JP5017620B1 - Ground improvement method, silica grout and its raw materials - Google Patents
Ground improvement method, silica grout and its raw materials Download PDFInfo
- Publication number
- JP5017620B1 JP5017620B1 JP2011288282A JP2011288282A JP5017620B1 JP 5017620 B1 JP5017620 B1 JP 5017620B1 JP 2011288282 A JP2011288282 A JP 2011288282A JP 2011288282 A JP2011288282 A JP 2011288282A JP 5017620 B1 JP5017620 B1 JP 5017620B1
- Authority
- JP
- Japan
- Prior art keywords
- silica
- water
- salt
- amount
- based compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 360
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 188
- 239000011440 grout Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000002994 raw material Substances 0.000 title claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 111
- 150000003839 salts Chemical class 0.000 claims abstract description 87
- 150000001875 compounds Chemical class 0.000 claims abstract description 50
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 230000002378 acidificating effect Effects 0.000 claims abstract description 22
- 230000007935 neutral effect Effects 0.000 claims abstract description 9
- -1 silica compound Chemical class 0.000 claims description 40
- 235000019353 potassium silicate Nutrition 0.000 claims description 34
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 34
- 239000000084 colloidal system Substances 0.000 claims description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 15
- 238000004898 kneading Methods 0.000 claims description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 6
- 239000013505 freshwater Substances 0.000 claims description 4
- 239000013535 sea water Substances 0.000 abstract description 31
- 238000013329 compounding Methods 0.000 abstract description 5
- 235000002639 sodium chloride Nutrition 0.000 description 64
- 239000000243 solution Substances 0.000 description 56
- 239000011734 sodium Substances 0.000 description 30
- 239000007924 injection Substances 0.000 description 19
- 238000002347 injection Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 238000001879 gelation Methods 0.000 description 17
- 239000002253 acid Substances 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 12
- 239000008399 tap water Substances 0.000 description 10
- 235000020679 tap water Nutrition 0.000 description 10
- 239000003513 alkali Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000008235 industrial water Substances 0.000 description 7
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 235000011180 diphosphates Nutrition 0.000 description 4
- 239000003352 sequestering agent Substances 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 1
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000021148 sequestering of metal ion Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
【課題】練り混ぜ水に、海水のような塩分を含む水を用いる場合であっても、地盤中で均一なゲルを生じさせることができるような、シリカ系グラウトを用いた地盤改良工法を提供する。
【解決手段】
シリカ系化合物と硬化剤と練り混ぜ水とを含み、pHが中性又は酸性の領域であるシリカ系グラウトを地盤中に注入して固結させるに当たり、シリカ系化合物溶液と硬化剤配合液とをそれぞれ用意し、かつ、シリカ系化合物溶液と硬化剤配合液とのそれぞれに練り混ぜ水として塩分を含む水を添加するものとして、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整する。
【選択図】図2[Problem] To provide a ground improvement method using silica-based grout that can generate a uniform gel in the ground even when water containing salt such as seawater is used as mixing water. To do.
[Solution]
In order to inject and solidify silica-based grout, which contains a silica-based compound, a curing agent, and water mixed and has a pH of neutral or acidic region into the ground, the silica-based compound solution and the curing agent-containing liquid are mixed. Prepare and add each of the silica-based compound solution and the curing agent compounding solution to each of the silica-based compound solution and the salt-containing water as kneaded water. adjusted according to the amount of salt contained in the water containing Na 2 O in an amount and salt contained in the system compound solution.
[Selection] Figure 2
Description
本発明は、地盤中にシリカ系グラウトを注入し固結することにより、液状化防止、吸出し防止さらには恒久補強などの恒久的な地盤改良を行う地盤改良工法、特に、シリカ系グラウトの練り混ぜ水として海水や湧水のような塩分を含む水を用いて行う地盤改良工法、シリカ系グラウト及びその原料に関する。 The present invention is a ground improvement method for performing permanent ground improvement such as liquefaction prevention, suction prevention and permanent reinforcement by injecting and solidifying silica-based grout into the ground, in particular, mixing silica-based grout. The present invention relates to a ground improvement method using silica containing salt water such as seawater or spring water, silica-based grout, and raw materials thereof.
近年、薬液注入工法は従来の仮設注入工に限らず、恒久改良或いは長期間改良を目的とした地盤改良工事において用いられるようになっている。この地盤改良工事では、シリカ系グラウトの適用が要求されるようになってきた。地盤中にシリカ系グラウトを注入し固結することにより、液状化防止、吸出し防止さらには恒久補強などの恒久的な地盤改良を行うことができる。シリカ系グラウトは、特に、近年地震の多発に伴い河川や海岸付近での液状化対策や、堤防等の護岸工事などの止水に利用されている。 In recent years, chemical injection methods are not limited to conventional temporary injection methods, but are used in ground improvement work for the purpose of permanent improvement or long-term improvement. In this ground improvement work, application of silica grout has been required. By injecting and solidifying silica-based grout into the ground, permanent ground improvement such as liquefaction prevention, suction prevention and permanent reinforcement can be performed. Silica-based grouts are used especially for water stoppages such as liquefaction countermeasures near rivers and coasts and bank protection works such as dikes due to recent earthquakes.
液状化対策工が行われる海岸付近では、水道水が得られにくいため、入手が容易な海水をシリカグラウトの配合水として用いることが望まれていた。しかし、アルカリ領域のシリカグラウトの配合水として海水を使用すると、海水中の塩化ナトリウムや塩化マグネシウム等とシリカ分が反応し白濁して不均質なシリカ分を析出する。このため、海岸付近の液状化対策工であっても、配合水として水道水を使用せざるを得なかった。また、アルカリ領域の水ガラスグラウトを、海水を含む地盤に注入した場合、注入液が地盤中の海水と反応して白沈して不均質なゲルを作るため、充分な地盤改良効果を得ることが困難であった。 In the vicinity of the coast where liquefaction countermeasures are performed, it is difficult to obtain tap water, and therefore, it has been desired to use seawater that is easily available as the blended water for silica grout. However, when seawater is used as the blended water for the silica grout in the alkaline region, the silica content reacts with sodium chloride, magnesium chloride, etc. in the seawater to cause cloudiness and precipitate a heterogeneous silica content. For this reason, even if it was a liquefaction countermeasure work near the shore, tap water had to be used as the blended water. In addition, when water glass grout in the alkaline region is injected into the ground containing seawater, the injected solution reacts with the seawater in the ground and whitens to form a heterogeneous gel, thus obtaining sufficient ground improvement effect. It was difficult.
近年、図1に示すように、水ガラスと酸とを混合してなる酸性シリカ注入材、さらには酸性シリカにpH緩衡剤やアルカリ剤を加えて中性でゲル化時間を調整する非アルカリ性シリカ注入材が提案されている。また、コロイダルシリカと水ガラスと酸を加えてなる非アルカリ性シリカコロイドも耐久性のあるシリカグラウトとして知られている。 In recent years, as shown in FIG. 1, acidic silica injecting material obtained by mixing water glass and acid, and further neutralizing non-alkaline by adjusting pH and neutralizing agent to acidic silica to adjust gelation time. Silica injection materials have been proposed. Non-alkaline silica colloids made by adding colloidal silica, water glass and acid are also known as durable silica grouts.
これらの酸性又は非アルカリ性シリカ系注入材は、ゲル化時間が長く、広範囲な浸透性に優れ、かつ、水ガラス注入材の劣化要因となるアルカリを酸等で除去しているため、長いゲル化時間で長期耐久性に優れ、広範囲にわたって耐久性の優れた固結領域を得る点で、他のアルカリ領域の水ガラス注入材では得られない特異な特性を有している。 These acidic or non-alkaline silica-based injection materials have a long gelation time because they have a long gelation time, are excellent in a wide range of permeability, and have removed alkali that causes deterioration of the water glass injection material with an acid or the like. In terms of obtaining a consolidated region that is excellent in long-term durability over time and excellent in durability over a wide range, it has unique characteristics that cannot be obtained with water glass injection materials in other alkaline regions.
また、水ガラスと酸とを混合してなる酸性シリカ注入材は、海水を含む地盤中に注入しても白濁することなく均質なゲルを形成して優れた効果を得ることは既に知られている。 Further, it is already known that an acidic silica injection material obtained by mixing water glass and acid forms a uniform gel without white turbidity even when injected into the ground containing seawater and obtains an excellent effect. Yes.
これらの酸性又は非アルカリ性シリカ系注入材は、主剤となる水ガラスのアルカリを除去する工程において、水ガラスに酸をそのまま添加すると水ガラス中のシリカ濃度が通常20〜50%と高く、瞬時に不均一にゲル化してしまい地盤中に注入することが困難である。そのため、水ガラス、酸それぞれを水道水や工業用水、河川水等の電解質濃度の低い水で希釈していた。希釈することにより、均一なゲルが作成でき、また、練り混ぜ後のpH調整や、シリカ濃度の調整が容易になるため、地盤中で目的のゲル化時間及び強度を得ることができ効率の良い配合を行うことができる。 These acidic or non-alkaline silica-based injection materials, in the step of removing the alkali of the water glass as the main agent, when the acid is added to the water glass as it is, the silica concentration in the water glass is usually as high as 20 to 50%, instantly It is difficult to inject into the ground due to non-uniform gelation. Therefore, each of water glass and acid was diluted with water with low electrolyte concentration, such as tap water, industrial water, and river water. Dilution makes it possible to create a uniform gel, and it is easy to adjust the pH after kneading and the silica concentration, so that the desired gelation time and strength can be obtained in the ground, which is efficient. Formulation can be performed.
このようにして希釈して製造されたシリカ系グラウトを注入して液状化対策工や護岸や岩盤等の周囲に地盤改良の施工をする場所が、水道水や工業用水等の入手の困難な場所である場合がある。この場合は、水道水や工業用水等の電解質濃度の低い清水の代わりに、海水や湧水を練り混ぜ水として用いることが考えられる。 The place where it is difficult to obtain tap water or industrial water, etc., where the silica-based grout produced by diluting in this way is injected and ground improvement work is carried out around liquefaction countermeasures, revetments, bedrock, etc. It may be. In this case, it is conceivable to use seawater or spring water as mixing water instead of fresh water having a low electrolyte concentration such as tap water or industrial water.
しかし、酸性又は非アルカリ性シリカ系注入材を製造するために、水ガラスと酸を用いた非アルカリ性のシリカ溶液又はシリカコロイド溶液の配合水として海水や湧水を用いた場合、海水や湧水に含まれる電解質により水ガラスと海水又は湧水とが反応して不均質な塊状シリカを析出すると考えられる。そのため従来は、不均質な塊状シリカを析出させないように、水ガラス、酸を、それぞれ水道水や工業用水、河川水等の電解質濃度の低い水で希釈して用いていた。よって、あらかじめコンテナなどで施工現場に練り混ぜ水としての水道水や工業用水、河川水等の電解質濃度の低い水を運搬することから、経済的に割高になっていた。 However, in order to produce an acidic or non-alkaline silica-based injection material, when sea water or spring water is used as a blended water of non-alkaline silica solution or silica colloid solution using water glass and acid, It is thought that water glass and seawater or spring water react with the electrolyte contained to precipitate heterogeneous bulk silica. Therefore, conventionally, water glass and acid were diluted with water having a low electrolyte concentration, such as tap water, industrial water, and river water, so that heterogeneous massive silica was not precipitated. Therefore, since water with low electrolyte concentration, such as tap water, industrial water, river water, etc. which are kneaded with a construction site with a container etc. in advance, was economically expensive.
これらの課題を解決するために、主剤の水ガラスのモル比を下げる方法や、アルカリ材を添加する方法がある(特許文献1)。しかしながら、これらの方法は、高アルカリ性であるため、シリカ系グラウトに用いる場合は溶脱して耐久性が得られない。 In order to solve these problems, there are a method of reducing the molar ratio of the water glass as the main agent and a method of adding an alkali material (Patent Document 1). However, since these methods are highly alkaline, they are leached when used in silica-based grout and durability cannot be obtained.
上述したように、酸性又は非アルカリ性シリカ系注入材を製造するために、海水や湧水を練り混ぜ水として用いると、シリカ化合物は海水や湧水に含まれる電解質によりシリカ分子の凝集が起こりゲル化するため、注入前に混合出来ても、地盤中で不均一なゲル化が起こる、あるいは注入経路内でゲル化してしまう。このため、従来ではあらかじめコンテナなどで施工現場に練り混ぜ水としての水道水や工業用水、河川水等の電解質濃度の低い水を運搬するする必要があり、経済的に割高になる。 As described above, in order to produce an acidic or non-alkaline silica-based injection material, when seawater or spring water is mixed and used as water, the silica compound causes gelation of silica molecules due to the electrolyte contained in seawater or spring water. Therefore, even if mixing can be performed before injection, non-uniform gelation occurs in the ground or gelation occurs in the injection path. For this reason, conventionally, it is necessary to transport water with low electrolyte concentration such as tap water, industrial water, and river water as kneaded water to a construction site in advance by a container or the like, which is economically expensive.
本発明は、上記の問題を有利に解決するためになされたもので、pHが中性又は酸性領域の溶液型シリカ系グラウトにおいて、配合水すなわち練り混ぜ水に、海水のような塩分を含む水を用いる場合であっても、地盤中で均一なゲルを生じさせることができるような、シリカ系グラウトを用いた地盤改良工法を、そのシリカ系グラウト及び原料と共に提供することを目的とするものである。 The present invention has been made in order to advantageously solve the above-mentioned problem. In a solution-type silica grout having a neutral or acidic pH range, water containing salt such as seawater in mixed water, that is, kneaded water. The purpose of the present invention is to provide a ground improvement method using silica-based grout so that a uniform gel can be formed in the ground, together with the silica-based grout and raw materials. is there.
本発明者らは、pHが中酸性領域の溶液型シリカ系グラウトの配合時に用いる練り混ぜ水に海水を用いる場合におけるゲル化の抑制について、以下の事実関係を基に研究開発を行った。 The present inventors conducted research and development on the suppression of gelation in the case of using seawater as the mixing water used when blending the solution type silica grout having a medium acidic pH range based on the following facts.
水ガラスやシリカコロイドは、Na2O等のアルカリを含有することによって長期にわたり安定化する。地盤改良注入材として水ガラスやシリカコロイドを用いる場合は、酸を用いてナトリウムイオンを中和するか、塩等の電解質によりシリカを凝集させることにより地盤中でゲル化させる。このときに硬化剤として添加する酸や電解質の量を調整することでゲル化時間を調整するため、練り混ぜ水にはゲル化時間に影響の少ない、工業用水や水道水等の電解質濃度の少ないものを使う。 Water glass and silica colloid are stabilized over a long period of time by containing an alkali such as Na 2 O. When water glass or silica colloid is used as the ground improvement injecting material, it is gelled in the ground by neutralizing sodium ions with an acid or aggregating silica with an electrolyte such as a salt. Since the gelation time is adjusted by adjusting the amount of acid and electrolyte added as a curing agent at this time, the kneading water has little influence on the gelation time, and the electrolyte concentration of industrial water, tap water, etc. is low Use things.
海水は通常、比重1.02〜1.03、塩分濃度3.1〜3.8%の物性を有するため、シリカ化合物と混合すると硬化剤と同様の働きをするから、単に海水を工業用水や水道水等の代わりに練り混ぜ水に用いるのでは、目的のゲル化時間に調整することが困難である。 Seawater usually has physical properties of a specific gravity of 1.02-1.03 and a salinity of 3.1-3.8%. Therefore, when mixed with a silica compound, it acts like a curing agent. If mixed water is used instead of tap water or the like, it is difficult to adjust the target gelation time.
そこで本発明者らは、鋭意研究を重ねた結果、Na2Oの異なるシリカ化合物においても海水の添加量を変えることによりゲル化しないことを見出した。本発明は、この知見に立脚するものである。 Thus, as a result of intensive studies, the present inventors have found that even silica compounds having different Na 2 O do not gel by changing the amount of seawater added. The present invention is based on this finding.
本発明の地盤改良工法は、シリカ系化合物と硬化剤と練り混ぜ水とを含み、pHが中性又は酸性の領域であるシリカ系グラウトを地盤中に注入して固結させるに当たり、シリカ系化合物溶液と硬化剤配合液とをそれぞれ用意し、かつ、シリカ系化合物溶液と硬化剤配合液とのそれぞれに練り混ぜ水として塩分を含む水を添加するものとして、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整することを特徴とする。 The ground improvement method of the present invention includes a silica-based compound, a curing agent, and water to be mixed. When the silica-based grout having a neutral or acidic pH is injected into the ground and solidified, the silica-based compound The salt content to be added to the silica-based compound solution is prepared by adding a solution and a curing agent-comprising solution and adding water containing salt as kneaded water to each of the silica-based compound solution and the curing agent-comprising solution. The amount of water containing is adjusted according to the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in the water containing salt.
本発明の地盤改良工法においては、シリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液のNa2Oの濃度(g)と塩分を含む水の塩の濃度(g)の比が0.7以上になるように設定し、シリカ系グラウトに必要とされる残りの練り混ぜ水を硬化剤配合液に添加することが好ましい。また、本発明の地盤改良工法における上記シリカ化合物は、水ガラス、シリカコロイド、活性シリカ及び活性シリカコロイドから選ばれる1種又は2種以上とすることができ、硬化剤がリン酸、硫酸、塩から選ばれる1種又は2種以上とすることができる。更に、本発明の地盤改良工法においては、シリカ化合物はNa2O量が異なる2種以上であり、シリカ系化合物溶液を、シリカ化合物毎に2液以上を用意し、これらのシリカ系化合物溶液のうち、Na2O量が少ない溶液には、それ以外のシリカ化合物溶液よりも低い塩分濃度の塩分を含む水を添加するか、塩分濃度が0の清水を添加するか、又は練り混ぜ水を添加しない構成とすることもできる。
In the ground improvement method of the present invention, the amount of salt-containing water added to the silica-based compound solution is adjusted to the Na 2 O concentration (g) of the silica-based compound solution and the salt concentration (g) of the salt-containing water. It is preferable to set the ratio to be 0.7 or more and to add the remaining kneading water required for the silica-based grout to the curing agent compounding liquid. The silica compound in the ground improvement method of the present invention may be one or more selected from water glass, silica colloid, active silica and active silica colloid, and the curing agent is phosphoric acid, sulfuric acid,
本発明のシリカ系グラウトは、シリカ系化合物と硬化剤と練り混ぜ水とを含み、シリカ系化合物溶液と硬化剤配合液とのそれぞれに練り混ぜ水として塩分を含む水を添加して調製された原料の混合物であって、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整してなることを特徴とする。 The silica-based grout of the present invention includes a silica-based compound, a curing agent, and kneaded water, and was prepared by adding water containing salt as kneaded water to each of the silica-based compound solution and the curing agent blending solution. The amount of water containing salt added to the silica-based compound solution is a mixture of raw materials, depending on the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in water containing the salt. It is characterized by being adjusted.
本発明のシリカ系グラウトは、地盤改良工法に用いられるシリカ系グラウトであって、原料の一つがシリカ系化合物溶液に練り混ぜ水として塩分を含む水を添加して調製され、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整してなることを特徴とする。 The silica-based grout of the present invention is a silica-based grout used in the ground improvement method, and one of the raw materials is prepared by adding water containing salt as water mixed with the silica-based compound solution. The amount of water containing salt to be added to is adjusted according to the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in the water containing salt.
本発明によれば、シリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整することにより、練り混ぜ水にコストが有利な電解質を含む水、例えば施工現場の近くで入手し得る海水や湧水を用いることができ、よってシリカ化合物のモル比を低アルカリに限定しなくても地盤を均一で恒久的な改良効果を確保することができる。 According to the present invention, the amount of salt-containing water added to the silica-based compound solution is adjusted according to the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in the salt-containing water. Therefore, it is possible to use water containing an electrolyte that is advantageous in cost for mixing water, for example, seawater or spring water that can be obtained near the construction site, and therefore, without limiting the molar ratio of the silica compound to low alkali. A uniform and permanent improvement effect of the ground can be secured.
以下、本発明の地盤改良工法、シリカ系グラウト及びその原料を、より具体的に説明する。
本発明の地盤改良工法は、シリカ系化合物溶液と硬化剤配合液とをそれぞれ用意し、かつ、シリカ系化合物溶液と硬化剤配合液とのそれぞれに練り混ぜ水として塩分を含む水を添加するものとして、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整することを要点とする。
Hereinafter, the ground improvement method of the present invention, the silica grout and its raw materials will be described more specifically.
The ground improvement method of the present invention is to prepare a silica-based compound solution and a curing agent blending solution, and add water containing salt as kneaded water to each of the silica-based compound solution and the curing agent blending solution. It is important to adjust the amount of water containing salt added to the silica-based compound solution according to the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in the water containing salt. And
本発明者の実験によれば、例えば、表1に示すNa2O(%)、SiO2(%)、モル比の異なるシリカ化合物I〜IIIにおいて、比重1.23、塩分濃度3.5%の海水を種々の量で添加してゲル化時間を測定すると、図2のようなグラフが得られる。 According to the experiment of the present inventors, for example, Na 2 O (%), SiO 2 (%), and silica compounds I to III having different molar ratios shown in Table 1, specific gravity 1.23, salinity concentration 3.5%. When various amounts of seawater are added and the gelation time is measured, a graph as shown in FIG. 2 is obtained.
図2の結果より、本発明者は、シリカ化合物と海水濃度による安定性はシリカ化合物のモル比に依存せず、シリカ化合物中のNa2O濃度と練り混ぜ水中の塩濃度の比に依存することを見出した。 From the results shown in FIG. 2, the present inventor shows that the stability depending on the silica compound and seawater concentration does not depend on the molar ratio of the silica compound, but depends on the ratio of the Na 2 O concentration in the silica compound and the salt concentration in the kneaded water. I found out.
液状化対策工においては、シリカ系注入材をタンク内で配合し、ポンプで地盤内に設置された注入管内より地盤へ注入する場合、シリカ化合物と練り混ぜ水との混合物の安定時間は30分以上、好ましくは1時間以上が必要となる。 In liquefaction countermeasures, when the silica-based injection material is blended in the tank and injected into the ground from the injection pipe installed in the ground with a pump, the stabilization time of the mixture of silica compound and mixed water is 30 minutes As described above, preferably one hour or more is required.
そのためには図2においてNa2O濃度と練り混ぜ水中の塩濃度(塩分)との比は0.7以上、好ましくは1.0以上に設定すれば白濁せず安定して配合が行える。 For this purpose, if the ratio of the Na 2 O concentration and the salt concentration (salt content) in the kneaded water in FIG. 2 is set to 0.7 or more, preferably 1.0 or more, the mixture can be stably mixed without causing cloudiness.
海水や湧水は、地下水や河川等の電解質の少ない水に希釈される場合もあるが、表3に示すように塩分濃度の異なる水においても、本発明が適用できる。 Seawater and spring water may be diluted with low electrolyte water such as groundwater or rivers, but the present invention can also be applied to water with different salt concentrations as shown in Table 3.
注入に当たっては、対象地盤の強度変化を加味して供用期間中の必要とする強度を期待できる最適なシリカ注入材について、シリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整して配合設計することで、耐久性を有する地盤改良を行うことができる。 In the injection, the optimal amount of silica-containing water added to the silica-based compound solution for the optimal silica-injecting material that can be expected to have the required strength during the service period in consideration of the strength change of the target ground, the silica-based compound solution By adjusting and blending according to the amount of Na 2 O contained in the water and the amount of salt contained in the water containing salt, the ground improvement having durability can be performed.
本発明に用いられるシリカ系化合物溶液は、水ガラス、水ガラスの酸で除去した非アルカリ性水ガラス(シリカゾル)、シリカコロイド(コロイダルシリカ)、活性シリカ及び活性シリカコロイドの1種又は2種以上の混合物を有効成分とする。 The silica-based compound solution used in the present invention is water glass, non-alkaline water glass (silica sol) removed with water glass acid, silica colloid (colloidal silica), active silica, and active silica colloid. The mixture is the active ingredient.
有効成分の水ガラスは、モル比1.0〜4.5の水ガラスを使用することもできるが、さらに高モル比のものも使用することができる。有効成分のシリカコロイドとしては、粒径が5〜50nmの弱アルカリ性に安定させてなるコロイドがある。また、有効成分は、水ガラス、又は水ガラスと酸を混合してなる酸性水ガラスをイオン交換樹脂やイオン交換膜で処理して得られる活性シリカ、更に増粒した活性シリカコロイドでもよい。更に、有効成分は、この活性シリカコロイドに水ガラス、酸あるいは塩を加えてなる活性シリカコロイド等であってもよい。 As the active ingredient water glass, water glass having a molar ratio of 1.0 to 4.5 can be used, but a glass having a higher molar ratio can also be used. As an active ingredient silica colloid, there is a colloid which is stabilized in weak alkalinity with a particle size of 5 to 50 nm. In addition, the active ingredient may be water glass, or active silica obtained by treating acidic water glass obtained by mixing water glass and acid with an ion exchange resin or an ion exchange membrane, or active silica colloid obtained by further increasing the particle size. Further, the active ingredient may be an active silica colloid obtained by adding water glass, an acid or a salt to the active silica colloid.
本発明における上記シリカコロイドは、液状のアルカリ金属シリカ塩水溶液(水ガラス)からアルカリ金属イオンのほとんどを除去して得られるものを用いることができ、例えば、ゼオライト系陽イオン交換体、アンモニウム系イオン交換体のイオン交換樹脂に水ガラスを通過させ、生成したシリカコロイドを80℃〜90℃の温度で更に水ガラスに加え、再び上記イオン交換樹脂に通過してイオン交換を行って得られるものであり、この製法により比較的純粋な(希薄な)シリカコロイド(活性シリカコロイド)が得られる。 The silica colloid in the present invention can be obtained by removing most of the alkali metal ions from a liquid alkali metal silica salt aqueous solution (water glass). For example, a zeolite cation exchanger, an ammonium ion It is obtained by passing water glass through the ion exchange resin of the exchanger, adding the generated silica colloid to the water glass at a temperature of 80 ° C. to 90 ° C., and passing the ion exchange resin again to perform ion exchange. Yes, this process yields a relatively pure (dilute) silica colloid (active silica colloid).
更に、純粋なシリカコロイドを得るには、前述の希薄なシリカコロイドを微アルカリ性に調製し、これに更に前述のシリカコロイドを加えながら蒸発させ、安定化と濃縮とを同時に行う方法、又はイオン交換後の活性シリカコロイドを適当なアルカリの下に加熱し、これに更に活性シリカコロイドを加えて安定化する製法が用いられる。 Furthermore, in order to obtain a pure silica colloid, the above-mentioned dilute silica colloid is prepared to be slightly alkaline, and the above-mentioned silica colloid is further evaporated and further evaporated to stabilize and concentrate simultaneously, or ion exchange. A method is used in which the subsequent active silica colloid is heated under an appropriate alkali and further stabilized by adding an active silica colloid.
本発明におけるシリカコロイド溶液は、上述したシリカコロイドを用いることができ、Naイオンがほとんど分離除去されているため、通常pHが10以下の弱アルカリ性を示しており、Na2Oは、液中濃度が0.2質量%〜4.0質量%の範囲にある。Na2Oの液中濃度が4質量%を超えるとシリカコロイドは溶けてしまい、ケイ酸塩の水溶液となってしまう。一方、Na2Oの量が0.2質量%より少なくなるとシリカコロイドは安定して存在し得ず、凝集してしまう。すなわち、Na2Oが0.2質量%〜4.0質量%の範囲で、Naイオンがシリカコロイドの表面に分布して安定したコロイド状に保ち得る。したがって、Na2Oが0.2質量%〜4.0質量%の範囲になるシリカコロイド溶液が好ましい。
Silica colloidal solution in the present invention may use a colloidal silica as described above, since the Na ions are little separated off, normally a pH indicates the 10 following weak alkaline,
このようにして調製されたシリカコロイド溶液は、ほとんど中性に近く、かつ、半永久的に安定しており、これを注入液として用いる場合、工場から現場への搬入ならびに注入操作の際にゲル化する心配がない。 The colloidal silica solution prepared in this way is almost neutral and semi-permanently stable. When this is used as an infusion solution, it is gelled during delivery from the factory to the site and during the infusion operation. There is no worry to do.
また、モル比の少ない水ガラスやコロイダルシリカは、含有するNaイオンが少ないために少量の硬化剤でゲル化することができ、またゲル化後においても脱水縮合が起こりにくく、体積収縮が少ない。したがって、これらのシリカ系化合物を原料としたシリカ系グラウトは、注入後においてゲルの収縮や劣化が少なく、長期において改良効果が得られる、良質な地盤改良を行える。 Further, water glass and colloidal silica having a small molar ratio can be gelled with a small amount of a curing agent because they contain a small amount of Na ions, and dehydration condensation hardly occurs even after gelation, and volume shrinkage is small. Therefore, silica-based grouts using these silica-based compounds as raw materials can improve the quality of the ground with little shrinkage or deterioration of the gel after injection and an improvement effect in the long term.
本発明におけるシリカ系化合物溶液は、pHが中性又は酸性の領域である。具体的には、pHが1〜8の範囲とすることができる。シリカ系化合物溶液に含まれるNa2Oの量は、水ガラスの場合JIS規格水ガラスによって規定される。また、安定性を高める為に水酸化ナトリウムを添加してもよい。 The silica-based compound solution in the present invention has a pH range of neutral or acidic. Specifically, the pH can be in the range of 1-8. In the case of water glass, the amount of Na 2 O contained in the silica-based compound solution is defined by JIS standard water glass. Further, sodium hydroxide may be added in order to improve stability.
本発明における塩分を含む水は、例として海水や湧水が挙げられる。この塩分を含む水に含まれる塩分は、塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、塩化カリウム等があり、これらの分析方法は、フレーム原子吸光法、ICP発光分光分析法、イオンクロマトグラフ法にて測定することができる。また、簡易の塩分濃度計によって測定される。 Examples of the salt-containing water in the present invention include seawater and spring water. The salt contained in the water containing the salt includes sodium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, potassium chloride and the like, and these analysis methods include flame atomic absorption method, ICP emission spectroscopic analysis method, ion chromatographic method. Can be measured. It is also measured with a simple salinity meter.
シリカ系化合物溶液のNa2Oの量(g)と塩分を含む水の塩の量(g)との比は、0.7以上であることが白濁せずに安定して配合が行えることから、好ましい。より好ましい比は、1.0以上である。 Since the ratio of the amount (g) of Na 2 O in the silica-based compound solution to the amount of salt water-containing salt (g) is 0.7 or more, it can be stably blended without becoming cloudy. ,preferable. A more preferable ratio is 1.0 or more.
本発明において、シリカ化合物として、Na2O量が異なる2種以上のシリカ化合物を用いる場合は、シリカ系化合物溶液を、シリカ化合物毎に2液以上で用意し、それぞれの溶液に対して塩分を含む水を添加すればよく、このとき、各溶液に対して添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整する。2液以上のシリカ系化合物溶液のうち、Na2O量が少ない溶液には、それ以外のシリカ化合物溶液よりも低い塩分濃度の塩分を含む水を添加するか、塩分濃度が0の清水を添加するか、又は練り混ぜ水を添加しない態様とすることができる。 In the present invention, when two or more types of silica compounds having different amounts of Na 2 O are used as the silica compounds, two or more silica-based compound solutions are prepared for each silica compound, and the salinity is set for each solution. Water containing salt may be added to each solution at this time, and the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in the water containing salt are added to each solution. Adjust according to. Of the two or more silica-based compound solutions, water containing a lower salt concentration than other silica compound solutions is added to a solution having a small amount of Na 2 O, or fresh water having a salt concentration of 0 is added. Or a mode in which kneading water is not added.
本発明に用いられる硬化剤としては、リン酸、硫酸等の鉱酸、硫酸水素ナトリウム、硫酸アルミニウム、塩化アルミニウム等、水に溶解して比較的強酸性を呈する塩類、炭酸ガス、炭酸塩、その他の無機塩類、金属有機酸等を挙げることができる。この中で特に、リン酸、リン酸系化合物をはじめとする金属イオン封鎖剤、キレート剤、又は更に硫酸等と併用した反応剤は、シリカと共に地中のコンクリート構造物をマスキング作用によって難溶性シリカ化合物の被覆膜を形成するため、海水中の塩による塩害や硬化剤中の硫酸イオンとカルシウムの結合によるエトリンガイトの生成による劣化から、コンクリートを保護する効果があるので好ましい。また、リン酸イオン等の金属イオン封鎖剤を含むシリカは、地盤中に注入されたときに、土中の微量金属や貝殻などのカルシウム分と反応して不溶性又は難溶性のシリカ化合物をつくるため、地盤中のアルカリ成分を不動態化して、浸透中の土中シリカの急激なpHの増加によるゲル化の短縮を抑えることができると推測される。 Examples of the curing agent used in the present invention include mineral acids such as phosphoric acid and sulfuric acid, sodium hydrogen sulfate, aluminum sulfate, aluminum chloride and the like, salts that dissolve in water and exhibit relatively strong acidity, carbon dioxide, carbonates, and the like. Inorganic salts, metal organic acids and the like. Among them, in particular, sequestering agents such as phosphoric acid and phosphoric acid compounds, chelating agents, and further reactive agents used in combination with sulfuric acid, etc. are hardly soluble silica by masking the underground concrete structure together with silica. Forming a coating film of the compound is preferable because it has an effect of protecting concrete from salt damage caused by salt in seawater and deterioration due to the formation of ettringite due to the binding of sulfate ions and calcium in the hardener. In addition, silica containing a sequestering agent such as phosphate ions reacts with trace metals in the soil and calcium such as shells to form an insoluble or hardly soluble silica compound when injected into the ground. It is presumed that the alkali component in the ground can be passivated and the shortening of gelation due to the rapid increase in pH of the soil silica during infiltration can be suppressed.
本発明に用いられるリン酸系化合物および/またはキレート剤は、キレート効果を有するものであり、例えば、リン酸、各種の酸性リン酸塩、中性リン酸塩、塩基性リン酸塩が挙げられ、テトラポリリン酸塩、ヘキサメタリン酸塩、トリポリリン酸塩、ピロリン酸塩、酸性ヘキサメタリン酸塩、酸性ピロリン酸塩等の縮合リン酸塩類等を挙げることができ、縮合リン酸塩類がナトリウム塩であることが好ましい。非アルカリ性シリカ溶液を形成するリン酸化合物としては、ヘキサメタリン酸ソーダが特に強固なマスキングシリカを形成するため、好ましい。また、キレート剤としては、上記リン酸化合物の他に、エチレンジアミン四酢酸、ニトリロトリ酢酸、グルコン酸、酒石酸またはこれらの塩類等を挙げることができ、本発明においては、リン酸化合物がシリカ溶液の存在下でコンクリート表面に最も効果的な被覆を形成する。 The phosphoric acid compound and / or chelating agent used in the present invention has a chelating effect, and examples thereof include phosphoric acid, various acidic phosphates, neutral phosphates, and basic phosphates. , Tetrapolyphosphates, hexametaphosphates, tripolyphosphates, pyrophosphates, acidic hexametaphosphates, acidic pyrophosphates, and the like, and the condensed phosphates are sodium salts Is preferred. As the phosphoric acid compound forming the non-alkaline silica solution, sodium hexametaphosphate is preferable because it forms a particularly strong masking silica. Examples of the chelating agent include ethylenediaminetetraacetic acid, nitrilotriacetic acid, gluconic acid, tartaric acid, and salts thereof in addition to the phosphoric acid compound. In the present invention, the phosphoric acid compound is present in the presence of a silica solution. Underneath it forms the most effective coating on the concrete surface.
なお、反応剤としては水溶性の塩化ナトリウム、塩化カリ、塩化カルシウム等の鉱酸のアルカリ金属塩、アルカリ土金属塩、あるいは硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、明ばん等のアルミニウム塩等があり、これらを少量添加して、又は併用して緩衝能を高め、ゲル化時間調整剤としての機能を保持させることもできる。更に、本発明において、リン酸化合物以外の金属イオン封鎖剤を使用し、金属イオンのマスキングを期待させることもできる。このような金属封鎖剤としては、テトラポリリン酸塩、ヘキサメタリン酸塩(特にナトリウム塩が良い)、トリポリリン酸塩、ピロリン酸塩、酸性ヘキサメタリン酸塩、酸性ピロリン酸塩等の縮合リン酸塩類、エチレンジアミン四酢酸、ニトリロトリ酢酸、グルコン酸、酒石酸またはこれらの塩類等を挙げることができる。
また、ゲルタイム調整材として、アルカリ材や高分子材、を添加することもできる。
Reactive agents include water-soluble sodium chloride, potassium chloride, calcium chloride and other mineral acid alkali metal salts, alkaline earth metal salts, or aluminum salts such as sulfate bands, aluminum chloride, polyaluminum chloride, and alum. In addition, a small amount of these may be added or used in combination to increase the buffer capacity and retain the function as a gelling time adjusting agent. Furthermore, in the present invention, a metal ion sequestering agent other than the phosphoric acid compound can be used to expect metal ion masking. Such sequestering agents include tetrapolyphosphates, hexametaphosphates (especially sodium salts are good), tripolyphosphates, pyrophosphates, acidic hexametaphosphates, acidic pyrophosphates and other condensed phosphates, ethylenediamine Examples thereof include tetraacetic acid, nitrilotriacetic acid, gluconic acid, tartaric acid, and salts thereof.
Further, an alkali material or a polymer material can be added as a gel time adjusting material.
(実施例1)
以下、本発明を、実施例に基づいてより具体的に説明する。
表3に示す4種のシリカ化合物I〜IVを用意した。
Example 1
Hereinafter, the present invention will be described more specifically based on examples.
Four types of silica compounds I to IV shown in Table 3 were prepared.
実施例1及び比較例1においては、上記のシリカ化合物Iを用いて、シリカ系グラウトを製造した。この際に、硬化剤配合液(A液)と、シリカ化合物溶液(B液)とを調製した。配合後に得られた注入材は、シリカ濃度が6質量%、pH3のシリカ系グラウトであった。このシリカ系グラウトの配合を表4に示す。実施例1及び比較例1から、酸性硬化剤を用いた練り混ぜ後のpHが酸性〜中性の場合においては、シリカ化合物の希釈に用いる練り混ぜ水量を、Na2O量との関係で本発明に従い0.7以上とし、残りの練り混ぜ水を酸性硬化剤と練り混ぜることにより、混合後のシリカ濃度を調整することができる。 In Example 1 and Comparative Example 1, silica-based grout was produced using the silica compound I described above. Under the present circumstances, the hardening | curing agent compounding liquid (A liquid) and the silica compound solution (B liquid) were prepared. The injection material obtained after blending was a silica grout having a silica concentration of 6% by mass and a pH of 3. Table 4 shows the composition of this silica-based grout. From Example 1 and Comparative Example 1, when the pH after kneading with an acidic curing agent is acidic to neutral, the amount of kneading water used for diluting the silica compound is set in relation to the amount of Na 2 O. According to the invention, the silica concentration after mixing can be adjusted by adjusting the remaining mixing water to 0.7 or more and mixing the remaining mixing water with the acidic curing agent.
×:ゲル化、△:白濁または30分以上安定化、○:透明な状態で60分以上安定化
×: Gelled, Δ: Cloudy or stabilized for 30 minutes or more, ○: Stabilized for 60 minutes or more in a transparent state
(実施例2、実施例3)
実施例2、実施例3は、上記のシリカ化合物IIを用いて、シリカ系グラウトを製造した。この際に、実施例1と同じく硬化剤配合液(A液)と、シリカ化合物溶液(B液)とを調製した。配合後に得られた注入材は、シリカ濃度が6質量%、pH3のシリカ系グラウトであった。これらのシリカ系グラウトの配合を表5に示す。実施例2、実施例3は、実施例1とはシリカ化合物に由来するNa2O量が異なるため、B液の安定性を保つためには練り混ぜ水の添加量が異なる。また、比較例1と実施例3を比較すると、練りあがり後のシリカ濃度は同じであるが、シリカ化合物を変えることによって、同量のB液でも海水への安定性が高くなることが分かる。
(Example 2, Example 3)
In Example 2 and Example 3, silica-based grout was produced using the above-mentioned silica compound II. Under the present circumstances, the hardener compounding liquid (A liquid) and the silica compound solution (B liquid) were prepared like Example 1. FIG. The injection material obtained after blending was a silica grout having a silica concentration of 6% by mass and a pH of 3. Table 5 shows the composition of these silica grouts. Since Example 2 and Example 3 differ from Example 1 in the amount of Na 2 O derived from the silica compound, the amount of kneading water added is different in order to maintain the stability of the B liquid. Moreover, when the comparative example 1 and Example 3 are compared, the silica density | concentration after kneading is the same, but it turns out by changing a silica compound that stability to seawater becomes high even if it is the same amount of B liquid.
×:ゲル化、△:白濁または30分以上安定化、○:透明な状態で60分以上安定化
×: Gelled, Δ: Cloudy or stabilized for 30 minutes or more, ○: Stabilized for 60 minutes or more in a transparent state
(実施例4)
実施例4は、モル比の高いシリカ化合物IVを用いた場合、及びシリカ化合物が2種以上の場合の実施例を示す。上記のシリカ化合物I及びシリカ化合物IVを用いて、シリカ系グラウトを製造した。この際に、硬化剤配合液(A液)と、シリカ化合物溶液(B液)とシリカ化合物溶液(C液)とを調製した。配合後に得られた注入材は、シリカ濃度が6質量%、pH3のシリカ系グラウトであった。これらのシリカ系グラウトの配合を表6に示し、B液及びC液の安定性評価の結果を表7に示す。
Example 4
Example 4 shows an example in which silica compound IV having a high molar ratio was used, and in the case where two or more silica compounds were used. A silica-based grout was produced using the silica compound I and the silica compound IV. Under the present circumstances, the hardening | curing agent compounding liquid (A liquid), the silica compound solution (B liquid), and the silica compound solution (C liquid) were prepared. The injection material obtained after blending was a silica grout having a silica concentration of 6% by mass and a pH of 3. Table 6 shows the composition of these silica-based grouts, and Table 7 shows the results of stability evaluation of the B and C solutions.
シリカ化合物IVを用いた場合、比較例2、比較例3に示すように塩分濃度3.5%の海水を用いると練り混ぜ水に25mlを添加するとNa2O(g)/塩(g)の量比が0.7未満となり、B液の安定性が悪化する。B液を安定化させるには、本発明に従い、Na2O(g)/塩(g)の量比が0.7以上となるように、シリカ化合物IVを25mlに対して、練り混ぜ水は3ml以下とする必要がある。そこで、実施例4では、練り混ぜ水の添加量を0ml、すなわち、B液には海水を添加しなかった。その結果、実施例4は、B液の安定性もC液の安定性も優れていた。 When silica compound IV is used, as shown in Comparative Example 2 and Comparative Example 3, when seawater having a salt concentration of 3.5% is used and 25 ml is added to the kneaded water, Na 2 O (g) / salt (g) The quantity ratio becomes less than 0.7, and the stability of the B liquid is deteriorated. In order to stabilize the liquid B, according to the present invention, the silica compound IV is mixed with 25 ml of water so that the amount ratio of Na 2 O (g) / salt (g) is 0.7 or more. Must be 3 ml or less. Therefore, in Example 4, the addition amount of the kneading water was 0 ml, that is, no seawater was added to the B liquid. As a result, Example 4 was excellent in the stability of the B liquid and the stability of the C liquid.
なお、実施例4では、B液には海水を添加しなかったが、海水を添加しない代わりに、B液に塩分濃度が薄い海水を添加すれば、B液への練り混ぜ水の量を多くすることができる。例えば、塩分濃度0.4%の海水を用いると、シリカ化合物IVに対して、練り混ぜ水を同量(シリカ化合物IVが25mlであれば、練り混ぜ水を25ml)添加しても、Na2O(g)/塩(g)の量比0.7以上となるため、安定性が得られる配合が可能になる。 In Example 4, seawater was not added to the B liquid, but if seawater with a low salt concentration was added to the B liquid instead of adding seawater, the amount of water mixed into the B liquid was increased. can do. For example, when seawater having a salt concentration of 0.4% is used, even if the same amount of mixing water is added to silica compound IV (if silica compound IV is 25 ml, 25 ml of mixing water is added), Na 2 Since the amount ratio of O (g) / salt (g) is 0.7 or more, blending with which stability is obtained becomes possible.
(実施例5、実施例6)
実施例5、実施例6は、配合後において中性(pH7.6)になる例である。これらの実施例の配合においては、表8に示すように硬化剤配合液とシリカ化合物溶液とに分け、本発明のとおりB液におけるシリカ化合物と練り混ぜ水の割合はNa2O(g)/塩(g)の量比が0.7以上となるように設定し、A液と混合する。
(Example 5, Example 6)
Examples 5 and 6 are examples in which they become neutral (pH 7.6) after blending. In the blending of these examples, as shown in Table 8, it is divided into a curing agent blending solution and a silica compound solution. As in the present invention, the ratio of the silica compound and the kneaded water in the B solution is Na 2 O (g) / It sets so that the quantity ratio of salt (g) may be 0.7 or more, and mixes with A liquid.
本発明は、地盤中にシリカ系グラウトを注入し固結することにより、液状化防止、吸出し防止さらには恒久補強などの恒久的な改良効果を期待する地盤改良工法に関し、安価なシリカ系グラウトを用いて恒久的な改良効果を確保することができる。 The present invention relates to a ground improvement method for expecting a permanent improvement effect such as prevention of liquefaction, prevention of sucking and permanent reinforcement by injecting and solidifying silica-based grout into the ground. It can be used to secure a permanent improvement effect.
Claims (7)
シリカ系化合物溶液と硬化剤配合液とをそれぞれ用意し、かつ、シリカ系化合物溶液と硬化剤配合液とのそれぞれに練り混ぜ水として塩分を含む水を添加するものとして、このシリカ系化合物溶液に添加する塩分を含む水の量を、シリカ系化合物溶液に含まれるNa2Oの量と塩分を含む水に含まれる塩分の量とに応じて調整することを特徴とする地盤改良工法。 Injecting and solidifying silica-based grout, which contains a silica-based compound, a curing agent, and water mixed, and the pH is neutral or acidic, into the ground,
A silica-based compound solution and a curing agent blending solution are prepared, and each of the silica-based compound solution and the curing agent blending solution is kneaded into each of the silica-based compound solution and salt-containing water as water to be added. A ground improvement method characterized by adjusting the amount of water containing salt to be added according to the amount of Na 2 O contained in the silica-based compound solution and the amount of salt contained in water containing the salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011288282A JP5017620B1 (en) | 2011-12-28 | 2011-12-28 | Ground improvement method, silica grout and its raw materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011288282A JP5017620B1 (en) | 2011-12-28 | 2011-12-28 | Ground improvement method, silica grout and its raw materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5017620B1 true JP5017620B1 (en) | 2012-09-05 |
JP2013136908A JP2013136908A (en) | 2013-07-11 |
Family
ID=46980456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011288282A Active JP5017620B1 (en) | 2011-12-28 | 2011-12-28 | Ground improvement method, silica grout and its raw materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5017620B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6159963B1 (en) * | 2016-10-31 | 2017-07-12 | 強化土株式会社 | Ground injection material and ground improvement method |
JP7246640B2 (en) * | 2018-07-17 | 2023-03-28 | 清水建設株式会社 | Grout material and ground improvement method |
JP6764177B1 (en) * | 2019-02-13 | 2020-09-30 | 強化土エンジニヤリング株式会社 | Ground injection material and ground improvement method using it |
JP7487032B2 (en) | 2020-07-15 | 2024-05-20 | ライト工業株式会社 | Acidic silica colloid grout |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512105A (en) * | 1978-07-10 | 1980-01-28 | Nippon Chem Ind Co Ltd:The | Soil stabilization |
-
2011
- 2011-12-28 JP JP2011288282A patent/JP5017620B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512105A (en) * | 1978-07-10 | 1980-01-28 | Nippon Chem Ind Co Ltd:The | Soil stabilization |
Also Published As
Publication number | Publication date |
---|---|
JP2013136908A (en) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5017620B1 (en) | Ground improvement method, silica grout and its raw materials | |
EP0273445B1 (en) | Chemical grout for ground injection and method for accretion | |
JP4679811B2 (en) | Silica solution for ground injection and ground injection method | |
JP4926014B2 (en) | Ground improvement material and method for producing ground improvement material | |
JP6764177B1 (en) | Ground injection material and ground improvement method using it | |
JP6159963B1 (en) | Ground injection material and ground improvement method | |
JP4780803B2 (en) | Ground improvement method | |
JP2004027023A (en) | Water glass grouting material and manufacturing method, grouting method and apparatus | |
JP2009191490A (en) | Grouting method | |
JP2003119465A (en) | Liquefaction-preventing grouting chemical liquid | |
JPS60144382A (en) | Grouting method and grouting apparatus | |
JP7246640B2 (en) | Grout material and ground improvement method | |
JP4097664B2 (en) | Ground injection method | |
JP2008057191A (en) | Soil improving method | |
JP2004035584A (en) | Silica-based grout and ground improvement method | |
JP4757428B2 (en) | Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material | |
JP3517530B2 (en) | Chemical for ground injection | |
JP2588053B2 (en) | Ground injection method | |
JP7487032B2 (en) | Acidic silica colloid grout | |
JPH0468356B2 (en) | ||
JP3541135B2 (en) | Ground injection method | |
JP2000063833A (en) | Grout material for ground injection | |
JPS59152986A (en) | Impregnation method for ground | |
JPS61159485A (en) | Grouting material | |
JPS59124986A (en) | Solidification of ground |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5017620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |