[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5007678B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5007678B2
JP5007678B2 JP2008022015A JP2008022015A JP5007678B2 JP 5007678 B2 JP5007678 B2 JP 5007678B2 JP 2008022015 A JP2008022015 A JP 2008022015A JP 2008022015 A JP2008022015 A JP 2008022015A JP 5007678 B2 JP5007678 B2 JP 5007678B2
Authority
JP
Japan
Prior art keywords
metal plate
forming
layer
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008022015A
Other languages
Japanese (ja)
Other versions
JP2009182276A (en
Inventor
進 安藤
博和 市原
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008022015A priority Critical patent/JP5007678B2/en
Publication of JP2009182276A publication Critical patent/JP2009182276A/en
Application granted granted Critical
Publication of JP5007678B2 publication Critical patent/JP5007678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、薄型で部品配置の自由度が大きく、特性に加え製造の精度や効率も優れた多端子型の固体電解コンデンサ及びその製造方法に関するものである。   The present invention relates to a multi-terminal solid electrolytic capacitor that is thin and has a high degree of freedom in component arrangement, and has excellent manufacturing accuracy and efficiency in addition to characteristics, and a manufacturing method thereof.

現代では、さまざまな電子回路の分野において、多様なコンデンサが用いられ、その一種として、等価直列抵抗(ESR)が小さく周波数特性に優れた固体電解コンデンサが広く利用されている。特許文献1及び2は、従来の固体電解コンデンサとその製造方法の一例を示すもので、この例は、陽極体となる金属板に設けた凹部に固体電解質層などを設け個片に切断したもの二つで陰極体をサンドイッチするとともに陽極端子を取り付けるものである。
特開平3−284818号 特開平4−5813号 特開平2−301118号
At present, various capacitors are used in various electronic circuit fields, and as one of them, solid electrolytic capacitors having a small equivalent series resistance (ESR) and excellent frequency characteristics are widely used. Patent Documents 1 and 2 show an example of a conventional solid electrolytic capacitor and a manufacturing method thereof. In this example, a solid electrolyte layer or the like is provided in a recess provided in a metal plate serving as an anode body and is cut into individual pieces. Two cathode bodies are sandwiched and an anode terminal is attached.
JP-A-3-284818 JP-A-4-5813 JP-A-2-301118

しかし、近年、パーソナルコンピュータなどデジタル機器の分野においては、低ESL(等価直列インダクタンス)など特性改善の点で多端子型の固体電解コンデンサが求められるとともに、機器の小型化や、高速動作に対応した優れた過渡応答性の要請ともあいまって、より薄型で部品配置の自由度に優れた固体電解コンデンサが求められている。さらに、増大する需要への対応やコストなどの面から、製造効率をより一層改善する要請も大きい。   However, in recent years, in the field of digital equipment such as personal computers, multi-terminal type solid electrolytic capacitors have been demanded from the viewpoint of improving characteristics such as low ESL (equivalent series inductance), and the equipment has been adapted to downsizing and high speed operation. Combined with the demand for excellent transient response, there is a need for a solid electrolytic capacitor that is thinner and has a high degree of freedom in component placement. Furthermore, there is a great demand for further improvement in production efficiency from the viewpoint of meeting increasing demand and costs.

この点、上記のような従来の固体電解コンデンサは、個片二つで陰極体をサンドイッチしたり陽極端子を取り付ける構造であり、製造効率の改善やサイズ上の薄型化にも限界があった。また、上記のような従来の固体電解コンデンサでは、サイズや形状の制約から、電流供給対象となるLSIとは水平方向のずれた位置で基板へ実装することが必須となることから過渡応答性の改善に限界があり、この点からも、部品配置における自由度の増大が希求されていた。   In this regard, the conventional solid electrolytic capacitor as described above has a structure in which a cathode body is sandwiched between two pieces and an anode terminal is attached, and there is a limit to improvement in manufacturing efficiency and reduction in size. Also, in the conventional solid electrolytic capacitor as described above, due to size and shape restrictions, it is essential to mount it on the board at a position shifted in the horizontal direction from the LSI that is the current supply target. There is a limit to the improvement, and from this point, an increase in the degree of freedom in component arrangement has been desired.

また、基板上に、平面状の固体電解質層や、開口を設けた絶縁層などを積層して各電極を引き出す固体電解コンデンサの製造方法において、基板を切込みにより櫛歯状の行や列に分割し製造を効率化する提案は存在するが(例えば、特許文献3参照。特に第1図(B))、一端のみがつながった状態の基板は不安定で加工の精度や効率に限界があった。   In addition, in a method of manufacturing a solid electrolytic capacitor in which a flat solid electrolyte layer or an insulating layer having openings is laminated on a substrate to draw out each electrode, the substrate is divided into comb-like rows and columns by cutting. Although there are proposals to improve the manufacturing efficiency (for example, refer to Patent Document 3, especially FIG. 1 (B)), the substrate in which only one end is connected is unstable and the accuracy and efficiency of processing are limited. .

本発明は、上記のような従来の問題点を解決するもので、その目的は、薄型かつ小型で部品配置の自由度が大きく、特性に加え製造の精度や効率も優れた多端子型の固体電解コンデンサ及びその製造方法を提供することである。   The present invention solves the above-described conventional problems, and its purpose is a multi-terminal solid that is thin and small, has a high degree of freedom in component placement, and has excellent manufacturing accuracy and efficiency in addition to characteristics. An electrolytic capacitor and a manufacturing method thereof are provided.

上記の目的を達成するため、本発明の一態様である固体電解コンデンサは、弁金属からなる金属板の一面に補強層、反対面には保護層を形成し、前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、前記穴の少なくとも内面に金属めっき処理を施し、隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させ、前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成し、前記凹部内の前記酸化皮膜層の上に固体電解質層を形成し、前記固体電解質層の上に陰極端子部を形成し、前記溝状の穴の部分で前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとしたことを特徴とする。   In order to achieve the above object, a solid electrolytic capacitor according to an aspect of the present invention is formed by forming a reinforcing layer on one surface of a metal plate made of a valve metal and forming a protective layer on the opposite surface, and cutting the surface of the protective layer. By forming a plurality of groove-shaped holes that penetrate the metal plate but do not penetrate the reinforcing layer, a metal plating process is applied to at least the inner surface of the hole, and a predetermined surface is formed on the surface of the metal plate between the adjacent holes. By exposing the ingot of the metal plate forming the anode part on the inner surface of the recess by forming recesses at intervals, the ingot of the inner surface of the recess is expanded, and an oxide film layer is formed on the surface, A solid electrolyte layer is formed on the oxide film layer in the recess, a cathode terminal is formed on the solid electrolyte layer, and the metal plate and the reinforcing layer are cut at the groove-shaped hole portion. Thus, a solid electrolytic capacitor can be obtained. The features.

本発明の他の態様は、上記態様を方法という見方からとらえた固体電解コンデンサの製造方法であって、弁金属からなる金属板の一面に補強層、反対面には保護層を形成する工程と、前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、前記穴の少なくとも内面に金属めっき処理を施す工程と、隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することにより、この凹部の内面に陽極部を形成する前記金属板の地金を露出させる工程と、前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、前記凹部内の前記酸化皮膜層の上に固体電解質層を形成する工程と、前記固体電解質層の上に陰極端子部を形成する工程と、前記溝状の穴の部分で前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとする工程と、を含むことを特徴とする。   Another aspect of the present invention is a method for manufacturing a solid electrolytic capacitor, taking the above aspect from the viewpoint of a method, the step of forming a reinforcing layer on one surface of a metal plate made of a valve metal and a protective layer on the opposite surface; A step of forming a plurality of groove-shaped holes penetrating the metal plate by cutting from the surface of the protective layer but not the reinforcing layer; and a step of performing metal plating on at least an inner surface of the hole; A step of exposing the metal plate of the metal plate to form an anode part on the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate between the adjacent holes; A step of forming an oxide film layer on the surface, a step of forming a solid electrolyte layer on the oxide film layer in the recess, and a cathode terminal portion on the solid electrolyte layer And the groove-shaped hole portion In by cutting the metal plate and the reinforcing layer, characterized by comprising the steps of a solid electrolytic capacitor of the pieces, the.

このように、金属板片面の凹部に酸化皮膜層、固体電解質層、陰極端子を設けるとともに、金属板に形成した溝状の穴の内面に金属めっき処理を施し、穴の位置で切断することにより、穴の内面の金属めっきが個片の固体電解コンデンサ両端の外部に露出し、そのまま陽極の外部電極となる。このように陽極の外部電極が、固体電解コンデンサの陽極部となる金属板に直接形成されているため、固体電解コンデンサの静電容量に寄与しない陽極端子部の領域を極めて小さなものとすることができる。また、保護層を設けた金属板の片面に凹部としてその内面に陽極部を形成する前記金属板の地金を露出させ、酸化皮膜層、固体電解質層、陰極端子を設けたことで、コンデンサとしての容量保持部である酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。とりわけ、金属板に補強層を加え、金属板は貫通するが補強層は貫通しない穴とすることにより、従来のように櫛歯状にカットした場合と比べ、補強層で金属板が安定し加工の精度や効率が維持できる。   In this way, by providing an oxide film layer, a solid electrolyte layer, and a cathode terminal in the concave portion on one side of the metal plate, by performing metal plating on the inner surface of the groove-shaped hole formed in the metal plate, and cutting at the position of the hole The metal plating on the inner surface of the hole is exposed to the outside of both ends of the solid electrolytic capacitor, and becomes the external electrode of the anode as it is. As described above, since the anode external electrode is directly formed on the metal plate serving as the anode part of the solid electrolytic capacitor, the area of the anode terminal part that does not contribute to the capacitance of the solid electrolytic capacitor may be extremely small. it can. Further, the metal plate that forms the anode portion on the inner surface as a concave portion on one side of the metal plate provided with the protective layer is exposed, and an oxide film layer, a solid electrolyte layer, and a cathode terminal are provided, thereby providing a capacitor. The cathode terminal part is formed in the vicinity of the interface between the oxide film and the solid electrolyte layer, which is a capacitor holding part, and the distance to the circuit pattern or LSI device connected to the capacitor holding part and the cathode terminal part is short. Since the current routing path inside the capacitor is shortened, the transient response to the unstable power supply voltage is improved. In particular, by adding a reinforcing layer to the metal plate and forming a hole that penetrates the metal plate but does not penetrate the reinforcing layer, the metal plate is processed stably with the reinforcing layer compared to the case of cutting in a comb-like shape as in the past. Accuracy and efficiency can be maintained.

本発明の他の態様は、さらに、前記固体電解コンデンサにおいて、前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆したことを特徴とする。   Another aspect of the present invention is characterized in that in the solid electrolytic capacitor, a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside is covered with an insulating resin.

本発明の他の態様は、上記態様を方法という見方からとらえたもので、前記固体電解コンデンサの製造方法において、前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆する工程を含むことを特徴とする。   Another aspect of the present invention is to capture the above aspect from the viewpoint of a method. In the method for manufacturing the solid electrolytic capacitor, a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside. And a step of coating with an insulating resin.

このように、陰極端子部の周囲を絶縁樹脂で被覆することにより、陰極外部電極と凹部の隙間に樹脂が入り込んで陽極と陰極の絶縁性が改善され、また、陰極端子部を構成する陰極外部電極の一部を被覆することで、陰極外部電極の接合強度を高めることができる。   Thus, by covering the periphery of the cathode terminal portion with the insulating resin, the resin enters the gap between the cathode external electrode and the concave portion to improve the insulation between the anode and the cathode, and the cathode external portion constituting the cathode terminal portion. By covering a part of the electrode, the bonding strength of the cathode external electrode can be increased.

本発明の他の態様は、前記いずれかの固体電解コンデンサにおいて、さらに、切削加工した前記穴を、封止部材で閉塞した後に、前記拡面処理以降の工程を施すとともに、個片の固体電解コンデンサへの前記切断以前に、前記封止部材を除去したことを特徴とする。   According to another aspect of the present invention, in any one of the solid electrolytic capacitors, after the hole that has been cut is further closed with a sealing member, the surface enlargement process and the subsequent steps are performed, and the solid electrolytic process is performed individually. The sealing member is removed before the cutting into the capacitor.

本発明の他の態様は、上記態様を方法という見方からとらえたもので、前記いずれかの固体電解コンデンサの製造方法において、前記拡面処理以前に、切削加工した前記穴を封止部材で閉塞する工程と、個片の固体電解コンデンサへの前記切断以前に、前記封止部材を除去する工程と、を含むことを特徴とする。   Another aspect of the present invention is to capture the above aspect from the viewpoint of a method. In any one of the above-described solid electrolytic capacitor manufacturing methods, the cut hole is closed with a sealing member before the surface expansion treatment. And a step of removing the sealing member before the cutting of the individual pieces into the solid electrolytic capacitor.

このように、切削加工した穴を拡面処理以前に封止部材で閉塞することで、金属メッキが拡面処理のためのエッチング時に溶解されることがなく陽極端子として確実に利用可能となる一方、個片への切断前に除去することにより、切断工程が円滑かつ高精度となり、製品の個片への不純物の付着も最小限に抑制可能となる。   Thus, by closing the hole that has been cut with the sealing member before the surface expansion treatment, the metal plating can be reliably used as an anode terminal without being dissolved during etching for the surface expansion treatment. By removing before cutting into individual pieces, the cutting process becomes smooth and highly accurate, and the adhesion of impurities to the individual pieces of products can be suppressed to a minimum.

本発明の他の態様である固体電解コンデンサは、弁金属からなる金属板の一面に補強層、反対面には保護層を形成し、前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、前記穴の内部を導電性材料で充填し、隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させ、前記凹部内面の前記弁金属の地金を拡面処理し、その表面に酸化皮膜層を形成し、前記凹部内の前記酸化皮膜層の上に固体電解質層を形成し、前記固体電解質層の上に陰極端子部を形成し、前記溝状の穴の部分で、充填されている前記導電性材料と前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとしたことを特徴とする。   A solid electrolytic capacitor according to another aspect of the present invention is formed by forming a reinforcing layer on one surface of a metal plate made of a valve metal and a protective layer on the opposite surface, and cutting the metal plate from the surface of the protective layer. Forming a plurality of groove-shaped holes that penetrate but do not penetrate the reinforcing layer, fill the inside of the holes with a conductive material, and form recesses at predetermined intervals on the surface of the metal plate between the adjacent holes. The metal plate forming the anode part on the inner surface of the recess is exposed by the above, the valve metal metal on the inner surface of the recess is expanded, an oxide film layer is formed on the surface, Forming a solid electrolyte layer on the oxide film layer, forming a cathode terminal portion on the solid electrolyte layer, and filling the conductive material and the metal plate at the groove-shaped hole portion And by cutting the reinforcing layer, individual solid electrolytic capacitors Characterized in that it was.

本発明の他の態様は、上記態様を方法という見方からとらえた固体電解コンデンサの製造方法であって、弁金属からなる金属板の一面に補強層、反対面には保護層を形成する工程と、前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、前記穴の内部を導電性材料で充填する工程と、隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させる工程と、前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、前記凹部内の前記酸化皮膜層の上に固体電解質層を形成する工程と、前記固体電解質層の上に陰極端子部を形成する工程と、前記溝状の穴の部分で、充填されている前記導電性材料と前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとする工程と、を含むことを特徴とする。   Another aspect of the present invention is a method for manufacturing a solid electrolytic capacitor, taking the above aspect from the viewpoint of a method, the step of forming a reinforcing layer on one surface of a metal plate made of a valve metal and a protective layer on the opposite surface; A step of forming a plurality of groove-shaped holes that penetrate the metal plate by cutting from the surface of the protective layer but do not penetrate the reinforcing layer; and a step of filling the inside of the hole with a conductive material; A step of exposing a metal bar of the metal plate to form an anode part on the inner surface of the concave part by forming concave parts at predetermined intervals on the metal plate surface between the adjacent holes; A step of expanding the surface to form an oxide film layer on the surface, a step of forming a solid electrolyte layer on the oxide film layer in the recess, and a cathode terminal portion on the solid electrolyte layer Filling the process and the groove-shaped hole part By in said conductive material and cutting said metal plate and said reinforcement layer, characterized by comprising the steps of a solid electrolytic capacitor of the pieces, the.

このように、金属板片面の凹部に酸化皮膜層、固体電解質層、陰極端子を設けるとともに、金属板に形成した溝状の穴に充填した導電性材料が、穴の位置で切り分けることで個片の固体電解コンデンサ両端の外部に露出し、そのまま陽極の外部電極となる。このように得られる多端子型の固体電解コンデンサは、陽極の外部電極が、固体電解コンデンサの陽極部となる金属板に直接形成されているため、固体電解コンデンサの静電容量に寄与しない陽極端子部の領域を極めて小さなものとすることができる。また、保護層を設けた金属板片面で凹部を露出させ、酸化皮膜層、固体電解質層、陰極端子を設けたことで、コンデンサとしての容量保持部である誘電体酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。また、補強層は貫通しない穴とするので従来より金属板が安定し加工の精度や効率が維持できることに加え、穴の内部全体を銅で充填することにより、穴内面をめっきするより、エッチング時の保護樹脂なども不要となり、工程が単純化されて生産効率やコストも改善される。   As described above, the oxide film layer, the solid electrolyte layer, and the cathode terminal are provided in the concave portion on one side of the metal plate, and the conductive material filled in the groove-like hole formed in the metal plate is separated into pieces by separating the holes at the positions of the holes. It is exposed to the outside of both ends of the solid electrolytic capacitor and becomes the external electrode of the anode as it is. The thus obtained multi-terminal type solid electrolytic capacitor has an anode terminal that does not contribute to the capacitance of the solid electrolytic capacitor because the external electrode of the anode is formed directly on the metal plate that becomes the anode part of the solid electrolytic capacitor. The area of the part can be made extremely small. Moreover, the concave portion is exposed on one side of the metal plate provided with the protective layer, and the oxide film layer, the solid electrolyte layer, and the cathode terminal are provided, so that the interface between the dielectric oxide film and the solid electrolyte layer, which is a capacity holding portion as a capacitor, Is a structure in which the cathode terminal part is formed in the vicinity of the circuit pattern, the distance to the device such as the circuit pattern and LSI connected to the capacitor holding part and the cathode terminal part is short, and the current routing path inside the capacitor is shortened. Transient response to power supply voltage instability is improved. In addition, since the reinforcing layer is a hole that does not penetrate, the metal plate is more stable than before and processing accuracy and efficiency can be maintained. In addition, the entire inside of the hole is filled with copper, so that the inner surface of the hole is plated rather than plated. This eliminates the need for a protective resin, which simplifies the process and improves production efficiency and cost.

以上のように、本発明によれば、薄型かつ小型で部品配置の自由度が大きく、特性に加え製造の精度や効率も優れた多端子型の固体電解コンデンサ及びその製造方法を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a multi-terminal solid electrolytic capacitor that is thin and small, has a high degree of freedom in component placement, and has excellent manufacturing accuracy and efficiency in addition to characteristics, and a manufacturing method thereof. It becomes possible.

次に、本発明を実施するための最良の実施形態について図に沿って説明する。なお、背景技術や課題で既に説明した内容と共通の前提事項は適宜省略する。
(1)構成
本実施形態は、以下のような工程A〜Jによる固体電解コンデンサの製造方法と、そのように製造される固体電解コンデンサに関するものである。ここで、各工程段階を図1及び図2の断面図に示し、また、工程の一部について図3の斜視図に示す。
Next, the best mode for carrying out the present invention will be described with reference to the drawings. In addition, the premise common to the content already demonstrated by the background art and the subject is abbreviate | omitted suitably.
(1) Configuration The present embodiment relates to a method for manufacturing a solid electrolytic capacitor by the following processes A to J, and a solid electrolytic capacitor manufactured as such. Here, each process step is shown in the cross-sectional views of FIGS. 1 and 2, and a part of the process is shown in the perspective view of FIG.

A.金属板の用意
まず、弁金属すなわち弁作用金属からなる金属板1を用意する(図1(1))。この金属板は、図3の斜視図に示すように長尺で、図1及び図2は、図に向かって奥行き方向が長手方向となる断面図である。また、この金属板1について、金属の種類はアルミニウムが望ましく、厚さは200から800ミクロン程度が一般的と考えられるが、金属の種類や厚さは適宜変更可能である。例えば、アルミニウムの他、タンタル、ニオブ、チタン等の弁作用金属を用いることができる。
A. Preparation of Metal Plate First, a metal plate 1 made of a valve metal, that is, a valve action metal is prepared (FIG. 1 (1)). This metal plate is long as shown in the perspective view of FIG. 3, and FIG.1 and FIG.2 is sectional drawing whose depth direction becomes a longitudinal direction toward the figure. The metal plate 1 is preferably made of aluminum and generally has a thickness of about 200 to 800 microns, but the type and thickness of the metal can be changed as appropriate. For example, valve action metals such as tantalum, niobium, and titanium can be used in addition to aluminum.

B.補強層と保護層の形成
そして、金属板1の一面に補強層2(図1(2))、反対面には保護層3を形成する(図1(3))。補強層2としては、補強部材すなわちエポキシ材等の絶縁樹脂材を貼り付け、もしくは絶縁樹脂の塗布、SUS材等の貼り付けなど、自由に選択可能であるが、固体電解コンデンサの外装の絶縁性を確保する観点からは、絶縁樹脂を用いることが好ましい。
B. Formation of Reinforcing Layer and Protective Layer A reinforcing layer 2 (FIG. 1 (2)) is formed on one surface of the metal plate 1, and a protective layer 3 is formed on the opposite surface (FIG. 1 (3)). The reinforcing layer 2 can be selected freely by attaching a reinforcing member, that is, an insulating resin material such as an epoxy material, or by applying an insulating resin or a SUS material. It is preferable to use an insulating resin from the viewpoint of ensuring the above.

なお、保護層3は、金属板1の全面を覆う必要は無く、その後の加工のための窓部が形成されていても良い。また、保護層3としては、いわゆるレジストなどの樹脂被覆層のほか、陽極酸化皮膜を形成するなどでもよく、後述のエッチングによる拡面処理の際に、エッチング液により腐食されない層であれば、種類や形成の手段などは自由に選択可能である。   In addition, the protective layer 3 does not need to cover the whole surface of the metal plate 1, and the window part for subsequent processing may be formed. Further, as the protective layer 3, in addition to a resin coating layer such as a so-called resist, an anodized film may be formed. If the layer is not corroded by the etching solution during the surface expansion treatment by etching described later, The formation method and the like can be freely selected.

C.穴の形成
続いて、保護層3の面より金属板1を切削加工することにより、金属板1を貫通するが補強層3は貫通しない溝状の穴4を形成する(図1(4))。この穴4は、内面を銅等の金属めっき処理を施して最終製品である固体電解コンデンサ個片の両端で陽極端子とする部分であるから、穴4の形状としては、図3の斜視図(図3(1))に示すように、連続した溝状でもよいし、また、一定のピッチ(長さ及び間隔)で断続する複数の穴でもよい。いずれの場合も、補強層3は、溝状の穴の長手方向を基準に見た場合、少なくとも両端寄りの一部ずつがつながったままとなり、櫛歯状にはならない。
C. Formation of hole Subsequently, the metal plate 1 is cut from the surface of the protective layer 3 to form a groove-like hole 4 that penetrates the metal plate 1 but does not penetrate the reinforcing layer 3 (FIG. 1 (4)). . Since this hole 4 is a part which makes an inner surface metal plating process, such as copper, and serves as an anode terminal in the both ends of the solid electrolytic capacitor piece which is a final product, as a shape of the hole 4, the perspective view of FIG. As shown in FIG. 3 (1)), it may be a continuous groove shape, or may be a plurality of holes intermittent at a constant pitch (length and interval). In any case, the reinforcing layer 3 is not connected in a comb-teeth shape, as viewed from the longitudinal direction of the groove-shaped hole, at least a part near both ends.

D.穴の金属めっき処理と閉塞
そして、そのように構成した穴4の少なくとも内面を銅等の金属めっき処理を施し、金属めっき面5とする(図1(5))。また、金属めっき処理を施した溝状の穴4を、絶縁樹脂からなるフィルムテープなどの封止部材Pで閉塞する(図1(5))。なお、穴の切削の際、穴の周囲もある程度の幅で保護層を除去して金属板を露出させ、穴の内面だけでなく、その周辺部に露出させた金属板表面まで金属めっき処理を施してもよく、図3はそのような例である。
D. Metal Plating Treatment and Closure of Holes At least the inner surface of the hole 4 thus configured is subjected to metal plating treatment such as copper to form a metal plating surface 5 (FIG. 1 (5)). Further, the groove-shaped hole 4 subjected to the metal plating process is closed with a sealing member P such as a film tape made of an insulating resin (FIG. 1 (5)). When cutting a hole, the protective layer is removed to a certain extent around the hole to expose the metal plate, and the metal plating process is performed not only on the inner surface of the hole but also on the surface of the metal plate exposed on the periphery. FIG. 3 shows such an example.

E.凹部の形成
続いて、穴4の間の金属板表面に所定間隔で凹部6を形成することにより、この凹部6の内面に陽極部を形成する金属板の地金を露出させる(図1(6)、図3(2))。ここで、凹部6を形成する手段としては、金属板1の切削が好適である。保護層3に窓部が形成されている場合には、窓部の部分をプレス加工して凹部を形成することや、窓部の部分をエッチングによって凹部6を形成してもよく、特に、エッチングによって凹部6を形成する場合には、後述する「F.エッチングと酸化皮膜の形成」の工程のエッチング工程を同時に行うことで効率よく凹部を形成することができる。
E. Formation of Recesses Subsequently, by forming recesses 6 at predetermined intervals on the surface of the metal plate between the holes 4, the metal plate forming the anode part is exposed on the inner surface of the recess 6 (FIG. 1 (6 ), FIG. 3 (2)). Here, as a means for forming the recess 6, cutting of the metal plate 1 is suitable. When the protective layer 3 has a window portion, the window portion may be pressed to form a recess, or the window portion may be etched to form the recess 6. When the recess 6 is formed by the above, the recess can be efficiently formed by simultaneously performing the etching process of “F. Etching and formation of oxide film” described later.

F.エッチングと酸化皮膜の形成
その後、凹部6内面に露出した地金を、エッチングで拡面処理し、さらにその拡面処理した凹部の表面に陽極酸化することにより酸化皮膜層7を形成する(図2(7))。ここで、エッチング及び陽極酸化については公知の手段を用いることができる。
F. Etching and Formation of Oxide Film Thereafter, the bare metal exposed on the inner surface of the recess 6 is subjected to a surface expansion process by etching, and further anodized on the surface of the recess subjected to the surface expansion process to form an oxide film layer 7 (FIG. 2). (7)). Here, well-known means can be used for etching and anodic oxidation.

G.固体電解質層の形成
また、酸化皮膜層7の上に、固体電解質層8を形成する(図2(8))。ここで、固体電解質層8としては、導電性高分子が好適であり、このような導電性高分子層は、チオフェン、ピロール等をもとに、化学重合、電解重合など、公知の技術により形成すればよい。
G. Formation of Solid Electrolyte Layer A solid electrolyte layer 8 is formed on the oxide film layer 7 (FIG. 2 (8)). Here, as the solid electrolyte layer 8, a conductive polymer is suitable, and such a conductive polymer layer is formed by a known technique such as chemical polymerization or electrolytic polymerization based on thiophene, pyrrole, or the like. do it.

H.陰極端子部の形成
そして、固体電解質層8の上に、グラファイト(Gr)層と銀ペースト層(あわせて符号9で示す)を介し(図2(9))、陰極外部電極を設けることをもって、陰極端子部10を形成する(図2(10))。このグラファイト(Gr)層と銀ペースト層自体は、固体電解コンデンサにおける公知技術と同様でよい。
H. Formation of the cathode terminal portion And, by providing a cathode external electrode on the solid electrolyte layer 8 through a graphite (Gr) layer and a silver paste layer (indicated by reference numeral 9 together) (FIG. 2 (9)), The cathode terminal portion 10 is formed (FIG. 2 (10)). The graphite (Gr) layer and the silver paste layer itself may be the same as a known technique in a solid electrolytic capacitor.

また、陰極外部電極としては、銅等の金属製の板材を導電性接着剤で接続することが好適であるが、板材は平板でもよい。また、平板に突起を有する陰極外部電極を用いてもよく、その場合はその突起部が陰極外部端子となる。また、陰極外部電極は、銀ペースト層の上に銅メッキを施して構成してもよい。但し、陰極端子部10である陰極外部電極と保護層3との間には、絶縁のための距離すなわちギャップを設ける。   Moreover, as a cathode external electrode, it is suitable to connect metal board | plate materials, such as copper, with a conductive adhesive, However, A flat plate may be sufficient as a board | plate material. Moreover, you may use the cathode external electrode which has a processus | protrusion on a flat plate, In that case, the processus | protrusion part becomes a cathode external terminal. Further, the cathode external electrode may be configured by performing copper plating on the silver paste layer. However, a distance for insulation, that is, a gap is provided between the cathode external electrode which is the cathode terminal portion 10 and the protective layer 3.

陰極外部電極として平板に突起部が複数形成された板材を用い、この複数の突起部を陰極外部端子とした場合、陰極端子部10は複数の陰極端子部10として導出された多端子の電極構造となる。   When a plate material having a plurality of protrusions formed on a flat plate is used as a cathode external electrode, and the plurality of protrusions are used as cathode external terminals, the cathode terminal portion 10 is a multi-terminal electrode structure derived as a plurality of cathode terminal portions 10. It becomes.

なお、陰極外部電極として平板の板材を用いて、平板の板材を銀ペースト層に接着した後に突起部を形成することもできる。この突起部の形成はいわゆるバンプ電極を用い、金ワイヤを熱圧着のうえ切断した金バンプのほか、銅メッキの上に半田ボールを接着しボール形状端子を格子配列状に形成したボールグリッドアレイ(BGA)など、自由に選択可能である。   It should be noted that a flat plate material may be used as the cathode external electrode, and the protrusions may be formed after the flat plate material is bonded to the silver paste layer. This protrusion is formed by using a so-called bump electrode, a gold bump obtained by cutting a gold wire by thermocompression bonding, and a ball grid array in which solder balls are bonded on a copper plating to form ball-shaped terminals in a grid array ( BGA) and the like can be freely selected.

I.絶縁樹脂での被覆
次に、陰極端子部10のうち、外部に露出すべき所定の外部露出部を除いた部分について、絶縁樹脂11を上記ギャップなど周囲に注入することにより被覆する(図2(11))。ここで、外部露出部は、陰極端子部10の例えば上面や突起部であり、外部露出部を除いた部分は例えば側端面や、保護層3との間の上記ギャップなどである。また、絶縁樹脂11としては熱硬化性エポキシ樹脂が好適である。
I. Next, a portion of the cathode terminal portion 10 excluding a predetermined external exposed portion to be exposed to the outside is covered by injecting the insulating resin 11 around the gap or the like (FIG. 2 ( 11)). Here, the externally exposed portion is, for example, the upper surface or the protruding portion of the cathode terminal portion 10, and the portion excluding the externally exposed portion is, for example, the side end surface or the gap between the protective layer 3 and the like. Moreover, as the insulating resin 11, a thermosetting epoxy resin is suitable.

そして、絶縁樹脂11が凹部と陰極外部電極のギャップに入り込むことで、陽極と陰極の絶縁性を高めることができるとともに、陰極外部電極の一部を被覆することにより、陰極外部電極の接合強度を高めることができる。例えば、陰極外部電極として、平板に突起部が複数形成された板材を用い、突起部のみが露出するように板材の上面を絶縁樹脂11で被覆すれば、陰極外部電極の上面が金属板と一体化され、陰極外部端子の接合強度を高めることができる。   The insulating resin 11 enters the gap between the concave portion and the cathode external electrode, so that the insulation between the anode and the cathode can be enhanced, and by covering a part of the cathode external electrode, the bonding strength of the cathode external electrode can be increased. Can be increased. For example, if a plate material having a plurality of protrusions formed on a flat plate is used as the cathode external electrode and the upper surface of the plate material is covered with the insulating resin 11 so that only the protrusions are exposed, the upper surface of the cathode external electrode is integrated with the metal plate. Thus, the bonding strength of the cathode external terminal can be increased.

J.個片への切断
最後に、穴4を閉塞している絶縁樹脂からなるフィルムテープなどの封止部材Pを除去したうえ、穴4の部分で金属板1及び補強層3を切断(カット)するとともに、単位となる陰極端子部10間を各々切断することにより、個片の固体電解コンデンサとする(図2(12)、図3(3))。
J. et al. Cutting into pieces Finally, the sealing member P such as a film tape made of an insulating resin that closes the hole 4 is removed, and the metal plate 1 and the reinforcing layer 3 are cut (cut) at the hole 4 portion. At the same time, the individual cathode terminal portions 10 are cut to form individual solid electrolytic capacitors (FIGS. 2 (12) and 3 (3)).

(2)作用効果
以上のように、金属板片面に凹部を形成して地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けるとともに、金属板に形成した溝状の穴の内面に金属めっきし、穴の位置で切断することにより、穴の内面の金属めっき面5が個片の固体電解コンデンサ両端の外部に露出し、そのまま陽極の外部電極となる。この陽極の外部電極は、固体電解コンデンサの陽極部となる金属板に直接形成されているため、固体電解コンデンサの静電容量に寄与しない陽極端子部の領域を極めて小さなものとすることができる。
(2) Operation and effect As described above, a concave portion is formed on one surface of a metal plate to expose the base metal, and an oxide film layer, a solid electrolyte layer, a cathode terminal are provided in the concave portion, and a groove shape formed on the metal plate. By metal-plating the inner surface of the hole and cutting at the position of the hole, the metal-plated surface 5 of the inner surface of the hole is exposed to the outside of both ends of the solid electrolytic capacitor, and becomes the external electrode of the anode as it is. Since the external electrode of this anode is directly formed on the metal plate that becomes the anode part of the solid electrolytic capacitor, the area of the anode terminal part that does not contribute to the capacitance of the solid electrolytic capacitor can be made extremely small.

また、保護層を設けた金属板片面に凹部を形成して地金を露出させ、その凹部内に酸化皮膜層、固体電解質層、陰極端子を設けたことで、コンデンサとしての容量保持部である酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。   In addition, a concave portion is formed on one side of the metal plate provided with the protective layer to expose the base metal, and an oxide film layer, a solid electrolyte layer, and a cathode terminal are provided in the concave portion, thereby providing a capacity holding portion as a capacitor. The cathode terminal part is formed near the interface between the oxide film and the solid electrolyte layer. The distance between the capacitor holding part and the cathode terminal part to the circuit pattern or LSI device is short, and the current draw inside the capacitor is reduced. Since the rotation path is shortened, the transient response to the unstable power supply voltage is improved.

とりわけ、金属板1に補強層2を加え、金属板1は貫通するが補強層2は貫通しない穴4とすることにより、従来のように櫛歯状にカットした場合と比べ、補強層2で金属板1が安定し加工の精度や効率が維持できる。   In particular, the reinforcing layer 2 is added to the metal plate 1 and the hole 4 does not penetrate the metal plate 1 but penetrates the metal plate 1. The metal plate 1 is stable and the processing accuracy and efficiency can be maintained.

特に、従来のようなサンドイッチ構造が不要となるため薄型化と共に、陽極の外部電極は、固体電解コンデンサの陽極部となる金属板に直接形成されているため小型化が実現され、5mm四方程度まで縮小可能となる。また、穴の内面だけでなく、その周辺部に露出させた金属板表面まで金属めっき処理を施して陽極の外部電極とした場合、陰極外部電極の厚さと金属板の陰極端子部の形成面に形成した陽極の外部電極の高さ(すなわちメッキの厚さ)を制御し、陽極と陰極の外部端子の高さを同一平面位置として、外部端子を含め全体を無駄のない同一平面形状とすることにより、固体電解コンデンサを、電流供給対象であるLSIに対して、基板との間や基板の裏面など、垂直方向に積層配置したり、バンプ電極などによる直接配線を行うなど、近接配置可能となって電流経路が一層短縮され、過渡応答性がさらに改善される。   In particular, since the conventional sandwich structure is not required, the anode external electrode is directly formed on the metal plate that becomes the anode part of the solid electrolytic capacitor, so that the miniaturization is realized and the size is reduced to about 5 mm square. Can be reduced. In addition, when metal plating is performed not only on the inner surface of the hole but also on the surface of the metal plate exposed to the periphery thereof, the external electrode of the anode is formed on the thickness of the cathode external electrode and the formation surface of the cathode terminal portion of the metal plate. Control the height of the external electrode of the formed anode (that is, the thickness of the plating) so that the height of the external terminal of the anode and the cathode is the same plane position, and the entire plane including the external terminal is made the same flat shape without waste This makes it possible to place solid electrolytic capacitors close to the current supply target LSI, such as stacking them vertically, such as between the substrate and the back surface of the substrate, or by direct wiring using bump electrodes. This further shortens the current path and further improves the transient response.

また、陽極の外部電極と陰極端子部が近接した構造となり、陽極の外部電極と陰極端子部に電流が流れる際に発生する誘導磁界を相殺する効果が大きくなり、固体電解コンデンサのESLを低減させることができる。   In addition, the anode external electrode and the cathode terminal portion are close to each other, and the effect of canceling the induced magnetic field generated when current flows through the anode external electrode and the cathode terminal portion is increased, thereby reducing the ESL of the solid electrolytic capacitor. be able to.

また、本実施形態では、切削加工した穴4を拡面処理以前に封止部材Pで閉塞することで、金属メッキが拡面処理のためのエッチング時に溶解されることがなく陽極端子として確実に利用可能となる一方、封止部材Pを個片への切断前に除去することにより、切断工程が円滑かつ高精度となり、製品の個片への不純物の付着も最小限に抑制可能となる。   Moreover, in this embodiment, the metal-plating is not melt | dissolved at the time of the etching for a surface expansion process by obstruct | occluding the cut hole 4 with the sealing member P before a surface expansion process, and it serves as an anode terminal reliably. On the other hand, by removing the sealing member P before cutting into individual pieces, the cutting process becomes smooth and highly accurate, and the adhesion of impurities to the individual pieces of the product can be minimized.

さらに、本実施形態では、陰極端子部10の周囲を絶縁樹脂11で被覆することにより(図2(11))、絶縁樹脂11が凹部と陰極外部電極の隙間に入り込んで陽極と陰極の絶縁性が改善され、さらに、絶縁樹脂11により、陰極端子部10を構成する陰極外部電極の一部を被覆することで、陰極外部電極の接合強度を高めることができる。   Furthermore, in this embodiment, the periphery of the cathode terminal portion 10 is covered with the insulating resin 11 (FIG. 2 (11)), so that the insulating resin 11 enters the gap between the concave portion and the cathode external electrode, thereby insulating the anode and the cathode. In addition, by covering a part of the cathode external electrode constituting the cathode terminal portion 10 with the insulating resin 11, the bonding strength of the cathode external electrode can be increased.

(3)他の実施形態
本発明は、上記実施形態に限定されるものではなく、次に例示するもの及びそれ以外の他の実施形態も含むものである。例えば、陰極端子部10のうち、外部に露出すべき外部露出部を除いた部分を絶縁樹脂11で被覆することは省略可能である。
(3) Other Embodiments The present invention is not limited to the above-described embodiment, and includes the following embodiments and other embodiments. For example, it is possible to omit covering the portion of the cathode terminal portion 10 excluding the externally exposed portion that should be exposed to the outside with the insulating resin 11.

また、穴の内面を金属めっきのうえ穴の入口を封止部材で閉塞することに代えて、穴の内部を銅等の導電性材料で充填のうえ、穴の部分で、充填した導電性材料を半切りにする形で個片に切断してもよい。導電性材料を充填する手段は自由であるが、例えば、溝状の穴に対応する形状の銅板を導電性接着剤で充填するなどである。また、導電性ペーストを印刷法によって、溝状の穴に導電性材料を充填することもできる。このように、金属板に形成した溝状の穴の内部全体に充填した導電性材料を、穴の位置で切り分けることで個片の固体電解コンデンサ両端の外部に露出させ、そのまま陽極の外部電極とすることにより、穴内面をめっきするより、エッチング時の封止部材なども不要となり、工程が単純化されて生産効率やコストも改善される。   Also, instead of metal plating the inner surface of the hole and closing the inlet of the hole with a sealing member, the inside of the hole is filled with a conductive material such as copper, and the conductive material is filled at the hole portion. May be cut into pieces in the form of half cuts. The means for filling the conductive material is arbitrary. For example, a copper plate having a shape corresponding to the groove-like hole is filled with a conductive adhesive. In addition, the conductive material can be filled into the groove-like holes by printing the conductive paste. In this way, the conductive material filled in the entire inside of the groove-shaped hole formed in the metal plate is exposed to the outside of both ends of the solid electrolytic capacitor of the piece by cutting at the position of the hole, and the external electrode of the anode as it is This eliminates the need for a sealing member at the time of etching rather than plating the inner surface of the hole, simplifies the process, and improves production efficiency and cost.

また、穴の切削の際、穴の周囲もある程度の幅で保護層を除去して金属板を露出させ、穴の内面だけでなく、その周辺部の金属板まで金属めっき処理を施しておけば(図3)、保護3の面を底面として基板などに向けて装着する際、底面を外部電極として利用可能となるため、部品配置の自由度が一層高まる。   In addition, when cutting holes, the metal layer is exposed not only to the inner surface of the hole but also to the peripheral metal plate by removing the protective layer with a certain width around the hole to expose the metal plate. (FIG. 3) When the surface of the protection 3 is mounted as a bottom surface toward a substrate or the like, the bottom surface can be used as an external electrode, so that the degree of freedom of component arrangement is further increased.

本発明の実施形態における固体電解コンデンサの製造方法(前半)を示す断面図。Sectional drawing which shows the manufacturing method (first half) of the solid electrolytic capacitor in embodiment of this invention. 本発明の実施形態における固体電解コンデンサの製造方法(後半)を示す断面図。Sectional drawing which shows the manufacturing method (latter half) of the solid electrolytic capacitor in embodiment of this invention. 本発明の実施形態における固体電解コンデンサの製造方法(一部分)を示す斜視図。The perspective view which shows the manufacturing method (part) of the solid electrolytic capacitor in embodiment of this invention.

符号の説明Explanation of symbols

1…金属板
2…補強層
3…保護層
4…穴
5…銅めっき面
6…凹部
7…酸化皮膜層
8…固体電解質層
10…陰極端子部
11…樹脂
P…封止部材
DESCRIPTION OF SYMBOLS 1 ... Metal plate 2 ... Reinforcement layer 3 ... Protective layer 4 ... Hole 5 ... Copper plating surface 6 ... Recess 7 ... Oxide film layer 8 ... Solid electrolyte layer 10 ... Cathode terminal part 11 ... Resin P ... Sealing member

Claims (8)

弁金属からなる金属板の一面に補強層、反対面には保護層を形成し、
前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、
前記穴の少なくとも内面に金属めっき処理を施し、
隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させ、
前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成し、
前記凹部内の前記酸化皮膜層の上に固体電解質層を形成し、
前記固体電解質層の上に陰極端子部を形成し、
前記溝状の穴の部分で前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとした
ことを特徴とする固体電解コンデンサ。
A reinforcing layer is formed on one side of the metal plate made of valve metal, and a protective layer is formed on the opposite side.
Forming a plurality of groove-like holes that penetrate the metal plate by cutting from the surface of the protective layer but do not penetrate the reinforcing layer,
Apply metal plating to at least the inner surface of the hole,
By exposing the metal plate to form the anode portion on the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate between the adjacent holes,
Expanding the surface of the inner surface of the recess, forming an oxide film layer on the surface,
Forming a solid electrolyte layer on the oxide film layer in the recess,
Forming a cathode terminal on the solid electrolyte layer;
A solid electrolytic capacitor, wherein the metal plate and the reinforcing layer are cut at the groove-shaped hole portion to form a solid electrolytic capacitor as a single piece.
前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆したことを特徴とする請求項1記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside is covered with an insulating resin. 切削加工した前記穴を、封止部材で閉塞した後に、前記拡面処理以降の工程を施すとともに、個片の固体電解コンデンサへの前記切断以前に、前記封止部材を除去したことを特徴とする請求項1又は2記載の固体電解コンデンサ。   After the cut hole is closed with a sealing member, the surface enlargement process and the subsequent steps are performed, and the sealing member is removed before the cutting into individual solid electrolytic capacitors. The solid electrolytic capacitor according to claim 1 or 2. 弁金属からなる金属板の一面に補強層、反対面には保護層を形成し、
前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成し、
前記穴の内部を導電性材料で充填し、
隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させ、
前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成し、
前記凹部内の前記酸化皮膜層の上に固体電解質層を形成し、
前記固体電解質層の上に陰極端子部を形成し、
前記溝状の穴の部分で、充填されている前記導電性材料と前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとした
ことを特徴とする固体電解コンデンサ。
A reinforcing layer is formed on one side of the metal plate made of valve metal, and a protective layer is formed on the opposite side.
Forming a plurality of groove-like holes that penetrate the metal plate by cutting from the surface of the protective layer but do not penetrate the reinforcing layer,
Filling the hole with a conductive material;
By exposing the metal plate to form the anode portion on the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate between the adjacent holes,
Expanding the surface of the inner surface of the recess, forming an oxide film layer on the surface,
Forming a solid electrolyte layer on the oxide film layer in the recess,
Forming a cathode terminal on the solid electrolyte layer;
A solid electrolytic capacitor, wherein the conductive material, the metal plate, and the reinforcing layer that are filled in the groove-shaped hole portion are cut into individual solid electrolytic capacitors.
弁金属からなる金属板の一面に補強層、反対面には保護層を形成する工程と、
前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、
前記穴の少なくとも内面に金属めっき処理を施す工程と、
隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させる工程と、
前記凹部内面の前記弁金属地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、
前記凹部内の前記酸化皮膜層の上に固体電解質層を形成する工程と、
前記固体電解質層の上に陰極端子部を形成する工程と、
前記溝状の穴の部分で前記金属板及び前記補強層を切断することにより個片の固体電解コンデンサとする工程と、
を含むことを特徴とする固体電解コンデンサの製造方法。
Forming a reinforcing layer on one side of a metal plate made of valve metal, and forming a protective layer on the opposite side;
Forming a plurality of groove-shaped holes that penetrate the metal plate by cutting from the surface of the protective layer but do not penetrate the reinforcing layer;
Applying metal plating to at least the inner surface of the hole;
A step of exposing the metal plate to form an anode portion on the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate between the adjacent holes;
Expanding the valve metal ingot on the inner surface of the recess, and forming an oxide film layer on the surface;
Forming a solid electrolyte layer on the oxide film layer in the recess;
Forming a cathode terminal on the solid electrolyte layer;
Cutting the metal plate and the reinforcing layer at the groove-shaped hole portion to form a solid electrolytic capacitor as a piece;
The manufacturing method of the solid electrolytic capacitor characterized by including this.
前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆する工程を含むことを特徴とする請求項5記載の固体電解コンデンサの製造方法。   6. The method of manufacturing a solid electrolytic capacitor according to claim 5, further comprising a step of covering a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside with an insulating resin. 前記拡面処理以前に、切削加工した前記穴を封止部材で閉塞する工程と、
個片の固体電解コンデンサへの前記切断以前に、前記封止部材を除去する工程と、
を含むことを特徴とする請求項5又は6記載の固体電解コンデンサの製造方法。
Before the surface expansion treatment, the step of closing the hole that has been cut with a sealing member;
Removing the sealing member before the cutting into individual solid electrolytic capacitors;
The method for producing a solid electrolytic capacitor according to claim 5 or 6, comprising:
弁金属からなる金属板の一面に補強層、反対面には保護層を形成する工程と、
前記保護層の面より切削加工することにより前記金属板を貫通するが前記補強層は貫通しない溝状の穴を複数個形成する工程と、
前記穴の内部を導電性材料で充填する工程と、
隣接する前記穴の間の金属板表面に所定間隔で凹部を形成することによりこの凹部の内面に陽極部を形成する前記金属板の地金を露出させる工程と、
前記凹部内面の地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、
前記凹部内の前記酸化皮膜層の上に固体電解質層を形成する工程と、
前記固体電解質層の上に陰極端子部を形成する工程と、
前記溝状の穴の部分で、充填されている前記導電性材料と前記金属板及び前記補強層を切断することにより、個片の固体電解コンデンサとする工程と、
を含むことを特徴とする固体電解コンデンサの製造方法。
Forming a reinforcing layer on one side of a metal plate made of valve metal, and forming a protective layer on the opposite side;
Forming a plurality of groove-shaped holes that penetrate the metal plate by cutting from the surface of the protective layer but do not penetrate the reinforcing layer;
Filling the inside of the hole with a conductive material;
A step of exposing the metal plate to form an anode portion on the inner surface of the recess by forming recesses at predetermined intervals on the surface of the metal plate between the adjacent holes;
Expanding the surface of the inner surface of the recess, and forming an oxide film layer on the surface;
Forming a solid electrolyte layer on the oxide film layer in the recess;
Forming a cathode terminal on the solid electrolyte layer;
Cutting the filled conductive material, the metal plate, and the reinforcing layer at the groove-shaped hole portion to form an individual solid electrolytic capacitor;
The manufacturing method of the solid electrolytic capacitor characterized by including this.
JP2008022015A 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP5007678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022015A JP5007678B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022015A JP5007678B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009182276A JP2009182276A (en) 2009-08-13
JP5007678B2 true JP5007678B2 (en) 2012-08-22

Family

ID=41035975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022015A Expired - Fee Related JP5007678B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5007678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952626B (en) 2016-11-14 2021-10-26 株式会社村田制作所 Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
WO2019221046A1 (en) 2018-05-16 2019-11-21 株式会社村田製作所 Solid-state electrolytic capacitor
JP7151764B2 (en) 2018-06-11 2022-10-12 株式会社村田製作所 Capacitor array, composite electronic component, method for manufacturing capacitor array, and method for manufacturing composite electronic component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301118A (en) * 1989-05-15 1990-12-13 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH0693421B2 (en) * 1990-04-23 1994-11-16 日本ケミコン株式会社 Method for manufacturing solid electrolytic capacitor
JPH05234823A (en) * 1992-02-19 1993-09-10 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH0645203A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0645204A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JP2003022936A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor
JP2006173441A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2009182276A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5120026B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR101451685B1 (en) Solid electrolytic condenser
JP2008258602A (en) Solid electrolytic capacitor and manufacturing method therefor
JP6856076B2 (en) Solid electrolytic capacitors
JP2008135427A (en) Chip-type solid electrolytic capacitor and manufacturing method therefor
JP5007678B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
JP5434364B2 (en) Manufacturing method of solid electrolytic capacitor
JP5120025B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009295634A (en) Solid electrolytic capacitor
JP2008098487A (en) Solid electrolytic capacitor, solid electrolytic capacitor incorporated substrate, and manufacturing method thereof
JP3966402B2 (en) Thin solid electrolytic capacitor and manufacturing method thereof
JP5104380B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5164213B2 (en) Solid electrolytic capacitor
JP2005158903A (en) Solid electrolytic capacitor
JP5206008B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005294291A (en) Solid-state electrolytic capacitor and its manufacturing method, and complex electronic component
JP5206958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2011176067A (en) Solid-state electrolytic capacitor
JP2005236090A (en) Solid electrolytic capacitor and transmission line element, and their manufacturing methods, and composite electronic component using them
JP2002110458A (en) Solid electrolytic chip capacitor
JP2005101279A (en) Solid electrolytic capacitor and its manufacturing method
JP2009295645A (en) Solid electrolytic capacitor
JP2010239091A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

R150 Certificate of patent or registration of utility model

Ref document number: 5007678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees