[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5008330B2 - Method and apparatus for measuring lipid content - Google Patents

Method and apparatus for measuring lipid content Download PDF

Info

Publication number
JP5008330B2
JP5008330B2 JP2006096490A JP2006096490A JP5008330B2 JP 5008330 B2 JP5008330 B2 JP 5008330B2 JP 2006096490 A JP2006096490 A JP 2006096490A JP 2006096490 A JP2006096490 A JP 2006096490A JP 5008330 B2 JP5008330 B2 JP 5008330B2
Authority
JP
Japan
Prior art keywords
measured
reflection
sample
loss tangent
reflection coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096490A
Other languages
Japanese (ja)
Other versions
JP2007271412A (en
Inventor
由香 正岡
修一 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Scale Co Ltd
Original Assignee
Yamato Scale Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co Ltd filed Critical Yamato Scale Co Ltd
Priority to JP2006096490A priority Critical patent/JP5008330B2/en
Publication of JP2007271412A publication Critical patent/JP2007271412A/en
Application granted granted Critical
Publication of JP5008330B2 publication Critical patent/JP5008330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、食品等に含まれる脂質含有率を測定するための脂質含有率測定方法及び装置に関する。   The present invention relates to a lipid content measurement method and apparatus for measuring the lipid content contained in foods and the like.

近年、糖尿病や脳卒中などに代表される生活習慣病が深刻化している。この生活習慣病を食生活の観点からみると、その背景には食生活の欧米化による栄養過剰、特に脂質の過剰摂取が存在する。厚生労働省の報告によると、1946年には国民の総摂取カロリーが1903kcal(脂質は16g/day)であったのに対し、2002年の総摂取カロリーは1930kcal(脂質は54.4 g/day)と、摂取カロリーはあまり変わっていないものの、脂質の摂取量は大幅に増加していることがわかる。   In recent years, lifestyle-related diseases such as diabetes and stroke have become serious. If this lifestyle-related disease is seen from the viewpoint of dietary habits, the background is overnutrition due to westernization of dietary habits, especially excess intake of lipids. According to a report from the Ministry of Health, Labor and Welfare, the total calorie intake in 1946 was 1903 kcal (16 g / day for fat), compared to 1930 kcal in 2002 (54.4 g / day for fat). Although the calorie intake has not changed much, it can be seen that the intake of lipid has increased significantly.

近年ではデジタルカメラやデジタルカメラ付き携帯電話のような視覚媒体を用いた食事内容の遠隔栄養管理システムが注目されているが、明確な栄養量判断は難しく精度が低いといわれている。特に食品中の脂質含有率を正確に把握することは難しく、容易に測定できる機器の開発が望まれている。   In recent years, a remote nutrition management system for meal contents using a visual medium such as a digital camera or a mobile phone with a digital camera has attracted attention, but it is said that it is difficult to make a clear nutritional determination and the accuracy is low. In particular, it is difficult to accurately grasp the lipid content in food, and development of an instrument that can be easily measured is desired.

特許文献1には、食品に含まれる水分及び塩分の濃度を測定するための技術が開示されているが、脂質については一切考慮されていない。   Patent Document 1 discloses a technique for measuring the concentration of moisture and salt contained in food, but does not consider lipid at all.

また、特許文献2には、食品等に含まれている水分の含有率を測定するための技術が開示されているが、脂質については一切考慮されていない。
特開平8−105845号公報 特開平6−129999号公報
Patent Document 2 discloses a technique for measuring the content of water contained in foods and the like, but lipids are not considered at all.
JP-A-8-105845 Japanese Patent Laid-Open No. 6-129999

上記のように従来、食品等に含まれる水分及び塩分を測定するための技術は存在するが、脂質含有率を正確に測定するための技術は見当たらない。   As described above, there is a conventional technique for measuring moisture and salt contained in foods and the like, but no technique for accurately measuring the lipid content is found.

本発明は上記のような課題を解決するためになされたもので、食品等の被測定物に含まれる脂質含有率の測定精度を向上することができる脂質含有率測定方法及び装置を提供することを目的としている。   The present invention has been made to solve the above problems, and provides a lipid content measurement method and apparatus capable of improving the measurement accuracy of the lipid content contained in an object to be measured such as food. It is an object.

上記課題を解決するために、本発明の脂質含有率測定方法は、マイクロ波の周波数を有する電磁波を被測定物に照射し、その反射波または透過波を検出し、この検出電磁波の前記照射電磁波に対する反射係数または透過係数の振幅及び位相を測定する第1のステップと、前記第1のステップにより測定される前記反射係数または透過係数の振幅及び位相に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第2のステップと、前記第2のステップにより求められる前記比誘電率及び/又は誘電正接に基づいて前記被測定物に含まれる脂質の含有率を求める第3のステップとを有し、前記第2のステップは、前記第1のステップにより測定される前記反射係数または透過係数の振幅及び位相に基づいて前記反射係数または透過係数の実数部及び虚数部を算出する第4のステップと、前記第4のステップにより算出される前記反射係数または透過係数の実数部及び虚数部に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第5のステップとを有する。 In order to solve the above problems, the lipid content measurement method of the present invention irradiates an object to be measured with an electromagnetic wave having a microwave frequency, detects a reflected wave or a transmitted wave, and irradiates the detected electromagnetic wave with the detected electromagnetic wave. A first step of measuring an amplitude and a phase of a reflection coefficient or a transmission coefficient with respect to the light, and a relative dielectric constant of the object to be measured based on the amplitude and the phase of the reflection coefficient or the transmission coefficient measured by the first step And / or a second step for obtaining a dielectric loss tangent, and a third step for obtaining the content of lipid contained in the object to be measured based on the relative dielectric constant and / or the dielectric loss tangent obtained by the second step. possess the door, the second step, the reflection coefficient or transmission coefficient based on the amplitude and phase of the reflection coefficient or transmission coefficient is measured by the first step Based on the fourth step of calculating the real part and the imaginary part, and the relative permittivity and / or the measurement object based on the real part and the imaginary part of the reflection coefficient or transmission coefficient calculated by the fourth step, and / or And a fifth step for obtaining a dielectric loss tangent.

この方法によれば、測定される反射係数または透過係数の振幅及び位相に基づいて被測定物の比誘電率及び/又は誘電正接を求め、その比誘電率及び/又は誘電正接に基づいて被測定物に含まれる脂質の含有率を求めることにより、脂質含有率の測定精度を向上でき、正確な測定が可能になる。   According to this method, the relative dielectric constant and / or dielectric loss tangent of the object to be measured is obtained based on the amplitude and phase of the measured reflection coefficient or transmission coefficient, and the measurement is performed based on the relative dielectric constant and / or dielectric loss tangent. By obtaining the content of lipid contained in the product, the measurement accuracy of the lipid content can be improved and accurate measurement can be performed.

この場合、前記第5のステップは、前記反射係数または透過係数の実数部及び虚数部の一方を縦軸とし他方を横軸とする複素平面に、前記実数部及び虚数部に対して理論的に算出された比誘電率及び/又は誘電正接の目盛りが記入されている予め準備されたチャートを用いて、前記第4のステップにより算出される前記反射係数または透過係数の実数部及び虚数部に対応する前記比誘電率及び/又は誘電正接の目盛りを読み取ることにより、前記被測定物の比誘電率及び/又は誘電正接を求めるようにしてもよい。   In this case, the fifth step theoretically has a complex plane with one of the real part and the imaginary part of the reflection coefficient or transmission coefficient as the vertical axis and the other as the horizontal axis with respect to the real part and the imaginary part. Corresponding to the real part and imaginary part of the reflection coefficient or transmission coefficient calculated by the fourth step using a chart prepared in advance with the calculated relative permittivity and / or scale of the dielectric loss tangent The relative dielectric constant and / or dielectric loss tangent of the object to be measured may be obtained by reading the scale of the relative dielectric constant and / or dielectric loss tangent.

このように、予め準備されたチャートを用いることで、被測定物の比誘電率及び/又は誘電正接を容易に求めることができる。   As described above, by using a chart prepared in advance, the relative dielectric constant and / or the dielectric loss tangent of the object to be measured can be easily obtained.

本発明の脂質含有率測定装置は、被測定物に電磁波を照射するための発信用アンテナと、前記被測定物から反射される反射波または前記被測定物を透過した透過波を検出するための受信用アンテナと、前記発信用アンテナから照射された電磁波に対する前記受信用アンテナにより検出される検出電磁波の比を示す反射係数または透過係数の振幅及び位相を測定する測定部と、前記測定部により測定される前記反射係数または透過係数の振幅及び位相に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第1の処理と、前記第1の処理により求められる前記比誘電率及び/又は誘電正接に基づいて前記被測定物に含まれる脂質の含有率を求める第2の処理とを行う脂質含有率算出部とを備え、前記脂質含有率算出部は、前記第1の処理が、前記測定部により測定される前記反射係数または透過係数の振幅及び位相に基づいて前記反射係数または透過係数の実数部及び虚数部を算出する第3の処理と、前記第3の処理により算出される前記反射係数または透過係数の実数部及び虚数部に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第4の処理とを有するように構成されている。 The lipid content measurement apparatus of the present invention includes a transmitting antenna for irradiating a measurement object with electromagnetic waves, and a reflected wave reflected from the measurement object or a transmitted wave transmitted through the measurement object. Measured by the receiving antenna, a measuring unit that measures the amplitude and phase of a reflection coefficient or transmission coefficient indicating the ratio of the detected electromagnetic wave detected by the receiving antenna to the electromagnetic wave irradiated from the transmitting antenna, and measured by the measuring unit A first process for obtaining a relative dielectric constant and / or a dielectric loss tangent of the object to be measured based on an amplitude and a phase of the reflection coefficient or transmission coefficient, and the relative dielectric constant obtained by the first process and / or a lipid content rate calculating unit based on the dielectric loss tangent performs a second process for obtaining the content of lipids included in the object to be measured, wherein the lipid content rate calculating unit, said first A third process for calculating a real part and an imaginary part of the reflection coefficient or transmission coefficient based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by the measurement unit, and the third process. And a fourth process for obtaining a relative dielectric constant and / or a dielectric loss tangent of the object to be measured based on the real part and imaginary part of the calculated reflection coefficient or transmission coefficient.

この構成によれば、測定部で測定される反射係数または透過係数の振幅及び位相に基づいて、脂質含有率算出部において被測定物の比誘電率及び/又は誘電正接が求められ、その比誘電率及び/又は誘電正接に基づいて被測定物に含まれる脂質の含有率を求められることにより、脂質含有率の測定精度を向上でき、正確な測定が可能になる。   According to this configuration, based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by the measurement unit, the lipid content calculation unit obtains the relative permittivity and / or dielectric loss tangent of the object to be measured, and the relative dielectric constant thereof. By obtaining the lipid content contained in the object to be measured based on the rate and / or the dielectric loss tangent, the measurement accuracy of the lipid content can be improved and accurate measurement can be performed.

この場合、前記脂質含有率算出部は、前記第4の処理が、前記反射係数または透過係数の実数部及び虚数部の一方を縦軸とし他方を横軸とする複素平面に、前記実数部及び虚数部に対して理論的に算出された比誘電率及び/又は誘電正接の目盛りが記入されている予め準備されたチャートを用いて、前記第3処理により算出される前記反射係数または透過係数の実数部及び虚数部に対応する前記比誘電率及び/又は誘電正接の目盛りを読み取ることにより、前記被測定物の比誘電率及び/又は誘電正接を求めるように構成されてあってもよい。   In this case, the lipid content calculation unit may be configured such that the fourth process is performed on a complex plane having one of the real part and the imaginary part of the reflection coefficient or transmission coefficient as a vertical axis and the other as a horizontal axis. The reflection coefficient or the transmission coefficient calculated by the third process is prepared using a chart prepared in advance with a scale of the relative permittivity and / or dielectric loss tangent calculated theoretically for the imaginary part. The relative permittivity and / or the dielectric loss tangent of the object to be measured may be obtained by reading the scale of the relative dielectric constant and / or the dielectric loss tangent corresponding to the real part and the imaginary part.

このように、脂質含有率算出部において、予め準備されたチャートを用いることで、被測定物の比誘電率及び/又は誘電正接を求めるための演算処理が容易になる。ここで、チャートはデータとして予め脂質含有率算出部に記憶されてあればよい。   As described above, in the lipid content calculation unit, by using a chart prepared in advance, the arithmetic processing for obtaining the relative dielectric constant and / or the dielectric loss tangent of the object to be measured is facilitated. Here, the chart should just be memorize | stored in the lipid content rate calculation part beforehand as data.

本発明は、以上に説明した構成を有し、食品等の被測定物に含まれる脂質含有率の測定精度を向上することができる脂質含有率測定方法及び装置を提供することができるという効果を奏する。   The present invention has the configuration described above, and has the effect that it can provide a lipid content measurement method and apparatus capable of improving the measurement accuracy of the lipid content contained in a measurement object such as food. Play.

(発明に至る経緯)
本発明者は、食品中の脂質含有率を測定するため、まず、人体内の脂肪測定に用いられるインピーダンス法の応用を考えたが、インピーダンス法では、被測定物に微弱な定電流を流したときの電圧を測定し、オームの法則によってインピーダンスを求めるため、被測定物の脂質含有率が高くなると、定電流を流すための電圧を大きくしなければならないなど、広範囲の脂質含有率の測定の実現が困難であると予想した。
(Background to Invention)
In order to measure the lipid content in foods, the present inventor first considered the application of the impedance method used for measuring fat in the human body, but in the impedance method, a weak constant current was passed through the object to be measured. When measuring the voltage and determining the impedance according to Ohm's law, when the lipid content of the object to be measured becomes high, the voltage for flowing a constant current must be increased. Expected to be difficult to implement.

そこで、本発明者は、マイクロ波(波長が数10cm以下の電波)が脂質のような高抵抗の物質中では、導電性の高い水など低抵抗の物質に比べて透過性が高いという、インピーダンス法とは逆ともいえる特徴を生かすことにより、マイクロ波を用いて広範囲にわたる脂質含有率の測定を容易に行えるのではないかと考え、検討を行った。   Therefore, the present inventor has proposed that the impedance of microwaves (radio waves having a wavelength of several tens of centimeters or less) is high in a high resistance substance such as lipid, compared to a low resistance substance such as highly conductive water. We considered that it would be possible to easily measure the lipid content over a wide range using microwaves by taking advantage of the opposite characteristics of the method.

−第1の検討内容−
まず、マイクロ波を用いて脂質含有率の測定が可能であるか否かについて検証した。ここでは、被測定物にマイクロ波を照射したときの被測定物の脂質含有率に対するマイクロ波の反射特性について考察した。
-First consideration-
First, it was verified whether the lipid content could be measured using microwaves. Here, the reflection characteristics of the microwave with respect to the lipid content of the object to be measured when the object to be measured was irradiated with microwaves were considered.

物質にマイクロ波を照射したときの、物質に含まれる脂質の含有率(体積割合)に対する反射波の特性を調べるため、反射係数(照射したマイクロ波(入射波)に対して反射してきたマイクロ波(反射波)の比を表す値)を理論的に導いた。ここで、測定対象とする試料(被測定物)の形状を薄い板状とし、試料の後方が無限長線路の状態と、試料の背面が短絡の状態との2つの状態の場合について検討した。   In order to investigate the characteristics of the reflected wave with respect to the lipid content (volume ratio) in the substance when the substance is irradiated with the microwave, the reflection coefficient (the microwave reflected to the irradiated microwave (incident wave)) The value representing the ratio of (reflected wave) was theoretically derived. Here, the case where the shape of the sample to be measured (the object to be measured) was made into a thin plate shape, and the two cases of the state where the back of the sample was an infinite line and the state where the back of the sample was short-circuited were studied.

〔1.試料の後方が無限長線路の状態の場合〕
試料の後方に電波吸収体を置き、前方から入射され試料を透過したマイクロ波が吸収体で吸収されて反射しない場合(試料の後方が無限長線路の状態の場合;マイクロ波の伝搬する経路が吸収体により無限遠に拡がっている状態の場合)について検討する。この場合のマイクロ波の伝搬状態を図1に示す。
[1. (When the back of the sample is an infinite line)
When a radio wave absorber is placed behind the sample, and the microwave that is incident from the front and passes through the sample is absorbed by the absorber and does not reflect (when the sample is behind an infinite line; the path through which the microwave propagates) (In the case of a state where the light spreads to infinity by the absorber). The propagation state of the microwave in this case is shown in FIG.

試料の後方が無限長線路の状態の場合、図1のように、入射領域(アンテナから試料までの領域(空気))を領域1、試料内部領域(試料の厚みをd[m]とする)を領域2、試料後方領域(図1では試料を透過したマイクロ波が進む領域(空気))を領域3とし、アンテナから照射されるマイクロ波の進行方向をz軸にとり、図1の紙面に垂直な方向をy軸にとり、z軸及びy軸に垂直な方向をx軸にとる。   When the rear side of the sample is an infinite length line, as shown in FIG. 1, the incident region (region from the antenna to the sample (air)) is the region 1, and the sample internal region (the thickness of the sample is d [m]) Is the region 2 and the region behind the sample (the region (air) in which the microwave transmitted through the sample travels in FIG. 1) is the region 3, and the traveling direction of the microwave irradiated from the antenna is taken on the z axis, and is perpendicular to the paper surface of FIG. The right direction is taken as the y-axis, and the direction perpendicular to the z-axis and the y-axis is taken as the x-axis.

領域1の左方と領域3の右方は無限に拡がっているとすると、領域1には、アンテナから試料に向かって進む入射波と試料からの反射波が存在し、領域2にはz軸の正の方向へ伝搬するマイクロ波とz軸の負の方向へ伝搬するマイクロ波が存在し、領域3には透過波のみが存在する。いま、伝搬するマイクロ波を平面波と仮定すれば、各領域の電界、磁界は以下のように表される。   Assuming that the left side of region 1 and the right side of region 3 extend indefinitely, region 1 has an incident wave traveling from the antenna toward the sample and a reflected wave from the sample, and region 2 has a z-axis. There are a microwave propagating in the positive direction and a microwave propagating in the negative z-axis direction, and only the transmitted wave exists in the region 3. Assuming that the propagating microwave is a plane wave, the electric and magnetic fields in each region are expressed as follows.

まず、領域1について説明する。領域1を伝搬する入射波の電界E1i及び磁界H1iは、(数1)の式(1a)、(1b)により表され、反射波の電界E1r及び磁界H1rは式(2a)、(2b)により表される。 First, the region 1 will be described. The electric field E 1i and the magnetic field H 1i of the incident wave propagating through the region 1 are expressed by the equations (1a) and (1b) of (Equation 1), and the electric field E 1r and the magnetic field H 1r of the reflected wave are expressed by the equation (2a), It is represented by (2b).

Figure 0005008330
Figure 0005008330

ここで、ωは角周波数、εは真空の誘電率、μは真空の透磁率であり、k及びηは(数1)の式(3)、(4)で表される。また、ix、iyはそれぞれx方向、y方向の単位ベクトルである。 Here, ω is an angular frequency, ε 0 is a vacuum dielectric constant, μ 0 is a vacuum magnetic permeability, and k 0 and η 0 are expressed by equations (3) and (4) in (Equation 1). Further, i x and i y are unit vectors in the x direction and the y direction, respectively.

次に、領域2について説明する。領域2(試料内部領域)において試料の比誘電率をε、誘電正接をtanδとすると、z軸の正の方向に伝搬する波の電界E2i及び磁界H2iは、(数2)の式(5a)、(5b)により表され、z軸の負の方向に伝搬する波の電界E2r及び磁界H2r は式(6a)、(6b)により表される。 Next, the region 2 will be described. In region 2 (internal region of the sample), when the relative permittivity of the sample is ε r and the dielectric loss tangent is tan δ, the electric field E 2i and the magnetic field H 2i of the wave propagating in the positive z-axis direction are expressed by the following equation (2). The electric field E 2r and the magnetic field H 2r of the wave propagating in the negative direction of the z axis are expressed by equations (6a) and (6b).

Figure 0005008330
Figure 0005008330

ここで、γは伝搬定数、ηは特性インピーダンスであり、γ及びηは(数2)の式(7)、(8)で表される。   Here, γ is a propagation constant, η is a characteristic impedance, and γ and η are expressed by equations (7) and (8) in (Equation 2).

次に、領域3について説明する。領域3では、試料を透過したz軸の正の方向に伝搬する透過波のみが存在し、この透過波の電界E3i及び磁界H3iは、(数3)の式(9a)、(9b)により表される。 Next, the region 3 will be described. In region 3, there is only a transmitted wave propagating in the positive direction of the z-axis that has passed through the sample. The electric field E 3i and the magnetic field H 3i of this transmitted wave are expressed by equations (9a) and (9b) in (Equation 3). It is represented by

Figure 0005008330
Figure 0005008330

次に、領域1と領域2の境界(Z=0)において、電界、磁界の境界条件より、式(1a)、(2a)、(5a)、(6a)から(数4)の式(10a)が得られ、式(1b)、(2b)、(5b)、(6b)から式(10b)が得られる。   Next, at the boundary between the region 1 and the region 2 (Z = 0), from the boundary conditions of the electric field and the magnetic field, from the equations (1a), (2a), (5a), (6a) to the equation (10a) ) Is obtained, and equation (10b) is obtained from equations (1b), (2b), (5b), and (6b).

Figure 0005008330
Figure 0005008330

同様に、領域2と領域3の境界(Z=d)において、式(5a)、(6a)、(9a)より(数5)の式(11a)が得られ、式(5b)、(6b)、(9b)より式(11b)が得られる。   Similarly, at the boundary between the region 2 and the region 3 (Z = d), the equation (11a) of (Expression 5) is obtained from the equations (5a), (6a), and (9a), and the equations (5b), (6b ), (9b) yields equation (11b).

Figure 0005008330
Figure 0005008330

上記の式(10a)、(10b)、(11a)、(11b)を解くと、試料の後方が無限長線路の状態の場合における反射係数Γ1(=E1r/E1i)は、(数6)の式(12a)となり、Γ=|Γ|ejargΓとすると、反射係数の絶対値である反射係数の振幅(以下、「反射振幅」という)|Γ1|及び反射係数の位相(以下、「反射位相」という)argΓ1の式(12b)、(12c)が得られる。 Solving the above equations (10a), (10b), (11a), and (11b), the reflection coefficient Γ 1 (= E 1r / E 1i ) when the back of the sample is an infinite line is 6) Equation (12a) where Γ = | Γ | e jargΓ is the absolute value of the reflection coefficient (hereinafter referred to as “reflection amplitude”) | Γ 1 | and the phase of the reflection coefficient (hereinafter referred to as “reflection coefficient”). (Referred to as “reflection phase”), the equations (12b) and (12c) of argΓ 1 are obtained.

Figure 0005008330
Figure 0005008330

ここで、式(12b)、(12c)中のA、α、a(αに含まれるa)、Φは、それぞれ(数7)の式(13)〜(16)に示すとおりである。   Here, A, α, a (a included in α), and Φ in formulas (12b) and (12c) are as shown in formulas (13) to (16) of (Equation 7), respectively.

Figure 0005008330
Figure 0005008330

〔2.試料の背面が短絡の状態の場合〕
試料の後ろに金属板を置き、試料を透過したマイクロ波が金属板によって完全反射する場合(短絡の状態の場合;マイクロ波の伝搬する経路が金属板で短絡されている状態の場合)について検討する。この場合のマイクロ波の伝搬状態を図2に示す。図2において、領域1,2,3及びx、y、z軸等は、図1の場合と同様である。
[2. (When the back of the sample is short-circuited)
Consider a case where a metal plate is placed behind the sample and the microwave that has passed through the sample is completely reflected by the metal plate (in the case of a short circuit; the path through which the microwave propagates is shorted by the metal plate). To do. The propagation state of the microwave in this case is shown in FIG. In FIG. 2, the regions 1, 2, 3 and the x, y, and z axes are the same as in FIG.

試料の背面が短絡の状態の場合、図2のように、領域2と領域3の境界に置いた金属板により領域2からz軸の正方向に伝搬する波が完全反射するため、領域3へ波は伝搬しない。また、領域1、領域2に伝搬する波の電界及び磁界は、試料の後方が無限長線路の状態の場合と同様に式(1a)、(1b)、(2a)、(2b)、(5a)、(5b)、(6a)、(6b)により表され、領域1と領域2の境界(Z=0)において、電界、磁界の境界条件より式(10a)、(10b)が得られる。また、領域2と領域3の境界(Z=d)において、電界の境界条件より式(5a)、(6a)から(数8)の式(17)が得られる。   When the back surface of the sample is short-circuited, the wave propagating from the region 2 in the positive direction of the z-axis is completely reflected by the metal plate placed at the boundary between the region 2 and the region 3 as shown in FIG. Waves do not propagate. In addition, the electric field and magnetic field of the wave propagating to the region 1 and the region 2 are expressed by the equations (1a), (1b), (2a), (2b), (5a) as in the case where the back of the sample is an infinite line. ), (5b), (6a), and (6b). At the boundary between the region 1 and the region 2 (Z = 0), the equations (10a) and (10b) are obtained from the boundary conditions of the electric and magnetic fields. Also, at the boundary between the region 2 and the region 3 (Z = d), the equation (5a), (6a) to the equation (17) is obtained from the boundary condition of the electric field.

Figure 0005008330
Figure 0005008330

前述の式(10a)、(10b)、(17)を解くと、試料の背面が短絡の状態における反射係数Γ2(=E1r/E1i)は、(数9)の式(18a)となり、Γ=|Γ|ejargΓとすると、反射振幅|Γ2|及び反射位相argΓ2の式(18b)、(18c)が得られる。 Solving the above equations (10a), (10b), and (17), the reflection coefficient Γ 2 (= E 1r / E 1i ) when the back surface of the sample is short-circuited becomes equation (18a) in (Equation 9). , Γ = | Γ | e jargΓ , Equations (18b) and (18c) of the reflection amplitude | Γ 2 | and the reflection phase argΓ 2 are obtained.

Figure 0005008330
Figure 0005008330

ただし、式(18b)、(18c)中のξ、ψ、ζについては、(数10)の式(19a)、(19b)、(19c)に示されるとおりである。   However, ξ, ψ, and ζ in equations (18b) and (18c) are as shown in equations (19a), (19b), and (19c) in (Equation 10).

Figure 0005008330
Figure 0005008330

次に、試料に含まれる脂質の体積割合に対する反射振幅を、無限長線路状態の場合と短絡状態の場合とについて、それぞれシミュレーションで求めるとともに、実験により求めた。   Next, the reflection amplitude with respect to the volume ratio of lipid contained in the sample was obtained by simulation and by experiment for the case of the infinite line state and the case of the short circuit state, respectively.

ここで、シミュレーションでは、試料を脂質と赤身肉の混合物とし、試料の厚み(d)は2mmとした。また、照射するマイクロ波の周波数を10GHzとした。また、試料の比誘電率ε及び誘電正接tanδは、それぞれ、(数11)の式(20)、(21)で示されるものとした。 Here, in the simulation, the sample was a mixture of lipid and red meat, and the thickness (d) of the sample was 2 mm. Moreover, the frequency of the microwave to be irradiated was set to 10 GHz. Further, the relative dielectric constant ε r and the dielectric loss tangent tan δ of the sample were respectively expressed by the equations (20) and (21) in (Equation 11).

Figure 0005008330
Figure 0005008330

ここで、Pfatは試料中の脂質の体積割合(%)を示す。なお、εrfatは脂質の比誘電率であり、εrmは赤身肉の比誘電率であり、tanδfatは脂質の誘電正接であり、tanδmは赤身肉の誘電正接である。これらのεrfat、εrm、tanδfat、tanδmには、「An Internet resource for the calculation of the Dielectric Properties of Body Tissues (ITALIAN NATIONAL RESERCH COUNCIL) 」で計算された人体の脂肪と筋肉の比誘電率、誘電正接の値を、それぞれ脂質と赤身肉の比誘電率、誘電正接の値として用いた。この場合、εrfat=4.602、εrm=42.76、tanδfat=0.2286、tanδm=0.4467である。また、真空の誘電率εは8.854×10-12(F/m)、真空の透磁率μは1.257×10-6(H/m)である。 Here, P fat indicates the volume ratio (%) of lipid in the sample. Note that ε rfat is the relative permittivity of lipid, ε rm is the relative permittivity of red meat, tan δ fat is the dielectric loss tangent of lipid, and tan δ m is the dielectric tangent of red meat. These ε rfat , ε rm , tan δ fat , and tan δ m are the relative permittivity of fat and muscle of the human body calculated in `` An Internet resource for the calculation of the Dielectric Properties of Body Tissues (ITALIAN NATIONAL RESERCH COUNCIL) ''. The values of dielectric loss tangent were used as the dielectric constant and dielectric loss tangent of lipid and red meat, respectively. In this case, ε rfat = 4.602, ε rm = 42.76, tan δ fat = 0.2286, and tan δ m = 0.4467. The vacuum dielectric constant ε 0 is 8.854 × 10 −12 (F / m), and the vacuum magnetic permeability μ 0 is 1.257 × 10 −6 (H / m).

以上のシミュレーションの条件は、無限長線路状態の場合と短絡状態の場合も同じである。無限長線路状態の場合のシミュレーションでは、反射振幅の式(12b)を用いて、試料に含まれる脂質の体積割合に対する反射振幅(|Γ1|)を求めた。このシミュレーション結果を図3(a)に示す。また、短絡状態の場合のシミュレーションでは、反射振幅の式(12b)を用いて、試料に含まれる脂質の体積割合に対する反射振幅(|Γ2|)を求めた。このシミュレーション結果を図4(a)に示す。 The above simulation conditions are the same for the infinite line state and the short circuit state. In the simulation in the case of an infinite line condition, the reflection amplitude (| Γ 1 |) with respect to the volume fraction of lipid contained in the sample was obtained using the reflection amplitude equation (12b). The simulation result is shown in FIG. In the simulation in the case of a short circuit state, the reflection amplitude (| Γ 2 |) with respect to the volume ratio of lipid contained in the sample was obtained using the reflection amplitude equation (12b). The simulation result is shown in FIG.

次に、実験では、脂質としてラードを、赤身肉として比較的扱いやすく食肉の中でも特に脂質の少ない鶏ささみ肉を使用し、試料全体に対する脂質の体積割合が0、10、20、40、60、80、100%で、それぞれ厚み(d)が2mmの試料を作成した。具体的には、上記のそれぞれの体積割合となるように、ラードと赤身肉をフードプロセッサーで均一に混ぜた後、エチレンのビニールにはさみ、厚さが2mmで均一になるように、厚さ2mmの枠を使って上方からめん棒で平らにして試料を作成した。   Next, in the experiment, lard was used as the lipid, and chicken fillet meat, which is relatively easy to handle as lean meat and particularly low in fat, was used, and the volume ratio of lipid to the whole sample was 0, 10, 20, 40, 60, 80 , 100%, each having a thickness (d) of 2 mm. Specifically, after mixing lard and red meat uniformly with a food processor so that each of the above volume ratios, sandwiched between ethylene vinyl, thickness 2mm so that the thickness is uniform at 2mm A sample was prepared by flattening with a rolling pin from above using a frame.

実験装置の概略構成を図5に示す。この実験装置では、マイクロ波発振器21から出力されるマイクロ波は、ネットワーアナライザである測定装置22を介して発信及び受信兼用のアンテナ23から試料台24上の試料Sに照射される。そして、試料Sからの反射波がアンテナ23を介して測定装置22に入力され、この測定装置22では、反射振幅及び反射位相を測定値として出力表示可能である。具体的には、マイクロ波発振器21には、hp(ヒューレット・パッカード)社のSYNTHESIZED SWEEPER (HP83630A)を用い、測定装置22には、hp社のHP8510B ベクトルネットワークアナライザを用い、アンテナ23には、SPC electronics社の WR-90 Xバンド用ホーンアンテナ(TYPE 14T007)を用いた。   A schematic configuration of the experimental apparatus is shown in FIG. In this experimental apparatus, the microwave output from the microwave oscillator 21 is irradiated to the sample S on the sample stage 24 from the antenna 23 for both transmission and reception via the measuring device 22 which is a network analyzer. Then, the reflected wave from the sample S is input to the measuring device 22 via the antenna 23, and the measuring device 22 can output and display the reflected amplitude and the reflected phase as measured values. Specifically, the microwave oscillator 21 is hp (Hewlett Packard) SYNTHESIZED SWEEPER (HP83630A), the measurement device 22 is hp HP8510B vector network analyzer, and the antenna 23 is SPC. The WR-90 X-band horn antenna (TYPE 14T007) from electronics was used.

無限長線路状態の場合の実験は、試料台24の上にマイクロ波吸収体を敷き、その上に、発砲スチロールを置き、その上に試料Sを載せて行った。また、短絡状態の場合の実験は、試料台24の上に発砲スチロールを置き、その上に金属板を置き、さらにその上に試料Sを載せて行った。いずれの場合の実験も、試料Sから80mm上方の位置にアンテナ23の開口面が水平になるように設置し、10GHzのマイクロ波を照射して、測定装置22にて反射振幅を測定した。この測定は、脂質の体積割合が0、10、20、40、60、80、100%の各試料を2個ずつ作成しておき、2回ずつ行った。無限長線路状態の場合の実験結果を図3(b)に示し、短絡状態の場合の実験結果を図4(b)に示す。   The experiment in the infinite line state was performed by placing a microwave absorber on the sample stage 24, placing a foamed polystyrene on it, and placing the sample S thereon. The experiment in the short-circuit state was performed by placing a foamed polystyrene on the sample stage 24, placing a metal plate thereon, and placing the sample S thereon. In both experiments, the antenna 23 was placed at a position 80 mm above the sample S so that the opening surface of the antenna 23 was horizontal, irradiated with 10 GHz microwaves, and the reflection amplitude was measured by the measuring device 22. This measurement was performed twice by preparing two samples each having a lipid volume ratio of 0, 10, 20, 40, 60, 80, and 100%. FIG. 3B shows the experimental result in the case of the infinite line state, and FIG. 4B shows the experimental result in the case of the short circuit state.

図3(a)及び図3(b)に示されるように、シミュレーション及び実験のいずれの場合も、無限長線路状態の場合、反射振幅は、脂質含有率(脂質の体積割合)の増加とともに上昇し、最大となった後、脂質含有率の増加とともに低下するという結果が示された。また、図4(a)及び図4(b)に示されるように、シミュレーション及び実験のいずれの場合も、短絡状態の場合、反射振幅は、脂質含有率の増加とともに指数関数的に低下し、最小となった後、脂質含有率の増加とともに上昇するという結果が示された。   As shown in FIG. 3 (a) and FIG. 3 (b), in both the simulation and the experiment, the reflection amplitude increases with an increase in the lipid content (lipid volume ratio) in the case of an infinite line state. After reaching the maximum, the results showed that it decreased with increasing lipid content. Also, as shown in FIGS. 4 (a) and 4 (b), in both the simulation and the experiment, in the case of a short circuit state, the reflection amplitude decreases exponentially with the increase in the lipid content, After minimizing, the results showed increasing with increasing lipid content.

以上より、シミュレーション結果(理論値)と実験結果とにおいて定性的に良い一致が見られ、理論的検討の妥当性が示された。なお、無限長線路状態の場合に反射振幅が最大値を示す脂質含有率、及び短絡状態の場合に反射振幅の最小値を示す脂質含有率が異なったのは、シミュレーションと実験で用いた脂質及び赤身肉のそれぞれの比誘電率及び誘電正接の値に誤差があったことが原因と考えられる。また、シミュレーション結果に比べて実験結果が全体的に低い値を示しているのは、シミュレーションでは反射した波をすべて測定できていることになっているが、実験では試料中においてマイクロ波の散乱などが生じ、反射した波をすべて測定できていないことが原因と考えられる。   From the above, qualitatively good agreement was found between the simulation results (theoretical values) and the experimental results, indicating the validity of the theoretical study. It should be noted that the lipid content showing the maximum value of the reflection amplitude in the case of the infinite line state and the lipid content showing the minimum value of the reflection amplitude in the case of the short circuit state differed from the lipid used in the simulation and the experiment. This is probably because there was an error in the relative dielectric constant and dielectric loss tangent of each red meat. In addition, the experimental results are generally lower than the simulation results. The simulation shows that all reflected waves can be measured. This is thought to be due to the fact that all reflected waves could not be measured.

一方、無限長線路状態の場合及び短絡状態の場合のいずれも、1つの反射振幅に対して脂質含有率が1つに決まらないため、反射振幅のみから脂質含有率を求めることは困難であると考えられる。   On the other hand, in both the infinite line state and the short circuit state, the lipid content is not determined to be one for one reflection amplitude, and it is difficult to obtain the lipid content from only the reflection amplitude. Conceivable.

また、試料後方が無限長線路の状態における反射振幅よりも試料背面が短絡状態での反射振幅の方が、脂質の体積割合に対する変化が大きいため、脂質の含有率測定には試料背面が短絡状態での反射振幅を用いる方が適していると考えられる。   In addition, the reflection amplitude when the back surface of the sample is short-circuited is larger than the reflection amplitude when the back surface of the sample is an infinite line. It is considered that it is more suitable to use the reflection amplitude at.

そこで、次に、試料背面を短絡状態とした場合において、反射振幅に加えて反射位相の値も用い、反射振幅と反射位相とから脂質含有率を導出する方法について検討した。   Then, when the back surface of the sample was short-circuited, a method for deriving the lipid content from the reflection amplitude and the reflection phase was examined using the value of the reflection phase in addition to the reflection amplitude.

−第2の検討内容−
試料の背面が短絡された状態における反射振幅及び位相の測定値から脂質含有率を求める方法として、反射係数から比誘電率ε、誘電正接tanδを導出し、これらの値から脂質の体積割合を求める方法を検討した。反射係数の式に基づいて、反射振幅及び位相の測定値から比誘電率ε、誘電正接tanδを導出するようにしてもよいが、この場合、演算が複雑になる。そこで、反射係数の実数部と虚数部を軸にとった反射複素平面チャートを作成し、これを用いて試料の反射係数(反射振幅及び位相の測定値)から比誘電率ε、誘電正接tanδを導出することとした。
-Second examination content-
As a method for obtaining the lipid content from the measured values of the reflection amplitude and phase when the back surface of the sample is short-circuited, the relative permittivity ε r and the dielectric loss tangent tan δ are derived from the reflection coefficient, and the volume fraction of the lipid is calculated from these values. We examined how to find it. Although the relative permittivity ε r and the dielectric loss tangent tan δ may be derived from the measured values of the reflection amplitude and phase based on the expression of the reflection coefficient, in this case, the calculation becomes complicated. Therefore, a reflection complex plane chart with the real part and the imaginary part of the reflection coefficient as axes is created, and using this, the relative permittivity ε r , dielectric loss tangent tan δ from the reflection coefficient (measurement value of reflection amplitude and phase) of the sample is used. It was decided to derive.

試料背面が短絡の状態における反射係数Γは(数12)の式(22)で表される。 The reflection coefficient Γ 2 when the back surface of the sample is short-circuited is expressed by Equation (22) in (Equation 12).

Figure 0005008330
Figure 0005008330

この式(22)を用いて、比誘電率εを1、10、20、・・・、80に固定して誘電正接tanδを0〜1.0まで変化させた場合と、誘電正接tanδを0、0.05、0.1、・・・、1.0に固定して比誘電率εを1〜80まで変化させた場合とについて、試料の厚みが1mm、 2mm、 4mmのそれぞれの場合についてシミュレーションを行い、複素反射係数の実数部を横軸にとり、虚数部を縦軸にとった複素平面上にプロットして複素平面チャートを作成した。なお、理論上、tanδは∞まで存在するが、今回測定の対象とする測定物は高損失の物でないことから、tanδ>1のグラフは省略した。 Using this equation (22), when the relative dielectric constant ε r is fixed to 1, 10, 20,..., 80 and the dielectric loss tangent tan δ is changed from 0 to 1.0, the dielectric loss tangent tan δ is set to 0, Simulation is performed for each of the sample thicknesses of 1 mm, 2 mm, and 4 mm when the relative dielectric constant ε r is changed from 1 to 80 with 0.05, 0.1,. A complex plane chart was created by plotting on the complex plane with the real part of the coefficient on the horizontal axis and the imaginary part on the vertical axis. Theoretically, tan δ exists up to ∞, but the measurement object to be measured this time is not a high-loss object, so the graph of tan δ> 1 is omitted.

シミュレーションの結果、試料厚みが1mm、2mmの場合には1≦ε≦80、0≦tanδ≦1の範囲内でε、tanδの曲線同士が交わることなく比較的きれいなグラフとなり、4mmでは1≦ε≦80の範囲内で曲線が交わっているグラフとなった。図6に、シミュレーションを行うことにより作成された試料の厚みが2mmの場合の反射複素平面チャートを示す。 As a result of the simulation, when the sample thickness is 1 mm or 2 mm, the curves of ε r and tan δ do not intersect with each other within the range of 1 ≦ ε r ≦ 80 and 0 ≦ tan δ ≦ 1, and 1 mm at 4 mm. It was a graph in which curves intersect within the range of ≦ ε r ≦ 80. FIG. 6 shows a reflection complex plane chart in the case where the thickness of the sample prepared by the simulation is 2 mm.

このことから、試料の厚みを薄くして測定した反射振幅、反射位相を、(数13)の式(23)、(24)によって反射係数の実数部(ReΓ)、虚数部(ImΓ)に変換し、短絡状態における反射複素平面チャート上にプロットすれば、比誘電率ε及び誘電正接tanδを読み取ることが可能である。また、試料の厚みが薄いほど高い比誘電率において変化幅が大きく、試料の厚みが厚いほど低い比誘電率において変化幅が大きいことが示された結果となった。 From this, the reflection amplitude and the reflection phase measured with the sample being thinned are converted into the real part (ReΓ) and the imaginary part (ImΓ) of the reflection coefficient by the equations (23) and (24) of (Equation 13). When plotted on the reflection complex plane chart in the short-circuit state, it is possible to read the relative dielectric constant ε r and the dielectric loss tangent tan δ. In addition, the results showed that the thinner the sample thickness, the larger the change width at the higher relative dielectric constant, and the thicker the sample thickness, the larger the change width at the lower relative dielectric constant.

Figure 0005008330
Figure 0005008330

ただし、作成した反射複素平面チャートは測定が理想的に行えた場合の(純理論的な)シミュレーション結果によるものであるため、測定値をこのチャートにプロットする場合には、測定値を測定が理想的に行えた場合の値に補正する必要がある。   However, since the created reflection complex plane chart is based on the (pure theoretical) simulation result when the measurement was ideally performed, the measurement value should be ideal when plotting the measurement value on this chart. It is necessary to correct to the value when it can be done automatically.

次に、理論的検討の妥当性をみるため実験を行った。この実験では、アンテナから80mmの位置を基準として金属板を置き(試料の背面が短絡の状態)、試料のない状態で反射振幅及び反射位相を測定した後、金属板の上に脂質の体積割合が0、10、20、40、60、80、100%の厚み2mmの試料を載せて反射振幅及び反射位相を測定し、測定結果から反射複素平面チャートを用いて比誘電率ε及び誘電正接tanδを求めた。 Next, an experiment was conducted to confirm the validity of the theoretical examination. In this experiment, a metal plate is placed at a position 80 mm from the antenna (the back of the sample is short-circuited), and after measuring the reflection amplitude and phase without the sample, the volume fraction of lipid on the metal plate The reflection amplitude and reflection phase are measured by placing a sample with a thickness of 2 mm of 0, 10, 20, 40, 60, 80, 100%, and the relative permittivity ε r and the dielectric loss tangent are measured from the measurement result using a reflection complex plane chart. tanδ was determined.

今回の実験では、先の実験と同様、脂質としてラードを、赤身肉として比較的扱いやすく食肉の中でも特に脂質の少ない鶏ささみ肉を使用し、試料全体に対する脂質の体積割合が0、10、20、40、60、80、100%で、それぞれ厚み(d)が2mmの試料を作成した。   In this experiment, as in the previous experiment, lard was used as the lipid, and chicken breast fillet, which is relatively easy to handle as lean meat, and especially low in fat, was used, and the volume ratio of lipid to the whole sample was 0, 10, 20, Samples of 40, 60, 80, and 100% and a thickness (d) of 2 mm were prepared.

実験装置は、先の実験と同じ実験装置(図5)を用いた。   The same experimental apparatus (FIG. 5) as the previous experiment was used as the experimental apparatus.

まず、試料台24の上に金属板を置き、金属板の表面から80mm上方の位置にアンテナ23の開口面が水平になるようにアンテナ23を設置し、試料のない状態で、10GHzのマイクロ波を照射して、測定装置22にて反射振幅及び反射位相を測定した。次に、試料を金属板の上に置き、10GHzのマイクロ波を照射して、測定装置22にて反射振幅及び反射位相を測定した。この測定は、脂質の体積割合が0、10、20、40、60、80、100%の各試料を3個ずつ作成しておき、3回ずつ行った。   First, a metal plate is placed on the sample table 24, and the antenna 23 is set so that the opening surface of the antenna 23 is horizontal at a position 80 mm above the surface of the metal plate. And the reflection amplitude and the reflection phase were measured by the measuring device 22. Next, the sample was placed on a metal plate and irradiated with 10 GHz microwave, and the reflection amplitude and the reflection phase were measured by the measuring device 22. This measurement was performed three times by preparing three samples each having a lipid volume ratio of 0, 10, 20, 40, 60, 80, and 100%.

ここで、理想的な測定が行えた場合の反射係数をΓ(振幅|Γ|、位相argΓ)、試料表面(基準面)に金属板を置いたときの反射係数をΓair(振幅|Γair|、位相argΓair)、実際の測定値をΓ(振幅|Γ|、位相argΓ)とすると、理想的な測定が行えた場合、全反射では反射係数の絶対値の2乗は|Γ|=1であるが、実際に試料表面に金属板を置いて測定した場合にアンテナが受信する反射係数Γairの絶対値の2乗は1未満(|Γair|<1)となる。従って、実測値Γの絶対値の2乗|Γ|は、測定が理想的に行えた場合の反射電力(真の反射電力すなわち反射係数Γの絶対値の2乗|Γ|)の|Γair|倍となり、(数14)の式(25)で表される。この式(25)より式(26)が求まる。 Here, the reflection coefficient when ideal measurement can be performed is Γ (amplitude | Γ |, phase argΓ), and the reflection coefficient when a metal plate is placed on the sample surface (reference surface) is Γ air (amplitude | Γ air). |, Phase argΓ air ), and if the actual measurement value is Γ m (amplitude | Γ m |, phase argΓ m ), if the ideal measurement can be performed, the total squared of the absolute value of the reflection coefficient is | Γ | 2 = 1, but the square of the absolute value of the reflection coefficient Γ air received by the antenna when actually measured by placing a metal plate on the sample surface is less than 1 (| Γ air | 2 <1) Become. Therefore, the square of the absolute value of the actually measured value Γ m | Γ m | 2 is the reflected power when the measurement is ideally performed (the true reflected power, that is, the square of the absolute value of the reflection coefficient Γ | Γ | 2 ). Roh | gamma air | doubled, represented by the formula (25) (equation 14). From this equation (25), equation (26) is obtained.

Figure 0005008330
Figure 0005008330

また、完全反射の場合、反射面(今回の実験において金属板)では位相はπである。したがって、この面を基準面としたときの基準面における位相argΓは(数15)の式(27)となる。   In the case of complete reflection, the phase is π on the reflection surface (metal plate in this experiment). Therefore, the phase argΓ on the reference surface when this surface is used as the reference surface is expressed by Equation (27) in (Equation 15).

Figure 0005008330
Figure 0005008330

今回の実験で測定した反射振幅を式(26)で補正した結果、図7の実験値1,2,3で示される値となり、多少の誤差は見られたが理論値との定量的な一致が見られた。   As a result of correcting the reflection amplitude measured in this experiment by the equation (26), the values shown in the experimental values 1, 2, and 3 in FIG. 7 are obtained, and there is some error, but quantitative agreement with the theoretical value. It was observed.

また、反射位相について、理論的検討では試料の上表面を基準としているが、実験では便宜性を考えて試料の下の表面(アンテナから80mmの位置)を基準としたため、試料の厚み(dmm)分の補正を付け加える必要がある。従って、式(27)は(数16)の式(28)となる。ここで、λはマイクロ波の波長である。   Regarding the reflection phase, the upper surface of the sample is used as a reference in the theoretical examination, but the thickness of the sample (dmm) is used in the experiment because the lower surface of the sample (position of 80 mm from the antenna) is used as a reference for convenience. It is necessary to add a correction for minutes. Therefore, Expression (27) becomes Expression (28) of (Equation 16). Here, λ is the wavelength of the microwave.

Figure 0005008330
今回の実験において試料の厚みは2mmなので、式(28)のdに2(mm)を代入して測定した反射位相の補正を行った結果、図8の実験値1,2,3で示される値となり、理論値との定量的な一致が見られた。
Figure 0005008330
Since the thickness of the sample in this experiment is 2 mm, the result of correcting the reflection phase measured by substituting 2 (mm) for d in the equation (28) is shown by the experimental values 1, 2 and 3 in FIG. The value was quantitatively consistent with the theoretical value.

次に、補正した反射振幅及び反射位相を用いて式(23)、(24)に基づき反射係数の実数部及び虚数部を算出し、反射複素平面チャートにプロットした。これを図9に示す。図9において、例えば「fat100%」の文字の近傍にプロットされている実験値1,2,3が脂質の体積割合が100%の場合の実験値を示す。他の実験値についても同様である。   Next, the real part and imaginary part of the reflection coefficient were calculated based on the equations (23) and (24) using the corrected reflection amplitude and reflection phase, and plotted on the reflection complex plane chart. This is shown in FIG. In FIG. 9, for example, experimental values 1, 2, and 3 plotted in the vicinity of the letters “fat 100%” indicate experimental values when the volume ratio of lipid is 100%. The same applies to other experimental values.

この反射複素平面チャートにプロットされている実験値1,2,3の各位置から比誘電率ε及び誘電正接tanδの値を読み取り、それぞれを脂質の体積割合に対してプロットした結果、図10の脂質の体積割合に対する比誘電率を示すグラフ、及び図11の脂質の体積割合に対する誘電正接を示すグラフが得られた。また、図10、図11には実験結果とともに、先の(数11)の式(20)、(21)で示したεr、tanδの脂質の体積割合に対する理論値も示した。 The values of the relative permittivity ε r and the dielectric loss tangent tan δ are read from the positions of the experimental values 1, 2, and 3 plotted on the reflection complex plane chart, and each is plotted against the volume ratio of the lipid. The graph which shows the dielectric constant with respect to the volume ratio of the lipid of FIG. 11, and the graph which shows the dielectric loss tangent with respect to the volume ratio of the lipid of FIG. FIGS. 10 and 11 also show the theoretical values for the lipid volume ratios of ε r and tan δ shown in the equations (20) and (21) of (Formula 11) together with the experimental results.

理論値と実験結果とにおいて、図10のように、比誘電率については、脂質の体積割合が20%〜100%で定量的によく一致する結果となったが、20%未満において0%に近づくほど実験値と理論値との差が大きくなる結果となった。また、図11のように、誘電正接についても、誤差はあるものの定量的な一致がみられた。   In the theoretical values and the experimental results, as shown in FIG. 10, the relative permittivity was quantitatively in good agreement when the volume ratio of lipid was 20% to 100%. The closer it was, the larger the difference between the experimental value and the theoretical value. Further, as shown in FIG. 11, the dielectric loss tangent was also quantitatively matched although there was an error.

比誘電率、誘電正接ともに、理論値と実験結果に定量的な一致が見られるが、理論値と実験結果における誤差の要因としては、(1)試料作成時に脂質の割合が正確でなかったこと、(2)シミュレーションと実験において用いた脂質と赤身肉の比誘電率及び誘電正接に誤差があったこと、が考えられる。また、比誘電率は脂質の体積割合が少なくなるほど大きくなるが、試料の比誘電率が大きくなるほど空気との境界面において、誘電率の差が大きくなるため表面での反射が主要となる。このため、試料の表面位置の誤差は脂質割合が少ないほど大きく影響することが、脂質割合20%未満において理論値との誤差が大きくなった要因と考えられる。誘電正接については、脂質割合の変化に対する変化幅が小さいため誤差の影響が大きくなる。従って、比誘電率、誘電正接の測定精度をより向上させるためには、上記(1)、(2)に示した原因や、試料の厚み、アンテナの位置などに誤差がなく再現性の高い方法で測定すればよい。   Although there is a quantitative agreement between the theoretical values and the experimental results for both the dielectric constant and the dielectric loss tangent, the causes of error in the theoretical values and the experimental results are as follows: (1) The proportion of lipid was not accurate at the time of sample preparation (2) It is conceivable that there was an error in the relative dielectric constant and dielectric loss tangent of the lipid and red meat used in the simulation and experiment. In addition, the relative permittivity increases as the volume ratio of lipid decreases, but the greater the relative permittivity of the sample, the greater the difference in permittivity at the interface with air, so reflection at the surface is the main. For this reason, it is considered that the error in the surface position of the sample has a greater effect as the lipid ratio is smaller, which is the reason why the error from the theoretical value increases when the lipid ratio is less than 20%. With respect to the dielectric loss tangent, the influence of the error increases because the change width with respect to the change in the lipid ratio is small. Therefore, in order to further improve the measurement accuracy of relative permittivity and dielectric loss tangent, there is no error in the causes shown in the above (1) and (2), the thickness of the sample, the position of the antenna, etc., and a highly reproducible method. You can measure with.

なお、この「第2の検討内容」において行われたシミュレーションでは、特に記載されなかった条件については、先の「第1の検討内容」において行われたシミュレーションと同じ条件を用いた。   In the simulation performed in the “second examination content”, the same conditions as those in the previous “first examination content” were used for the conditions that were not particularly described.

以上では、マイクロ波を発信及び受信するアンテナから一定の距離に板状の試料を設置し、試料背面に金属板をあてて短絡状態とした系において、試料の比誘電率、誘電正接が変化した場合の反射係数の変動を反射複素平面チャートとして理論的に導き、このチャートを用いて測定された反射係数から被測定物の比誘電率及び誘電正接を求める方法を導出し、さらにこの方法の妥当性を確認するため実験を行った結果、理論値と実験値が定量的な一致を示した。この反射複素平面チャートを用いた方法は、比誘電率と誘電正接を同時に測定・解析できる簡便な方法として有用である。よって、脂質と脂質以外の成分からなる混合物において各成分単体での比誘電率、誘電正接が既知であれば、この反射複素平面チャートを用いた方法によって混合物の反射係数から脂質の体積割合を求めることが可能である。   In the above, the relative permittivity and dielectric loss tangent of the sample changed in a system in which a plate-like sample was placed at a fixed distance from the antenna for transmitting and receiving microwaves, and a metal plate was applied to the back of the sample to make a short circuit. In this case, the reflection coefficient fluctuation is theoretically derived as a reflection complex plane chart, and a method for calculating the relative permittivity and dielectric loss tangent of the object to be measured is derived from the reflection coefficient measured using this chart. As a result of experiments to confirm the properties, the theoretical values and the experimental values showed a quantitative agreement. The method using the reflection complex plane chart is useful as a simple method capable of simultaneously measuring and analyzing the relative dielectric constant and the dielectric loss tangent. Therefore, if the relative permittivity and dielectric loss tangent of each component alone are known in a mixture composed of lipid and components other than lipid, the volume ratio of lipid is obtained from the reflection coefficient of the mixture by a method using this reflection complex plane chart. It is possible.

(実施の形態)
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
(Embodiment)
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図12は、本発明の実施の形態における脂質含有率測定方法を示すフローチャートである。   FIG. 12 is a flowchart showing a lipid content measurement method according to the embodiment of the present invention.

まず、ステップS1では、マイクロ波(マイクロ波の周波数を有する電磁波)を試料(被測定物)に照射し、その反射波を検出し、反射係数の振幅及び位相を測定する。この場合、試料背面に金属板(反射板)をおいて短絡状態にして測定することが好ましい。また、試料は、厚みが所定値(例えば、1mm以上4mm未満の所定値)の薄い板状の形状にしておくことが好ましい。照射するマイクロ波の周波数は、例えば、8〜12GHz程度である。   First, in step S1, the sample (measurement object) is irradiated with microwaves (electromagnetic waves having a frequency of microwaves), the reflected waves are detected, and the amplitude and phase of the reflection coefficient are measured. In this case, it is preferable to perform measurement by placing a metal plate (reflecting plate) on the back of the sample and short-circuiting. Moreover, it is preferable that the sample has a thin plate shape with a predetermined thickness (for example, a predetermined value of 1 mm or more and less than 4 mm). The frequency of the microwave to irradiate is about 8-12 GHz, for example.

次に、ステップS2では、ステップS1により測定される反射係数の振幅及び位相に基づいて反射係数の実数部及び虚数部を算出する。この算出方法については、前述の「第2の検討内容」において説明した通りである。   Next, in step S2, the real part and imaginary part of the reflection coefficient are calculated based on the amplitude and phase of the reflection coefficient measured in step S1. This calculation method is as described in the above-mentioned “second examination content”.

次に、ステップS3では、ステップS2により算出される反射係数の実数部及び虚数部に基づいて、試料の比誘電率を求める。ここでは、反射係数の実数部及び虚数部から演算により比誘電率を求めるようにしてもよい。あるいは、予め図6に示すような反射複素平面チャートを作成しておき、その反射複素平面チャートに、ステップS2により算出され反射係数の実数部及び虚数部をプロットした位置の、比誘電率の目盛りをよみとることにより、比誘電率の値を求めてもよい。この場合、反射複素平面チャートには比誘電率の目盛りが記載されてあればよく、誘電正接の目盛りは無くてもよい。   Next, in step S3, the relative dielectric constant of the sample is obtained based on the real part and imaginary part of the reflection coefficient calculated in step S2. Here, the relative permittivity may be obtained by calculation from the real part and the imaginary part of the reflection coefficient. Alternatively, a reflection complex plane chart as shown in FIG. 6 is prepared in advance, and the relative permittivity scale at the position where the real part and imaginary part of the reflection coefficient calculated in step S2 are plotted on the reflection complex plane chart. The relative dielectric constant value may be obtained by reading In this case, it is only necessary that the relative permittivity scale is described in the reflection complex plane chart, and there is no need for the dielectric loss tangent scale.

次に、ステップS4では、ステップS3により求められた比誘電率に基づいて試料に含まれる脂質の体積割合(脂質含有率)を求める。ここでは、例えば図10の理論値を算出する場合と同様、先の(数11)の式(20)を用いて脂質の体積割合を求めればよい。   Next, in step S4, the volume ratio (lipid content ratio) of lipid contained in the sample is obtained based on the relative dielectric constant obtained in step S3. Here, for example, as in the case of calculating the theoretical value of FIG. 10, the volume ratio of the lipid may be obtained by using the above equation (20) (20).

なお、試料の誘電正接の測定誤差を小さくできる場合には、ステップS3において、比誘電率に代えて、誘電正接を求めるようにし、ステップS4において誘電正接に基づいて脂質の体積割合を求めるようにしてもよい。あるいは、ステップS3において、比誘電率と誘電正接を求めるようにし、ステップS4において比誘電率と誘電正接とに基づいて脂質の体積割合を求めるようにしてもよい。この場合、比誘電率に基づいて求められる脂質の体積割合と、誘電正接に基づいて求められる脂質の体積割合との平均値を、求めるべき脂質の体積割合とすればよい。いずれにしても、誘電正接を求める場合には、前述の比誘電率を求める場合と同様、反射係数の実数部及び虚数部から演算により求めるようにしてもよいし、予め図6に示すような反射複素平面チャートを作成しておいて、反射係数の実数部及び虚数部をプロットした位置の、誘電正接の目盛りをよみとることにより、誘電正接の値を求めるようにしてもよい。反射複素平面チャートには、比誘電率及び誘電正接のうち求めるべき対象の目盛りが記載されてあればよい。また、誘電正接に基づいて試料に含まれる脂質の体積割合を求める場合には、例えば図11の理論値を算出する場合と同様、先の(数11)の式(21)を用いて脂質の体積割合を求めればよい。   If the measurement error of the dielectric loss tangent of the sample can be reduced, the dielectric loss tangent is obtained instead of the relative dielectric constant in step S3, and the volume fraction of lipid is obtained based on the dielectric loss tangent in step S4. May be. Alternatively, the relative permittivity and the dielectric loss tangent may be obtained in step S3, and the lipid volume ratio may be obtained based on the relative dielectric constant and the dielectric loss tangent in step S4. In this case, an average value of the volume ratio of the lipid determined based on the relative dielectric constant and the volume ratio of the lipid determined based on the dielectric loss tangent may be set as the volume ratio of the lipid to be determined. In any case, when the dielectric loss tangent is obtained, it may be obtained by calculation from the real part and the imaginary part of the reflection coefficient as in the case of obtaining the above-mentioned relative dielectric constant, or as shown in FIG. A value of the dielectric loss tangent may be obtained by preparing a reflection complex plane chart and reading the scale of the dielectric loss tangent at the position where the real part and the imaginary part of the reflection coefficient are plotted. The reflection complex plane chart only needs to describe the scale of the target to be obtained among the relative permittivity and the dielectric loss tangent. Further, when the volume ratio of the lipid contained in the sample is obtained based on the dielectric loss tangent, for example, as in the case of calculating the theoretical value of FIG. What is necessary is just to obtain | require a volume ratio.

なお、反射複素平面チャートを用いない場合には、ステップS2からステップS4まで全て演算により行われ、ステップS1で測定された反射係数の振幅及び位相に基づいて試料の比誘電率及び/又は誘電正接が求められ、続いて脂質の体積割合が求められる。   When the reflection complex plane chart is not used, all of steps S2 to S4 are performed by calculation, and based on the amplitude and phase of the reflection coefficient measured in step S1, the relative permittivity and / or the dielectric loss tangent of the sample. Is determined, followed by the volume fraction of lipid.

また、以上では、反射係数の振幅及び位相を測定し、その測定値に基づいて試料の比誘電率及び/又は誘電正接を求めるようにしたが、同様にして透過係数(照射したマイクロ波(入射波)に対して試料を通過した透過波の比を表す値)の振幅及び位相を測定し、その測定値に基づいて試料の比誘電率及び/又は誘電正接を求めるようにしてもよい。   In the above description, the amplitude and phase of the reflection coefficient are measured, and the relative permittivity and / or dielectric loss tangent of the sample are obtained based on the measured values. Similarly, the transmission coefficient (irradiated microwave (incident The relative dielectric constant and / or dielectric loss tangent of the sample may be obtained based on the measured value.

以上のように、試料(被測定物)にマイクロ波を照射して測定される反射係数または透過係数の振幅及び位相に基づいて試料の比誘電率及び/又は誘電正接を求め、その比誘電率及び/又は誘電正接に基づいて試料に含まれる脂質の含有率を求めることにより、脂質含有率の測定精度を向上でき、正確な測定が可能になる。   As described above, the relative permittivity and / or dielectric loss tangent of the sample is obtained based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by irradiating the sample (measurement object) with microwaves, and the relative permittivity thereof In addition, by determining the lipid content contained in the sample based on the dielectric loss tangent, the measurement accuracy of the lipid content can be improved, and accurate measurement can be performed.

次に、図13は、本発明の実施の形態における脂質含有率測定装置の構成を示すブロック図である。   Next, FIG. 13 is a block diagram showing the configuration of the lipid content measurement apparatus according to the embodiment of the present invention.

この脂質含有率測定装置は、マイクロ波発生部11、発信用のアンテナ12a、受信用のアンテナ12b、測定部13、脂質含有率算出部14及び表示部15を備えている。マイクロ波発生部11は、所望の周波数のマイクロ波を発生し、発生されたマイクロ波は測定部13を介して発信用アンテナ12aから発信され、試料(図示せず)に照射される。試料からの反射波または試料を通過した透過波は受信用アンテナ12bで検出されて測定部13へ入力される。   The lipid content measurement apparatus includes a microwave generation unit 11, a transmission antenna 12a, a reception antenna 12b, a measurement unit 13, a lipid content calculation unit 14, and a display unit 15. The microwave generating unit 11 generates a microwave having a desired frequency, and the generated microwave is transmitted from the transmitting antenna 12a via the measuring unit 13 and irradiated to a sample (not shown). The reflected wave from the sample or the transmitted wave that has passed through the sample is detected by the receiving antenna 12b and input to the measuring unit 13.

なお、反射波を検出する場合には、図5の実験装置のように、発信用アンテナ12aと受信用アンテナ12bとを1つのアンテナで兼用した構成とした方がコンパクトになる。また、透過波を検出する場合には、発信用アンテナ12aと受信用アンテナ12bとを対向して配置し、その間に試料を配置して、発信用アンテナ12aから試料へ向けてマイクロ波を発信し、試料を通過した透過波を受信用アンテナ12bで受信するように構成すればよい。   In the case of detecting the reflected wave, it is more compact to have a configuration in which the transmitting antenna 12a and the receiving antenna 12b are combined with one antenna as in the experimental apparatus of FIG. When transmitting a transmitted wave, the transmitting antenna 12a and the receiving antenna 12b are arranged facing each other, a sample is placed between them, and a microwave is transmitted from the transmitting antenna 12a toward the sample. The transmitted wave that has passed through the sample may be received by the receiving antenna 12b.

測定部13は、ネットワーアナライザの機能を有しており、アンテナ12aから発信される電磁波(マイクロ波)とアンテナ12bで受信される電磁波とに基づいて、反射係数または透過係数の振幅及び位相を求めて測定値とし、その測定値を脂質含有率算出部14へ出力する。   The measurement unit 13 has a function of a network analyzer, and based on the electromagnetic wave (microwave) transmitted from the antenna 12a and the electromagnetic wave received by the antenna 12b, the amplitude and phase of the reflection coefficient or transmission coefficient are determined. The measured value is obtained and output to the lipid content calculation unit 14.

脂質含有率算出部14は、マイコン等の演算装置で構成され、例えば前述のステップS2〜S4の処理を行い、それにより求められた脂質の体積割合を表示部15へ出力するようにプログラムされている。したがって、脂質含有率算出部14では、測定部13により測定される反射係数または透過係数の振幅及び位相に基づいて、試料の比誘電率及び/又は誘電正接を求める処理が行われ、続いて、求められた比誘電率及び/又は誘電正接に基づいて試料に含まれる脂質の体積割合を求める処理が行われる。ここで、前述の反射複素平面チャートを用いる場合には、反射複素平面チャートのデータを例えばテーブルとして上記演算装置内のメモリに記憶しておき、反射係数または透過係数の振幅及び位相に基づいて反射係数または透過係数の実数部及び虚数部を算出し、算出した実数部及び虚数部に対応する誘電率及び/又は誘電正接の目盛りを上記テーブルから読み取ることにより試料の比誘電率及び/又は誘電正接を求めるようにプログラムしておけばよい。   The lipid content calculation unit 14 is configured by an arithmetic device such as a microcomputer, and is programmed to perform, for example, the above-described steps S2 to S4 and output the volume ratio of the lipid determined thereby to the display unit 15. Yes. Therefore, the lipid content calculation unit 14 performs processing for obtaining the relative dielectric constant and / or dielectric loss tangent of the sample based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by the measurement unit 13, and subsequently, Based on the obtained relative dielectric constant and / or dielectric loss tangent, processing for obtaining a volume ratio of lipid contained in the sample is performed. Here, when using the above-described reflection complex plane chart, the data of the reflection complex plane chart is stored as a table in a memory in the arithmetic unit, for example, and reflected based on the amplitude and phase of the reflection coefficient or transmission coefficient. The real part and imaginary part of the coefficient or transmission coefficient are calculated, and the relative permittivity and / or dielectric loss tangent of the sample are read by reading the scale of the dielectric constant and / or dielectric loss tangent corresponding to the calculated real part and imaginary part from the table. You can program it to ask for.

表示部15は、例えば液晶ディスプレイ等で構成され、脂質含有率算出部14により求められた脂質の体積割合を表示するようになっている。   The display unit 15 is configured by a liquid crystal display, for example, and displays the lipid volume ratio obtained by the lipid content calculation unit 14.

この構成によれば、試料を所定位置(前述のように反射波を検出して反射係数を測定する場合と透過波を検出して透過係数を測定する場合とで試料とアンテナとの位置関係が異なる)にセットして、例えばスタートボタン(図示せず)を押せば、マイクロ波発生部11で発生されるマイクロ波が測定部13を介して発信用アンテナ12aから発信され、測定部13によって反射係数または透過係数の振幅及び位相が測定され、その測定値に基づいて脂質含有率算出部14では試料に含まれる脂質の含有率(脂質の体積割合)が算出され、その算出された脂質の含有率が表示部15に表示される。したがって、前述の脂質含有率測定方法を自動的に実施することができ、脂質含有率の測定を容易に行うことが可能になる。   According to this configuration, the positional relationship between the sample and the antenna is determined at a predetermined position (when the reflected wave is detected and the reflection coefficient is measured as described above, and when the transmission wave is detected and the transmission coefficient is measured). If the start button (not shown) is pressed, for example, the microwave generated by the microwave generation unit 11 is transmitted from the transmission antenna 12a via the measurement unit 13 and reflected by the measurement unit 13. The amplitude or phase of the coefficient or permeability coefficient is measured, and the lipid content calculation unit 14 calculates the lipid content (lipid volume ratio) contained in the sample based on the measured values, and the calculated lipid content The rate is displayed on the display unit 15. Therefore, the lipid content measurement method described above can be automatically performed, and the lipid content can be easily measured.

本発明は、食品等に含まれる脂質含有率を測定するための脂質含有率測定方法及び装置として有用である。   The present invention is useful as a lipid content measurement method and apparatus for measuring the lipid content contained in foods and the like.

試料の後方が無限長線路状態の場合に試料の前方から入射されるマイクロ波の伝搬状態を示す図である。It is a figure which shows the propagation state of the microwave which injects from the front of a sample when the back of a sample is an infinite length line state. 試料の背面が短絡状態の場合に試料の前方から入射されるマイクロ波の伝搬状態を示す図である。It is a figure which shows the propagation state of the microwave which injects from the front of a sample, when the back surface of a sample is a short circuit state. (a)は、シミュレーションにより求められた無限長線路状態の場合の試料に含まれる脂質の体積割合に対する反射振幅を示す図であり、(b)は、実験により求められた無限長線路状態の場合の試料に含まれる脂質の体積割合に対する反射振幅を示す図である。(A) is a figure which shows the reflection amplitude with respect to the volume ratio of the lipid contained in the sample in the case of the infinite length line state calculated | required by simulation, (b) is the case of the infinite length line state calculated | required by experiment It is a figure which shows the reflection amplitude with respect to the volume ratio of the lipid contained in the sample of. (a)は、シミュレーションにより求められた短絡状態の場合の試料に含まれる脂質の体積割合に対する反射振幅を示す図であり、(b)は、実験により求められた短絡状態の場合の試料に含まれる脂質の体積割合に対する反射振幅を示す図である。(A) is a figure which shows the reflection amplitude with respect to the volume ratio of the lipid contained in the sample in the case of the short circuit state calculated | required by simulation, (b) is contained in the sample in the case of the short circuit state calculated | required by experiment. It is a figure which shows the reflection amplitude with respect to the volume ratio of the lipid to be. 実験装置の構成を示す図である。It is a figure which shows the structure of an experimental apparatus. 試料の厚みが2mmの場合の反射係数の実数部及び虚数部と試料の比誘電率及び誘電正接との関係を示す反射複素平面チャートである。6 is a reflection complex plane chart showing the relationship between the real part and imaginary part of the reflection coefficient when the thickness of the sample is 2 mm and the relative dielectric constant and dielectric loss tangent of the sample. 試料に含まれる脂質の体積割合に対する反射振幅(実験値及び理論値)を示す図である。It is a figure which shows the reflection amplitude (experimental value and theoretical value) with respect to the volume ratio of the lipid contained in a sample. 試料に含まれる脂質の体積割合に対する反射位相(実験値及び理論値)を示す図である。It is a figure which shows the reflection phase (experimental value and theoretical value) with respect to the volume ratio of the lipid contained in a sample. 図6の反射複素平面チャートに実験値及び理論値をプロットした図である。It is the figure which plotted the experimental value and the theoretical value on the reflective complex plane chart of FIG. 試料に含まれる脂質の体積割合に対する比誘電率(実験値及び理論値)を示す図である。It is a figure which shows the dielectric constant (experimental value and theoretical value) with respect to the volume ratio of the lipid contained in a sample. 試料に含まれる脂質の体積割合に対する誘電正接(実験値及び理論値)を示す図である。It is a figure which shows the dielectric loss tangent (experimental value and theoretical value) with respect to the volume ratio of the lipid contained in a sample. 本発明の実施の形態における脂質含有率測定方法を示すフローチャートである。It is a flowchart which shows the lipid content rate measuring method in embodiment of this invention. 本発明の実施の形態における脂質含有率測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the lipid content rate measuring apparatus in embodiment of this invention.

符号の説明Explanation of symbols

11 マイクロ波発生部
12a 発信用のアンテナ
12b 受信用のアンテナ
13 測定部
14 脂質含有率算出部
15 表示部
11 Microwave generator 12a Transmitting antenna 12b Receiving antenna 13 Measuring unit 14 Lipid content calculating unit 15 Display unit

Claims (4)

マイクロ波の周波数を有する電磁波を被測定物に照射し、その反射波または透過波を検出し、この検出電磁波の前記照射電磁波に対する反射係数または透過係数の振幅及び位相を測定する第1のステップと、
前記第1のステップにより測定される前記反射係数または透過係数の振幅及び位相に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第2のステップと、
前記第2のステップにより求められる前記比誘電率及び/又は誘電正接に基づいて前記被測定物に含まれる脂質の含有率を求める第3のステップとを有し、
前記第2のステップは、
前記第1のステップにより測定される前記反射係数または透過係数の振幅及び位相に基づいて前記反射係数または透過係数の実数部及び虚数部を算出する第4のステップと、
前記第4のステップにより算出される前記反射係数または透過係数の実数部及び虚数部に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第5のステップとを有する脂質含有率測定方法。
A first step of irradiating an object to be measured with an electromagnetic wave having a microwave frequency, detecting a reflected wave or a transmitted wave, and measuring an amplitude and a phase of a reflection coefficient or a transmission coefficient of the detected electromagnetic wave with respect to the irradiated electromagnetic wave; ,
A second step of determining a relative permittivity and / or a dielectric loss tangent of the object to be measured based on the amplitude and phase of the reflection coefficient or transmission coefficient measured in the first step;
Have a third step of obtaining a content of lipids included in the object to be measured based on the relative dielectric constant and / or dielectric loss tangent determined by the second step,
The second step includes
A fourth step of calculating a real part and an imaginary part of the reflection coefficient or transmission coefficient based on the amplitude and phase of the reflection coefficient or transmission coefficient measured in the first step;
And a fifth step of obtaining a relative dielectric constant and / or a dielectric loss tangent of the object to be measured based on a real part and an imaginary part of the reflection coefficient or transmission coefficient calculated in the fourth step. Measuring method.
前記第5のステップは、
前記反射係数または透過係数の実数部及び虚数部の一方を縦軸とし他方を横軸とする複素平面に、前記実数部及び虚数部に対して理論的に算出された比誘電率及び/又は誘電正接の目盛りが記入されている予め準備されたチャートを用いて、前記第4のステップにより算出される前記反射係数または透過係数の実数部及び虚数部に対応する前記比誘電率及び/又は誘電正接の目盛りを読み取ることにより、前記被測定物の比誘電率及び/又は誘電正接を求める請求項1に記載の脂質含有率測定方法。
The fifth step includes
The relative permittivity and / or dielectric calculated theoretically for the real part and the imaginary part on a complex plane with one of the real part and imaginary part of the reflection coefficient or transmission coefficient as the vertical axis and the other as the horizontal axis The relative permittivity and / or the dielectric tangent corresponding to the real part and the imaginary part of the reflection coefficient or transmission coefficient calculated by the fourth step using a chart prepared in advance with a tangent scale. The lipid content measurement method according to claim 1 , wherein a relative dielectric constant and / or a dielectric loss tangent of the object to be measured is obtained by reading the scale.
被測定物に電磁波を照射するための発信用アンテナと、
前記被測定物から反射される反射波または前記被測定物を透過した透過波を検出するための受信用アンテナと、
前記発信用アンテナから照射された電磁波に対する前記受信用アンテナにより検出される検出電磁波の比を示す反射係数または透過係数の振幅及び位相を測定する測定部と、
前記測定部により測定される前記反射係数または透過係数の振幅及び位相に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第1の処理と、前記第1の処理により求められる前記比誘電率及び/又は誘電正接に基づいて前記被測定物に含まれる脂質の含有率を求める第2の処理とを行う脂質含有率算出部とを備え
前記脂質含有率算出部は、前記第1の処理が、
前記測定部により測定される前記反射係数または透過係数の振幅及び位相に基づいて前記反射係数または透過係数の実数部及び虚数部を算出する第3の処理と、
前記第3の処理により算出される前記反射係数または透過係数の実数部及び虚数部に基づいて、前記被測定物の比誘電率及び/又は誘電正接を求める第4の処理とを有するように構成された脂質含有率測定装置。
A transmitting antenna for irradiating the object to be measured with electromagnetic waves;
A receiving antenna for detecting a reflected wave reflected from the device under test or a transmitted wave transmitted through the device under test;
A measuring unit for measuring the amplitude and phase of a reflection coefficient or a transmission coefficient indicating a ratio of a detected electromagnetic wave detected by the receiving antenna to an electromagnetic wave irradiated from the transmitting antenna;
A first process for determining a relative permittivity and / or a dielectric loss tangent of the object to be measured based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by the measurement unit, and the first process. A lipid content calculation unit that performs a second process for determining the content of lipid contained in the object to be measured based on the relative dielectric constant and / or the dielectric loss tangent ,
In the lipid content calculation unit, the first process is:
A third process for calculating a real part and an imaginary part of the reflection coefficient or transmission coefficient based on the amplitude and phase of the reflection coefficient or transmission coefficient measured by the measurement unit;
And a fourth process for obtaining a relative dielectric constant and / or a dielectric loss tangent of the object to be measured based on a real part and an imaginary part of the reflection coefficient or transmission coefficient calculated by the third process. lipid content measuring device.
前記脂質含有率算出部は、前記第4の処理が、
前記反射係数または透過係数の実数部及び虚数部の一方を縦軸とし他方を横軸とする複素平面に、前記実数部及び虚数部に対して理論的に算出された比誘電率及び/又は誘電正接の目盛りが記入されている予め準備されたチャートを用いて、前記第3処理により算出される前記反射係数または透過係数の実数部及び虚数部に対応する前記比誘電率及び/又は誘電正接の目盛りを読み取ることにより、前記被測定物の比誘電率及び/又は誘電正接を求めるように構成された請求項3に記載の脂質含有率測定装置。
In the lipid content calculation unit, the fourth process is:
The relative permittivity and / or dielectric calculated theoretically for the real part and the imaginary part on a complex plane with one of the real part and imaginary part of the reflection coefficient or transmission coefficient as the vertical axis and the other as the horizontal axis using pre-prepared chart scale tangent is entered, the dielectric constant and / or dissipation factor corresponding to the real and imaginary parts of the reflection coefficient or transmission coefficient is calculated by the third process The lipid content measurement apparatus according to claim 3 , configured to obtain a relative dielectric constant and / or a dielectric loss tangent of the object to be measured by reading the scale of the measurement object.
JP2006096490A 2006-03-31 2006-03-31 Method and apparatus for measuring lipid content Active JP5008330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096490A JP5008330B2 (en) 2006-03-31 2006-03-31 Method and apparatus for measuring lipid content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096490A JP5008330B2 (en) 2006-03-31 2006-03-31 Method and apparatus for measuring lipid content

Publications (2)

Publication Number Publication Date
JP2007271412A JP2007271412A (en) 2007-10-18
JP5008330B2 true JP5008330B2 (en) 2012-08-22

Family

ID=38674369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096490A Active JP5008330B2 (en) 2006-03-31 2006-03-31 Method and apparatus for measuring lipid content

Country Status (1)

Country Link
JP (1) JP5008330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798611A (en) * 2011-05-26 2012-11-28 中国科学院上海微系统与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197461B2 (en) * 2009-03-27 2013-05-15 三井造船株式会社 Dielectric constant calculation apparatus and dielectric constant calculation method in object
CN102798764B (en) * 2011-05-26 2014-09-10 中国科学院上海微系统与信息技术研究所 Method for measuring medium loss by using phase change of electromagnetic evanescent wave
US10564123B2 (en) 2014-05-25 2020-02-18 United Arab Emirates University Bioreactor system and method of operating same for cellular composition identification and quantification
US10436772B2 (en) 2014-08-25 2019-10-08 United Arab Emirates University Method and system for counting white blood cells electrically
WO2015181702A1 (en) * 2014-05-25 2015-12-03 United Arab Emirates University Method and system for characterization of microalgal lipid content
JP2019152581A (en) * 2018-03-05 2019-09-12 名古屋市 Measurement device and measurement method
GB2589094A (en) * 2019-11-15 2021-05-26 Univ Liverpool John Moores A sensor
WO2021214917A1 (en) * 2020-04-22 2021-10-28 日本電信電話株式会社 Object permittivity measurement device and object thickness measurement device
CN117074437B (en) * 2023-10-11 2024-01-12 青岛金诺德科技有限公司 Nondestructive testing method and application thereof in recovery of lithium battery of new energy automobile

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129999A (en) * 1992-10-15 1994-05-13 Miyake Denshi Kogyo Kk Continuous measuring instrument for moisture content
JPH10260133A (en) * 1997-03-21 1998-09-29 Nippon Telegr & Teleph Corp <Ntt> Method for calculating variation of complex permittivity of surface layer
JPH10332606A (en) * 1997-05-30 1998-12-18 Ikuo Arai Radio-wave concentration measuring apparatus
JP3794848B2 (en) * 1998-12-28 2006-07-12 三井化学株式会社 Method and apparatus for measuring dielectric constant in millimeter wave band
CA2500191A1 (en) * 2001-05-31 2002-12-05 Intelscan Orbylgjutaekni Ehf Apparatus and method for microwave determination of at least one physical parameter of a substance
JP3680113B2 (en) * 2001-09-06 2005-08-10 独立行政法人電子航法研究所 Dielectric constant measuring method and dielectric constant measuring apparatus
JP2003329613A (en) * 2002-05-15 2003-11-19 Shinku Rei:Kk Physical property measuring apparatus
JP4157387B2 (en) * 2003-01-27 2008-10-01 京セラ株式会社 Electrical property measurement method
JP4247992B2 (en) * 2003-12-12 2009-04-02 京セラ株式会社 Semi-coaxial resonator type measuring jig and method for measuring electrical properties of dielectric thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798611A (en) * 2011-05-26 2012-11-28 中国科学院上海微系统与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance
CN102798611B (en) * 2011-05-26 2014-07-30 中国科学院上海微系统与信息技术研究所 Method for measuring dielectric loss by utilizing pulse response time of electromagnetic evanescent wave irradiance

Also Published As

Publication number Publication date
JP2007271412A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5008330B2 (en) Method and apparatus for measuring lipid content
Turgul et al. Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing
Mobashsher et al. Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection
Casu et al. A COTS-based microwave imaging system for breast-cancer detection
US9297770B2 (en) Systems and methods for non-destructively measuring calorie contents of food items
Ostadrahimi et al. Analysis of incident field modeling and incident/scattered field calibration techniques in microwave tomography
Hofmann et al. A novel approach to non-invasive blood glucose measurement based on RF transmission
CN111031895B (en) Method for estimating a fat content fraction of a subject
Akıncı et al. Qualitative microwave imaging with scattering parameters measurements
Zajicek et al. Broadband measurement of complex permittivity using reflection method and coaxial probes
EA001007B1 (en) Improving radio frequency spectral analysis for in vitro or in vivo environments
US20120083683A1 (en) Diagnosis apparatus
Laviada et al. Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: Theory and validation
US20170351836A1 (en) Method and system for estimating fractional fat content of an object
JP6871195B2 (en) Component concentration measuring device and component concentration measuring method
JP6849630B2 (en) Component concentration measuring device and component concentration measuring method
US20210290074A1 (en) Mobile ultrawideband radar for monitoring thoracic fluid levels and cardio-respiratory function
Nguyen et al. High frequency breast imaging: Experimental analysis of tissue phantoms
Higashiyama et al. Estimation of aggregate size of red blood cell by introducing reference power spectrum measured for hemispherical ultrafine wire
Janani et al. Electromagnetic method for steatotic liver detection using contrast in effective dispersive permittivity
WO2000009996A9 (en) Improving radio frequency spectral analysis for in-vitro or in-vivo environments
Rajamani et al. Differences in quality factor estimation in frequency and time domain
Curtis Factors affecting image quality in near-field ultra-wideband radar imaging for biomedical applications
Reinecke et al. Open-ended coaxial probe for the quantification of edema in human brain tissue
Sunheem et al. A microwave transmission instrument for rapid dry rubber content determination in natural rubber latex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5008330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250