JP5098699B2 - Encoder signal processing circuit - Google Patents
Encoder signal processing circuit Download PDFInfo
- Publication number
- JP5098699B2 JP5098699B2 JP2008051788A JP2008051788A JP5098699B2 JP 5098699 B2 JP5098699 B2 JP 5098699B2 JP 2008051788 A JP2008051788 A JP 2008051788A JP 2008051788 A JP2008051788 A JP 2008051788A JP 5098699 B2 JP5098699 B2 JP 5098699B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- angle
- distribution coefficient
- sine wave
- processing circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
本発明は、直交する2相(A相とB相)の正弦波信号を内挿処理により分解能を高めるエンコーダの位置検出方式において、2相の正弦波信号から位置データを生成する信号処理回路に関する。 The present invention relates to a signal processing circuit that generates position data from a two-phase sine wave signal in an encoder position detection system that increases resolution by interpolating two orthogonal sine wave signals (A phase and B phase). .
回転型(またはリニア型)のエンコーダの位置検出は、一般的に発光素子と受光素子と、その間に格子状のスリットを形成した回転体(または移動体)から形成され、格子状のスリット間隔によって分解能が決定される。 The position detection of a rotary (or linear) encoder is generally made up of a light emitting element, a light receiving element, and a rotating body (or moving body) with a grid-like slit formed between them. Resolution is determined.
従って分解能を上げるために、スリット間隔を小さくすることが行われてきたが、加工精度や光の回折現象が原因でこの手法で分解能を上げるのには限界があった。 Therefore, in order to increase the resolution, the slit interval has been reduced, but there is a limit to increasing the resolution by this method due to processing accuracy and light diffraction phenomenon.
近年、回転体(または移動体)のスリット間の信号と同期した90度位相差のあるA,B相の正弦波のアナログ信号を生成し、そのアナログ信号を内挿処理した信号と上記のスリットによって得られる信号を合成して分解能を上げる方法が一般的に行われている。 In recent years, A and B phase sine wave analog signals having a phase difference of 90 degrees synchronized with signals between slits of a rotating body (or a moving body) are generated, and the signal obtained by interpolating the analog signals and the slits described above Generally, a method of increasing the resolution by synthesizing the signals obtained by the above method is performed.
しかし、A相とB相の正弦波信号をADコンバータによりディジタルデータに変換する際に、正弦波信号の上下頂点付近では角度に対する電圧レベルの変化量が小さく、ディジタル化による丸め誤差が大きくなり、位置検出精度が悪化するため、位置データの精度低下を抑制するため、例えば、以下のような提案がされている。 However, when the A-phase and B-phase sine wave signals are converted to digital data by the AD converter, the amount of change in the voltage level with respect to the angle is small near the upper and lower vertices of the sine wave signal, and the rounding error due to digitization increases. Since the detection accuracy deteriorates, for example, the following proposal has been made in order to suppress a decrease in accuracy of position data.
図11は、A相とB相の正弦波信号から直線的な傾斜部分(上下頂点以外の部分)を利用して位置データを得る手法であり、A相とB相の角度データをA相とB相の交点で切り替えて位置データを求める構成である(例えば、特許文献1参照)。 FIG. 11 is a method for obtaining position data from the A-phase and B-phase sinusoidal signals using linearly inclined portions (portions other than the top and bottom vertices). The angle data of the A-phase and the B-phase are expressed as A-phase. The position data is obtained by switching at the intersection of the B phases (for example, see Patent Document 1).
また、図12は、A=COSθとB=SINθの2つの正弦波信号から、それぞれの角度データへの配分係数を、(B2/(A2+B2))COS−1A+(A2/(A2+B2))SIN−1Bから演算して、位置データを求める手法である(例えば、特許文献2参照)。
特許文献1の手法では、A相とB相の正弦波信号に補正しきれない振幅誤差や位相誤差や正弦波信号に重畳している高調波成分の影響により、A相とB相の角度データの切り替え時に連続性がなくなり、切り替え箇所で歪が生じてしまうという課題があった。
In the method of
一方、特許文献2の手法では、2つの角度データCOS−1AとSIN−1Bの係数はCOSθとSINθの両方を用いて演算するため、各信号の頂点付近では信号の精度が悪い情報が含まれている。従って、この係数によって演算された位置データの精度も悪化してしまうという課題があった。
On the other hand, in the method of
本発明は上記従来の課題を解決するものであり、A相とB相の正弦波信号に補正しきれない振幅誤差や位相誤差が生じても、簡単な演算処理で位置検出精度が高いエンコーダの信号処理回路を提供することを目的とする。 The present invention solves the above-described conventional problems, and even if an amplitude error or phase error that cannot be corrected occurs in the A-phase and B-phase sine wave signals, an encoder of high position detection accuracy can be obtained by simple arithmetic processing. An object is to provide a signal processing circuit.
上記課題を解決するため請求項1に記載のエンコーダの信号処理回路は、直交するAB相の正弦波信号A0と正弦波信号B0をそれぞれ逆三角関数変換し角度信号に変換して位置を検出するエンコーダの内挿処理方式において、前記正弦波信号A0と正弦波信号B0を別々に入力し、逆三角関数変換によって正弦波信号からそれぞれ角度信号A2と角度信号B2に変換する角度変換手段と、前記正弦波信号A0と正弦波信号B0を入力して符号を反転した反転信号A1と反転信号B1を生成する反転手段と、前記正弦波信号A0と正弦波信号B0と反転信号A1および反転信号B1を入力し、それぞれの交点を検出し、交点から前記信号の絶対値の小さい信号を選択して連続線とし、連続線の値から角度情報を得る合成角度信号AB0を生成する合成角度検出手段と、前記合成角度信号AB0を入力し、前記角度信号A2と角度信号B2に乗算する分配係数KA1と分配係数KB1を演算しそれぞれ出力する分配係数変換手段と、前記角度信号A2と分配係数KA1を、前記角度信号B2と分配係数KB1をそれぞれ入力し、乗算データA3および乗算データB3をそれぞれ出力する乗算器と、前記乗算データA3と乗算データB3を入力し、平均処理し位置データθ1を生成する合成手段を備え、前記分配係数変換手段は、前記合成角度信号AB0から得られる全ての角度値に対し、前記分配係数KA1と分配係数KB1の和が等しくなるように分配する。
In order to solve the above-mentioned problem, the signal processing circuit of the encoder according to
また、請求項2に記載のエンコーダの信号処理回路は、前記分配係数KA1は、前記合成角度信号AB0からπ/2ラジアン毎に最大と最小を繰り返えす値とし、前記分配係数KA1と分配係数KB1は、それぞれの最大と最小の領域で前記合成角度信号AB0の角度演算分解能に対し2倍以上の幅を有する。
The encoder signal processing circuit according to
また、請求項3に記載のエンコーダの信号処理回路は、前記分配係数KA1は、最大値と最小値の間の角度を直線で結び得られる。 In the encoder signal processing circuit according to a third aspect, the distribution coefficient KA1 can connect the angle between the maximum value and the minimum value with a straight line.
また、請求項4に記載のエンコーダの信号処理回路は、前記分配係数KA1の1/2の中間値に前記合成角度信号AB0の角度演算分解能に対し2倍以上の幅を有する。 According to a fourth aspect of the present invention, there is provided a signal processing circuit for an encoder having an intermediate value of ½ of the distribution coefficient KA1 having a width more than twice the angle calculation resolution of the combined angle signal AB0.
また、請求項5に記載のエンコーダの信号処理回路は、前記分配係数KA1は、最大値と中間値および中間値と最小値の間の角度を直線で結び得られる。 In the encoder signal processing circuit according to the fifth aspect, the distribution coefficient KA1 can be obtained by connecting the angles between the maximum value and the intermediate value and between the intermediate value and the minimum value with a straight line.
さらに、請求項6に記載のエンコーダの信号処理回路は、前記合成角度信号AB0を入力し、上限値と下限値によって信号の大きさを制限した合成角度信号AB1を前記分配係数変換手段に出力する上下限リミット手段をさらに備える。 Further, the signal processing circuit of the encoder according to claim 6 inputs the composite angle signal AB0 and outputs the composite angle signal AB1 in which the signal size is limited by the upper limit value and the lower limit value to the distribution coefficient conversion means. Upper and lower limit means are further provided.
請求項1に記載のエンコーダの信号処理回路によれば、検出精度の高い合成角度信号AB0を使用して分配係数を求めるため、位置データへの変換精度を高めることができる。 According to the signal processing circuit of the encoder according to the first aspect, since the distribution coefficient is obtained using the synthesized angle signal AB0 with high detection accuracy, the conversion accuracy into position data can be improved.
また、請求項2に記載のエンコーダの信号処理回路によれば、分配係数は最大値と最小値に合成角度信号AB0の角度分解能に対して2倍以上の幅を有するように設定するため、位相誤差や振幅誤差、正弦波信号の歪がある場合にも位置データへの変換精度の低下を抑制することができる。
Further, according to the signal processing circuit of the encoder according to
また、請求項3に記載のエンコーダの信号処理回路によれば、分配係数は最大値と最小値の間の角度を直線で結び設定するため、合成して得られた位置データは滑らかに変化し、不連続点の発生を抑制することができる。 According to the signal processing circuit of the encoder according to claim 3, since the distribution coefficient is set by connecting the angle between the maximum value and the minimum value with a straight line, the position data obtained by the synthesis changes smoothly. The occurrence of discontinuous points can be suppressed.
また、請求項4に記載のエンコーダの信号処理回路によれば、分配係数の1/2の中間値に合成角度信号AB0の角度分解能に対して2倍以上の幅を有するように設定するため、更に位相誤差や振幅誤差、正弦波信号の歪がある場合にも位置データへの変換精度の低下を抑制することができる。
Further, according to the signal processing circuit of the encoder according to
また、請求項5に記載のエンコーダの信号処理回路によれば、最大値と中間値、中間値と最小値の間の角度を直線で結び設定するため、更に合成して得られた位置データは滑らかに変化し、不連続点の発生を抑制することができる。
Further, according to the signal processing circuit of the encoder according to
さらに、請求項6に記載のエンコーダの信号処理回路によれば、合成角度信号AB0に上限値と下限値のリミット手段を設けることにより、更に位相誤差や振幅誤差、正弦波信号の歪がある場合にも位置データへの変換精度の低下を抑制することができる。 Furthermore, according to the signal processing circuit of the encoder of the sixth aspect, when the upper limit value and the lower limit value limit means are provided in the composite angle signal AB0, there is further a phase error, an amplitude error, and a sine wave signal distortion. In addition, it is possible to suppress a decrease in conversion accuracy to position data.
直交するAB相の正弦波信号A0と正弦波信号B0をそれぞれ逆三角関数変換し角度信号に変換して位置を検出するエンコーダの内挿処理方式において、前記正弦波信号A0と正弦波信号B0を別々に入力し、逆三角関数変換によって正弦波信号からそれぞれ角度信号A2と角度信号B2に変換する角度変換手段と、前記正弦波信号A0と正弦波信号B0を入力して符号を反転した反転信号A1と反転信号B1を生成する反転手段と、前記正弦波信号A0と正弦波信号B0と反転信号A1および反転信号B1を入力し、それぞれの交点を検出し、交点から前記信号の絶対値の小さい信号を選択して連続線とし、連続線の値から角度情報を得る合成角度信号AB0を生成する合成角度検出手段と、前記合成角度信号AB0を入力し、前記角度信号A2と角度信号B2に乗算する分配係数KA1と分配係数KB1を演算しそれぞれ出力する分配係数変換手段と、前記角度信号A2と分配係数KA1を、前記角度信号B2と分配係数KB1をそれぞれ入力し、乗算データA3および乗算データB3をそれぞれ出力する乗算器と、前記乗算データA3と乗算データB3を入力し、平均処理し位置データθ1を生成する合成手段を備え、前記分配係数変換手段は、前記合成角度信号AB0から得られる全ての角度値に対し、前記分配係数KA1と分配係数KB1の和が等しく、π/2ラジアン毎に最大と最小を繰り返えす値とし、前記分解係数KA1とKB1はそれぞれの最大と最小と中間の領域で前記合成角度信号AB0の角度演算分解能に対し2倍以上の幅を有する構成としたエンコーダの信号処理回路である。以下、実施の形態について図面を参照しながら説明する。
(実施の形態1)
本発明によるエンコーダの信号処理回路について、図1から図6を用いて説明する。図1は、2相の正弦波信号から位置データに変換する信号処理回路のブロック図、図2から図4は、各ブロックの動作波形を示している。
In the interpolation processing method of the encoder that detects the position by performing inverse trigonometric function conversion on the orthogonal AB-phase sine wave signal A0 and sine wave signal B0 to an angle signal, respectively, the sine wave signal A0 and sine wave signal B0 are Separately input, angle conversion means for converting the sine wave signal into the angle signal A2 and the angle signal B2 by inverse trigonometric function conversion, and the inverted signal obtained by inverting the sign by inputting the sine wave signal A0 and the sine wave signal B0. The inverting means for generating A1 and the inverted signal B1, the sine wave signal A0, the sine wave signal B0, the inverted signal A1 and the inverted signal B1 are input, the respective intersections are detected, and the absolute value of the signal is small from the intersection. A composite angle detection means for generating a composite angle signal AB0 that obtains angle information from the value of the continuous line, and the composite angle signal AB0 are input. A distribution coefficient conversion means for calculating and outputting a distribution coefficient KA1 and a distribution coefficient KB1 for multiplying A2 and the angle signal B2, respectively, the angle signal A2 and the distribution coefficient KA1, and the angle signal B2 and the distribution coefficient KB1; A multiplier for outputting the multiplication data A3 and the multiplication data B3; and a synthesizing unit for inputting the multiplication data A3 and the multiplication data B3 and averaging them to generate the position data θ1, wherein the distribution coefficient conversion unit The sum of the distribution coefficient KA1 and the distribution coefficient KB1 is the same for all angle values obtained from the angle signal AB0, and the maximum and minimum values are repeated every π / 2 radians. The decomposition coefficients KA1 and KB1 are respectively An encoder having a structure having a width more than twice the angle calculation resolution of the composite angle signal AB0 in the maximum, minimum, and intermediate regions It is an issue processing circuit. Hereinafter, embodiments will be described with reference to the drawings.
(Embodiment 1)
The signal processing circuit of the encoder according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of a signal processing circuit for converting two-phase sine wave signals into position data, and FIGS. 2 to 4 show operation waveforms of the respective blocks.
図1において、反転手段1には、正弦波信号A0と正弦波信号B0が入力され、反転信号A1と反転信号B1を生成する。合成角度検出手段2には、正弦波信号A0、正弦波信号B0、反転信号A1および反転信号B1が入力され、角度情報を得る合成角度信号AB0を生成する。角度変換手段3a(角度変換手段3b)には、正弦波信号A0と正弦波信号B0が入力され、逆三角関数変換によって角度信号A2(角度信号B2)に変換する。
In FIG. 1, the inverting means 1 receives a sine wave signal A0 and a sine wave signal B0, and generates an inverted signal A1 and an inverted signal B1. The combined
分配係数変換手段4には、合成角度信号AB0が入力され、角度信号A2と角度信号B2に乗算する分配係数を演算し、乗算器5aに分配係数KA1、乗算器5bに分配係数KB1を出力する。乗算器5a(乗算器5b)には、角度信号A2(角度信号B2)と分配係数KA1(分配係数KB1)が入力され、乗算データA3(乗算データB3)を合成手段6に出力する。合成手段6では、入力された乗算データA3と乗算データB3を平均処理し位置データθ1を生成する。
The distribution coefficient conversion means 4 receives the combined angle signal AB0, calculates a distribution coefficient to multiply the angle signal A2 and the angle signal B2, and outputs the distribution coefficient KA1 to the
ここで、正弦波信号A0と正弦波信号B0は、正規化された90度位相差の正弦波信号であり、エンコーダの信号検出器で検出した直交するA相とB相のアナログの正弦波信号をディジタル変換し、振幅ずれやオフセットずれおよび位相ずれを補正することによって得ることができる。 Here, the sine wave signal A0 and the sine wave signal B0 are normalized sine wave signals with a phase difference of 90 degrees, and are orthogonal A phase and B phase analog sine wave signals detected by the encoder signal detector. Can be obtained by digitally converting and correcting amplitude deviation, offset deviation and phase deviation.
エンコーダの信号検出器は、一般的に発光素子と受光素子とスリット板から構成される。発光素子は、LEDやレーザー光、受光素子はフォトダイオードやフォトトランジスタが用いられる。スリット板は、光を透過するガラスや樹脂材でできており、スリット板上に光を遮断する格子状のマスクを設けている。発光素子からの光は、スリット板を介して受光素子が透過した光を受けるように配置し、スリット板はエンコーダの回転体に設置されているため、回転すると正弦波の波形が受光素子から出力するようにスリット板の格子状の形が形成される。 The signal detector of the encoder is generally composed of a light emitting element, a light receiving element, and a slit plate. The light emitting element is an LED or a laser beam, and the light receiving element is a photodiode or a phototransistor. The slit plate is made of glass or a resin material that transmits light, and a lattice-like mask that blocks light is provided on the slit plate. The light from the light emitting element is arranged to receive the light transmitted by the light receiving element through the slit plate, and the slit plate is installed on the rotating body of the encoder. Thus, a lattice-like shape of the slit plate is formed.
ここで、図2を用いて合成角度検出手段2の動作について説明する。正弦波信号A0と正弦波信号B0は共に反転した反転信号A1と反転信号B1と合わせて合成角度検出手段2に入力する。それぞれの信号の交点(C315、C45、C135、C225)を求め、交点を基点として1周期を4つの領域(領域1から領域4)に分割する。
Here, the operation of the composite angle detection means 2 will be described with reference to FIG. Both the sine wave signal A0 and the sine wave signal B0 are input to the combined angle detection means 2 together with the inverted signal A1 and the inverted signal B1 that are inverted. The intersection (C315, C45, C135, C225) of each signal is obtained, and one period is divided into four regions (
領域1は、正弦波信号A0と反転信号B1の交点C315からスタートし、正弦波信号A0の軌跡を通り、正弦波信号A0と正弦波信号B0の交点C45に到達する。領域2は、交点C45からスタートし、正弦波信号B0の軌跡を通り、反転信号A1と正弦波信号B0の交点C135に到達する。領域3は、交点C135からスタートし、反転信号A1の軌跡を通り、反転信号A1と反転信号B1の交点C225に到達する。領域4は、交点C225からスタートし、反転信号B1の軌跡を通り、正弦波信号A0と反転信号B1の交点C315に到達する。
このように交点を基点として、各信号の軌跡をたどることで、図2のように合成角度信号AB0を生成することができる。また、合成角度信号AB0は、合成角度信号を各領域の信号(各信号の交点から交点の信号)を組み合わせることによって得られる信号としてもよい。 By following the trajectory of each signal with the intersection as the base point in this way, the synthesized angle signal AB0 can be generated as shown in FIG. Further, the synthesized angle signal AB0 may be a signal obtained by combining the synthesized angle signal with the signals of the respective regions (the signals from the intersections of the signals).
次に、図3を併用して角度変換手段3aと角度変換手段3bの動作について説明する。角度変換手段3aには、正弦波信号A0と正弦波信号B0が入力され、正弦波信号A0を逆三角関数変換によって角度データA2に変換する。逆三角関数変換は、−π/2ラジアン〜π/2ラジアンの領域で計算されるので、図3のように正弦波信号B0が正のとき(−π/2ラジアン〜π/2ラジアン)と、負のとき(π/2ラジアン〜3π/2ラジアン)に分離して計算する。 Next, operations of the angle conversion means 3a and the angle conversion means 3b will be described with reference to FIG. The angle conversion means 3a receives the sine wave signal A0 and the sine wave signal B0, and converts the sine wave signal A0 into angle data A2 by inverse trigonometric function conversion. Since the inverse trigonometric transformation is calculated in the region of −π / 2 radians to π / 2 radians, when the sine wave signal B0 is positive as shown in FIG. 3 (−π / 2 radians to π / 2 radians). , Calculation is performed separately when negative (π / 2 radians to 3π / 2 radians).
また、角度変換手段3bは、正弦波信号B0を同様に正弦波信号A0が正のとき(0ラジアン〜πラジアン)と、負のとき(πラジアン〜2πラジアン)に分離して計算する。このように90度位相差の正弦波信号を用いることで、0ラジアン〜2πラジアンまでの逆三角関数変換を容易に求めることができる。 Similarly, the angle conversion means 3b calculates the sine wave signal B0 separately when the sine wave signal A0 is positive (0 radians to π radians) and negative (π radians to 2π radians). In this way, by using a sine wave signal having a phase difference of 90 degrees, inverse trigonometric function conversion from 0 radians to 2π radians can be easily obtained.
次に、分配係数変換手段4について図3を用いて説明する。分配係数変換手段4は、合成角度検出手段2からの合成角度信号AB0を入力し、分配係数KA1と分配係数KB1を得る。分配係数KA1と分配係数KB1は、0ラジアン〜2πラジアンまでの角度領域で分配係数KA1とKB1の和が等しくなるように選定する。
Next, the distribution
例えば、図3では分配係数の最大値をKKとした場合であり、0ラジアンのときKA1=KK、KB1=0となり、π/4ラジアンのときKA1=KK/2、KB1=KK/2
となり、π/2ラジアンのときKA1=0、KB1=KK/2となる。分配係数KA1、KB1の値は合成角度信号AB0をアドレスとして、ROM(Read Only Memory)に事前に設定しておくことで、複雑な計算をすることなく容易に求めることができる。
For example, FIG. 3 shows a case where the maximum value of the distribution coefficient is KK. When 0 radians, KA1 = KK and KB1 = 0, and when π / 4 radians, KA1 = KK / 2 and KB1 = KK / 2.
Thus, when π / 2 radians, KA1 = 0 and KB1 = KK / 2. The values of the distribution coefficients KA1 and KB1 can be easily obtained without performing complicated calculations by setting in advance in a ROM (Read Only Memory) using the combined angle signal AB0 as an address.
次に、乗算器5aと乗算器5bおよび合成手段6について説明する。乗算器5a(乗算器5b)は、角度データA2(角度データB2)と分配係数KA1(分配係数KB1)を乗算し、乗算データA3(乗算データB3)を得る。合成手段6では、乗算データA3と乗算データB3の平均値を求めることで、位置データθ1を得ることができる。
Next, the
ここで、分配係数KA1と分配係数KB1の設定方法について説明する。正弦波信号A0、正弦波信号B0を角度で微分すると、頂点付近のπ/2ラジアン、3π/2ラジアンと0ラジアン、πラジアンは値が小さくなるため、角度変換手段3a、角度変換手段3bで求めた角度データA2、B2は、図3に示す丸印の部分で精度が悪くなる。図3のように分配係数KA1、KB1はこの丸印付近で最小になるように選定することで、位置データへの変換精度を高めることができる。 Here, a method for setting the distribution coefficient KA1 and the distribution coefficient KB1 will be described. When the sine wave signal A0 and the sine wave signal B0 are differentiated by angle, the values of π / 2 radians, 3π / 2 radians, 0 radians, and π radians in the vicinity of the apex become small. The obtained angle data A2 and B2 have poor accuracy at the circled portions shown in FIG. As shown in FIG. 3, the distribution coefficients KA1 and KB1 are selected so as to be the minimum in the vicinity of the circle, so that the accuracy of conversion into position data can be increased.
また、正弦波信号A0、正弦波信号B0は補正した信号を用いるが、補正しきれない誤差や波形歪の影響で合成角度信号AB0に誤差が生じる。このような場合、角度データA2、角度データB2の精度が悪い領域で、分配係数KA1、分配係数KB1はゼロにならないため、合成した位置データθ1に、精度が悪い角度データの情報が含まれてしまう。 Further, corrected signals are used as the sine wave signal A0 and the sine wave signal B0. However, an error occurs in the combined angle signal AB0 due to an error that cannot be corrected or a waveform distortion. In such a case, since the distribution coefficient KA1 and the distribution coefficient KB1 do not become zero in a region where the accuracy of the angle data A2 and the angle data B2 is poor, the synthesized position data θ1 includes information on the angle data with poor accuracy. End up.
そこで図4のように分配係数KA1、分配係数KB1の最大値と最小値に合成角度信号AB0の角度分解能に対して、2倍以上の幅を有するように設定する。このように設定することで、合成角度信号AB0の許容誤差を、2倍以上にすることができる。 Therefore, as shown in FIG. 4, the maximum value and the minimum value of the distribution coefficient KA1 and the distribution coefficient KB1 are set so as to have a width more than twice the angular resolution of the composite angle signal AB0. By setting in this way, the allowable error of the combined angle signal AB0 can be doubled or more.
また、分配係数KA1、分配係数KB1は、最大値と最小値に間の角度を直線で結び設定してもよい。この場合、分配係数KA1、分配係数KB1は、連続的に変化するので、合成して得られた位置データは滑らかに変化し、不連続点の発生を抑制することができる(実施の形態2)
図7を用いて、本発明の実施の形態2について説明する。実施の形態1と異なるのは分配係数KA1と分配係数KB1の設定方法であり、この点について説明する。
The distribution coefficient KA1 and the distribution coefficient KB1 may be set by connecting the angle between the maximum value and the minimum value with a straight line. In this case, since the distribution coefficient KA1 and the distribution coefficient KB1 change continuously, the position data obtained by the synthesis changes smoothly and the occurrence of discontinuous points can be suppressed (second embodiment).
A second embodiment of the present invention will be described with reference to FIG. What is different from the first embodiment is a method of setting the distribution coefficient KA1 and the distribution coefficient KB1, and this point will be described.
分配係数KA1、分配係数KB1は、π/2×nラジアン毎(n:0、1、3、4)に最大値と最小値を繰り返すが、この中間点π/4×nラジアン(n:0、1、3、4、5、6、7)では、双方のバランスを取るため中間値(最大値/2)を取るのがよい。正弦波信号A0、正弦波信号B0に振幅や位相誤差が含まれていない場合は、実施の形態1の方法で、π/4×nラジアン(n:0、1、3、4、5、6、7)で、分配係数KA1、分配係数KB1は中間値となる。 The distribution coefficient KA1 and the distribution coefficient KB1 repeat the maximum value and the minimum value every π / 2 × n radians (n: 0, 1, 3, 4), but this intermediate point π / 4 × n radians (n: 0) 1, 3, 4, 5, 6, 7), it is preferable to take an intermediate value (maximum value / 2) in order to balance both. When the sine wave signal A0 and the sine wave signal B0 do not include an amplitude or phase error, the method of the first embodiment is used to obtain π / 4 × n radians (n: 0, 1, 3, 4, 5, 6 7), the distribution coefficient KA1 and the distribution coefficient KB1 are intermediate values.
しかし、正弦波信号A0、正弦波信号B0は、補正しきれない誤差や波形歪の影響で合成角度信号AB0に誤差が生じるため、分配係数KA1、分配係数KB1の中間値に合成角度信号AB0の角度分解能に対して2倍以上の幅を有するように設定する。このように設定することで、合成角度信号AB0の許容誤差を2倍以上にすることができるため、合成して得られた位置データは更に滑らかに変化し、不連続点の発生を抑制することができる。
(実施の形態3)
図8、図9および図10を用いて、本発明の実施の形態3について説明する。実施の形態1および実施の形態2と異なるのは、合成角度信号AB0を上下リミット手段7によって最大値と最小値のリミット処理を設けた点であり、この動作について説明する。
However, since the sine wave signal A0 and the sine wave signal B0 have errors in the combined angle signal AB0 due to uncorrectable errors and waveform distortion, the intermediate value of the distribution coefficient KA1 and the distribution coefficient KB1 is the intermediate value of the combined angle signal AB0. It is set so as to have a width more than twice the angular resolution. By setting in this way, the allowable error of the combined angle signal AB0 can be doubled or more, so that the position data obtained by combining changes more smoothly and suppresses the occurrence of discontinuous points. Can do.
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. 8, FIG. 9, and FIG. The difference from the first embodiment and the second embodiment is that the combined angle signal AB0 is provided with limit processing of the maximum value and the minimum value by the upper and lower limit means 7, and this operation will be described.
図8に示すように、上下リミット手段7は、合成角度変換手段2と分配係数変換手段4の間に設けられ、合成角度信号AB0が入力され、最大値と最小値のリミット処理をした合成角度信号AB1を出力する。 As shown in FIG. 8, the upper and lower limit means 7 is provided between the composite angle conversion means 2 and the distribution coefficient conversion means 4 and receives the composite angle signal AB0 and performs the maximum and minimum value limit processing. The signal AB1 is output.
正弦波信号A0、正弦波信号B0は、補正しきれない誤差や波形歪の影響で合成角度信号AB0に誤差が生じる。図9と図10は、正弦波信号A0、正弦波信号B0に位相誤差があった場合の例であり、合成角度信号AB0が、π/4ラジアン、3π/4ラジアンで正規値であるKS・sin(π/4)をオーバーする。 In the sine wave signal A0 and the sine wave signal B0, an error occurs in the combined angle signal AB0 due to an error that cannot be corrected or an influence of waveform distortion. FIGS. 9 and 10 are examples in the case where there is a phase error in the sine wave signal A0 and the sine wave signal B0, and the combined angle signal AB0 is a normal value of π / 4 radians and 3π / 4 radians. It exceeds sin (π / 4).
このように、リミット値を越える場合は、リミット値で制限を掛けて、その結果を合成角度信号AB1として分配係数変換手段4に入力する構成とする。 In this way, when the limit value is exceeded, the limit value is used to limit the result, and the result is input to the distribution coefficient conversion means 4 as the synthesized angle signal AB1.
例えば、実施の形態1の構成を例にすると、分配係数KA1、分配係数KB1は、図9のようになる。また、実施の形態2の構成を例にすると、分配係数KA1、分配係数KB1は、図10のようになり、どちらの場合においても、正弦波信号A0、正弦波信号B0の位相誤差の影響を吸収し連続性を保つことができる。合成して得られた位置データは更に滑らかに変化し、不連続点の発生を抑制することができる。 For example, taking the configuration of the first embodiment as an example, the distribution coefficient KA1 and the distribution coefficient KB1 are as shown in FIG. Taking the configuration of the second embodiment as an example, the distribution coefficient KA1 and the distribution coefficient KB1 are as shown in FIG. 10. In either case, the influence of the phase error of the sine wave signal A0 and the sine wave signal B0 is affected. Can absorb and maintain continuity. The position data obtained by the synthesis changes more smoothly, and the occurrence of discontinuous points can be suppressed.
本発明の信号処理回路は、サーボモータ制御装置に限らず、高分解能の位置情報を得るためにエンコーダを搭載した装置に有用である。 The signal processing circuit of the present invention is useful not only for servo motor control devices but also for devices equipped with an encoder for obtaining high-resolution position information.
A0、B0 正弦波信号
A1、B1 反転信号
A2、B2 角度データ
A3、B3 乗算データ
AB0、AB1 合成角度信号
KA1、KB1 分配係数
θ1 位置データ
C45、C135、C225、C315 正弦波信号の交点
A0, B0 Sine wave signal A1, B1 Inverted signal A2, B2 Angle data A3, B3 Multiplication data AB0, AB1 Composite angle signal KA1, KB1 Distribution coefficient θ1 Position data C45, C135, C225, C315 Intersect of sine wave signal
Claims (6)
前記正弦波信号A0と正弦波信号B0を別々に入力し、逆三角関数変換によって正弦波信号からそれぞれ角度信号A2と角度信号B2に変換する角度変換手段と、
前記正弦波信号A0と正弦波信号B0を入力して符号を反転した反転信号A1と反転信号B1を生成する反転手段と、
前記正弦波信号A0と正弦波信号B0と反転信号A1および反転信号B1を入力し、それぞれの交点を検出し、交点から前記信号の絶対値の小さい信号を選択して連続線とし、連続線の値から角度情報を得る合成角度信号AB0を生成する合成角度検出手段と、
前記合成角度信号AB0を入力し、前記角度信号A2と角度信号B2に乗算する分配係数KA1と分配係数KB1を演算しそれぞれ出力する分配係数変換手段と、
前記角度信号A2と分配係数KA1を、前記角度信号B2と分配係数KB1をそれぞれ入力し、乗算データA3および乗算データB3をそれぞれ出力する乗算器と、
前記乗算データA3と乗算データB3を入力し、平均処理し位置データθ1を生成する合成手段を備え、
前記分配係数変換手段は、前記合成角度信号AB0から得られる全ての角度値に対し、前記分配係数KA1と分配係数KB1の和が等しくなるように分配することを特徴とするエンコーダの信号処理回路。 In the interpolation processing method of the encoder for detecting the position by performing inverse trigonometric function conversion on the orthogonal AB phase sine wave signal A0 and sine wave signal B0, respectively,
Angle conversion means for separately inputting the sine wave signal A0 and the sine wave signal B0 and converting the sine wave signal to the angle signal A2 and the angle signal B2 by inverse trigonometric function conversion, respectively;
Inverting means for inputting the sine wave signal A0 and the sine wave signal B0 and inverting the sign and generating the inverted signal B1;
The sine wave signal A0, the sine wave signal B0, the inverted signal A1, and the inverted signal B1 are input, the respective intersections are detected, and a signal having a small absolute value of the signal is selected from the intersections to form a continuous line. Combined angle detection means for generating a combined angle signal AB0 for obtaining angle information from the value;
Distribution coefficient conversion means for inputting the combined angle signal AB0, calculating the distribution coefficient KA1 and the distribution coefficient KB1 for multiplying the angle signal A2 and the angle signal B2, and outputting them respectively;
A multiplier that receives the angle signal A2 and the distribution coefficient KA1, inputs the angle signal B2 and the distribution coefficient KB1, and outputs multiplication data A3 and multiplication data B3, respectively;
A synthesis means for inputting the multiplication data A3 and the multiplication data B3 and averaging them to generate position data θ1;
The encoder signal processing circuit according to claim 1, wherein the distribution coefficient converting means distributes all angle values obtained from the combined angle signal AB0 so that a sum of the distribution coefficient KA1 and the distribution coefficient KB1 is equal.
2. An upper / lower limit limit unit that receives the combined angle signal AB0 and outputs a combined angle signal AB1 in which the magnitude of the signal is limited by an upper limit value and a lower limit value to the distribution coefficient conversion unit. The signal processing circuit of the encoder according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008051788A JP5098699B2 (en) | 2008-03-03 | 2008-03-03 | Encoder signal processing circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008051788A JP5098699B2 (en) | 2008-03-03 | 2008-03-03 | Encoder signal processing circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009210315A JP2009210315A (en) | 2009-09-17 |
JP5098699B2 true JP5098699B2 (en) | 2012-12-12 |
Family
ID=41183635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008051788A Active JP5098699B2 (en) | 2008-03-03 | 2008-03-03 | Encoder signal processing circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5098699B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102067938B1 (en) * | 2019-01-14 | 2020-01-17 | 박천수 | Zero-Force Equalized Vector Synthesis Absolute Encoder Method and its apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760212A (en) * | 1980-09-30 | 1982-04-12 | S G:Kk | Detecting device for rotational angle |
JPS6238302A (en) * | 1985-08-12 | 1987-02-19 | Kobe Steel Ltd | Angle detecting device |
JP2000346859A (en) * | 1999-06-07 | 2000-12-15 | Nec Corp | Speed signal detecting device |
JP3452556B2 (en) * | 2001-07-09 | 2003-09-29 | 多摩川精機株式会社 | Encoder signal processing apparatus and method |
JP3486617B2 (en) * | 2001-10-12 | 2004-01-13 | 多摩川精機株式会社 | Encoder signal processing apparatus and method |
JP2007511778A (en) * | 2003-11-18 | 2007-05-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Positioning apparatus and method |
-
2008
- 2008-03-03 JP JP2008051788A patent/JP5098699B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009210315A (en) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4453758B2 (en) | Encoder signal phase correction circuit | |
JP3659976B2 (en) | Encoder interpolation circuit | |
US8258459B2 (en) | Optical encoder and motor system comprising dual decentered annular slits | |
JP6624446B2 (en) | Interpolation method and interpolation device | |
JP2006112859A (en) | Encoder output signal corrector | |
JP4119460B2 (en) | Encoder output signal amplitude calculation device and encoder output signal amplitude calculation program | |
JP2746178B2 (en) | Measurement device interpolation circuit | |
JPH10300517A (en) | Interpolation circuit of encoder | |
JP5098699B2 (en) | Encoder signal processing circuit | |
JP4780038B2 (en) | Encoder signal processing circuit | |
JP7203584B2 (en) | absolute rotary encoder | |
JP4224677B2 (en) | Optical encoder position detection method | |
JP2006090741A (en) | Output signal correction apparatus and method of encoder | |
JP2005098735A (en) | Position-detecting means and position control means using the same | |
JP2009244022A (en) | Phase detection circuit | |
JP2756761B2 (en) | Interpolation pulse generator | |
KR100969582B1 (en) | Method for detecting the position of the Rotor | |
JP4581953B2 (en) | Encoder output signal correction circuit | |
KR101604446B1 (en) | Optical encoder | |
JPH0658769A (en) | Signal processing method and displacement detector using method thereof | |
JP3488875B2 (en) | Encoder signal processing apparatus and method | |
JP4727283B2 (en) | Multi-rotation absolute angle detection method and detection apparatus | |
JP3794408B2 (en) | Correction method for sinusoidal analog signal, correction method for multiphase sinusoidal analog signal, and position data generation method | |
JP5097012B2 (en) | Encoder signal processing circuit | |
JP2021012052A (en) | Coordinate data rotation computing device and coordinate data rotation computing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110302 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20110413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5098699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |