラフを用いて行った。
【0023】
<アンモ酸化反応用触媒調整>
五酸化バナジウム V2O5 229g に水500mLを加え、80〜90℃に加熱し攪拌しながらシュウ酸477g を加え溶解する。またシュウ酸 963g に水400mL を加え50〜60℃に加熱し、無水クロム酸 CrO3 252g を水200mLに加えた溶液を良く攪拌しながら加え溶解する。得られたシュウ酸バナジウムの溶液にシュウ酸クロムの溶液を50〜60℃にて混合しバナジウム-クロム溶液を得る。この溶液にリンモリブデン酸 H3(PMo12O40)・20H2O 41.1gを水100mLに溶解して加え、更に、酢酸カリウム CH3COOK 4.0gを水 100mLに溶解して加える。次いで20重量%水性シリカゾル(Na2Oを0.02重量%含有) 2500g を加える。
このスラリー溶液にホウ酸H3BO3 78g を加え良く混合し液量が約3800g になるまで加熱、濃縮する。この触媒溶液を入口温度250℃、出口温度130℃に保ちながら噴霧乾燥した。130℃の乾燥機で12時間乾燥後、400℃で0.5時間焼成し、550℃で8時間空気流通下焼成し、流動触媒を製造した。この触媒成分の原子比は、 V:Cr:B:Mo:P:Na:K が 1:1:0.5:0.086:0.007:0.009:0.020 の割合で含有され、流動触媒におけるその触媒成分の濃度は50重量%である。
【0024】
実施例1
図1に示したフローによりアンモ酸化、フタロニトリルの捕集および水素化を行った。
アンモ酸化反応器に上記で調製した流動触媒6Lを充填し、空気、メタキシレン(MX)およびアンモニアの混合ガスを、温度350℃に予熱し反応器に供給した。仕込み条件として、MX供給量を350g/hr, NH3/MXモル比を11、O2/MXモル比を 5.4、SVを630hr-1とした。反応条件は温度420℃、圧力を0.2MPaとした。
反応器頂部からの生成ガスは捕集器に導入した。捕集器には有機溶媒としてプソイドキュメンを供給し、アンモ酸化反応ガスを140℃に保たれた捕集器の液相部に吹き込み、イソフタロニトリルをプソイドキュメンに溶解・吸収し、捕集器底部より抜き出した。炭酸ガス、アンモニア、シアン化水素、一酸化炭素、窒素、酸素および水のガス成分は捕集器頂部より抜き出した。
捕集器底部より抜き出されたイソフタロニトリルのプソイドキュメン溶液に液体アンモニアを加え水素化原料とした。この液の組成は、イソフタロニトリル/プソイドキュメン/アンモニアが重量比で6/25/69とした。
【0025】
内容量 4Lの管状縦型水素化反応器にNi含量50重量%であるNi/ケイソウ土触媒を5kg 充填した。この反応器上部よりイソフタロニトリル/プソイドキュメン/アンモニアからなる原料を6kg/hrの速度で供給した。水素を反応器上部より並流で流し、反応圧12MPa、温度90℃で水素化反応を実施した。
水素化反応でのイソフタロニトリル基準のメタキシリレンジアミン収率は92モル%であった。
【0026】
水素化反応生成液から有機溶媒であるプソイドキュメン、アンモニアを蒸留で分離し、更に低沸点副生物、高沸点副生物を取り除く蒸留を実施し、純度99.80重量%のメタキシリレンジアミンを得た。
不純物としてメチルベンジルアミン200ppm、捕集溶媒由来のジメチルベンジルアルコール1500ppm、不明高沸点成分300ppmが含まれていた。
【0027】
上記メタキシリレンジアミン1kgにメタキシレン1kgと水1kgを室温で加え攪拌し、静置後、メタキシレン相を分離した。
この操作を4回繰り返し、メタキシリレンジアミン−水相を得た。
メタキシリレンジアミン−水相を回分蒸留し、水を分離、初留を一部カットし高純度キシリレンジアミンを得た。純度は99.99重量%であり、メチルベンジルアミン31ppm、不明高沸点成分10ppm以下であった。ジメチルベンジルアルコールは検出されなかった。
【0028】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、アンモ酸化反応ガスから有機溶媒により捕集したフタロニトリルにアンモニアを加え、直接水素化を行い、得られた粗キシリレンジアミンから抽出と蒸留操作で高純度のキシリレンジアミンが得られる。この高純度キシリレンジアミンは、高品質のポリマー合成への使用が可能であり、本発明の工業的意義は大きい。
【図面の簡単な説明】
【図1】図1は本発明の実施形態を示すフロー図の一例である。
【符号の説明】
A:アンモ酸化工程
B:捕集工程
C:水素化工程
D:分離工程
E:抽出工程
F:回収工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing high purity xylylenediamine from xylene. Xylylenediamine is useful as a raw material for polyamide resins, epoxy curing agents and the like, and as an intermediate raw material for isocyanate.
[0002]
[Prior art]
A method for producing phthalonitrile by reacting (ammoxidation) xylene with ammonia and molecular oxygen in the presence of a catalyst is well known. For example, Japanese Patent Application Laid-Open No. 11-209332 describes a method of ammoxidation using a catalyst containing a V-Cr-B-Mo-based oxide. The phthalonitrile thus obtained is hydrogenated in the presence of ammonia to produce xylylenediamine.
The reaction product gas obtained when ammoxidizing xylene to produce phthalonitrile is ammonia, carbon dioxide, carbon monoxide, hydrogen cyanide, aromatic amide, aromatic carboxylic acid, air, in addition to the target product phthalonitrile. And water vapor. For this reason, after collecting and separating phthalonitrile from the reaction product gas, it is necessary to use it for the hydrogenation step.
[0003]
As one method for collecting and separating phthalonitrile from the reaction product gas, there is a method in which the gas is led to a cooler having a large surface area, and phthalonitrile is adhered and solidified on the cooling surface and melted and taken out. However, phthalonitrile easily undergoes alteration such as polymerization at a high temperature, and undergoes alteration at the time of melting and taking out, thereby reducing the purity of the product.
As a similar method, there is a method in which gas is introduced into a cooler, phthalonitrile is adhered and solidified on a cooling surface, a solvent is added to the solid nitrile, and the solution is supplied to a hydrogenation reactor (Chemical Engineering, Vol. 32, No. 7, 658). -660 (1968)). However, in this method, phthalonitrile easily undergoes alteration such as polymerization on the cooling surface of the cooler, and a polymer insoluble in the added solvent is formed. Finally, accumulation of the polymer hinders stable operation of the apparatus.
[0004]
As another collection method, a reaction product gas containing phthalonitrile is directly brought into contact with water, and the phthalonitrile crystals are collected in a suspended state in water, and solid-liquid separation is performed from this suspension to obtain phthalonitrile. A method has been proposed (Process Handbook edited by the Petroleum Institute of Japan (1978)). Although this method can satisfactorily collect phthalonitrile, the slurry is bulky because the bulk specific gravity in the suspension of phthalonitrile is small, and it is very large when separating solid and liquid from the aqueous slurry by filtration or other methods. Not only does it require a filtration device, but the water content of the separated crystals is high, and a great heat load is required to dry them.
Since phthalonitrile reacts relatively easily with water at high temperature and changes to a high-boiling amide, heating for a long time in the presence of water causes a decrease in the purity of phthalonitrile. Moreover, the method using water as a collection solvent is to contact the by-product hydrocyanic acid with water at a high temperature, and hydrocyanic acid is easily transformed into formamide, formic acid amide, a polymer, etc. due to thermal history, and is contained in the waste water. This will increase the TOD load on the wastewater and cause coloring.
[0005]
In addition, a method in which an ammoxidation reaction product gas is brought into contact with an organic solvent to collect and separate phthalonitrile has been proposed (Process Handbook edited by the Japan Petroleum Institute (1976)). In this method, after the phthalonitrile collection liquid is distilled and the solvent is recovered, the phthalonitrile is rectified, which requires a large amount of energy for purification and a large loss of phthalonitrile.
On the other hand, phthalonitrile produced by ammoxidation is dissolved in ammonia or an organic solvent in the next step, and a hydrogenation reaction is performed.
When phthalonitrile is obtained in a solid or molten state, a dissolution tank or a mixing tank for making the liquid phase uniform by adding a solvent prior to hydrogenation must be installed.
[0006]
[Problems to be solved by the invention]
As described above, in the prior art, when separating phthalonitrile in the reaction product gas, a by-product is newly generated, resulting in a decrease in purity, an increase in waste and drainage, and a great deal of energy. Have the disadvantages.
In the method of synthesizing phthalonitrile by an ammoxidation reaction of xylene and hydrogenating it to produce xylylenediamine, the phthalonitrile produced by ammoxidation is recovered from the reaction gas with a simple method and in a high yield. Has proposed a method for carrying out the hydrogenation reaction (Japanese Patent Application No. 2000-290459).
[0007]
In this method, phthalonitrile is collected in an organic solvent by bringing the ammoxidation reaction gas into direct contact with the organic solvent, and the hydrogenation reaction is performed by adding liquid ammonia without separating the phthalonitrile collected in the organic solvent. By doing so, phthalonitrile can be easily recovered from the reaction gas in a high yield without installing new equipment, and xylylenediamine can be efficiently produced by a hydrogenation reaction.
The xylylenediamine obtained here is satisfactory in terms of purity for use in ordinary applications, but in recent years, polyamide resins and the like that are less colored are required. For that purpose, xylylenediamine of higher purity is desired.
An object of the present invention is to provide a method for producing xylylenediamine with high yield in a method for synthesizing phthalonitrile by ammoxidation reaction of xylene and producing xylylenediamine by hydrogenating phthalonitrile. is there.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have collected phthalonitrile in an ammoxidation reaction gas in a specific organic solvent, and further added liquid ammonia to hydrogenate the reaction product. We have found that high-purity xylylenediamine can be efficiently produced by performing an extraction operation using a specific solvent and water on the crude xylylenediamine obtained by separating the solvent and ammonia. did.
That is, the present invention is a method for producing xylylenediamine by synthesizing each phthalonitrile from a meta-xylene or para-xylene by an ammoxidation reaction, and hydrogenating the phthalonitrile. The following (1) to (6) A process for producing high-purity xylylenediamine characterized by comprising the steps of:
(1) Ammoxidation step of producing phthalonitrile by ammoxidation of raw material xylene by gas phase contact reaction with ammonia and oxygen-containing gas (2) Ammoxidation reaction gas is brought into direct contact with an organic solvent, Collection step for collecting in a solvent (3) Hydrogenation step in which liquid ammonia is added without separating the phthalonitrile collected in the organic solvent to perform a hydrogenation reaction (4) From the hydrogenation reaction product to the organic solvent Separation step for obtaining crude xylylenediamine by separating ammonia (5) After adding at least one solvent selected from aromatic hydrocarbons or saturated hydrocarbons and water to the crude xylylenediamine, the solvent phase and the aqueous phase are added. Separation extraction step (6) Recovery step of recovering high purity xylylenediamine from the extracted and separated aqueous phase
DETAILED DESCRIPTION OF THE INVENTION
As the raw material of the present invention, meta-xylene or para-xylene is used. The corresponding isophthalonitrile and terephthalonitrile are produced from metaxylene and paraxylene by an ammoxidation reaction, and further converted to metaxylylenediamine and paraxylylenediamine by a subsequent hydrogenation reaction.
[0010]
<Ammoxidation process>
The ammoxidation reaction has a large heat of reaction and is preferably carried out as a gas phase fluidized bed reaction in order to obtain a uniform temperature distribution in the reactor. As the catalyst, a catalyst composed of one or more metal oxides whose basic composition is selected from vanadium, molybdenum and iron is preferably used. In order to increase the activity, strength and life of the catalyst, the metal oxide is added with Mg, Ca, Ba, La, Ti, Zr, Cr, W, Co, Ni, B, Al, Ge, Sn, Pb, P, Sb. , Bi, Li, Na, K, Rb and a catalyst composed of a plurality of metal oxides modified by adding a metal oxide containing at least one selected from the group of Cs is used. Indicated.
Composition formula: (V) a (Mo) b (Fe) c (X) d (Y) e (O) f
However, X is at least one element selected from the group consisting of Mg, Ca, Ba, La, Ti, Zr, Cr, W, Co and Ni, Y is B, Al, Ge, Sn, P, b, At least one element selected from the group consisting of P, Sb, Li, Na, K, Rb and Cs, the subscripts a, b, c, d and e each represent an atomic ratio, and a = 0.01 to 1 (preferably 0.1 to 0.7), b = 0.01 to 1 (preferably 0.05 to 0.7), c = 0 to 1, d = 0 to 1 (preferably 0.05 to 0.7), e = 0 to 1 (preferably 0.05 to 0.7) And f is the oxygen number of the oxide obtained by combining the above elements.
[0011]
As the oxygen-containing gas used for ammoxidation, usually air is preferably used, and this may be enriched with oxygen. Moreover, diluents, such as nitrogen and a carbon dioxide gas, can also be used together. The amount of oxygen used is 1.5 times mol or more, preferably 2 to 50 times mol per methyl group contained in 1 mol of raw material xylene. If the amount used is less than this, the yield of the nitrile compound decreases, while if it is more than this, the space-time yield becomes small.
When ammoxidation is performed using air, the concentration of xylene in the raw material gas supplied to the reactor is in the range of 0.2 to 10% by volume, preferably 0.5 to 5% by volume. Above this concentration, the yield of the nitrile compound decreases, while below this, the space time yield decreases.
[0012]
As the ammonia used for ammoxidation, an industrial grade can be used. The amount of ammonia used is in the range of 1 to 10 times mol, preferably 3 to 7 times mol for the methyl group contained in the raw material xylene. If the amount used is less than this, the yield of the nitrile compound is lowered, and if it is more than this, the space-time yield is reduced.
For the ammoxidation, a fluidized bed reactor is suitable, and various types of fluidized bed reactors can be used. Ammonia can be supplied as a mixture with the raw material xylene, or can be supplied separately, or a part of the oxygen-containing gas can be mixed and supplied to the ammonia and the raw material xylene.
The reaction temperature of ammoxidation is in the range of 300 to 500 ° C, preferably 330 to 470 ° C. If the reaction temperature is lower than this range, the conversion rate is low, and if the reaction temperature is higher than this range, by-products such as carbon dioxide and hydrogen cyanide increase and the yield of the nitrile compound decreases. The reaction pressure may be normal pressure, increased pressure, or reduced pressure, but is preferably in the range of near normal pressure to 0.2 MPa. The contact time between the reaction gas and the catalyst depends on conditions such as the type of raw material, the molar ratio of ammonia and oxygen-containing gas to the raw material, the reaction temperature, etc., but is usually in the range of 0.3 to 30 seconds.
The reaction product gas from the ammoxidation reactor contains unreacted raw materials xylene, nitrile compounds such as phthalonitrile, ammonia, hydrogen cyanide, carbon dioxide gas, water, carbon monoxide, nitrogen, oxygen and the like.
[0013]
<Collection process>
In the collection step, the reaction product gas is separated by dissolving phthalonitrile in the organic solvent by contacting with the organic solvent in the phthalonitrile collector. This organic solvent dissolves phthalonitrile, and specific examples include aromatic hydrocarbons such as toluene, metaxylene, paraxylene, mesitylene, pseudocumene, and tetramethylbenzene. These solvents can be used alone or as a mixture of two or more. In addition, it is preferable to use an organic solvent having a boiling point higher than that of the raw material xylene because the amount of the solvent accompanying the gas is small. Further, it is more preferable to use an organic solvent having high solubility of phthalonitrile, inert to phthalonitrile, and having no functional group to be hydrogenated.
Among these organic solvents, mesitylene, pseudocumene, and a mixture thereof are preferably used.
[0014]
The operating temperature of the phthalonitrile collector is performed under the condition that the liquid phase part is equal to or lower than the boiling point of the composition liquid. The pressure can be any of normal pressure, pressurization, or reduced pressure, but it is usually in the range of normal pressure to ammoxidation reaction pressure.
The ammonia, hydrogen cyanide, carbon dioxide gas, water, carbon monoxide, nitrogen, oxygen, etc. contained in the ammoxidation reaction product gas are not absorbed by the organic solvent and are discharged as a gas from the phthalonitrile collector.
The phthalonitrile absorbed in the organic solvent is added to liquid ammonia and subjected to a hydrogenation reaction without being separated from the organic solvent.
[0015]
<Hydrogenation process>
The production of xylylenediamine by the hydrogenation reaction of phthalonitrile in the hydrogenation step is preferably carried out with a catalyst mainly composed of nickel and / or cobalt. The hydrogenation reaction of phthalonitrile in the presence of ammonia can be carried out using a platinum group metal catalyst. However, when ruthenium or the like is used, the aromatic hydrocarbon (mesitylene, pseudocumene, etc.) used as a solvent and the nucleus of the produced xylylenediamine This is not preferable because hydrogenation proceeds. When the phthalonitrile collection solvent from the ammoxidation product gas and the reaction solvent for the hydrogenation reaction are the same as in the present invention, a catalyst containing nickel or cobalt as the main component is suitable.
[0016]
The composition of the raw material entering the hydrogenation reactor is determined in a timely manner, but the yield of xylylenediamine increases as the concentration of the substrate phthalonitrile is as low as possible and the concentration of ammonia as the solvent is as high as possible. It is adjusted by adding an organic solvent or adding ammonia so that a sufficient yield and production amount can be increased. A preferable raw material composition is determined from the range of 1 to 10 wt% of phthalonitrile, 1 to 50 wt% of an organic solvent, and 20 to 97 wt% of ammonia.
The reaction can be batch-wise or continuous, and it can also be a complete mixing type with a nickel or cobalt Raney metal powder catalyst in a tank reactor, but it is industrially formed using a tubular reactor. A simple method is to use an irrigation type continuous reactor in which the catalyst is a fixed bed and the raw material solution and hydrogen gas are supplied in parallel from the top of the reactor.
[0017]
As the hydrogenation catalyst, a catalyst in which nickel and / or cobalt is supported on a support is suitable. As the carrier, diatomaceous earth, silicon oxide, alumina, silica-alumina, titanium oxide, zirconium oxide, carbon and the like are used.
In the case of a nickel-based catalyst, the reaction temperature is 60 to 130 ° C., and the reaction pressure is 4 to 15 MPa.
[0018]
<Separation process>
By the hydrogenation reaction, a reaction solution containing xylylenediamine is obtained. Crude xylylenediamine can be obtained by separating ammonia and an organic solvent from the reaction solution. Separation can be suitably performed by distillation operation. A plurality of distillation columns may be used as necessary. The separated ammonia can be circulated and reused in the ammoxidation process or the hydrogenation process. Further, the separated solvent can be circulated in the collection step and reused. When reusing ammonia or a solvent, these purification steps may be provided separately.
[0019]
<Extraction process>
The crude xylylenediamine contains impurities that cannot be separated by distillation. A solvent and water are added to this crude xylylenediamine to extract impurities into the solvent. Xylylenediamine is recovered on the aqueous phase side.
The solvent used here is not particularly limited as long as it is phase-separated from water, but is preferably an aromatic hydrocarbon or a saturated hydrocarbon. Specifically, benzene, toluene, metaxylene, paraxylene, mesitylene, Examples include pseudocumene, hexane, and cyclohexane. These solvents can be used alone or as a mixture of two or more. Of these, the use of raw material xylene (for example, metaxylene in the production of metaxylylenediamine) is advantageous because the number of handled compounds does not increase.
The amount of the solvent used is selected in the range of 0.01 to 100 parts by weight with respect to 1 part by weight of the crude xylylenediamine, but the range of 0.2 to 10 parts by weight is preferable because of good extraction efficiency.
The amount of water used is selected in the range of 0.01 to 100 parts by weight with respect to 1 part by weight of the crude xylylenediamine, but the range of 0.2 to 10 parts by weight is suitable as in the case of the solvent.
The temperature at which the extraction operation is carried out is not particularly limited, and is sufficiently effective even at room temperature.
The extraction operation can be repeated, and after removing the solvent-containing solvent phase by liquid separation, the solvent can be further added and the same operation can be performed to improve the purity of xylylenediamine. .
[0020]
<Recovery process>
The xylylenediamine-water phase obtained in the extraction step can be purified to obtain high-purity xylylenediamine. Purification can be suitably performed by ordinary batch distillation or continuous distillation.
On the other hand, the solvent can be recovered from the solvent phase and reused in the extraction step.
[0021]
Next, the present invention will be specifically described with reference to the drawings. FIG. 1 is an example of a flowchart showing an embodiment of the present invention.
In the ammoxidation step A, air, ammonia and xylene are supplied to the ammoxidation reactor filled with the catalyst. The reaction product gas contains unreacted xylene, nitrile compounds such as phthalonitrile, ammonia, hydrogen cyanide, carbon dioxide, water, carbon monoxide, nitrogen, oxygen, and the like.
The reaction product gas is introduced into the collection step B and brought into contact with an organic solvent. Here, phthalonitrile is dissolved and separated in an organic solvent. Ammonia, hydrogen cyanide, carbon dioxide gas, water, carbon monoxide, nitrogen, oxygen, etc. that have not been absorbed by the organic solvent are discharged from the top of the collector. The phthalonitrile absorbed in the organic solvent is extracted from the bottom of the collector, added with liquid ammonia, and sent to the hydrogenation step C.
In the hydrogenation step C, the phthalonitrile liquid and hydrogen are supplied to the hydrogenation reactor filled with the catalyst, and the reaction liquid containing xylylenediamine is discharged.
This reaction solution is sent to the separation step D to separate the organic solvent, ammonia and the like, and crude xylylenediamine is obtained.
A solvent and water are added to this crude xylylenediamine, and it is sent to extraction step E. Here, impurities are extracted in the solvent phase and xylylenediamine is recovered in the aqueous phase.
In the recovery step F, high-purity xylylenediamine is recovered from this aqueous phase.
[0022]
【Example】
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.
In the following examples, composition analysis was performed using a gas chromatograph.
[0023]
<Adjustment of catalyst for ammoxidation reaction>
Add 500 mL of water to 229 g of vanadium pentoxide V 2 O 5 , add 477 g of oxalic acid to 80-90 ° C. with stirring and dissolve. Add 400 mL of water to 963 g of oxalic acid and heat to 50-60 ° C. Add a solution of 252 g of CrO 3 chromic anhydride to 200 mL of water and dissolve with good stirring. The obtained vanadium oxalate solution is mixed with a chromium oxalate solution at 50 to 60 ° C. to obtain a vanadium-chromium solution. To this solution, 41.1 g of phosphomolybdic acid H 3 (PMo 12 O 40 ) · 20H 2 O is added in 100 mL of water, and 4.0 g of potassium acetate CH 3 COOK is added in 100 mL of water. Then 2500 g of 20 wt% aqueous silica sol (containing 0.02 wt% Na 2 O) is added.
Add 78 g of boric acid H 3 BO 3 to this slurry solution, mix well, and heat and concentrate until the liquid volume is about 3800 g. The catalyst solution was spray dried while maintaining an inlet temperature of 250 ° C. and an outlet temperature of 130 ° C. After drying for 12 hours in a dryer at 130 ° C., the mixture was calcined at 400 ° C. for 0.5 hour and then calcined at 550 ° C. for 8 hours under air flow to produce a fluid catalyst. The atomic ratio of this catalyst component is as follows: V: Cr: B: Mo: P: Na: K is contained at a ratio of 1: 1: 0.5: 0.086: 0.007: 0.009: 0.020, and the concentration of the catalyst component in the fluid catalyst is 50% by weight.
[0024]
Example 1
Ammoxidation, phthalonitrile collection and hydrogenation were carried out according to the flow shown in FIG.
The ammoxidation reactor was charged with 6 L of the fluid catalyst prepared above, and a mixed gas of air, metaxylene (MX) and ammonia was preheated to a temperature of 350 ° C. and supplied to the reactor. The feed conditions were MX feed rate of 350 g / hr, NH3 / MX molar ratio of 11, O 2 / MX molar ratio of 5.4, and SV of 630 hr −1 . The reaction conditions were a temperature of 420 ° C. and a pressure of 0.2 MPa.
The product gas from the top of the reactor was introduced into the collector. Pseudocumene is supplied to the collector as an organic solvent, ammoxidation reaction gas is blown into the liquid phase part of the collector maintained at 140 ° C, and isophthalonitrile is dissolved and absorbed in the pseudocumene. From the bottom of the collector Extracted. Carbon dioxide, ammonia, hydrogen cyanide, carbon monoxide, nitrogen, oxygen and water gas components were extracted from the top of the collector.
Liquid ammonia was added to a pseudocumene solution of isophthalonitrile extracted from the bottom of the collector to obtain a raw material for hydrogenation. The composition of this solution was 6/25/69 by weight ratio of isophthalonitrile / pseudocumene / ammonia.
[0025]
A 4 L tubular vertical hydrogenation reactor was charged with 5 kg of Ni / diatomaceous earth catalyst having a Ni content of 50% by weight. The raw material consisting of isophthalonitrile / pseudocumene / ammonia was fed from the top of the reactor at a rate of 6 kg / hr. Hydrogen was allowed to flow from the top of the reactor in a parallel flow, and the hydrogenation reaction was carried out at a reaction pressure of 12 MPa and a temperature of 90 ° C.
The yield of metaxylylenediamine based on isophthalonitrile in the hydrogenation reaction was 92 mol%.
[0026]
Pseudocumene and ammonia, which are organic solvents, were separated from the hydrogenation reaction product solution by distillation, and further distillation was performed to remove low-boiling by-products and high-boiling by-products, to obtain metaxylylenediamine having a purity of 99.80% by weight.
As impurities, 200 ppm of methylbenzylamine, 1500 ppm of dimethylbenzyl alcohol derived from the collection solvent, and 300 ppm of an unknown high-boiling component were contained.
[0027]
1 kg of metaxylylenediamine and 1 kg of metaxylene and 1 kg of water were added and stirred at room temperature, and after standing, the metaxylene phase was separated.
This operation was repeated 4 times to obtain a metaxylylenediamine-water phase.
Metaxylylenediamine-water phase was batch-distilled to separate water, and the first fraction was partially cut to obtain high purity xylylenediamine. The purity was 99.99% by weight, methylbenzylamine 31ppm, unknown high boiling point component 10ppm or less. Dimethylbenzyl alcohol was not detected.
[0028]
【Effect of the invention】
As is clear from the above examples, according to the present invention, ammonia is added to phthalonitrile collected by an organic solvent from an ammoxidation reaction gas, hydrogenated directly, and extracted from the resulting crude xylylenediamine. High purity xylylenediamine is obtained by distillation operation. This high-purity xylylenediamine can be used for the synthesis of high-quality polymers, and the industrial significance of the present invention is great.
[Brief description of the drawings]
FIG. 1 is an example of a flow diagram illustrating an embodiment of the present invention.
[Explanation of symbols]
A: Ammoxidation process B: Collection process C: Hydrogenation process D: Separation process E: Extraction process F: Recovery process

Claims (3)

メタキシレンまたはパラキシレンからアンモ酸化反応によりそれぞれのフタロニトリルを合成し、当該フタロニトリルを水素化してキシリレンジアミンを製造する方法であって、以下の(1)〜(6)の工程を含むことを特徴とする高純度キシリレンジアミンの製造方法。
(1)原料キシレンをアンモニアおよび酸素含有ガスとの気相接触反応によりアンモ酸化させてフタロニトリルを製造するアンモ酸化工程
(2)アンモ酸化反応ガスを芳香族炭化水素と直接接触させ、フタロニトリルを該芳香族炭化水素中に捕集する捕集工程
(3)芳香族炭化水素に捕集したフタロニトリルを分離することなく液体アンモニアを加えて水素化反応を行う水素化工程
(4)水素化反応生成物から芳香族炭化水素とアンモニアを分離して粗キシリレンジアミンを得る分離工程
(5)粗キシリレンジアミンに芳香族炭化水素または飽和炭化水素から選ばれる少なくとも1種の溶媒と水を加えた後、溶媒相と水相に分離する抽出工程
(6)抽出分離された水相から高純度キシリレンジアミンを回収する回収工程
A method of synthesizing each phthalonitrile from meta-xylene or para-xylene by an ammoxidation reaction and hydrogenating the phthalonitrile to produce xylylenediamine, which includes the following steps (1) to (6): A process for producing high-purity xylylenediamine characterized by
(1) Ammoxidation process in which raw material xylene is ammoxidized by gas phase contact reaction with ammonia and oxygen-containing gas to produce phthalonitrile (2) Ammoxidation reaction gas is brought into direct contact with an aromatic hydrocarbon , and phthalonitrile is hydrogenation step (4) hydrogenation reaction the reaction was conducted by adding liquid ammonia without separating the absorption step (3) phthalonitrile was collected in aromatic hydrocarbons trapped in the aromatic hydrocarbon Separation process for separating crude hydrocarbon and ammonia from the product to obtain crude xylylenediamine (5) At least one solvent selected from aromatic hydrocarbons or saturated hydrocarbons and water were added to crude xylylenediamine. Then, an extraction step for separating the solvent phase and the aqueous phase (6) A recovery step for recovering high-purity xylylenediamine from the extracted and separated aqueous phase
原料キシレンのアンモ酸化反応に、バナジウム、モリブデンおよび鉄から選ばれた一種以上の金属酸化物を含む流動触媒を用いる請求項1記載の高純度キシリレンジアミンの製造方法。The method for producing high-purity xylylenediamine according to claim 1, wherein a fluid catalyst containing one or more metal oxides selected from vanadium, molybdenum and iron is used for the ammoxidation reaction of the raw material xylene. 水素化反応をニッケルおよび/またはコバルト触媒の存在下で行う請求項1記載の高純度キシリレンジアミンの製造方法。
The method for producing high-purity xylylenediamine according to claim 1, wherein the hydrogenation reaction is carried out in the presence of a nickel and / or cobalt catalyst.
JP2001215005A 2001-07-16 2001-07-16 Method for producing high purity xylylenediamine Expired - Fee Related JP5017755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215005A JP5017755B2 (en) 2001-07-16 2001-07-16 Method for producing high purity xylylenediamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215005A JP5017755B2 (en) 2001-07-16 2001-07-16 Method for producing high purity xylylenediamine

Publications (2)

Publication Number Publication Date
JP2003026638A JP2003026638A (en) 2003-01-29
JP5017755B2 true JP5017755B2 (en) 2012-09-05

Family

ID=19049726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215005A Expired - Fee Related JP5017755B2 (en) 2001-07-16 2001-07-16 Method for producing high purity xylylenediamine

Country Status (1)

Country Link
JP (1) JP5017755B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881864B2 (en) * 2003-03-07 2005-04-19 Mitsubishi Gas Chemical Company, Inc. Production method of xylylenediamine
KR101106334B1 (en) * 2003-09-10 2012-01-18 바스프 에스이 Method for the production of diaminoxylene by continuous hydrogenation of liquid phthalonitrile
DE10341633A1 (en) * 2003-09-10 2005-04-28 Basf Ag Process for the preparation of xylylenediamine
DE10341614A1 (en) * 2003-09-10 2005-04-28 Basf Ag Process for the preparation of xylylenediamine (XDA)
DE10341613A1 (en) 2003-09-10 2005-04-14 Basf Ag Process for the preparation of xylylenediamine
WO2006001298A1 (en) 2004-06-23 2006-01-05 Mitsubishi Gas Chemical Company, Inc. Process for producing highly purified xylylenediamine
EP1984320B1 (en) 2006-02-01 2013-10-23 Basf Se Method for producing pure xylylenediamine (xda)
KR101527296B1 (en) 2010-10-07 2015-06-09 미쓰이 가가쿠 가부시키가이샤 Method for producing bis(aminomethyl)cyclohexanes
JP5562429B2 (en) 2010-10-07 2014-07-30 三井化学株式会社 Process for producing trans-1,4-bis (aminomethyl) cyclohexane
EP2671864B1 (en) * 2011-01-31 2017-03-15 Mitsubishi Gas Chemical Company, Inc. Method for producing xylylenediamine
EP2927688A4 (en) 2012-11-28 2016-07-27 Furukawa Electric Co Ltd Immunochromatography, and detector and reagent for use therein
JP2022068377A (en) * 2019-03-04 2022-05-10 太陽ホールディングス株式会社 Purification method for diamine compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134910A (en) * 1977-05-17 1979-01-16 The Lummus Company Recovery of isophthalonitrile

Also Published As

Publication number Publication date
JP2003026638A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP4729779B2 (en) Method for producing xylylenediamine
JP5017756B2 (en) Method for producing high purity metaxylylenediamine
JP5493836B2 (en) Method for producing xylylenediamine
JP5884738B2 (en) Method for producing xylylenediamine
JP5017755B2 (en) Method for producing high purity xylylenediamine
US6284893B2 (en) Process for producing nitrile compounds
US7915452B2 (en) Process for producing highly purified xyltlenediamine
JP2013177345A (en) Method for producing xylylenediamine
JP2013177346A (en) Method of producing meta-xylylenediamine
KR100725683B1 (en) Method of purifying isophthalonitrile
JP4929523B2 (en) Method for producing isophthalonitrile
JP4747417B2 (en) Method for producing nitrile compound
JP6806290B1 (en) Method for producing xylylenediamine
EP1319653B1 (en) Process for producing a polynitrile compound
JP2003238512A (en) Method for producing polynitrile compound
KR20130109457A (en) Method for producing xylylenediamines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5017755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees