[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5010203B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5010203B2
JP5010203B2 JP2006208840A JP2006208840A JP5010203B2 JP 5010203 B2 JP5010203 B2 JP 5010203B2 JP 2006208840 A JP2006208840 A JP 2006208840A JP 2006208840 A JP2006208840 A JP 2006208840A JP 5010203 B2 JP5010203 B2 JP 5010203B2
Authority
JP
Japan
Prior art keywords
led chip
substrate
light
led
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006208840A
Other languages
Japanese (ja)
Other versions
JP2008034748A (en
Inventor
將有 鎌倉
健一郎 田中
和司 吉田
昌男 桐原
威 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006208840A priority Critical patent/JP5010203B2/en
Publication of JP2008034748A publication Critical patent/JP2008034748A/en
Application granted granted Critical
Publication of JP5010203B2 publication Critical patent/JP5010203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting apparatus capable of improving heat radiation performance. <P>SOLUTION: The light-emitting apparatus is provided with an LED chip 1, and a mounting substrate 2 formed using silicon substrates 20a, 30a, 40a as a semiconductor substrate and mounted with the LED chip 1. A plurality of through-hole wirings 24 as one part of a power feed passage to the LED chip 1, and a plurality of thermal vias 26 used as a passage for radiating the heat generated from the LED chip 1, are provided to pierce in the thickness direction of the mounting substrate 2. The cross-sectional area of each of the thermal vias 26 in a cross section orthogonal to the thickness direction is larger than the cross-sectional area of each of the through-hole wirings 24, and the mounting substrate 2 has a die pad 25aa as a heat equalizing plate joined to the overall one surface of the LED chip 1 and for thermally coupling the LED chip 1 to the thermal vias 26. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、LEDチップ(発光ダイオードチップ)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED chip (light emitting diode chip).

従来から、図15に示すように、LEDチップ1’と、シリコン基板20a’を用いて形成されLEDチップ1’が実装された実装基板(パッケージ)2’とを備え、LEDチップ1’への給電路の一部となる複数の貫通孔配線24’およびLEDチップ1’で発生した熱の放熱路となる複数のサーマルビア26’が実装基板2’の厚み方向に貫設された発光装置が提案されている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 15, an LED chip 1 ′ and a mounting substrate (package) 2 ′ formed by using a silicon substrate 20 a ′ and mounted with the LED chip 1 ′ are mounted on the LED chip 1 ′. A light-emitting device in which a plurality of through-hole wirings 24 ′ serving as a part of a power feeding path and a plurality of thermal vias 26 ′ serving as a heat dissipation path for heat generated in the LED chip 1 ′ are penetrated in the thickness direction of the mounting substrate 2 ′. It has been proposed (see, for example, Patent Document 1).

ここにおいて、図15に示した構成の発光装置は、LEDチップ1’の一表面側に形成された各電極(図示せず)がAuバンプ13a’,13a’を介して実装基板2’の導体パターン25a’,25a’と電気的に接続されるとともに、各導体パターン25a’,25a’それぞれが複数(図示例では、3つ)の貫通孔配線24’を介して外部接続用電極27a’,27a’と電気的に接続されている。また、この発光装置は、実装基板2’におけるLEDチップ1’との対向面にLEDチップ1’のチップサイズよりも小さな放熱用金属部21’が形成されており、LEDチップ1’と放熱用金属部21’とが複数のAuバンプ13c’を介して熱結合されるとともに、放熱用金属部21’が複数のサーマルビア26’を介して放熱用パッド部28’と熱結合されている。   Here, in the light emitting device having the configuration shown in FIG. 15, each electrode (not shown) formed on the one surface side of the LED chip 1 ′ has conductors of the mounting substrate 2 ′ via Au bumps 13a ′ and 13a ′. The conductor patterns 25a ′ and 25a ′ are electrically connected to the patterns 25a ′ and 25a ′, and the conductor patterns 25a ′ and 25a ′ are respectively connected to the external connection electrodes 27a ′ and the like via a plurality of (three in the illustrated example) through-hole wirings 24 ′. 27a 'is electrically connected. Further, in this light emitting device, a heat radiating metal portion 21 ′ smaller than the chip size of the LED chip 1 ′ is formed on the surface of the mounting substrate 2 ′ facing the LED chip 1 ′. The metal portion 21 ′ is thermally coupled to the heat radiating metal portion 21 ′ via the plurality of Au bumps 13c ′, and the heat radiating metal portion 21 ′ is thermally coupled to the heat radiating pad portion 28 ′ via the plurality of thermal vias 26 ′.

なお、図15に示した構成の発光装置は、各貫通孔配線24’および各サーマルビア26’の形成にあたって、シリコン基板20a’に貫通孔配線24’用の貫通孔およびサーマルビア26’用の貫通孔を同時に形成してから、熱酸化によりシリコン酸化膜からなる絶縁膜(図示せず)を形成し、その後、めっき法などによって貫通孔配線24’とサーマルビア26’とを同時に形成している。
特開2005−19609号公報
In the light emitting device having the configuration shown in FIG. 15, in the formation of each through hole wiring 24 ′ and each thermal via 26 ′, the through hole for the through hole wiring 24 ′ and the thermal via 26 ′ are formed in the silicon substrate 20a ′. After forming the through holes at the same time, an insulating film (not shown) made of a silicon oxide film is formed by thermal oxidation, and then the through hole wiring 24 ′ and the thermal via 26 ′ are formed simultaneously by plating or the like. Yes.
Japanese Patent Laid-Open No. 2005-19609

図15に示した構成の発光装置では、LEDチップ1’の各電極と電気的に接続された導体パターン25a’,25a’が貫通孔配線24’,24’を介して外部接続用電極27a’,27a’と電気的に接続されているので、実装基板2’の平面サイズの小型化を図れるとともに、回路基板などへの実装面積を小さくすることができる。しかしながら、図15に示した構成の発光装置では、LEDチップ1’と放熱用金属部21’とが複数のAuバンプ13c’により熱結合されており、しかも、放熱用金属部21’の平面サイズがLEDチップ1’のチップサイズよりも小さいので、LEDチップ1’で発生した熱の放熱路の熱抵抗が比較的大きく、しかも、放熱用金属部21’の平面サイズによりサーマルビア26’の数が制限されるので、放熱性の向上が望まれていた。   In the light emitting device having the configuration shown in FIG. 15, the conductor patterns 25a ′ and 25a ′ electrically connected to the respective electrodes of the LED chip 1 ′ are connected to the external connection electrodes 27a ′ via the through-hole wirings 24 ′ and 24 ′. , 27a ′, the planar size of the mounting substrate 2 ′ can be reduced, and the mounting area on the circuit board or the like can be reduced. However, in the light emitting device having the configuration shown in FIG. 15, the LED chip 1 ′ and the heat radiating metal portion 21 ′ are thermally coupled by the plurality of Au bumps 13 c ′, and the planar size of the heat radiating metal portion 21 ′ is obtained. Is smaller than the chip size of the LED chip 1 ′, the thermal resistance of the heat dissipation path of the heat generated in the LED chip 1 ′ is relatively large, and the number of thermal vias 26 ′ depends on the planar size of the heat radiating metal portion 21 ′. Therefore, improvement in heat dissipation has been desired.

本発明は上記事由に鑑みて為されたものであり、その目的は、放熱性を高めることが可能な発光装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the light-emitting device which can improve heat dissipation.

請求項1の発明は、LEDチップと、半導体基板を用いて形成されLEDチップが実装された実装基板とを備え、LEDチップへの給電路の一部となる複数の貫通孔配線およびLEDチップで発生した熱の放熱路となる複数のサーマルビアが実装基板の厚み方向に貫設された発光装置であって、実装基板は、前記厚み方向に直交する断面における各サーマルビアの断面積が各貫通孔配線の断面積よりも大きく、且つ、LEDチップの一面全体が接合されLEDチップと複数のサーマルビアとを熱結合する均熱板部を有してなり、当該実装基板は、LEDチップが実装されるLED実装部と、LED実装部においてLEDチップが実装される領域の周部に設けられた壁部と、壁部から張り出した張出部とを有し、張出部に、LEDチップから放射された光を検出する光検出素子が設けられてなることを特徴とする。 The invention of claim 1 includes an LED chip and a mounting substrate formed using a semiconductor substrate and mounted with the LED chip, and a plurality of through-hole wirings and LED chips that are part of a power feeding path to the LED chip. A light-emitting device in which a plurality of thermal vias serving as heat dissipation paths for generated heat are provided in the thickness direction of the mounting board, and the mounting board has a cross-sectional area of each thermal via in a cross section perpendicular to the thickness direction. The cross-sectional area of the hole wiring is larger, and the entire surface of the LED chip is bonded, and has a heat equalizing plate portion that thermally couples the LED chip and the plurality of thermal vias, and the LED chip is mounted on the mounting substrate. The LED mounting portion, the wall portion provided in the periphery of the region where the LED chip is mounted in the LED mounting portion, and the overhang portion protruding from the wall portion, and the overhang portion from the LED chip Release Photodetector for detecting the light, characterized in that is provided.

この発明によれば、実装基板は、当該実装基板の厚み方向に直交する断面における各サーマルビアの断面積が各貫通孔配線の断面積よりも大きく、且つ、LEDチップの一面全体が接合されLEDチップと複数のサーマルビアとを熱結合する均熱板部を有しているので、LEDチップで発生した熱の放熱路のうちLEDチップから各サーマルビアまでの間に放熱路の断面積がLEDチップのチップサイズよりも小さくなる区間が存在しないことにより、熱抵抗を低減することができて放熱性を高めることが可能となり、しかも、実装基板の厚み方向に直交する断面における各サーマルビアの断面積を小さくすることなくサーマルビアの数を増やすことが可能となるから、放熱性をより一層高めることが可能となる。また、この発明によれば、実装基板は、LEDチップが実装されるLED実装部と、LED実装部においてLEDチップが実装される領域の周部に設けられた壁部と、壁部から張り出した張出部とを有し、張出部に、LEDチップから放射された光を検出する光検出素子が設けられてなるので、LEDチップから放射された光を検出することができる。 According to the present invention, the mounting substrate has an LED in which the cross-sectional area of each thermal via in the cross section perpendicular to the thickness direction of the mounting substrate is larger than the cross-sectional area of each through-hole wiring, and the entire surface of the LED chip is bonded. Since it has a soaking plate part that thermally couples the chip and a plurality of thermal vias, the cross-sectional area of the heat radiation path is between the LED chip and each thermal via among the heat radiation paths generated by the LED chip. Since there is no section smaller than the chip size of the chip, it is possible to reduce the thermal resistance and increase the heat dissipation, and to cut off each thermal via in the cross section perpendicular to the thickness direction of the mounting board. Since the number of thermal vias can be increased without reducing the area, the heat dissipation can be further enhanced . Further, according to the present invention, the mounting substrate protrudes from the wall portion, the LED mounting portion on which the LED chip is mounted, the wall portion provided in the peripheral portion of the LED mounting portion in the region where the LED chip is mounted, and Since the light detection element for detecting the light emitted from the LED chip is provided on the overhanging portion, the light emitted from the LED chip can be detected.

請求項2の発明は、請求項1の発明において、前記実装基板は、前記各貫通孔配線と接続される複数の導体部が前記均熱板部の周辺に形成されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the mounting board includes a plurality of conductor portions connected to the through-hole wirings formed around the heat equalizing plate portion. .

この発明によれば、前記実装基板の厚み方向において前記LEDチップと前記貫通孔配線とが重複している場合に比べて、前記サーマルビアの数を増やすことが可能となるから、放熱性を高めることが可能となる。   According to this invention, since it becomes possible to increase the number of the thermal vias compared to the case where the LED chip and the through-hole wiring overlap in the thickness direction of the mounting substrate, the heat dissipation is improved. It becomes possible.

請求項1の発明では、放熱性を高めることが可能になるという効果がある。   In the invention of claim 1, there is an effect that it is possible to improve the heat dissipation.

(実施形態1)
以下、本実施形態の発光装置について図1〜図10に基づいて説明する。
(Embodiment 1)
Hereinafter, the light-emitting device of this embodiment will be described with reference to FIGS.

本実施形態の発光装置は、可視光(例えば、赤色光、緑色光、青色光など)を放射するLEDチップ1と、LEDチップ1を収納する収納凹所2aが一表面に形成され収納凹所2aの内底面にLEDチップ1が実装された実装基板2と、実装基板2の上記一表面側において収納凹所2aを閉塞する形で実装基板2に固着された透光性部材3と、実装基板2に設けられLEDチップ1から放射された光を検出する光検出素子4(図3参照)と、実装基板2の収納凹所2aに充填された透光性の封止樹脂(例えば、シリコーン樹脂、アクリル樹脂など)からなりLEDチップ1および当該LEDチップ1に接続されたボンディングワイヤ14を封止した封止部5と備えている。ここで、実装基板2は、上記一表面側において収納凹所2aの周部から内方へ突出した庇状の張出部2cを有しており、当該張出部2cに光検出素子4が設けられている。なお、本実施形態では、実装基板2と透光性部材3とでパッケージを構成しているが、透光性部材3は、必ずしも設けなくてもよく、必要に応じて適宜設ければよい。   In the light emitting device of this embodiment, an LED chip 1 that emits visible light (for example, red light, green light, blue light, and the like) and a storage recess 2a that stores the LED chip 1 are formed on one surface. A mounting substrate 2 on which the LED chip 1 is mounted on the inner bottom surface of 2a, a translucent member 3 fixed to the mounting substrate 2 so as to close the housing recess 2a on the one surface side of the mounting substrate 2, and a mounting A light detecting element 4 (see FIG. 3) for detecting light emitted from the LED chip 1 provided on the substrate 2 and a translucent sealing resin (for example, silicone) filled in the housing recess 2a of the mounting substrate 2 A sealing portion 5 that is made of a resin, an acrylic resin, or the like and seals the LED chip 1 and the bonding wire 14 connected to the LED chip 1. Here, the mounting substrate 2 has a hook-like protruding portion 2c protruding inward from the peripheral portion of the storage recess 2a on the one surface side, and the light detection element 4 is provided on the protruding portion 2c. Is provided. In the present embodiment, the package is constituted by the mounting substrate 2 and the translucent member 3, but the translucent member 3 is not necessarily provided, and may be appropriately provided as necessary.

実装基板2は、図1〜図3に示すように、LEDチップ1が一表面側に搭載される矩形板状のLED搭載用基板20と、LED搭載用基板20の上記一表面側に対向配置され円形状の光取出窓41が形成されるとともに光検出素子4が形成された光検出素子形成基板40と、LED搭載用基板20と光検出素子形成基板40との間に介在し光取出窓41に連通する矩形状の開口窓31が形成された中間層基板30とで構成されており、LED搭載用基板20と中間層基板30と光検出素子形成基板40とで囲まれた空間が上記収納凹所2aを構成している。ここにおいて、LED搭載用基板20および中間層基板30および光検出素子形成基板40の外周形状は矩形状であり、中間層基板30および光検出素子形成基板40はLED搭載用基板20と同じ外形寸法に形成されている。また、光検出素子形成基板40の厚み寸法はLED搭載用基板20および中間層基板30の厚み寸法に比べて小さく設定されている。なお、本実施形態では、LED搭載用基板20が、LEDチップ1が実装されるLED実装部を構成し、中間層基板30と光検出素子形成基板40とが、LED実装部においてLEDチップ1が実装される領域の周部に設けられた壁部2bを構成し、光検出素子形成基板40において中間層基板30の開口窓31上に張り出した部位が、張出部2cを構成している。   As shown in FIGS. 1 to 3, the mounting substrate 2 is disposed opposite to the rectangular plate-shaped LED mounting substrate 20 on which the LED chip 1 is mounted on one surface side and the LED mounting substrate 20 on the one surface side. The circular light extraction window 41 and the light detection element forming substrate 40 on which the light detection element 4 is formed, and the light extraction window interposed between the LED mounting substrate 20 and the light detection element formation substrate 40. The space surrounded by the LED mounting substrate 20, the intermediate layer substrate 30, and the photodetecting element forming substrate 40 is configured by the intermediate layer substrate 30 in which the rectangular opening window 31 communicating with the terminal 41 is formed. The storage recess 2a is configured. Here, the outer peripheral shapes of the LED mounting substrate 20, the intermediate layer substrate 30, and the light detection element formation substrate 40 are rectangular, and the intermediate layer substrate 30 and the light detection element formation substrate 40 have the same outer dimensions as the LED mounting substrate 20. Is formed. Further, the thickness dimension of the light detection element forming substrate 40 is set smaller than the thickness dimension of the LED mounting substrate 20 and the intermediate layer substrate 30. In the present embodiment, the LED mounting substrate 20 constitutes an LED mounting portion on which the LED chip 1 is mounted, and the intermediate layer substrate 30 and the light detection element forming substrate 40 are connected to the LED chip 1 in the LED mounting portion. The wall 2b provided in the periphery of the area to be mounted, and the portion of the photodetecting element forming substrate 40 that protrudes over the opening window 31 of the intermediate layer substrate 30 constitutes the protruding portion 2c.

上述のLED搭載用基板20、中間層基板30、光検出素子形成基板40は、それぞれ、導電形がn形で主表面が(100)面のシリコン基板20a,30a,40aを用いて形成してある。ここにおいて、本実施形態では、各シリコン基板20a,30a,40aそれぞれが半導体基板を構成している。要するに、本実施形態では、実装基板2が3枚の半導体基板を用いて形成されている。   The LED mounting substrate 20, the intermediate layer substrate 30, and the light detection element formation substrate 40 described above are formed using silicon substrates 20 a, 30 a, and 40 a each having an n-type conductivity and a (100) plane main surface. is there. Here, in the present embodiment, each of the silicon substrates 20a, 30a, and 40a constitutes a semiconductor substrate. In short, in the present embodiment, the mounting substrate 2 is formed using three semiconductor substrates.

また、本実施形態では、中間層基板30の内側面が、アルカリ系溶液(例えば、TMAH溶液、KOH溶液など)を用いた異方性エッチングにより形成された(111)面により構成されており(つまり、中間層基板30は、開口窓31の開口面積がLED搭載用基板20から離れるにつれて徐々に大きくなっており)、LEDチップ1から放射された光を前方へ反射するミラー2dを構成している。要するに、本実施形態では、中間層基板30がLEDチップ1から側方へ放射された光を前方へ反射させる枠状のリフレクタを兼ねている。   In the present embodiment, the inner side surface of the intermediate layer substrate 30 is constituted by a (111) plane formed by anisotropic etching using an alkaline solution (for example, TMAH solution, KOH solution, etc.) ( That is, the intermediate layer substrate 30 gradually increases as the opening area of the opening window 31 increases from the LED mounting substrate 20), and forms a mirror 2 d that reflects the light emitted from the LED chip 1 forward. Yes. In short, in the present embodiment, the intermediate layer substrate 30 also serves as a frame-like reflector that reflects light emitted from the LED chip 1 to the side.

LED搭載用基板20は、図4および図5に示すように、シリコン基板20aの一表面側(図4(c)における左面側)に、LEDチップ1の両電極それぞれと電気的に接続される2つの導体パターン25a,25aが形成されるとともに、中間層基板30に形成された後述の2つの貫通孔配線34,34を介して光検出素子4と電気的に接続される2つの導体パターン25b,25bが形成されており、各導体パターン25a,25a,25b,25bとシリコン基板20aの他表面側(図4(c)における右面側)に形成された4つの外部接続用電極27a,27a,27b,27bとがそれぞれ貫通孔配線24を介して電気的に接続されている。また、LED搭載用基板20は、シリコン基板20aの上記一表面側に、中間層基板30と接合するための接合用金属層29も形成されている。   As shown in FIGS. 4 and 5, the LED mounting substrate 20 is electrically connected to each of both electrodes of the LED chip 1 on one surface side (left surface side in FIG. 4C) of the silicon substrate 20 a. Two conductor patterns 25a and 25a are formed, and two conductor patterns 25b that are electrically connected to the light detection element 4 through two through-hole wirings 34 and 34, which will be described later, formed on the intermediate layer substrate 30. , 25b, and four external connection electrodes 27a, 27a, 27b formed on the other surface side (the right side in FIG. 4C) of each conductor pattern 25a, 25a, 25b, 25b and the silicon substrate 20a. 27b and 27b are electrically connected through the through-hole wiring 24, respectively. The LED mounting substrate 20 is also formed with a bonding metal layer 29 for bonding to the intermediate layer substrate 30 on the one surface side of the silicon substrate 20a.

本実施形態におけるLEDチップ1は、結晶成長用基板として導電性基板を用い厚み方向の両面に電極(図示せず)が形成された可視光LEDチップである。そこで、LED搭載用基板20は、LEDチップ1が電気的に接続される2つの導体パターン25a,25aのうちの一方の導体パターン25aを、LEDチップ1がダイボンディングされる矩形状のダイパッド部25aaと、ダイパッド部25aaに連続一体に形成され貫通孔配線24との接続部位となる引き出し配線部25abとで構成してある。要するに、LEDチップ1は、上記一方の導体パターン25aのダイパッド部25aaにダイボンディングされており、ダイパッド部25aa側の電極がダイパッド部25aaに接合されて電気的に接続され、光取り出し面側の電極がボンディングワイヤ14を介して他方の導体パターン25aと電気的に接続されている。ここで、本実施形態では、LEDチップ1およびダイパッド部25aaの平面視における外周形状を矩形状(図示例では、正方形状)としてあり、ダイパッド部25aaの平面サイズをLEDチップ1の平面サイズよりもやや大きく設定してある。   The LED chip 1 in the present embodiment is a visible light LED chip in which a conductive substrate is used as a crystal growth substrate and electrodes (not shown) are formed on both surfaces in the thickness direction. Therefore, the LED mounting substrate 20 has one of the two conductor patterns 25a, 25a to which the LED chip 1 is electrically connected, the rectangular die pad portion 25aa to which the LED chip 1 is die-bonded. And a lead-out wiring portion 25ab that is continuously formed integrally with the die pad portion 25aa and serves as a connection portion with the through-hole wiring 24. In short, the LED chip 1 is die-bonded to the die pad portion 25aa of the one conductor pattern 25a, and the electrode on the die pad portion 25aa side is joined to and electrically connected to the die pad portion 25aa, and the electrode on the light extraction surface side. Is electrically connected to the other conductor pattern 25 a via the bonding wire 14. Here, in the present embodiment, the outer peripheral shape in plan view of the LED chip 1 and the die pad portion 25aa is rectangular (in the illustrated example, a square shape), and the planar size of the die pad portion 25aa is larger than the planar size of the LED chip 1. Set slightly larger.

また、LED搭載用基板20は、シリコン基板20aの上記他表面側に、シリコン基板20aよりも熱伝導率の高い金属材料からなる矩形状の放熱用パッド部28が形成されており、ダイパッド部25aaと放熱用パッド部28とがシリコン基板20aよりも熱伝導率の高い金属材料(例えば、Cuなど)からなる複数(本実施形態では、9つ)の円柱状のサーマルビア26を介して熱的に結合されており、LEDチップ1で発生した熱が各サーマルビア26および放熱用パッド部28を介して放熱されるようになっている。   The LED mounting substrate 20 has a rectangular heat radiation pad portion 28 made of a metal material having a higher thermal conductivity than the silicon substrate 20a on the other surface side of the silicon substrate 20a. The die pad portion 25aa And the heat dissipating pad portion 28 through a plurality of (in this embodiment, nine) cylindrical thermal vias 26 made of a metal material (for example, Cu) having a thermal conductivity higher than that of the silicon substrate 20a. The heat generated in the LED chip 1 is dissipated through the thermal vias 26 and the heat dissipating pad portion 28.

ところで、LED搭載用基板20は、シリコン基板20aに、上述の4つの貫通孔配線24それぞれが内側に形成される4つの貫通孔22aと、上述の9つのサーマルビア26それぞれが内側に形成される9つの貫通孔22bとが厚み方向に貫設され、シリコン基板20aの上記一表面および上記他表面と各貫通孔22a,22bの内面とに跨って熱酸化膜(シリコン酸化膜)からなる絶縁膜23が形成されており、各導体パターン25a,25a,25b,25b、接合用金属層29、各外部接続用電極27a,27a,27b,27b、放熱用パッド部28、各貫通孔配線24および各サーマルビア26がシリコン基板20aと電気的に絶縁されている。ここで、本実施形態では、各サーマルビア26用の貫通孔22bの開口形状および各貫通孔配線24用の貫通孔22aの開口形状を円形状としてあるが、サーマルビア26用の貫通孔22bの内径寸法を貫通孔配線24用の貫通孔22aの内径よりも大きく設定してあり、シリコン基板20aの厚み方向に直交する断面におけるサーマルビア26の断面積が貫通孔配線24の断面積よりも大きくなっている。   By the way, the LED mounting substrate 20 has, in the silicon substrate 20a, four through holes 22a in which the above-described four through-hole wirings 24 are formed inside, and each of the nine thermal vias 26 in the inside. Nine through holes 22b are provided in the thickness direction, and an insulating film made of a thermal oxide film (silicon oxide film) straddling the one surface and the other surface of the silicon substrate 20a and the inner surfaces of the through holes 22a and 22b. 23, each conductor pattern 25a, 25a, 25b, 25b, bonding metal layer 29, each external connection electrode 27a, 27a, 27b, 27b, heat radiation pad 28, each through-hole wiring 24, and each The thermal via 26 is electrically insulated from the silicon substrate 20a. Here, in this embodiment, the opening shape of the through hole 22b for each thermal via 26 and the opening shape of the through hole 22a for each through hole wiring 24 are circular, but the through hole 22b for the thermal via 26 has a circular shape. The inner diameter dimension is set larger than the inner diameter of the through hole 22a for the through hole wiring 24, and the cross sectional area of the thermal via 26 in the cross section perpendicular to the thickness direction of the silicon substrate 20a is larger than the cross sectional area of the through hole wiring 24. It has become.

また、各導体パターン25a,25a,25b,25b、接合用金属層29、各外部接続用電極27a,27a,27b,27b、放熱用パッド部28は、絶縁膜23上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、各導体パターン25a,25a,25b,25bと接合用金属層29とが同時に形成され、各外部接続用電極27a,27a,27b,27bと放熱用パッド部28とが同時に形成されている。なお、本実施形態では、絶縁膜23上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜23との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線24およびサーマルビア26の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   The conductor patterns 25a, 25a, 25b, and 25b, the bonding metal layer 29, the external connection electrodes 27a, 27a, 27b, and 27b, and the heat dissipating pad portion 28 are made of a Ti film formed on the insulating film 23. Each conductive pattern 25a, 25a, 25b, 25b and the bonding metal layer 29 are formed at the same time, and each external connection electrode 27a, 27a is formed by a laminated film with an Au film formed on the Ti film. , 27b, 27b and the heat radiating pad portion 28 are formed simultaneously. In this embodiment, the thickness of the Ti film on the insulating film 23 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Further, the material of each Au film is not limited to pure gold, and may be one added with impurities. In addition, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the insulating film 23, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used. Moreover, although Cu is adopted as the material of the through-hole wiring 24 and the thermal via 26, it is not limited to Cu, and for example, Ni may be adopted.

ここにおいて、本実施形態では、上記一方の導体パターン25aのダイパッド部25aaが、LEDチップ1の一面全体が接合されLEDチップ1と複数のサーマルビア26とを熱結合する均熱板部を構成し、上記一方の導体パターン25の引き出し配線部25abおよび上記他方の導体パターン25が、均熱板部の周辺において貫通孔配線24と接続される導体部を構成している。なお、本実施形態では、均熱板部と導体部とが同一材料により形成され、均熱板部と一方の導体部とが連続一体に形成されているが、均熱板部と導体部とは別材料により形成してもよい。また、LEDチップ1の結晶成長用基板が絶縁性基板や半絶縁性基板であって当該結晶成長用基板を均熱板部に接合する場合には、均熱板部の材料は必ずしも導電性材料に限らず、熱伝導率の高い材料(例えば、AlNなど)であればよい。   Here, in the present embodiment, the die pad portion 25aa of the one conductor pattern 25a constitutes a soaking plate portion in which the entire one surface of the LED chip 1 is bonded and the LED chip 1 and the plurality of thermal vias 26 are thermally coupled. The lead wiring portion 25ab of the one conductor pattern 25 and the other conductor pattern 25 constitute a conductor portion connected to the through-hole wiring 24 around the heat equalizing plate portion. In this embodiment, the heat equalizing plate portion and the conductor portion are formed of the same material, and the heat equalizing plate portion and one conductor portion are continuously formed integrally. May be formed of another material. Further, when the crystal growth substrate of the LED chip 1 is an insulating substrate or a semi-insulating substrate, and the crystal growth substrate is bonded to the soaking plate portion, the material of the soaking plate portion is not necessarily a conductive material. However, the present invention is not limited to this, and any material having a high thermal conductivity (for example, AlN) may be used.

中間層基板30は、図6および図7に示すように、シリコン基板30aの一表面側(図6(c)における右面側)に、LED搭載用基板20の2つの導体パターン27b,27bと接合されて電気的に接続される2つの導体パターン35,35が形成されるとともに、LED搭載用基板20の接合用金属層29と接合される接合用金属層36が形成されている。また、中間層基板30は、シリコン基板30aの他表面側(図6(c)における左面側)に、貫通孔配線34,34を介して導体パターン35,35と電気的に接続される導体パターン37,37が形成されるとともに、光検出素子形成基板40と接合するための接合用金属層38が形成されている。   As shown in FIGS. 6 and 7, the intermediate layer substrate 30 is bonded to the two conductor patterns 27b and 27b of the LED mounting substrate 20 on one surface side (the right side in FIG. 6C) of the silicon substrate 30a. Thus, two conductive patterns 35 and 35 that are electrically connected are formed, and a bonding metal layer 36 that is bonded to the bonding metal layer 29 of the LED mounting substrate 20 is formed. In addition, the intermediate layer substrate 30 is a conductor pattern electrically connected to the conductor patterns 35 and 35 via the through-hole wirings 34 and 34 on the other surface side of the silicon substrate 30a (the left side in FIG. 6C). 37 and 37 are formed, and a bonding metal layer 38 for bonding to the light detection element forming substrate 40 is formed.

また、中間層基板30は、上述の2つの貫通孔配線34それぞれが内側に形成される2つの貫通孔32がシリコン基板30aの厚み方向に貫設され、シリコン基板30aの上記一表面および上記他表面と各貫通孔32の内面とに跨って熱酸化膜(シリコン酸化膜)からなる絶縁膜33が形成されており、各導体パターン35,35,37,37および各接合用金属層36,38および各貫通孔配線34がシリコン基板30aと電気的に絶縁されている。ここにおいて、各導体パターン35,35,37,37および各接合用金属層36,38は、絶縁膜33上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、導体パターン35,35と接合用金属層36とが同時に形成され、導体パターン37,37と接合用金属層38とが同時に形成されている。なお、本実施形態では、絶縁膜33上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜33との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線34の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   Further, the intermediate layer substrate 30 has two through holes 32 formed therein in the thickness direction of the silicon substrate 30a, and the one surface of the silicon substrate 30a and the other. An insulating film 33 made of a thermal oxide film (silicon oxide film) is formed across the surface and the inner surface of each through hole 32, and each conductor pattern 35, 35, 37, 37 and each bonding metal layer 36, 38 are formed. Each through-hole wiring 34 is electrically insulated from the silicon substrate 30a. Here, each of the conductor patterns 35, 35, 37, 37 and each of the bonding metal layers 36, 38 is a laminated film of a Ti film formed on the insulating film 33 and an Au film formed on the Ti film. The conductor patterns 35 and 35 and the bonding metal layer 36 are formed at the same time, and the conductor patterns 37 and 37 and the bonding metal layer 38 are formed at the same time. In this embodiment, the thickness of the Ti film on the insulating film 33 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. Further, although a Ti film is interposed as an adhesion improving layer for adhesion between each Au film and the insulating film 33, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used. Moreover, although Cu is adopted as the material of the through-hole wiring 34, it is not limited to Cu, and for example, Ni may be adopted.

光検出素子形成基板40は、図8および図9に示すように、シリコン基板40aの一表面側(図8(c)における右面側)に、中間層基板30の2つの導体パターン37,37と接合されて電気的に接続される2つの導体パターン47a,47bが形成されるとともに、中間層基板30の接合用金属層38と接合される接合用金属層48が形成されている。ここにおいて、光検出素子4は、フォトダイオードにより構成されており、光検出素子形成基板40に形成された2つの導体パターン47a,47bの一方の導体パターン47a(図9における上側の導体パターン47a)は、光検出素子4を構成するフォトダイオードのp形領域4aに電気的に接続され、他方の導体パターン47b(図9における下側の導体パターン47b)は、上記フォトダイオードのn形領域4bを構成するシリコン基板40aに電気的に接続されている。   As shown in FIGS. 8 and 9, the photodetecting element forming substrate 40 has two conductor patterns 37 and 37 on the intermediate layer substrate 30 on one surface side (right side in FIG. 8C) of the silicon substrate 40a. Two conductor patterns 47 a and 47 b that are bonded and electrically connected are formed, and a bonding metal layer 48 that is bonded to the bonding metal layer 38 of the intermediate layer substrate 30 is formed. Here, the photodetecting element 4 is constituted by a photodiode, and one of the two conductor patterns 47a and 47b formed on the photodetecting element forming substrate 40 (the upper conductor pattern 47a in FIG. 9). Is electrically connected to the p-type region 4a of the photodiode constituting the photodetecting element 4, and the other conductor pattern 47b (lower conductor pattern 47b in FIG. 9) is connected to the n-type region 4b of the photodiode. It is electrically connected to the silicon substrate 40a that constitutes it.

また、光検出素子形成基板40は、シリコン基板40aの上記一表面側にシリコン酸化膜からなる絶縁膜43が形成されており、当該絶縁膜43がフォトダイオードの反射防止膜を兼ねている。また、光検出素子形成基板40は、上記一方の導体パターン47aが、絶縁膜43に形成したコンタクトホール43aを通してp形領域43aと電気的に接続され、上記他方の導体パターン47bが絶縁膜43に形成したコンタクトホール43bを通してn形領域4bと電気的に接続されている。ここにおいて、各導体パターン47a,47bおよび接合用金属層48は、絶縁膜43上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、同時に形成してある。なお、本実施形態では、絶縁膜43上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜43との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。   Further, in the photodetecting element forming substrate 40, an insulating film 43 made of a silicon oxide film is formed on the one surface side of the silicon substrate 40a, and the insulating film 43 also serves as an antireflection film of the photodiode. In the photodetecting element forming substrate 40, the one conductor pattern 47 a is electrically connected to the p-type region 43 a through the contact hole 43 a formed in the insulating film 43, and the other conductor pattern 47 b is connected to the insulating film 43. The n-type region 4b is electrically connected through the formed contact hole 43b. Here, each of the conductor patterns 47a and 47b and the bonding metal layer 48 is composed of a laminated film of a Ti film formed on the insulating film 43 and an Au film formed on the Ti film, and is formed at the same time. It is. In this embodiment, the thickness of the Ti film on the insulating film 43 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. Further, although a Ti film is interposed as an adhesion improving layer for adhesion between each Au film and the insulating film 43, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used.

上述の実装基板2の形成にあたっては、例えば図10に示すように、光検出素子4、絶縁膜43、各導体パターン47a,47b、および接合用金属層48が形成されたシリコン基板40aと中間層基板30とを低温での直接接合が可能な常温接合法などにより接合する第1の接合工程を行った後、シリコン基板40aを所望の厚みまで研磨する研磨工程を行い、その後、誘導結合プラズマ(ICP)型のドライエッチング装置などを用いてシリコン基板40aに光取出窓41を形成する光取出窓形成工程を行うことで光検出素子形成基板40を完成させてから、LEDチップ1が実装されボンディングワイヤ14の結線が行われたLED搭載用基板20と中間層基板30とを常温接合法などにより接合する第2の接合工程を行うようにすればよい。なお、常温接合法では、接合前に互いの接合表面へアルゴンのプラズマ若しくはイオンビーム若しくは原子ビームを真空中で照射して各接合表面の清浄化・活性化を行ってから、接合表面同士を接触させ、常温下で直接接合する。   In forming the mounting substrate 2 described above, for example, as shown in FIG. 10, the silicon substrate 40a and the intermediate layer on which the photodetecting element 4, the insulating film 43, the respective conductor patterns 47a and 47b, and the bonding metal layer 48 are formed. After performing a first bonding step for bonding the substrate 30 to the substrate 30 by a room temperature bonding method capable of direct bonding at a low temperature, a polishing step for polishing the silicon substrate 40a to a desired thickness is performed, and then inductively coupled plasma ( The light detection element forming substrate 40 is completed by performing the light extraction window forming step of forming the light extraction window 41 on the silicon substrate 40a using an ICP) type dry etching apparatus or the like, and then the LED chip 1 is mounted and bonded. A second bonding step is performed in which the LED mounting substrate 20 to which the wires 14 are connected and the intermediate layer substrate 30 are bonded by a room temperature bonding method or the like. Good. In the normal temperature bonding method, the bonding surfaces are contacted with each other after the bonding surfaces are cleaned and activated by irradiating the bonding surfaces with argon plasma, ion beam or atomic beam in vacuum before bonding. And bond directly at room temperature.

上述の第1の接合工程では、シリコン基板40aの接合用金属層48と中間層基板30の接合用金属層38とが接合されるとともに、シリコン基板40aの導体パターン47a,47bと中間層基板30の導体パターン37,37とが接合され電気的に接続される。ここで、導体パターン47a,47bと導体パターン37,37との接合部位は、貫通孔配線34に重なる領域からずらしてあるので、導体パターン47a,47bと導体パターン37,37との互いの接合面の平坦度を高めることができ、接合歩留まりを高めることができるとともに接合信頼性を高めることができる。また、第2の接合工程では、LED搭載用基板20の接合用金属層29と中間層基板30の接合用金属層36とが接合されるとともに、LED搭載用基板20の導体パターン25b,25bと中間層基板30の導体パターン35,35とが接合され電気的に接続される。ここで、導体パターン25b,25bと導体パターン35,35との接合部位は、貫通孔配線24に重なる領域および貫通孔配線34に重なる領域からずらしてあるので、導体パターン25b,25bと導体パターン35,35との互いの接合面の平坦度を高めることができ、接合歩留まりを高めることができるとともに接合信頼性を高めることができる。   In the first bonding step, the bonding metal layer 48 of the silicon substrate 40a and the bonding metal layer 38 of the intermediate layer substrate 30 are bonded, and the conductor patterns 47a and 47b of the silicon substrate 40a and the intermediate layer substrate 30 are bonded. The conductor patterns 37 and 37 are joined and electrically connected. Here, since the joint portions of the conductor patterns 47a and 47b and the conductor patterns 37 and 37 are shifted from the region overlapping the through-hole wiring 34, the joint surfaces of the conductor patterns 47a and 47b and the conductor patterns 37 and 37 are mutually connected. The flatness of the substrate can be increased, the junction yield can be increased, and the junction reliability can be increased. In the second bonding step, the bonding metal layer 29 of the LED mounting substrate 20 and the bonding metal layer 36 of the intermediate layer substrate 30 are bonded, and the conductor patterns 25b and 25b of the LED mounting substrate 20 The conductor patterns 35 and 35 of the intermediate layer substrate 30 are joined and electrically connected. Here, since the joint portions of the conductor patterns 25b and 25b and the conductor patterns 35 and 35 are shifted from the region overlapping the through-hole wiring 24 and the region overlapping the through-hole wiring 34, the conductor patterns 25b and 25b and the conductor pattern 35 are arranged. , 35, the flatness of the mutual joint surfaces can be increased, the joint yield can be increased, and the joint reliability can be enhanced.

また、上述の透光性部材3は、透光性材料(例えば、シリコーン、アクリル樹脂、ガラスなど)からなる透光性基板を用いて形成してある。ここで、透光性部材3は、実装基板2と同じ外周形状の矩形板状に形成されており、実装基板2側とは反対の光取り出し面に、LEDチップ1から放射された光の全反射を抑制する微細凹凸構造が形成されている。ここにおいて、透光性部材3の光取り出し面に形成する微細凹凸構造は、多数の微細な凹部が2次元周期構造を有するように形成されている。なお、上述の微細凹凸構造は、例えば、レーザ加工技術やエッチング技術やインプリントリソグラフィ技術などを利用して形成すればよい。また、微細凹凸構造の周期は、LEDチップ1の発光ピーク波長の1/4〜100倍程度の範囲で適宜設定すればよい。   Moreover, the above-mentioned translucent member 3 is formed using the translucent board | substrate which consists of translucent materials (for example, silicone, an acrylic resin, glass, etc.). Here, the translucent member 3 is formed in a rectangular plate shape having the same outer peripheral shape as the mounting substrate 2, and all of the light emitted from the LED chip 1 is formed on the light extraction surface opposite to the mounting substrate 2 side. A fine concavo-convex structure that suppresses reflection is formed. Here, the fine concavo-convex structure formed on the light extraction surface of the translucent member 3 is formed such that many fine concave portions have a two-dimensional periodic structure. The fine concavo-convex structure described above may be formed using, for example, a laser processing technique, an etching technique, an imprint lithography technique, or the like. The period of the fine concavo-convex structure may be set as appropriate within a range of about ¼ to 100 times the emission peak wavelength of the LED chip 1.

本実施形態の発光装置の製造にあたっては、上述の各シリコン基板20a,30a,40aとして、それぞれLED搭載用基板20、中間層基板30、光検出素子形成基板40を多数形成可能なシリコンウェハを用いるとともに、上述の透光性基板として透光性部材3を多数形成可能なウェハ状のもの(透光性ウェハ)を用い、上述の第1の接合工程、研磨工程、第2の接合工程、光取出窓形成工程、第2の接合工程、実装基板2の収納凹所2aに封止樹脂を充填して封止部5を形成する封止部形成工程、封止部形成工程の後で実装基板2と透光性部材3とを接合する第3の接合工程などの各工程をウェハレベルで行うことでウェハレベルパッケージ構造体を形成してから、ダイシング工程により実装基板2のサイズに分割されている。したがって、LED搭載用基板20と中間層基板30と光検出素子形成基板40と透光性部材3とが同じ外形サイズとなり、小型のパッケージを実現できるとともに、製造が容易になる。また、実装基板2の形成にあたって上述の各接合工程において、低温での直接接合が可能な常温接合法を採用しているので、各接合工程でLEDチップ1のジャンクション温度が最大ジャンクション温度を超えるのを防止することができる。   In manufacturing the light emitting device of this embodiment, a silicon wafer capable of forming a large number of LED mounting substrates 20, intermediate layer substrates 30, and light detection element formation substrates 40 is used as each of the silicon substrates 20a, 30a, and 40a described above. In addition, a wafer-like one (translucent wafer) capable of forming a large number of translucent members 3 is used as the above-described translucent substrate, and the above-described first bonding step, polishing step, second bonding step, light The mounting substrate after the extraction window forming step, the second bonding step, the sealing portion forming step of filling the housing recess 2a of the mounting substrate 2 with the sealing resin to form the sealing portion 5, and the sealing portion forming step The wafer level package structure is formed by performing each process such as a third joining process for joining 2 and the translucent member 3 at the wafer level, and then divided into the size of the mounting substrate 2 by the dicing process. Yes. Therefore, the LED mounting substrate 20, the intermediate layer substrate 30, the light detection element forming substrate 40, and the translucent member 3 have the same outer size, so that a small package can be realized and manufacturing is facilitated. In addition, since the room temperature bonding method capable of direct bonding at a low temperature is adopted in each of the above-described bonding processes in forming the mounting substrate 2, the junction temperature of the LED chip 1 exceeds the maximum junction temperature in each bonding process. Can be prevented.

以上説明した本実施形態の発光装置では、実装基板2は、当該実装基板2の厚み方向に直交する断面における各サーマルビア26の断面積が各貫通孔配線24の断面積よりも大きく、且つ、LEDチップ1の一面全体が接合されLEDチップ1と複数のサーマルビア26とを熱結合する均熱板部として機能するダイパッド部25aaを有しているので、LEDチップ1で発生した熱の放熱路のうちLEDチップ1から各サーマルビア26までの間に放熱路の断面積がLEDチップ1のチップサイズよりも小さくなる区間が存在しないことにより、熱抵抗を低減することができて放熱性を高めることが可能となり、しかも、実装基板2の厚み方向に直交する断面における各サーマルビア26の断面積を小さくすることなくサーマルビア26の数を増やすことが可能となるから、放熱性をより一層高めることが可能となる。したがって、本実施形態の発光装置では、LEDチップ1で発生した熱を効率よく外部へ逃がすことができ、LEDチップ1のジャンクション温度の温度上昇を抑制できるから、入力電力を大きくでき、光出力の高出力化を図れる。   In the light emitting device of the present embodiment described above, the mounting substrate 2 has a cross sectional area of each thermal via 26 in a cross section perpendicular to the thickness direction of the mounting substrate 2 larger than the cross sectional area of each through hole wiring 24, and Since the entire surface of the LED chip 1 is bonded and has the die pad portion 25aa that functions as a heat equalizing plate portion that thermally couples the LED chip 1 and the plurality of thermal vias 26, a heat dissipation path for the heat generated in the LED chip 1 Among these, since there is no section where the cross-sectional area of the heat radiation path is smaller than the chip size of the LED chip 1 between the LED chip 1 and each thermal via 26, the thermal resistance can be reduced and the heat radiation performance is improved. In addition, the number of thermal vias 26 can be reduced without reducing the cross-sectional area of each thermal via 26 in the cross section perpendicular to the thickness direction of the mounting substrate 2. Since it becomes possible to increase, it is possible to improve the heat dissipation more. Therefore, in the light emitting device of the present embodiment, the heat generated in the LED chip 1 can be efficiently released to the outside, and the temperature rise of the junction temperature of the LED chip 1 can be suppressed, so that the input power can be increased and the light output can be increased. High output can be achieved.

また、本実施形態の発光装置では、実装基板2は、各貫通孔配線24と接続される複数の導体部が均熱板部たるダイパッド部25aaの周辺に形成されているので、実装基板2の厚み方向においてLEDチップ1と貫通孔配線24とが重複している場合に比べて、サーマルビア26の数を増やすことが可能となるから、放熱性を高めることが可能となる。   Further, in the light emitting device of the present embodiment, the mounting substrate 2 has a plurality of conductor portions connected to each through-hole wiring 24 formed around the die pad portion 25aa which is a heat equalizing plate portion. Compared with the case where the LED chip 1 and the through-hole wiring 24 overlap in the thickness direction, the number of the thermal vias 26 can be increased, so that heat dissipation can be improved.

ところで、図15に示した従来構成の発光装置では、LEDチップ1から放射された光を検出することができないが、本実施形態の発光装置では、実装基板2における収納凹所2aの周部から内方へ突出する張出部2cにLEDチップ1から放射された光を検出する光検出素子4が設けられているので、LEDチップ1から放射された光を検出することができる。したがって、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の回路基板上に近接して配置して、当該回路基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出素子4により検出される光強度がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、本実施形態の発光装置では、所望の混色光を安定して得ることが可能となる。   By the way, in the light emitting device having the conventional configuration shown in FIG. 15, the light emitted from the LED chip 1 cannot be detected. However, in the light emitting device of this embodiment, from the peripheral portion of the housing recess 2 a in the mounting substrate 2. Since the light detection element 4 for detecting the light emitted from the LED chip 1 is provided on the projecting portion 2c protruding inward, the light emitted from the LED chip 1 can be detected. Therefore, for example, a light emitting device that employs a red LED chip as the LED chip 1, a light emitting device that employs a green LED chip as the LED chip 1, and a light emitting device that employs a blue LED chip as the LED chip 1 are the same circuit board. Arranged close to each other, the drive circuit unit for driving the LED chip 1 of each light emitting device on the circuit board and the light intensity detected by each light detection element 4 are maintained at the respective target values. By providing a control circuit unit that feedback-controls the current flowing from the drive circuit unit to the LED chip 1 of each emission color, the light output of the LED chip 1 of each emission color is based on the output of each of the light detection elements 4. Can be controlled separately, and the mixed color light (in this case, white light) can be controlled regardless of the temporal change in the light output of the LED chip 1 for each emission color. It is possible to improve the accuracy of color or color temperature. In short, in the light emitting device of this embodiment, it is possible to stably obtain desired mixed color light.

なお、本実施形態では、実装基板2の収納凹所2aの内底面に1つのLEDチップ1を実装してあるが、LEDチップ1の数は特に限定するものではなく、発光色が同じ複数のLEDチップ1を収納凹所2aの内底面に実装するようにしてもよい。   In the present embodiment, one LED chip 1 is mounted on the inner bottom surface of the housing recess 2a of the mounting substrate 2. However, the number of LED chips 1 is not particularly limited, and a plurality of light emission colors are the same. The LED chip 1 may be mounted on the inner bottom surface of the storage recess 2a.

(実施形態2)
以下、本実施形態の発光装置について図11〜図14に基づいて説明する。
(Embodiment 2)
Hereinafter, the light-emitting device of this embodiment will be described with reference to FIGS.

本実施形態の発光装置の基本構成は実施形態1と略同じであり、実装基板2の収納凹所2aの内底面に互いに発光色の異なる複数(図示例では、4つ)のLEDチップ1が実装され、光検出素子形成基板40に、各発光色のLEDチップ1それぞれから放射された光を各別に検出する複数の光検出素子4(図示例では、4つ)が設けられている点などが相違する。ここにおいて、本実施形態では、4つのLEDチップ1として、発光色が赤色のLEDチップ1aと、発光色が緑色のLEDチップ1bと、発光色が青色のLEDチップ1cと、発光色が黄色のLEDチップ1dとを採用しており、赤色光と緑色光と青色光と黄色光の混色光として白色光を得ることができる。ただし、各LEDチップ1の発光色は特に限定するものではなく、所望の混色光に応じて適宜選択すればよい。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。   The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment, and a plurality (four in the illustrated example) of LED chips 1 having different emission colors are provided on the inner bottom surface of the housing recess 2a of the mounting substrate 2. A plurality of light detection elements 4 (four in the illustrated example) that are mounted and detect light emitted from the respective LED chips 1 of the respective emission colors are provided on the light detection element forming substrate 40. Is different. Here, in this embodiment, as the four LED chips 1, the LED chip 1a whose emission color is red, the LED chip 1b whose emission color is green, the LED chip 1c whose emission color is blue, and the emission color which is yellow are shown. The LED chip 1d is employed, and white light can be obtained as mixed color light of red light, green light, blue light, and yellow light. However, the emission color of each LED chip 1 is not particularly limited, and may be appropriately selected according to the desired mixed color light. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態の発光装置は、各光検出素子4において対応するLEDチップ1a〜1dから放射された光のみを選択的に検出可能とするために、各LEDチップ1a〜1dそれぞれから放射される光の放射範囲を制限する十字状の遮光壁39を中間層基板30に連続一体に形成してある。要するに、本実施形態の発光装置では、中間層基板30の開口窓31が遮光壁39によって4つの小空間31aに分けられている。ここにおいて、本実施形態では、中間層基板30における遮光壁39がアルカリ系溶液を用いた異方性エッチングにより開口窓31と同時に形成されており、遮光壁39の各側面が開口窓31の内側面と同様に(111)面となっているので、遮光壁39の各側面がLEDチップ1a〜1dから放射された光を前方へ反射するミラーとして機能する。   In the light emitting device of this embodiment, in order to selectively detect only the light emitted from the corresponding LED chips 1a to 1d in each light detection element 4, the light emitted from each of the LED chips 1a to 1d. A cross-shaped light shielding wall 39 that restricts the radiation range is formed integrally with the intermediate layer substrate 30 continuously. In short, in the light emitting device of this embodiment, the opening window 31 of the intermediate layer substrate 30 is divided into four small spaces 31 a by the light shielding wall 39. Here, in this embodiment, the light shielding wall 39 in the intermediate layer substrate 30 is formed simultaneously with the opening window 31 by anisotropic etching using an alkaline solution, and each side surface of the light shielding wall 39 is within the opening window 31. Since it is a (111) plane like the side surface, each side surface of the light shielding wall 39 functions as a mirror that reflects light emitted from the LED chips 1a to 1d forward.

しかして、本実施形態の発光装置では、各発光色のLEDチップ1a〜1dから同時に放射された光を各光検出素子4にて各別に精度良く検出することができ、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1a〜1dの光出力を各別に制御することが可能となり、所望の混色光を安定して得ることが可能となる。すなわち、本実施形態の発光装置を実装する回路基板などに、各LEDチップ1a〜1dを駆動する駆動回路部、各光検出素子4により検出される光強度がそれぞれの目標値に保たれるように駆動回路部から各LEDチップ1a〜1dに流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1a〜1dの光出力を各別に制御することができ、各発光色ごとのLEDチップ1a,1b,1c,1dの光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。   Thus, in the light emitting device according to the present embodiment, the light emitted from the LED chips 1a to 1d of the respective emission colors can be detected with high accuracy by the respective light detecting elements 4, and each of the light detecting elements 4 can be detected. On the basis of the output, the light output of each of the LED chips 1a to 1d of the respective emission colors can be controlled separately, and the desired mixed color light can be stably obtained. That is, the light intensity detected by the drive circuit unit that drives each LED chip 1a to 1d and each photodetecting element 4 is maintained at the target value on the circuit board on which the light emitting device of this embodiment is mounted. Is provided with a control circuit unit that feedback-controls the current flowing from the drive circuit unit to each of the LED chips 1a to 1d, so that each of the LED chips 1a to 1d of each emission color is based on the output of each of the light detection elements 4. The light output can be controlled separately, and the light color of the mixed color light (here, white light) regardless of the temporal change in the light output of the LED chips 1a, 1b, 1c, 1d for each emission color, The accuracy of the color temperature can be improved.

ところで、上記各実施形態1,2では、実装基板2を3枚の半導体基板を用いて形成してあるが、実装基板2の基礎とする半導体基板の数は特に限定するものではなく、例えば、図15に示した従来例と同様に1枚の半導体基板を用いて形成してもよいし、2枚の半導体基板を用いて形成してもよい。   In the first and second embodiments, the mounting substrate 2 is formed using three semiconductor substrates. However, the number of semiconductor substrates on which the mounting substrate 2 is based is not particularly limited. For example, Similarly to the conventional example shown in FIG. 15, it may be formed using one semiconductor substrate, or may be formed using two semiconductor substrates.

実施形態1の発光装置の概略断面図である。1 is a schematic cross-sectional view of a light emitting device according to Embodiment 1. FIG. 同上の発光装置の概略分解斜視図である。It is a general | schematic disassembled perspective view of a light-emitting device same as the above. 同上における実装基板を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図、(c)は(a)のB−B’概略断面図である。The mounting board | substrate is shown, (a) is a schematic plan view, (b) is A-A 'schematic sectional drawing of (a), (c) is B-B' schematic sectional drawing of (a). 同上におけるLED搭載用基板を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図、(c)は(a)のB−B’概略断面図である。The board | substrate for LED mounting same as the above is shown, (a) is a schematic plan view, (b) is AA 'schematic sectional drawing of (a), (c) is BB' schematic sectional drawing of (a). . 同上におけるLED搭載用基板の概略下面図である。It is a schematic bottom view of the board | substrate for LED mounting in the same as the above. 同上における中間層基板を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図、(c)は(a)のB−B’概略断面図である。The intermediate | middle layer board | substrate in the same is shown, (a) is a schematic plan view, (b) is A-A 'schematic sectional drawing of (a), (c) is B-B' schematic sectional drawing of (a). 同上における中間層基板の概略下面図である。It is a schematic bottom view of the intermediate | middle layer board | substrate in the same as the above. 同上における光検出素子形成基板を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図、(c)は(a)のB−B’概略断面図である。The optical detection element formation board in the same as above is shown, (a) is a schematic plan view, (b) is an AA 'schematic sectional view of (a), (c) is a BB' schematic sectional view of (a). is there. 同上における光検出素子形成基板の概略下面図である。It is a schematic bottom view of the optical detection element formation board | substrate in the same as the above. 同上における実装基板の形成方法の説明図である。It is explanatory drawing of the formation method of the mounting board | substrate in the same as the above. 実施形態2の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 同上の発光装置の要部概略平面図である。It is a principal part schematic plan view of a light-emitting device same as the above. 同上の発光装置の概略分解斜視図である。It is a general | schematic disassembled perspective view of a light-emitting device same as the above. 同上の発光装置における光検出素子形成基板の概略下面図である。It is a schematic bottom view of the light detection element formation board | substrate in the light-emitting device same as the above. 従来例を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。A prior art example is shown, (a) is a schematic plan view, and (b) is a schematic cross-sectional view along A-A 'of (a).

符号の説明Explanation of symbols

1 LEDチップ
2 実装基板
20a,30a,40a シリコン基板(半導体基板)
22a 貫通孔
22b 貫通孔
23 絶縁膜
24 貫通孔配線
25a 導体パターン
25aa ダイパッド部(均熱板部)
25ab 引き出し配線部(導体部)
26 サーマルビア
27a 外部接続用電極
28 放熱用パッド部
DESCRIPTION OF SYMBOLS 1 LED chip 2 Mounting substrate 20a, 30a, 40a Silicon substrate (semiconductor substrate)
22a Through-hole 22b Through-hole 23 Insulating film 24 Through-hole wiring 25a Conductor pattern 25aa Die pad part (heat equalizing plate part)
25ab Lead-out wiring part (conductor part)
26 Thermal Via 27a External Connection Electrode 28 Heat Dissipation Pad

Claims (2)

LEDチップと、半導体基板を用いて形成されLEDチップが実装された実装基板とを備え、LEDチップへの給電路の一部となる複数の貫通孔配線およびLEDチップで発生した熱の放熱路となる複数のサーマルビアが実装基板の厚み方向に貫設された発光装置であって、実装基板は、前記厚み方向に直交する断面における各サーマルビアの断面積が各貫通孔配線の断面積よりも大きく、且つ、LEDチップの一面全体が接合されLEDチップと複数のサーマルビアとを熱結合する均熱板部を有してなり、当該実装基板は、LEDチップが実装されるLED実装部と、LED実装部においてLEDチップが実装される領域の周部に設けられた壁部と、壁部から張り出した張出部とを有し、張出部に、LEDチップから放射された光を検出する光検出素子が設けられてなることを特徴とする発光装置。 An LED chip and a mounting substrate formed using a semiconductor substrate and mounted with the LED chip, a plurality of through-hole wirings serving as part of a power feeding path to the LED chip, and a heat dissipation path for heat generated in the LED chip; A plurality of thermal vias are provided in the thickness direction of the mounting board, wherein the mounting board has a cross-sectional area of each thermal via in a cross-section orthogonal to the thickness direction than the cross-sectional area of each through-hole wiring It is large and has a heat equalizing plate portion that is bonded to the entire surface of the LED chip and thermally couples the LED chip and the plurality of thermal vias, and the mounting substrate includes an LED mounting portion on which the LED chip is mounted, The LED mounting portion has a wall portion provided in a peripheral portion of the region where the LED chip is mounted and a protruding portion protruding from the wall portion, and detects light emitted from the LED chip on the protruding portion. Light emitting device and a light detecting element is provided. 前記実装基板は、前記各貫通孔配線と接続される複数の導体部が前記均熱板部の周辺に形成されてなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the mounting substrate is formed with a plurality of conductor portions connected to the through-hole wirings around the heat equalizing plate portion.
JP2006208840A 2006-07-31 2006-07-31 Light emitting device Expired - Fee Related JP5010203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208840A JP5010203B2 (en) 2006-07-31 2006-07-31 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208840A JP5010203B2 (en) 2006-07-31 2006-07-31 Light emitting device

Publications (2)

Publication Number Publication Date
JP2008034748A JP2008034748A (en) 2008-02-14
JP5010203B2 true JP5010203B2 (en) 2012-08-29

Family

ID=39123838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208840A Expired - Fee Related JP5010203B2 (en) 2006-07-31 2006-07-31 Light emitting device

Country Status (1)

Country Link
JP (1) JP5010203B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032829A1 (en) * 2007-07-30 2009-02-05 Tong Fatt Chew LED Light Source with Increased Thermal Conductivity
JP5192847B2 (en) * 2008-02-26 2013-05-08 パナソニック株式会社 Light emitting device
JP5109770B2 (en) * 2008-04-03 2012-12-26 豊田合成株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
DE102008021661A1 (en) * 2008-04-30 2009-11-05 Ledon Lighting Jennersdorf Gmbh LED module with frame and printed circuit board
JP5301339B2 (en) * 2009-04-14 2013-09-25 スタンレー電気株式会社 Semiconductor device
JP5482098B2 (en) * 2009-10-26 2014-04-23 日亜化学工業株式会社 Light emitting device
US8507940B2 (en) * 2010-04-05 2013-08-13 Taiwan Semiconductor Manufacturing Company, Ltd. Heat dissipation by through silicon plugs
KR101752447B1 (en) * 2011-06-01 2017-07-05 서울반도체 주식회사 Light emitting diode assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050802B2 (en) * 1996-08-02 2008-02-20 シチズン電子株式会社 Color display device
JP3696839B2 (en) * 2001-03-14 2005-09-21 松下電器産業株式会社 Lighting device
JP2004079750A (en) * 2002-08-16 2004-03-11 Fuji Photo Film Co Ltd Light emitting device
JP2004273690A (en) * 2003-03-07 2004-09-30 Stanley Electric Co Ltd Led element for minimum optical source, and its manufacturing method
US20040188696A1 (en) * 2003-03-28 2004-09-30 Gelcore, Llc LED power package
JP2005303258A (en) * 2004-03-16 2005-10-27 Fujikura Ltd Device and method for manufacturing the same
JP2006128512A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic substrate for light emitting element
CN1770942B (en) * 2004-11-01 2010-09-08 安华高科技Ecbuip(新加坡)私人有限公司 Led illumination system having an intensity monitoring system

Also Published As

Publication number Publication date
JP2008034748A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP5192666B2 (en) Light emitting device
JP5243806B2 (en) Ultraviolet light emitting device
JP5010203B2 (en) Light emitting device
JPWO2008123020A1 (en) Semiconductor device and manufacturing method thereof
JP5010366B2 (en) Light emitting device
JP5010198B2 (en) Light emitting device
JP4877239B2 (en) Method for manufacturing light emitting device
JP5390938B2 (en) Light emitting device
JP5102652B2 (en) Light emitting device
JP5010199B2 (en) Light emitting device
JP5351624B2 (en) LED module
JP2009177095A (en) Light-emitting device
JP5102605B2 (en) Light emitting device and manufacturing method thereof
JP2009177099A (en) Light-emitting device
JP5351620B2 (en) Light emitting device
JP2011009559A (en) Light-emitting device
JP2010278316A (en) Light emitting device
JP5192847B2 (en) Light emitting device
JP5554900B2 (en) Chip mounting method
JP5475954B2 (en) Light emitting device
JP2009206186A (en) Light emitting device
JP2009130294A (en) Mounting method
JP2009177100A (en) Light-emitting device
JP2009158506A (en) Light-emitting device
JP2009177101A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5010203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees