[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5098343B2 - Refrigerant flow control device - Google Patents

Refrigerant flow control device Download PDF

Info

Publication number
JP5098343B2
JP5098343B2 JP2007015049A JP2007015049A JP5098343B2 JP 5098343 B2 JP5098343 B2 JP 5098343B2 JP 2007015049 A JP2007015049 A JP 2007015049A JP 2007015049 A JP2007015049 A JP 2007015049A JP 5098343 B2 JP5098343 B2 JP 5098343B2
Authority
JP
Japan
Prior art keywords
temperature difference
opening degree
electronic expansion
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007015049A
Other languages
Japanese (ja)
Other versions
JP2008180458A (en
Inventor
浅田  規
伸一 中山
祐司 鈴木
晴彦 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007015049A priority Critical patent/JP5098343B2/en
Publication of JP2008180458A publication Critical patent/JP2008180458A/en
Application granted granted Critical
Publication of JP5098343B2 publication Critical patent/JP5098343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、開度に応じて蒸発器に流入する冷媒量を変更する電子膨張弁と、蒸発器における冷媒の入口部から出口部の間に、入口部からの距離が互いに異なる態様で設置した冷媒の温度を検出する一方の温度センサおよび他方の温度センサと、それら温度センサの検出結果に応じて電子膨張弁の開度を調節する弁開度調節手段とを備える冷媒流量制御装置に関するものである。   The present invention is installed between the electronic expansion valve that changes the amount of refrigerant flowing into the evaporator according to the opening degree, and the distance from the inlet portion between the inlet portion and the outlet portion of the refrigerant in the evaporator. The present invention relates to a refrigerant flow rate control device including one temperature sensor for detecting the temperature of a refrigerant and the other temperature sensor, and valve opening degree adjusting means for adjusting the opening degree of an electronic expansion valve according to the detection results of the temperature sensors. is there.

例えば、商品を冷却した状態で陳列販売するショーケースにおいては、収容庫の内部に蒸発器が設けられ、かつ収容庫の外部に圧縮機、凝縮器、および電子膨張弁が設けられており、これら蒸発器、圧縮機、凝縮器および電子膨張弁に冷媒を循環供給することによって冷凍サイクルを構成し、収容庫の内部を所定の温度状態に維持するようにしている。   For example, in a showcase that displays and sells products in a cooled state, an evaporator is provided inside the container, and a compressor, a condenser, and an electronic expansion valve are provided outside the container. A refrigerant is circulated and supplied to the evaporator, the compressor, the condenser, and the electronic expansion valve to constitute a refrigeration cycle, and the inside of the storage is maintained at a predetermined temperature state.

この種の冷凍サイクルにおいては、例えば蒸発器における冷媒の出口部に一方の冷媒温度センサ(温度センサ)を設置し、かつ蒸発器における冷媒の入口部に他方の冷媒温度センサ(温度センサ)を設置して、それらの冷媒温度センサの検知結果に応じて蒸発器に流入する冷媒量を制御することにより冷却効率の向上を図るようにしている。具体的には、一方の冷媒温度センサによって検出した第1温度から、他方の冷媒温度センサによって検出した第2温度を差し引いた温度差が予め設定した目標温度差である5[K]となるよう電子膨張弁の開度を調節するようにしている(例えば、特許文献1参照)。   In this type of refrigeration cycle, for example, one refrigerant temperature sensor (temperature sensor) is installed at the refrigerant outlet in the evaporator, and the other refrigerant temperature sensor (temperature sensor) is installed at the refrigerant inlet in the evaporator. Then, the cooling efficiency is improved by controlling the amount of refrigerant flowing into the evaporator according to the detection results of the refrigerant temperature sensors. Specifically, the temperature difference obtained by subtracting the second temperature detected by the other refrigerant temperature sensor from the first temperature detected by one refrigerant temperature sensor is set to 5 [K], which is a preset target temperature difference. The opening degree of the electronic expansion valve is adjusted (for example, see Patent Document 1).

特開平2−197776号公報JP-A-2-197776

ところで、上記のような冷凍サイクルにおいて、例えば2つの冷媒温度センサの温度差が0[K]以下となった状態が維持されると、蒸発器の出口部から液体の冷媒と気体の冷媒とが混合したものが吐出されて圧縮機に入る、いわゆる液バックとよばれる現象が発生する。この液バックという現象が発生すると圧縮機を破損させる虞があった。   By the way, in the refrigeration cycle as described above, for example, if the state where the temperature difference between the two refrigerant temperature sensors is 0 [K] or less is maintained, the liquid refrigerant and the gaseous refrigerant are discharged from the outlet of the evaporator. A phenomenon called so-called liquid back occurs in which the mixed material is discharged and enters the compressor. When this phenomenon of liquid back occurs, the compressor may be damaged.

そこで、本発明は、冷却効率を向上するとともに、圧縮機の破損を防止することができる冷媒流量制御装置を提供することにある。   Then, this invention is providing the refrigerant | coolant flow control apparatus which can prevent the failure | damage of a compressor while improving cooling efficiency.

上記の目的を達成するために、本発明の請求項に係る発明は、開度に応じて蒸発器に流入する冷媒量を調節する電子膨張弁と、前記蒸発器における冷媒の入口部から出口部の間に、前記入口部からの距離が互いに異なる態様で設置した冷媒の温度を検出する一方の温度センサおよび他方の温度センサと、それら温度センサの検出結果に応じて前記電子膨張弁の開度を調節する弁開度調節手段とを備える冷媒流量制御装置であって、前記他方の温度センサは、前記一方の温度センサに比して前記入口部に近接するものであり、かつ前記弁開度調節手段は、前記一方の温度センサによって検出した第1温度から、前記他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、前記温度差が前記設定温度差よりも大きい目標温度差を上回るまで前記電子膨張弁の開度を徐々に絞り、その後、前記温度差が前記目標温度差を上回った時点で、前記温度差が前記目標温度差になるように前記電子膨張弁の開度を拡げることを特徴とする。 Outlet in order to achieve the above object, the invention according to claim 1 of the present invention, an electronic expansion valve for adjusting an amount of refrigerant flowing into the evaporator in accordance with the opening degree from the inlet portion of the refrigerant in the evaporator One temperature sensor for detecting the temperature of the refrigerant installed in a manner in which the distances from the inlet portion are different from each other, and the other temperature sensor, and the opening of the electronic expansion valve according to the detection result of the temperature sensors. A flow rate control device for adjusting the degree of opening of the refrigerant, wherein the other temperature sensor is closer to the inlet than the one temperature sensor, and the valve opening degree adjustment means, if the first temperature detected by the one temperature sensor, the temperature difference obtained by subtracting the second temperature detected by the temperature sensor of the other is equal to or less than the set temperature difference which is set in advance, the temperature Difference Serial gradually narrow the opening of the electronic expansion valve to above the large target temperature difference than the set temperature difference, then, when the temperature difference exceeds the target temperature difference, the temperature difference on the target temperature difference Thus, the opening degree of the electronic expansion valve is increased.

また、本発明の請求項に係る発明は、開度に応じて蒸発器に流入する冷媒量を調節する電子膨張弁と、前記蒸発器における冷媒の入口部から出口部の間に、前記入口部からの距離が互いに異なる態様で設置した冷媒の温度を検出する一方の温度センサおよび他方の温度センサと、それら温度センサの検出結果に応じて前記電子膨張弁の開度を調節する弁開度調節手段とを備える冷媒流量制御装置であって、前記他方の温度センサは、前記一方の温度センサに比して前記入口部に近接するものであり、かつ前記弁開度調節手段は、前記一方の温度センサによって検出した第1温度から、前記他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、前記温度差が前記設定温度差よりも大きい目標温度差を上回るまで前記電子膨張弁の開度を徐々に絞り、その後、前記温度差が前記目標温度差を上回った時点で、前記電子膨張弁の開度を前記設定温度差になったときの前記電子膨張弁の開度より予め設定した所定の大きさだけ絞った開度に拡げることを特徴とする。 According to a second aspect of the present invention, there is provided an electronic expansion valve that adjusts an amount of refrigerant flowing into the evaporator according to an opening, and the inlet between the inlet and outlet of the refrigerant in the evaporator. One temperature sensor that detects the temperature of the refrigerant installed in a manner in which the distances from the parts are different from each other, the other temperature sensor, and the valve opening that adjusts the opening of the electronic expansion valve according to the detection result of these temperature sensors And the other temperature sensor is closer to the inlet portion than the one temperature sensor, and the valve opening degree adjusting means is When the temperature difference obtained by subtracting the second temperature detected by the other temperature sensor from the first temperature detected by the other temperature sensor is equal to or less than a preset temperature difference, the temperature difference is greater than the preset temperature difference. Too large Stay until above the target temperature difference throttle gradually opening of the electronic expansion valve, then, when the temperature difference exceeds the target temperature difference became the opening of the electronic expansion valve to the set temperature difference The opening degree of the electronic expansion valve is increased to an opening degree that is narrowed by a predetermined size set in advance.

請求項1にかかる冷媒流量制御装置によれば、一方の温度センサによって検出した第1温度から、他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合に、温度差が設定温度差よりも大きい目標温度差となるよう電子膨張弁の開度を絞る弁開度調節手段を備えるため、例えば2つの温度センサの温度差が0[K]となった状態が維持されることを弁開度調節手段によって防止することができる。よって、いわゆる液バックという現象が発生することを防止することができるため、液バックが発生することに起因した圧縮機の破損を防止することができる。加えて、温度差が、設定温度差になったときから目標温度差となるまでの時間を短縮することができる。   According to the refrigerant flow control device of the first aspect, the temperature difference obtained by subtracting the second temperature detected by the other temperature sensor from the first temperature detected by the one temperature sensor is equal to or less than the preset temperature difference. In this case, since the opening degree adjusting means for reducing the opening degree of the electronic expansion valve is provided so that the temperature difference becomes a target temperature difference larger than the set temperature difference, for example, the temperature difference between the two temperature sensors is 0 [K]. The maintained state can be prevented by the valve opening degree adjusting means. Therefore, the phenomenon of so-called liquid back can be prevented, so that the compressor can be prevented from being damaged due to the occurrence of liquid back. In addition, the time from when the temperature difference becomes the set temperature difference until it becomes the target temperature difference can be shortened.

請求項2にかかる冷媒流量制御装置によれば、一方の温度センサによって検出した第1温度から、他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合に、温度差が設定温度差になったときの電子膨張弁の開度より予め設定した大きさだけ電子膨張弁の開度を絞る弁開度調節手段を備えるため、例えば2つの温度センサの温度差が0[K]となった状態が維持されることを弁開度調節手段によって防止することができる。よって、いわゆる液バックという現象が発生することを防止することができるため、液バックが発生することに起因した圧縮機の破損を防止することができる。加えて、温度差が設定温度差になったとき、弁開度調節手段によって電子膨張弁の開度を急激に絞れば、設定温度差となったときから目標温度差になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。さらに、温度差が設定温度差となる毎に、電子膨張弁の開度を予め設定した大きさだけ絞るため、季節の変動に応じて変化する冷却負荷に対応して最適な電子膨張弁の開度を設定すること、すなわち最適な電子膨張弁の開度をオートチューニングすることが可能となる。よって、液バックが発生する頻度を低減し、冷媒流量制御装置を適用する冷却装置の運転を安定させることができる。   According to the refrigerant flow control device of the second aspect, the temperature difference obtained by subtracting the second temperature detected by the other temperature sensor from the first temperature detected by the one temperature sensor is equal to or smaller than the preset temperature difference. In order to provide a valve opening degree adjusting means for reducing the opening degree of the electronic expansion valve by a preset amount from the opening degree of the electronic expansion valve when the temperature difference becomes the set temperature difference, for example, two temperatures It can be prevented by the valve opening degree adjusting means that the temperature difference between the sensors becomes 0 [K]. Therefore, the phenomenon of so-called liquid back can be prevented, so that the compressor can be prevented from being damaged due to the occurrence of liquid back. In addition, when the temperature difference reaches the set temperature difference, the time from the set temperature difference to the target temperature difference can be shortened by rapidly reducing the opening of the electronic expansion valve by the valve opening adjustment means. It is possible to reliably prevent the occurrence of liquid back. In addition, every time the temperature difference reaches the set temperature difference, the opening of the electronic expansion valve is reduced by a preset amount, so that the optimum electronic expansion valve can be opened in response to the cooling load that changes according to seasonal fluctuations. It is possible to set the degree, that is, to auto-tune the optimum opening degree of the electronic expansion valve. Therefore, it is possible to reduce the frequency of occurrence of liquid back and to stabilize the operation of the cooling device to which the refrigerant flow rate control device is applied.

請求項3にかかる冷媒流量制御装置によれば、一方の温度センサによって検出した第1温度から、他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、設定温度差になったときより電子膨張弁の開度を絞った状態を、温度差が設定温度差よりも大きい目標温度差になるまで維持し、その後、温度差が目標温度差を上回った場合、温度差が目標温度差になるよう電子膨張弁の開度を拡げる弁開度調節手段を備えるため、例えば2つの温度センサの温度差が0[K]となった状態が維持されることを弁開度調節手段によって防止することができる。よって、いわゆる液バックという現象が発生することを防止することができるため、液バックが発生することに起因した圧縮機の破損を防止することができる。さらに、温度差が設定温度差になったとき、弁開度調節手段によって電子膨張弁の開度を急激に絞れば、設定温度差となったときから目標温度差になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。加えて、温度差が、設定温度差になったときから目標温度差となるまでの時間を短縮することができる。   According to the refrigerant flow control device of the third aspect, the temperature difference obtained by subtracting the second temperature detected by the other temperature sensor from the first temperature detected by the one temperature sensor is equal to or smaller than the preset temperature difference. If this happens, maintain the state where the opening of the electronic expansion valve is narrower than when the set temperature difference is reached until the temperature difference reaches the target temperature difference larger than the set temperature difference, and then the temperature difference becomes the target temperature difference. Since the valve opening adjustment means for expanding the opening of the electronic expansion valve so that the temperature difference becomes the target temperature difference is provided, for example, the temperature difference between the two temperature sensors is maintained at 0 [K]. This can be prevented by the valve opening degree adjusting means. Therefore, the phenomenon of so-called liquid back can be prevented, so that the compressor can be prevented from being damaged due to the occurrence of liquid back. Furthermore, when the temperature difference becomes the set temperature difference, if the opening degree of the electronic expansion valve is rapidly reduced by the valve opening degree adjusting means, the time from when the set temperature difference is reached until the target temperature difference is reached is shortened. It is possible to reliably prevent the occurrence of liquid back. In addition, the time from when the temperature difference becomes the set temperature difference until it becomes the target temperature difference can be shortened.

請求項4にかかる冷媒流量制御装置によれば、一方の温度センサによって検出した第1温度から、他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、設定温度差になったときより電子膨張弁の開度を絞った状態を、温度差が設定温度差よりも大きい目標温度差になるまで維持し、その後、温度差が目標温度差を上回った場合、設定温度差になったときより予め設定した所定の大きさだけ電子膨張弁の開度を絞る弁開度調節手段を備えるため、例えば2つの温度センサの温度差が0[K]となった状態が維持されることを弁開度調節手段によって防止することができる。よって、いわゆる液バックという現象が発生することを防止することができるため、液バックが発生することに起因した圧縮機の破損を防止することができる。さらに、温度差が設定温度差になったとき、弁開度調節手段によって電子膨張弁の開度を急激に絞れば、設定温度差となったときから目標温度差になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。加えて、温度差が設定温度差になったとき、弁開度調節手段によって電子膨張弁の開度を急激に絞れば、設定温度差となったときから目標温度差になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。さらに、温度差が設定温度差となる毎に、電子膨張弁の開度を予め設定した大きさだけ絞るため、季節の変動に応じて変化する冷却負荷に対応して最適な電子膨張弁の開度を設定すること、すなわち最適な電子膨張弁の開度をオートチューニングすることが可能となる。よって、液バックが発生する頻度を低減し、冷媒流量制御装置を適用する冷却装置の運転を安定させることができる。   According to the refrigerant flow control device of the fourth aspect, the temperature difference obtained by subtracting the second temperature detected by the other temperature sensor from the first temperature detected by the one temperature sensor is equal to or less than the preset temperature difference. If this happens, maintain the state where the opening of the electronic expansion valve is narrower than when the set temperature difference is reached until the temperature difference reaches the target temperature difference larger than the set temperature difference, and then the temperature difference becomes the target temperature difference. When the temperature difference exceeds the set temperature difference, the valve is provided with a valve opening degree adjusting means for reducing the opening degree of the electronic expansion valve by a predetermined size that is set in advance from when the set temperature difference is reached. It is possible to prevent the valve opening degree adjusting means from maintaining the state of Therefore, the phenomenon of so-called liquid back can be prevented, so that the compressor can be prevented from being damaged due to the occurrence of liquid back. Furthermore, when the temperature difference becomes the set temperature difference, if the opening degree of the electronic expansion valve is rapidly reduced by the valve opening degree adjusting means, the time from when the set temperature difference is reached until the target temperature difference is reached is shortened. It is possible to reliably prevent the occurrence of liquid back. In addition, when the temperature difference reaches the set temperature difference, the time from the set temperature difference to the target temperature difference can be shortened by rapidly reducing the opening of the electronic expansion valve by the valve opening adjustment means. It is possible to reliably prevent the occurrence of liquid back. In addition, every time the temperature difference reaches the set temperature difference, the opening of the electronic expansion valve is reduced by a preset amount, so that the optimum electronic expansion valve can be opened in response to the cooling load that changes according to seasonal fluctuations. It is possible to set the degree, that is, to auto-tune the optimum opening of the electronic expansion valve. Therefore, it is possible to reduce the frequency of occurrence of liquid back and to stabilize the operation of the cooling device to which the refrigerant flow rate control device is applied.

以下に添付図面を参照して、本発明に係る冷媒流量制御装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a refrigerant flow control device according to the present invention will be explained below in detail with reference to the accompanying drawings.

[実施の形態1]
図1は、本発明の実施の形態1の冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。ここで例示する冷却装置は、収容庫10の内部に収容した商品を冷却した状態で陳列販売するオープンショーケース11に適用するもので、オープンショーケース11の収容庫10に蒸発器12を備える一方、オープンショーケース11の外部に圧縮機15、凝縮器14、および電子膨張弁13を備えている。
[Embodiment 1]
FIG. 1 is an explanatory diagram illustrating a configuration of a cooling device to which the refrigerant flow rate control device according to the first embodiment of the present invention is applied. The cooling device illustrated here is applied to the open showcase 11 that displays and sells the product stored in the storage 10 in a cooled state, and includes the evaporator 12 in the storage 10 of the open showcase 11. The compressor 15, the condenser 14, and the electronic expansion valve 13 are provided outside the open showcase 11.

これら蒸発器12、圧縮機15、凝縮器14、および電子膨張弁13は、それぞれの間が冷媒供給管路16によって接続してあり、冷媒が循環供給される冷凍サイクルを構成している。すなわち、この冷却装置では、圧縮機15から吐出された高温高圧のガス冷媒が凝縮器14において冷却されて高温高圧の液冷媒となる。この高温高圧の液冷媒は、電子膨張弁13により断熱膨張されて低温低圧の気液2相冷媒となり、収容庫10の蒸発器12に供給される。蒸発器12に供給された低温低圧の気液2相冷媒は、送風ファン17によって供給された収容庫10の空気と熱交換し、空気から吸熱することで低温低圧のガス冷媒となることにより収容庫10の冷却を行う。蒸発器12から吐出された低温低圧のガス冷媒は圧縮機15に吸入され、再び高温高圧のガス冷媒となって凝縮器14に供給される。本実施形態では、電子膨張弁13として開度指令が与えられた場合にその開度指令に応じて開度を変更し、通過する冷媒量を調節することのできるものを適用している。   The evaporator 12, the compressor 15, the condenser 14, and the electronic expansion valve 13 are connected to each other by a refrigerant supply pipe 16 to constitute a refrigeration cycle in which refrigerant is circulated and supplied. That is, in this cooling device, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 is cooled in the condenser 14 to become a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is adiabatically expanded by the electronic expansion valve 13 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is supplied to the evaporator 12 of the container 10. The low-temperature and low-pressure gas-liquid two-phase refrigerant supplied to the evaporator 12 exchanges heat with the air in the storage box 10 supplied by the blower fan 17 and absorbs heat from the air, thereby becoming a low-temperature and low-pressure gas refrigerant. The storage 10 is cooled. The low-temperature and low-pressure gas refrigerant discharged from the evaporator 12 is sucked into the compressor 15 and again becomes a high-temperature and high-pressure gas refrigerant and supplied to the condenser 14. In this embodiment, when the opening degree command is given as the electronic expansion valve 13, the opening degree is changed according to the opening degree command and the amount of refrigerant passing therethrough is adjusted.

蒸発器12と圧縮機15とに接続した冷媒供給管路16における蒸発器12の出口部に
は、一方の冷媒温度センサ(一方の温度センサ)21が設置してあり、電子膨張弁13と蒸発器12とに接続した冷媒供給管路16における蒸発器12の入口部には、他方の冷媒温度センサ(他方の温度センサ)20が設置してある。すなわち、この冷媒流量制御装置では、蒸発器12の入口部から出口部の間に、入口部からの距離が互いに異なる態様で2つの冷媒温度センサ20,21が設置してある。しかも、他方の冷媒温度センサ20は、一方の冷媒温度センサ21に比して蒸発器12の入口部に近接している。これらの冷媒温度センサ20,21は、蒸発器12に流入する冷媒の温度を検出するものである。
One refrigerant temperature sensor (one temperature sensor) 21 is installed at the outlet of the evaporator 12 in the refrigerant supply line 16 connected to the evaporator 12 and the compressor 15. The other refrigerant temperature sensor (the other temperature sensor) 20 is installed at the inlet of the evaporator 12 in the refrigerant supply line 16 connected to the vessel 12. That is, in this refrigerant flow control device, two refrigerant temperature sensors 20 and 21 are installed between the inlet portion and the outlet portion of the evaporator 12 in a manner in which the distance from the inlet portion is different from each other. In addition, the other refrigerant temperature sensor 20 is closer to the inlet of the evaporator 12 than the one refrigerant temperature sensor 21. These refrigerant temperature sensors 20 and 21 detect the temperature of the refrigerant flowing into the evaporator 12.

上記冷却装置は、弁開度調節手段30を備えている。弁開度調節手段30は、冷媒温度センサ20,21の検出結果に基づいて電子膨張弁13の開度を調節するもので、温度差測定部31、記憶部32、および弁開度設定部33を備えている。   The cooling device includes a valve opening degree adjusting means 30. The valve opening degree adjusting means 30 adjusts the opening degree of the electronic expansion valve 13 based on the detection results of the refrigerant temperature sensors 20 and 21, and the temperature difference measuring unit 31, the storage unit 32, and the valve opening degree setting unit 33. It has.

温度差測定部31は、一方の冷媒温度センサ21の検出した第1温度(以下、「出口部冷媒温度T2」という)から、他方の冷媒温度センサ20の検出した冷媒温度(以下、「入口部冷媒温度T1」という)を差し引いた温度差Δt1を算出するものである。 The temperature difference measuring unit 31 uses the refrigerant temperature detected by the other refrigerant temperature sensor 20 (hereinafter referred to as “inlet”) from the first temperature detected by one refrigerant temperature sensor 21 (hereinafter referred to as “exit part refrigerant temperature T 2 ”). The temperature difference Δt1 is calculated by subtracting the “partial refrigerant temperature T 1 ”).

記憶部32には、冷却装置を運転するためのプログラムやデータが格納してある。さらに、この記憶部32には、例えば冷却装置の負荷の大きさと、上記温度差Δt1が所定の大きさ(目標温度差)となる電子膨張弁13の開度とが関連付けられて格納されている。この実施形態では、目標温度差を5[K]に設定してある。また、この記憶部32には、後述する設定温度差を格納してある。本実施の形態では、設定温度差を0[K]に設定してある。   The storage unit 32 stores a program and data for operating the cooling device. Further, in the storage unit 32, for example, the load of the cooling device and the opening of the electronic expansion valve 13 at which the temperature difference Δt1 becomes a predetermined magnitude (target temperature difference) are stored in association with each other. . In this embodiment, the target temperature difference is set to 5 [K]. Further, the storage unit 32 stores a set temperature difference which will be described later. In the present embodiment, the set temperature difference is set to 0 [K].

弁開度設定部33は、上記温度差Δt1および記憶部32に格納してあるデータに基づいて電子膨張弁13の開度を設定するものである。   The valve opening setting unit 33 sets the opening of the electronic expansion valve 13 based on the temperature difference Δt1 and the data stored in the storage unit 32.

このような冷却装置は、冷却効率を向上するため、温度差Δt1を可及的に小さくすることで蒸発器12を有効利用することができるが、温度差Δt1が小さい状態が維持されると以下に説明する液バックが発生する虞れがある。   In order to improve the cooling efficiency, such a cooling device can effectively use the evaporator 12 by reducing the temperature difference Δt1 as much as possible, but if the temperature difference Δt1 is kept small, There is a possibility that the liquid back described in the above will occur.

蒸発器12における冷媒の温度分布を示したグラフを図2に示す。図2に示すように、蒸発器12における冷媒の温度分布は、過熱蒸気部分及び気液2相部分において温度変化がそれぞれ小さく、過熱蒸気部分と気液2相部分との境界部(蒸発完了点)において急激に変化する特徴を有する。この蒸発完了点は、上記温度差Δt1が大きい場合には蒸発器12の入口部に近接する一方、上記温度差Δt1が小さい場合には蒸発器12の出口部に近接することとなる。   A graph showing the temperature distribution of the refrigerant in the evaporator 12 is shown in FIG. As shown in FIG. 2, the temperature distribution of the refrigerant in the evaporator 12 has a small temperature change in the superheated steam portion and the gas-liquid two-phase portion, and the boundary portion between the superheated steam portion and the gas-liquid two-phase portion (evaporation completion point). ) Have characteristics that change rapidly. This evaporation completion point is close to the inlet portion of the evaporator 12 when the temperature difference Δt1 is large, and close to the outlet portion of the evaporator 12 when the temperature difference Δt1 is small.

よって、上述したように、電子膨張弁13の開度を拡げることで温度差Δt1を徐々に小さくした場合、図2(a)〜図2(c)に示すように、蒸発完了点が蒸発器12の出口部に徐々に近接する。さらに、図2(d)に示すように、温度差Δt1が0[K]となった状態が維持されると、蒸発器12の出口部から気体の冷媒と液体の冷媒とが混合したものが吐出されて圧縮機15に入る、いわゆる液バックとよばれる現象が発生する虞れがある。よって、液バックの発生を考慮した場合、温度差Δt1=0[K]は、閾値であり、温度差Δt1が0[K]以下の場合、液バックが発生する割合が高くなる一方、温度差Δt1が0[K]より大きい場合、液バックが発生する割合が低くなる。この液バックという現象が発生すると圧縮機15を破損させる虞れある。この発明に係る冷却装置では、弁開度調節手段30によって、以下に説明する電子膨張弁13の開度調節処理を行うことで、上記液バックが発生することに起因して圧縮機15が破損することを防止している。   Therefore, as described above, when the temperature difference Δt1 is gradually reduced by increasing the opening of the electronic expansion valve 13, the evaporation completion point is the evaporator as shown in FIGS. 2 (a) to 2 (c). Gradually approach 12 outlets. Further, as shown in FIG. 2 (d), when the temperature difference Δt1 is maintained at 0 [K], a mixture of a gaseous refrigerant and a liquid refrigerant from the outlet of the evaporator 12 is obtained. There is a possibility that a phenomenon called so-called liquid back, which is discharged and enters the compressor 15, may occur. Therefore, when the occurrence of the liquid back is taken into consideration, the temperature difference Δt1 = 0 [K] is a threshold value, and when the temperature difference Δt1 is 0 [K] or less, the rate of occurrence of the liquid back increases, while the temperature difference When Δt1 is greater than 0 [K], the rate of occurrence of liquid back is reduced. If this phenomenon of liquid back occurs, the compressor 15 may be damaged. In the cooling device according to the present invention, the opening degree adjusting process of the electronic expansion valve 13 described below is performed by the valve opening degree adjusting means 30, so that the compressor 15 is damaged due to the occurrence of the liquid back. To prevent it.

図3は、図1に示した弁開度調節手段30の実施する電子膨張弁13の開度調節処理の内容を示すフローチャートである。以下、図3を参照しながら、冷却装置の動作について説明する。   FIG. 3 is a flowchart showing the contents of the opening adjustment processing of the electronic expansion valve 13 performed by the valve opening adjustment means 30 shown in FIG. Hereinafter, the operation of the cooling device will be described with reference to FIG.

冷却装置が運転状態にある場合、弁開度調節手段30は、例えばある一定時間毎に、冷媒温度センサ20,21を通じてそれぞれの冷媒の温度を検出し(ステップS101)、温度差測定部31を通じて算出した温度差Δt1が、予め設定した設定温度差であるゼロ以下であるか否かを判断する(ステップS102)。   When the cooling device is in an operating state, the valve opening degree adjusting means 30 detects the temperature of each refrigerant through the refrigerant temperature sensors 20 and 21 at regular intervals, for example (step S101), and through the temperature difference measuring unit 31. It is determined whether or not the calculated temperature difference Δt1 is less than or equal to zero that is a preset temperature difference (step S102).

温度差Δt1がゼロより大きい場合(ステップS102:No)、弁開度調節手段30は、そのまま手順をリターンさせる。一方、温度差Δt1がゼロ以下である場合(ステップS102:Yes)、弁開度調節手段30は、予め設定した目標温度差となるよう電子膨張弁13の開度を絞り(ステップS103)、その後、手順をリターンさせる。例えば、冷却装置がある負荷の下で運転されている状態で、温度差Δt1がゼロ以下である場合、弁開度調節手段30は、そのときの冷却装置の負荷の大きさに対応する電子膨張弁13の開度であって、上記温度差Δt1が5[K]となる予め設定した電子膨張弁13の開度を記憶部32から読み出し、弁開度設定部33によって電子膨張弁13の開度を設定し、その開度となるよう電子膨張弁13を絞り(ステップS103)、その後、手順をリターンさせる。   When the temperature difference Δt1 is larger than zero (step S102: No), the valve opening degree adjusting means 30 returns the procedure as it is. On the other hand, when the temperature difference Δt1 is less than or equal to zero (step S102: Yes), the valve opening degree adjusting means 30 restricts the opening degree of the electronic expansion valve 13 so as to be a preset target temperature difference (step S103), and thereafter Return the procedure. For example, when the temperature difference Δt1 is less than or equal to zero when the cooling device is operated under a certain load, the valve opening degree adjusting means 30 performs electronic expansion corresponding to the load size of the cooling device at that time. The opening degree of the electronic expansion valve 13 which is the opening degree of the valve 13 and the temperature difference Δt1 is 5 [K] is read from the storage unit 32, and the opening degree of the electronic expansion valve 13 is opened by the valve opening degree setting unit 33. The degree is set, the electronic expansion valve 13 is throttled so that the opening degree is reached (step S103), and then the procedure is returned.

弁開度調節手段30によって電子膨張弁13を上述したように開度調節した場合を図4に示す。図4に示すように、電子膨張弁13をある開度M1として冷却装置を運転していた状態において、例えば時間t1において温度差Δt1が0[K]になった場合、弁開度調節手段30によって温度差Δt1が5[K]となるよう電子膨張弁13の開度をM1からM2に絞るため、温度差Δt1は、5[K]に収束することとなる。なお、図4では、温度差Δt1を実線で示し、かつ電子膨張弁13の開度の大きさを2点鎖線で示している。 FIG. 4 shows a case where the opening degree of the electronic expansion valve 13 is adjusted by the valve opening degree adjusting means 30 as described above. As shown in FIG. 4, in a state where the cooling device is operated with the electronic expansion valve 13 set at a certain opening M1, for example, when the temperature difference Δt1 becomes 0 [K] at time t 1 , the valve opening adjusting means Since the opening degree of the electronic expansion valve 13 is reduced from M1 to M2 so that the temperature difference Δt1 becomes 5 [K] by 30, the temperature difference Δt1 converges to 5 [K]. In FIG. 4, the temperature difference Δt1 is indicated by a solid line, and the opening degree of the electronic expansion valve 13 is indicated by a two-dot chain line.

オープンショーケース11の立ち上げ時から時間が経過しており、冷却効率が向上するよう電子膨張弁13の開度を拡げた状態で運転を行っている場合には、上述したように温度差Δt1がゼロ以下となる事態が発生する。しかし、この実施の形態1に係る冷却装置では、温度差Δt1がゼロとなった時間t1において、弁開度調節手段30により温度差Δt1が5[K]となるよう電子膨張弁13の開度を絞るため、温度差Δt1がゼロ以下となった状態が維持されることを防止することができる。よって、液バックが発生することを防止することができるため、液バックが発生することに起因した圧縮機15の破損を防止することができる。しかも、液バックの発生を防止しながら、温度差Δt1を可及的に小さくすることができるため、冷却効率を向上することが可能となる。加えて、温度差Δt1が、設定温度差0[K]となったときから目標温度差5[K]となるまでの時間を短縮することができる。 When time has elapsed since the opening of the open showcase 11 and the operation is performed with the opening of the electronic expansion valve 13 being expanded so as to improve the cooling efficiency, the temperature difference Δt1 as described above. A situation occurs that becomes less than zero. However, in the cooling device according to the first embodiment, at time t 1 when the temperature difference Δt1 becomes zero, the valve opening degree adjusting means 30 opens the electronic expansion valve 13 so that the temperature difference Δt1 becomes 5 [K]. In order to reduce the degree, it is possible to prevent the temperature difference Δt1 from being maintained at zero or less. Therefore, since it is possible to prevent the liquid back from occurring, it is possible to prevent the compressor 15 from being damaged due to the occurrence of the liquid back. In addition, since the temperature difference Δt1 can be made as small as possible while preventing the occurrence of liquid back, the cooling efficiency can be improved. In addition, the time from when the temperature difference Δt1 becomes the set temperature difference 0 [K] until the target temperature difference 5 [K] can be shortened.

なお、上述した実施の形態1には、他方の冷媒温度センサ20を蒸発器12における冷媒の入口部に設置し、一方の冷媒温度センサ21を蒸発器12における冷媒の出口部に設置するもので説明した。しかし、この発明は、それに限られず、冷媒温度センサ20,21の数については2つに限られず、3つ以上の複数でも良いし、設置場所は、入口部からの距離が互いに異なる態様で入口部と出口部との間に設置すれば良い。   In the first embodiment described above, the other refrigerant temperature sensor 20 is installed at the refrigerant inlet of the evaporator 12, and one refrigerant temperature sensor 21 is installed at the refrigerant outlet of the evaporator 12. explained. However, the present invention is not limited thereto, and the number of the refrigerant temperature sensors 20 and 21 is not limited to two, and may be a plurality of three or more. What is necessary is just to install between a part and an exit part.

また、上述した実施形態1には、設定温度差が0[K]であり、目標温度差が5[K]であるもので説明した。しかし、この発明はそれに限られず、例えば設定温度差を0[K]より大きい値に設定しても良いし、目標温度差を設定温度差より大きい所定の値に設定しても良い。目標温度差と設定温度差との差を小さくしておけば、温度差Δt1を短時間で目標温度差に変更することができる。   In the above-described first embodiment, the set temperature difference is 0 [K], and the target temperature difference is 5 [K]. However, the present invention is not limited to this. For example, the set temperature difference may be set to a value larger than 0 [K], or the target temperature difference may be set to a predetermined value larger than the set temperature difference. If the difference between the target temperature difference and the set temperature difference is reduced, the temperature difference Δt1 can be changed to the target temperature difference in a short time.

[実施の形態2]
図5は、本発明の実施形態2の冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。図5に示す冷却装置において、図1に示した冷却装置と同様のものには同一の符号を付して説明を省略する。
[Embodiment 2]
FIG. 5 is an explanatory diagram showing a configuration of a cooling device to which the refrigerant flow rate control device according to the second embodiment of the present invention is applied. In the cooling device shown in FIG. 5, the same components as those in the cooling device shown in FIG.

この冷却装置は、弁開度調節手段130を備えている。弁開度調節手段130は、冷媒温度センサ20,21の検出結果に基づいて電子膨張弁13の開度を調節するもので、温度差測定部31、記憶部132、および弁開度設定部133を備えている。   This cooling device includes a valve opening degree adjusting means 130. The valve opening degree adjusting means 130 adjusts the opening degree of the electronic expansion valve 13 based on the detection results of the refrigerant temperature sensors 20 and 21, and the temperature difference measuring unit 31, the storage unit 132, and the valve opening degree setting unit 133. It has.

記憶部132には、冷却装置を運転するためのプログラムやデータが格納してある。また、この記憶部132には、後述する設定温度差を格納してある。本実施の形態では、設定温度差を0[K]に設定してある。さらに、記憶部132には、上記温度差Δt1が設定温度差となった場合、絞る電子膨張弁13の開度の大きさΔm1が格納してある。具体的には、480パルスで開度が100である全開状態となり、かつ0パルスで開度が0である全閉状態となる電子膨張弁13では、例えば絞る電子膨張弁13の開度の大きさが1パルスに相当する「1/480」であるΔm1が格納してある。   The storage unit 132 stores a program and data for operating the cooling device. The storage unit 132 stores a set temperature difference, which will be described later. In the present embodiment, the set temperature difference is set to 0 [K]. Further, the storage unit 132 stores an opening degree Δm1 of the electronic expansion valve 13 to be throttled when the temperature difference Δt1 becomes a set temperature difference. Specifically, in the electronic expansion valve 13 that is in a fully opened state in which the opening degree is 100 by 480 pulses and in the fully closed state in which the opening degree is 0 by 0 pulses, for example, the opening degree of the electronic expansion valve 13 to be throttled is large. Δm1 of “1/480” corresponding to one pulse is stored.

弁開度設定部133は、上記温度差Δt1および記憶部132に格納してあるデータに基づいて電子膨張弁13の開度を設定するものである。   The valve opening setting unit 133 sets the opening of the electronic expansion valve 13 based on the temperature difference Δt1 and the data stored in the storage unit 132.

図6は、図5に示した弁開度調節手段130の実施する電子膨張弁13の開度調節処理の内容を示すフローチャートである。以下、図6を参照しながら、冷却装置の動作について説明する。   FIG. 6 is a flowchart showing the contents of the opening adjustment processing of the electronic expansion valve 13 performed by the valve opening adjustment means 130 shown in FIG. Hereinafter, the operation of the cooling device will be described with reference to FIG.

冷却装置が運転状態にある場合、弁開度調節手段130は、例えばある一定時間毎に、冷媒温度センサ20,21を通じてそれぞれの冷媒の温度を検出し(ステップS201)、温度差測定部31を通じて算出した温度差Δt1が、予め設定した設定温度差であるゼロ以下であるか否かを判断する(ステップS202)。   When the cooling device is in an operating state, the valve opening degree adjusting means 130 detects the temperature of each refrigerant through the refrigerant temperature sensors 20 and 21 at regular intervals, for example (step S201), and through the temperature difference measurement unit 31. It is determined whether or not the calculated temperature difference Δt1 is less than or equal to zero, which is a preset temperature difference (step S202).

温度差Δt1がゼロより大きい場合(ステップS202:No)、弁開度調節手段130は、そのまま手順をリターンさせる。一方、温度差Δt1がゼロ以下である場合(ステップS102:Yes)、そのまま手順をステップS204に移行させる。   When the temperature difference Δt1 is larger than zero (step S202: No), the valve opening degree adjusting means 130 returns the procedure as it is. On the other hand, when the temperature difference Δt1 is equal to or less than zero (step S102: Yes), the procedure is directly shifted to step S204.

次に、冷却装置では、温度差Δt1がゼロ以下である場合の電子膨張弁13の開度を記憶部132に記憶(ステップS204)してから、手順をステップS205に移行させる。   Next, in the cooling device, the opening degree of the electronic expansion valve 13 when the temperature difference Δt1 is equal to or less than zero is stored in the storage unit 132 (step S204), and then the procedure is shifted to step S205.

次いで、冷却装置では、温度差Δt1がゼロ以下になったときの電子膨張弁13の開度に比して、上記Δm1だけ電子膨張弁13の開度を絞り(ステップS205)、その後、手順をリターンさせる。   Next, in the cooling device, the opening degree of the electronic expansion valve 13 is reduced by the above Δm1 as compared to the opening degree of the electronic expansion valve 13 when the temperature difference Δt1 becomes zero or less (step S205). Let me return.

弁開度調節手段130によって電子膨張弁13を上述したように開度調節した場合を図7に示す。図7に示すように、電子膨張弁13をある開度M3として冷却装置を運転していた状態において、例えば時間t2において温度差Δt1が0[K]になった場合、弁開度調節手段130によって、温度差Δt1がゼロになったときの電子膨張弁13の開度に比して、上記Δm1だけ電子膨張弁13の開度を絞り、電子膨張弁13の開度をM3から(M3−Δm1)に変更するため、温度差Δt1は、0[K]より大きい値a1で収束することとなる。このような処理を継続して行うことにより、温度差Δt1が設定温度差になるたびに、電子膨張弁13の開度をΔm1だけ絞るため、温度差Δt1が設定温度差になる頻度を減少させることができる。なお、図7では、温度差Δt1を実線で示し、かつ電子膨張弁13の開度の大きさを2点鎖線で示している。 FIG. 7 shows a case where the opening degree of the electronic expansion valve 13 is adjusted by the valve opening degree adjusting means 130 as described above. As shown in FIG. 7, when the state was driving the cooling device as opening M3 in the electronic expansion valve 13, the temperature difference Δt1 e.g. at time t 2 becomes 0 [K], the valve opening degree adjusting means 130, the opening degree of the electronic expansion valve 13 is reduced by Δm1 compared to the opening degree of the electronic expansion valve 13 when the temperature difference Δt1 becomes zero, and the opening degree of the electronic expansion valve 13 is changed from M3 to (M3 In order to change to -Δm1), the temperature difference Δt1 converges at a value a 1 greater than 0 [K]. By continuously performing such processing, each time the temperature difference Δt1 becomes the set temperature difference, the opening degree of the electronic expansion valve 13 is reduced by Δm1, thereby reducing the frequency at which the temperature difference Δt1 becomes the set temperature difference. be able to. In FIG. 7, the temperature difference Δt1 is indicated by a solid line, and the opening degree of the electronic expansion valve 13 is indicated by a two-dot chain line.

オープンショーケース11の立ち上げ時から時間が経過しており、冷却効率が向上するよう電子膨張弁13の開度を拡げた状態で運転を行っている場合には、上述したように温度差Δt1がゼロ以下となる事態が発生する。しかし、この実施の形態2に係る冷却装置では、温度差Δt1がゼロとなった時間t2において、温度差Δt1がゼロになったときの電子膨張弁13の開度に比して、Δm1だけ電子膨張弁13の開度を絞るため、温度差Δt1は、0[K]より大きい値a1で収束させることができ、温度差Δt1がゼロ以下となった状態が維持されることを防止することができる。よって、液バックが発生することを防止することができるため、液バックが発生することに起因した圧縮機15の破損を防止することができる。しかも、液バックの発生を防止しながら、温度差Δt1を可及的に小さくすることができるため、冷却効率を向上することができる。加えて、温度差Δt1が、設定温度差0[K]となったときから目標温度差a1[K]となるまでの時間を短縮することができる。さらに、温度差Δt1が設定温度差0[K]となる毎に、電子膨張弁13の開度をΔm1ずつ絞るため、季節の変動に応じて変化する冷却負荷に対応して最適な電子膨張弁13の開度を設定すること、すなわち最適な電子膨張弁13の開度をオートチューニングすることが可能となる。よって、液バックが発生する頻度を低減し、冷却装置の運転を安定させることができる。 When time has elapsed since the opening of the open showcase 11 and the operation is performed with the opening of the electronic expansion valve 13 being expanded so as to improve the cooling efficiency, the temperature difference Δt1 as described above. A situation occurs that becomes less than zero. However, in the refrigerator according to the second embodiment, at time t 2 the temperature difference Δt1 is zero, compared to the opening of the electronic expansion valve 13 when the temperature difference Δt1 is zero, only Δm1 In order to reduce the opening degree of the electronic expansion valve 13, the temperature difference Δt1 can be converged with a value a 1 greater than 0 [K], and the temperature difference Δt1 is prevented from being maintained below zero. be able to. Therefore, since it is possible to prevent the liquid back from occurring, it is possible to prevent the compressor 15 from being damaged due to the occurrence of the liquid back. Moreover, since the temperature difference Δt1 can be made as small as possible while preventing the occurrence of liquid back, the cooling efficiency can be improved. In addition, the time from when the temperature difference Δt1 becomes the set temperature difference 0 [K] to when the temperature difference Δt1 becomes the target temperature difference a 1 [K] can be shortened. Further, since the opening degree of the electronic expansion valve 13 is reduced by Δm1 every time the temperature difference Δt1 becomes the set temperature difference 0 [K], the optimum electronic expansion valve corresponding to the cooling load that changes in accordance with seasonal fluctuations. It is possible to set the opening degree of 13, that is, to autotune the optimum opening degree of the electronic expansion valve 13. Thus, the frequency of occurrence of liquid back can be reduced and the operation of the cooling device can be stabilized.

なお、上述した実施の形態2には、他方の冷媒温度センサ20を蒸発器12における冷媒の入口部に設置し、一方の冷媒温度センサ21を蒸発器12における冷媒の出口部に設置するもので説明した。しかし、この発明は、それに限られず、冷媒温度センサ20,21の数については2つに限られず、3つ以上の複数でも良いし、設置場所は、入口部からの距離が互いに異なる態様で入口部と出口部との間に設置すれば良い。   In the second embodiment described above, the other refrigerant temperature sensor 20 is installed at the refrigerant inlet of the evaporator 12, and one refrigerant temperature sensor 21 is installed at the refrigerant outlet of the evaporator 12. explained. However, the present invention is not limited thereto, and the number of the refrigerant temperature sensors 20 and 21 is not limited to two, and may be a plurality of three or more. What is necessary is just to install between a part and an exit part.

また、上述した実施形態2には、設定温度差が0[K]であるもので説明した。しかし、この発明はそれに限られず、例えば設定温度差を0より大きい値に設定しても良い。   Further, in the second embodiment described above, the case where the set temperature difference is 0 [K] has been described. However, the present invention is not limited to this. For example, the set temperature difference may be set to a value larger than zero.

[実施の形態3]
図8は、本発明の実施形態3の冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。図8に示す冷却装置において、図1に示した冷却装置と同様のものには同一の符号を付して説明を省略する。
[Embodiment 3]
FIG. 8 is an explanatory diagram illustrating a configuration of a cooling device to which the refrigerant flow rate control device according to the third embodiment of the present invention is applied. In the cooling device shown in FIG. 8, the same components as those in the cooling device shown in FIG.

上記冷却装置は、弁開度調節手段230を備えている。弁開度調節手段230は、冷媒温度センサ20,21の検出結果に基づいて電子膨張弁13の開度を調節するもので、温度差測定部31、記憶部232、および弁開度設定部233を備えている。   The cooling device includes a valve opening degree adjusting means 230. The valve opening degree adjusting means 230 adjusts the opening degree of the electronic expansion valve 13 based on the detection results of the refrigerant temperature sensors 20 and 21, and the temperature difference measuring unit 31, the storage unit 232, and the valve opening degree setting unit 233. It has.

記憶部232には、冷却装置を運転するためのプログラムやデータが格納してある。さらに、この記憶部232には、例えば冷却装置の負荷の大きさと、上記温度差Δt1が所定の大きさ(目標温度差)となる電子膨張弁13の開度とが関連付けられて格納されている。この実施形態では、目標温度差を5[K]に設定してある。また、この記憶部232には、後述する設定温度差を格納してある。本実施の形態では、設定温度差を0[K]に設定してある。さらに、この記憶部232には、単位時間あたりに絞る電子膨張弁13の開度(以下、単に「絞り量」という」)が予め格納してある。   The storage unit 232 stores programs and data for operating the cooling device. Further, for example, the load of the cooling device and the opening degree of the electronic expansion valve 13 at which the temperature difference Δt1 becomes a predetermined magnitude (target temperature difference) are stored in the storage unit 232 in association with each other. . In this embodiment, the target temperature difference is set to 5 [K]. The storage unit 232 stores a set temperature difference which will be described later. In the present embodiment, the set temperature difference is set to 0 [K]. Further, the opening of the electronic expansion valve 13 to be throttled per unit time (hereinafter simply referred to as “throttle amount”) is stored in advance in the storage unit 232.

弁開度設定部233は、上記温度差Δt1および記憶部232に格納してあるデータに基づいて電子膨張弁13の開度を設定するものである。   The valve opening setting unit 233 sets the opening of the electronic expansion valve 13 based on the temperature difference Δt1 and the data stored in the storage unit 232.

図9は、図8に示した弁開度調節手段230の実施する電子膨張弁13の開度調節処理の内容を示すフローチャートである。以下、図9を参照しながら、冷却装置の動作について説明する。   FIG. 9 is a flowchart showing the contents of the opening degree adjusting process of the electronic expansion valve 13 performed by the valve opening degree adjusting means 230 shown in FIG. Hereinafter, the operation of the cooling device will be described with reference to FIG.

冷却装置が運転状態にある場合、弁開度調節手段230は、例えばある一定時間毎に、冷媒温度センサ20,21を通じてそれぞれの冷媒の温度を検出し(ステップS301)、温度差測定部31を通じて算出した温度差Δt1が、予め設定した設定温度差であるゼロ以下であるか否かを判断する(ステップS302)。   When the cooling device is in an operating state, the valve opening degree adjusting means 230 detects the temperature of each refrigerant through the refrigerant temperature sensors 20 and 21 at regular intervals, for example (step S301), and through the temperature difference measuring unit 31. It is determined whether or not the calculated temperature difference Δt1 is equal to or less than zero, which is a preset temperature difference (step S302).

温度差Δt1がゼロより大きい場合(ステップS302:No)、弁開度調節手段230は、そのまま手順をリターンさせる。一方、温度差Δt1がゼロ以下である場合(ステップS302:Yes)、弁開度調節手段230は、単位時間あたりの絞り量が一定となる態様で、時間の経過とともに電子膨張弁13の開度を徐々に絞り(ステップS303)、その後手順をステップ304に移行させる。   When the temperature difference Δt1 is larger than zero (step S302: No), the valve opening degree adjusting unit 230 returns the procedure as it is. On the other hand, when the temperature difference Δt1 is less than or equal to zero (step S302: Yes), the valve opening degree adjusting means 230 is a mode in which the throttle amount per unit time is constant, and the opening degree of the electronic expansion valve 13 with the passage of time. Is gradually reduced (step S303), and then the procedure proceeds to step 304.

次いで、弁開度調節手段230は、上記温度差Δt1が、目標温度差を上回っているか否かを判断する(ステップS304)。   Next, the valve opening degree adjusting means 230 determines whether or not the temperature difference Δt1 exceeds the target temperature difference (step S304).

温度差Δt1が、目標温度差以下の場合(ステップ304:No)、温度差Δt1が目標温度差を上回るまで待機する。一方、温度差Δt1が、目標温度差を上回る場合(ステップ304:Yes)、予め設定した目標温度差となるように前記電子膨張弁13の開度を拡げ(ステップS305)、その後、手順をリターンさせる。例えば、冷却装置がある負荷の下で運転されている場合、弁開度調節手段230は、そのときの冷却装置の負荷の大きさに対応する電子膨張弁13の開度であって、上記温度差Δt1が5[K]となる予め設定した電子膨張弁13の開度を記憶部232から読み出し、弁開度調節手段230によって電子膨張弁13の開度を設定し、その開度となるよう電子膨張弁13を拡げ(ステップS305)、その後、手順をリターンさせる。   When the temperature difference Δt1 is equal to or smaller than the target temperature difference (step 304: No), the process waits until the temperature difference Δt1 exceeds the target temperature difference. On the other hand, when the temperature difference Δt1 exceeds the target temperature difference (step 304: Yes), the opening degree of the electronic expansion valve 13 is increased so as to become the preset target temperature difference (step S305), and then the procedure is returned. Let For example, when the cooling device is operated under a certain load, the valve opening degree adjusting means 230 is the opening degree of the electronic expansion valve 13 corresponding to the load size of the cooling device at that time, and the temperature The preset opening degree of the electronic expansion valve 13 at which the difference Δt1 is 5 [K] is read from the storage unit 232, the opening degree of the electronic expansion valve 13 is set by the valve opening degree adjusting means 230, and the opening degree is set. The electronic expansion valve 13 is expanded (step S305), and then the procedure is returned.

弁開度調節手段230によって電子膨張弁13を上述したように調節した場合を図10に示す。図10に示すように、電子膨張弁13をある開度M4として冷却装置を運転していた状態において、例えば時間tにおいて温度差Δt1が設定温度差である0[K]になった場合、温度差Δt1が目標温度差の5[K]になるまで、弁開度調節手段230で時間の経過とともに電子膨張弁13の開度を絞り、温度差Δt1が設定温度差になったときより電子膨張弁13の開度を絞った状態を維持するため、温度差Δt1が低い状態(温度差が0[K]以下となった状態も含む)を素早く脱することができる。その後、温度差Δt1が、目標温度差を上回った場合(図10では時間t)、弁開度調節手段230によって温度差Δt1が5[K]となるよう電子膨張弁13の開度を拡げることでM5に変更するため、温度差Δt1は、5[K]に収束することとなる。なお、図10では、温度差Δt1を実線で示し、かつ電子膨張弁13の開度の大きさを2点鎖線で示している。 FIG. 10 shows a case where the electronic expansion valve 13 is adjusted as described above by the valve opening degree adjusting means 230. As shown in FIG. 10, if the state was driving the cooling device as opening M4 with the electronic expansion valve 13, for example, becomes the temperature difference Δt1 is set temperature difference 0 [K] at time t 3, Until the temperature difference Δt1 reaches the target temperature difference of 5 [K], the opening degree of the electronic expansion valve 13 is narrowed with the passage of time by the valve opening degree adjusting means 230, and the electronic difference from when the temperature difference Δt1 becomes the set temperature difference. Since the state in which the opening degree of the expansion valve 13 is reduced is maintained, a state where the temperature difference Δt1 is low (including a state where the temperature difference is 0 [K] or less) can be quickly removed. Thereafter, the temperature difference Δt1 is, when above the target temperature difference (in FIG. 10 time t 4), extend the opening of the electronic expansion valve 13 so that the temperature difference Δt1 by the valve opening degree adjusting means 230 is 5 [K] Therefore, since the temperature is changed to M5, the temperature difference Δt1 converges to 5 [K]. In FIG. 10, the temperature difference Δt1 is indicated by a solid line, and the degree of opening of the electronic expansion valve 13 is indicated by a two-dot chain line.

オープンショーケース11の立ち上げ時から時間が経過しており、冷却効率が向上するよう電子膨張弁13の開度を拡げた状態で運転を行っている場合には、上述したように温度差Δt1がゼロ以下となる事態が発生する。しかし、この実施の形態3に係る冷却装置では、温度差Δt1がゼロ以下となった場合、弁開度調節手段230によって、電子膨張弁13の開度を絞るため、温度差Δt1がゼロ以下となった状態が維持されることを防止することができる。しかも、温度差Δt1がゼロ以下になったとき、弁開度調節手段230によって電子膨張弁13を急激に絞れば、温度差Δt1が、設定温度差0[K]となったときから目標温度差5[K]になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。よって、液バックが発生することを防止することができるため、液バックが発生することに起因した圧縮機15の破損を防止することができる。しかも、液バックの発生を防止しながら、温度差Δt1を可及的に小さくすることができるため、冷却効率を向上することができる。   When time has elapsed since the opening of the open showcase 11 and the operation is performed with the opening of the electronic expansion valve 13 being expanded so as to improve the cooling efficiency, the temperature difference Δt1 as described above. A situation occurs that becomes less than or equal to zero. However, in the cooling device according to the third embodiment, when the temperature difference Δt1 is less than or equal to zero, the opening degree of the electronic expansion valve 13 is reduced by the valve opening degree adjusting means 230, so that the temperature difference Δt1 is less than or equal to zero. It is possible to prevent the lost state from being maintained. In addition, when the temperature difference Δt1 becomes zero or less, if the electronic expansion valve 13 is rapidly throttled by the valve opening degree adjusting means 230, the temperature difference Δt1 becomes the target temperature difference from when the set temperature difference becomes 0 [K]. The time until it reaches 5 [K] can be shortened, and the occurrence of liquid back can be reliably prevented. Therefore, since it is possible to prevent the liquid back from occurring, it is possible to prevent the compressor 15 from being damaged due to the occurrence of the liquid back. Moreover, since the temperature difference Δt1 can be made as small as possible while preventing the occurrence of liquid back, the cooling efficiency can be improved.

なお、上述した実施の形態3には、他方の冷媒温度センサ20を蒸発器12における冷媒の入口部に設置し、一方の冷媒温度センサ21を蒸発器12における冷媒の出口部に設置するもので説明した。しかし、この発明は、それに限られず、冷媒温度センサ20,21の数については2つに限られず、3つ以上の複数でも良いし、設置場所は、入口部からの距離が互いに異なる態様で入口部と出口部との間に設置すれば良い。   In the third embodiment described above, the other refrigerant temperature sensor 20 is installed at the refrigerant inlet of the evaporator 12, and one refrigerant temperature sensor 21 is installed at the refrigerant outlet of the evaporator 12. explained. However, the present invention is not limited thereto, and the number of the refrigerant temperature sensors 20 and 21 is not limited to two, and may be a plurality of three or more. What is necessary is just to install between a part and an exit part.

また、上述した実施形態3には、設定温度差が0[K]であり、目標温度差が5[K]であるもので説明した。しかし、この発明はそれに限られず、例えば設定温度差を0より大きい値に設定しても良いし、目標温度差を設定温度差より大きい所定の値に設定しても良い。   In the third embodiment described above, the setting temperature difference is 0 [K] and the target temperature difference is 5 [K]. However, the present invention is not limited to this. For example, the set temperature difference may be set to a value larger than 0, or the target temperature difference may be set to a predetermined value larger than the set temperature difference.

[実施の形態4]
図11は、本発明の実施形態4の冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。図11に示す冷却装置において、図1に示した冷却装置と同様のものには同一の符号を付して説明を省略する。
[Embodiment 4]
FIG. 11 is an explanatory diagram illustrating a configuration of a cooling device to which the refrigerant flow rate control device according to the fourth embodiment of the present invention is applied. In the cooling device shown in FIG. 11, the same components as those of the cooling device shown in FIG.

この冷却装置は、弁開度調節手段330を備えている。弁開度調節手段330は、冷媒温度センサ20,21の検出結果に基づいて電子膨張弁13の開度を調節するもので、温度差測定部31、記憶部332、および弁開度設定部333を備えている。   This cooling device includes a valve opening degree adjusting means 330. The valve opening degree adjusting unit 330 adjusts the opening degree of the electronic expansion valve 13 based on the detection results of the refrigerant temperature sensors 20 and 21, and the temperature difference measuring unit 31, the storage unit 332, and the valve opening degree setting unit 333. It has.

記憶部332には、冷却装置を運転するためのプログラムやデータが格納してある。この記憶部332には、後述する設定温度差を格納してある。本実施の形態では、設定温度差を0[K]に設定してある。この記憶部332には、後述する目標温度差を格納してある。この目標温度差は、上記設定温度差よりも大きいものであり、本実施の形態では、0[K]よりも大きいa2[K]である。さらに、記憶部332には、上記温度差Δt1が設定温度差となった場合、絞る電子膨張弁13開度の大きさΔm2が格納してある。具体的には、480パルスで開度が100である全開状態となり、かつ0パルスで開度が0である全閉状態となる電子膨張弁13では、例えば絞る電子膨張弁13の開度の大きさが1パルスに相当する「1/480」であるΔm2が格納してある。また、この記憶部332には、単位時間あたりに絞る電子膨張弁13の開度(以下、単に「絞り量」という」)が予め格納してある。 The storage unit 332 stores programs and data for operating the cooling device. The storage unit 332 stores a set temperature difference which will be described later. In the present embodiment, the set temperature difference is set to 0 [K]. The storage unit 332 stores a target temperature difference described later. This target temperature difference is larger than the set temperature difference, and is a 2 [K] that is larger than 0 [K] in the present embodiment. Further, the storage unit 332 stores a magnitude Δm2 of the opening degree of the electronic expansion valve 13 to be throttled when the temperature difference Δt1 becomes a set temperature difference. Specifically, in the electronic expansion valve 13 that is in a fully opened state in which the opening degree is 100 by 480 pulses and in the fully closed state in which the opening degree is 0 by 0 pulses, for example, the opening degree of the electronic expansion valve 13 to be throttled is large. Δm2, which is “1/480” corresponding to one pulse, is stored. In addition, the opening of the electronic expansion valve 13 to be throttled per unit time (hereinafter simply referred to as “throttle amount”) is stored in advance in the storage unit 332.

弁開度設定部333は、上記温度差Δt1および記憶部332に格納してあるデータに基づいて電子膨張弁13の開度を設定するものである。   The valve opening setting unit 333 sets the opening of the electronic expansion valve 13 based on the temperature difference Δt1 and the data stored in the storage unit 332.

図12は、図11に示した弁開度調節手段330の実施する電子膨張弁13の開度調節処理の内容を示すフローチャートである。以下、図12を参照しながら、冷却装置の動作について説明する。   FIG. 12 is a flowchart showing the contents of the opening degree adjusting process of the electronic expansion valve 13 performed by the valve opening degree adjusting means 330 shown in FIG. Hereinafter, the operation of the cooling device will be described with reference to FIG.

冷却装置が運転状態にある場合、弁開度調節手段330は、例えばある一定時間毎に、冷媒温度センサ20,21を通じてそれぞれの冷媒の温度を検出し(ステップS401)、温度差測定部31を通じて算出した温度差Δt1がゼロ以下であるか否かを判断する(ステップS402)。   When the cooling device is in an operating state, the valve opening degree adjusting means 330 detects the temperature of each refrigerant through the refrigerant temperature sensors 20 and 21 at regular intervals, for example (step S401), and through the temperature difference measuring unit 31. It is determined whether or not the calculated temperature difference Δt1 is equal to or less than zero (step S402).

温度差Δt1がゼロより大きい場合(ステップS402:No)、弁開度調節手段330は、そのまま手順をリターンさせる。一方、温度差Δt1がゼロ以下である場合(ステップS402:Yes)、そのまま手順をステップS404に移行させる。   When the temperature difference Δt1 is larger than zero (step S402: No), the valve opening degree adjusting means 330 returns the procedure as it is. On the other hand, when the temperature difference Δt1 is equal to or smaller than zero (step S402: Yes), the procedure is directly shifted to step S404.

次に、冷却装置は、温度差Δt1がゼロ以下である場合の電子膨張弁13の開度を記憶部332に記憶(ステップS404)してから、手順をステップS405に移行させる。   Next, the cooling device stores the opening degree of the electronic expansion valve 13 when the temperature difference Δt1 is equal to or less than zero in the storage unit 332 (step S404), and then shifts the procedure to step S405.

次いで、冷却装置の弁開度調節手段330は、単位時間あたりの絞り量が一定となる態様で、時間の経過とともに電子膨張弁13の開度を徐々に絞り(ステップS405)、その後、手順をステップ406に移行させる。   Next, the valve opening degree adjusting means 330 of the cooling device gradually throttles the opening degree of the electronic expansion valve 13 with the passage of time in a mode in which the throttle amount per unit time is constant (step S405), and then performs the procedure. The process proceeds to step 406.

次に、弁開度調節手段330は、上記温度差Δt1が、目標温度差を上回っているか否かを判断する(ステップS406)。   Next, the valve opening degree adjusting means 330 determines whether or not the temperature difference Δt1 exceeds the target temperature difference (step S406).

温度差Δt1が、目標温度差以下の場合(ステップS406:No)、温度差Δt1が目標温度差を上回るまで待機する。一方、温度差Δt1が目標温度差を上回る場合(ステップS406:Yes)、温度差Δt1がゼロになったときの電子膨張弁13の開度に比して、上記Δm2だけ電子膨張弁の開度を絞り(ステップS407)、その後、手順をリターンさせる。   When the temperature difference Δt1 is equal to or smaller than the target temperature difference (step S406: No), the process waits until the temperature difference Δt1 exceeds the target temperature difference. On the other hand, when the temperature difference Δt1 exceeds the target temperature difference (step S406: Yes), the opening degree of the electronic expansion valve by Δm2 as compared with the opening degree of the electronic expansion valve 13 when the temperature difference Δt1 becomes zero. (Step S407), and then the procedure is returned.

弁開度調節手段330によって電子膨張弁13を上述したように調節した場合を図13に示す。図13に示すように、電子膨張弁13をある開度M6として冷却装置を運転していた状態において、例えば時間t5において温度差Δt1が設定温度差である0[K]になった場合、温度差Δt1が目標温度差であるa2[K]になるまで時間の経過とともに電子膨張弁13の開度を絞り、温度差Δt1が設定温度差になったときより電子膨張弁13の開度を絞った状態を維持するため、温度差Δt1が低い状態(温度差が0[K]以下となった状態も含む)を素早く脱することができる。その後、温度差Δt1が、目標温度差a2[K]を上回った場合(図13では時間t6)、弁開度調節手段330によって、温度差Δt1がゼロになったときの電子膨張弁13の開度に比して、上記Δm2だけ電子膨張弁13の開度を絞り、電子膨張弁13の開度をM6から(M6−Δm2)に変更するため、温度差Δt1は、0[K]より大きい値で収束することとなる。このような処理を継続して行うことにより、図13に示すように、温度差Δt1が設定温度差になるたびに、電子膨張弁13の開度をΔm2だけ絞るため、温度差Δt1が設定温度差になる頻度を減少させることができる。なお、図13では、温度差Δt1を実線で示し、かつ電子膨張弁13の開度の大きさを2点鎖線で示している。 FIG. 13 shows a case where the electronic expansion valve 13 is adjusted as described above by the valve opening degree adjusting means 330. As shown in FIG. 13, if the state was driving the cooling device as opening M6 with the electronic expansion valve 13, for example, becomes the temperature difference Δt1 is set temperature difference 0 [K] at time t 5, The opening degree of the electronic expansion valve 13 is reduced with time until the temperature difference Δt1 reaches the target temperature difference a 2 [K], and the opening degree of the electronic expansion valve 13 is increased from when the temperature difference Δt1 becomes the set temperature difference. Therefore, a state where the temperature difference Δt1 is low (including a state where the temperature difference is 0 [K] or less) can be quickly removed. Thereafter, when the temperature difference Δt1 exceeds the target temperature difference a 2 [K] (time t 6 in FIG. 13), the electronic expansion valve 13 when the temperature difference Δt1 becomes zero by the valve opening degree adjusting means 330. In comparison with the degree of opening, since the degree of opening of the electronic expansion valve 13 is reduced by Δm2 and the degree of opening of the electronic expansion valve 13 is changed from M6 to (M6−Δm2), the temperature difference Δt1 is 0 [K]. It will converge at a larger value. By continuously performing such processing, as shown in FIG. 13, every time the temperature difference Δt1 becomes the set temperature difference, the opening degree of the electronic expansion valve 13 is reduced by Δm2, so that the temperature difference Δt1 is set to the set temperature. The frequency of difference can be reduced. In FIG. 13, the temperature difference Δt1 is indicated by a solid line, and the degree of opening of the electronic expansion valve 13 is indicated by a two-dot chain line.

オープンショーケース11の立ち上げ時から時間が経過しており、冷却効率が向上するよう電子膨張弁13の開度を拡げた状態で運転を行っている場合には、上述したように温度差Δt1がゼロ以下となる事態が発生する。しかし、この実施の形態4に係る冷却装置では、温度差Δt1がゼロ以下となった場合、弁開度調節手段230によって、電子膨張弁13の開度を絞るため、温度差Δt1がゼロ以下となった状態が維持されることを防止することができる。しかも、温度差Δt1がゼロ以下になったとき、弁開度調節手段230によって電子膨張弁13を急激に絞れば、温度差Δt1が、設定温度差0[K]となったときから目標温度差a2[K]になるまでの時間を短くすることができ、液バックが発生することを確実に防止することが可能となる。よって、液バックという現象が発生することを防止することができるため、液バックが発生することに起因した圧縮機15の破損を防止することができる。しかも、液バックの発生を防止しながら、温度差Δt1を可及的に小さくすることができるため、冷却効率を向上することが可能となる。さらに、温度差Δt1が設定温度差0[K]となる毎に、電子膨張弁13の開度をΔm2ずつ絞るため、季節の変動に応じて変化する冷却負荷に対応して最適な電子膨張弁13の開度を設定すること、すなわち最適な電子膨張弁13の開度をオートチューニングすることが可能となる。よって、液バックが発生する頻度を低減し、冷却装置の運転を安定させることができる。   When time has elapsed since the opening of the open showcase 11 and the operation is performed with the opening of the electronic expansion valve 13 being expanded so as to improve the cooling efficiency, the temperature difference Δt1 as described above. A situation occurs that becomes less than or equal to zero. However, in the cooling device according to the fourth embodiment, when the temperature difference Δt1 becomes zero or less, the opening degree of the electronic expansion valve 13 is reduced by the valve opening degree adjusting means 230, so that the temperature difference Δt1 becomes zero or less. It is possible to prevent the lost state from being maintained. In addition, when the temperature difference Δt1 becomes zero or less, if the electronic expansion valve 13 is rapidly throttled by the valve opening degree adjusting means 230, the temperature difference Δt1 becomes the target temperature difference from when the set temperature difference becomes 0 [K]. The time until it reaches a2 [K] can be shortened, and the occurrence of liquid back can be reliably prevented. Therefore, it is possible to prevent the phenomenon of liquid back, so that the compressor 15 can be prevented from being damaged due to the occurrence of liquid back. In addition, since the temperature difference Δt1 can be made as small as possible while preventing the occurrence of liquid back, the cooling efficiency can be improved. Further, since the opening degree of the electronic expansion valve 13 is reduced by Δm2 every time the temperature difference Δt1 becomes the set temperature difference 0 [K], the optimum electronic expansion valve corresponding to the cooling load that changes according to the seasonal variation. It is possible to set the opening degree of 13, that is, to autotune the optimum opening degree of the electronic expansion valve 13. Thus, the frequency of occurrence of liquid back can be reduced and the operation of the cooling device can be stabilized.

なお、上述した実施の形態4には、他方の冷媒温度センサ20を蒸発器12における冷媒の入口部に設置し、一方の冷媒温度センサ21を蒸発器12における冷媒の出口部に設置するもので説明した。しかし、この発明は、それに限られず、冷媒温度センサ20,21の数については2つに限られず、3つ以上の複数でも良いし、設置場所は、入口部からの距離が互いに異なる態様で入口部と出口部との間に設置すれば良い。   In Embodiment 4 described above, the other refrigerant temperature sensor 20 is installed at the refrigerant inlet of the evaporator 12, and one refrigerant temperature sensor 21 is installed at the refrigerant outlet of the evaporator 12. explained. However, the present invention is not limited thereto, and the number of the refrigerant temperature sensors 20 and 21 is not limited to two, and may be a plurality of three or more. What is necessary is just to install between a part and an exit part.

また、上述した実施形態4には、設定温度差が0[K]であるもので説明した。しかし、この発明はそれに限られず、例えば設定温度差を0より大きい値に設定しても良い。目標温度差と設定温度差との差を小さくしておけば、温度差Δt1を短時間で目標温度差に変更することができる。   In the fourth embodiment described above, the setting temperature difference is 0 [K]. However, the present invention is not limited to this. For example, the set temperature difference may be set to a value larger than zero. If the difference between the target temperature difference and the set temperature difference is reduced, the temperature difference Δt1 can be changed to the target temperature difference in a short time.

本発明の実施の形態1である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device to which the refrigerant | coolant flow control apparatus which is Embodiment 1 of this invention is applied. 図1に示した冷却装置の蒸発器における冷媒の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the refrigerant | coolant in the evaporator of the cooling device shown in FIG. 図1に示した冷媒流量制御装置が備える弁開度調節手段が実施する開度調節処理の内容を示すフローチャートである。It is a flowchart which shows the content of the opening degree adjustment process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG. 図1に示した冷媒流量制御装置によって電子膨張弁の開度を調節した場合において、一方の冷媒温度センサおよび他方の冷媒温度センサの温度差と時間との関係を示すとともに、電子膨張弁の開度の大きさと時間との関係を示すグラフである。When the opening degree of the electronic expansion valve is adjusted by the refrigerant flow control device shown in FIG. 1, the relationship between the temperature difference between one refrigerant temperature sensor and the other refrigerant temperature sensor and time is shown, and the electronic expansion valve is opened. It is a graph which shows the relationship between the magnitude | size of time and time. 本発明の実施の形態2である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device to which the refrigerant | coolant flow control apparatus which is Embodiment 2 of this invention is applied. 図5に示した冷媒流量制御装置が備える弁開度調節手段が実施する開度調節処理の内容を示すフローチャートである。It is a flowchart which shows the content of the opening degree adjustment process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG. 5 is provided implements. 図5に示した冷媒流量制御装置によって電子膨張弁の開度を調節した場合において、一方の冷媒温度センサおよび他方の冷媒温度センサの温度差と時間との関係を示すとともに、電子膨張弁の開度の大きさと時間との関係を示すグラフである。When the opening degree of the electronic expansion valve is adjusted by the refrigerant flow control device shown in FIG. 5, the relationship between the temperature difference between one refrigerant temperature sensor and the other refrigerant temperature sensor and time is shown, and the electronic expansion valve is opened. It is a graph which shows the relationship between the magnitude | size of time and time. 本発明の実施の形態3である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device to which the refrigerant | coolant flow control apparatus which is Embodiment 3 of this invention is applied. 図8に示した冷媒流量制御装置が備える弁開度調節手段が実施する開度調節処理の内容を示すフローチャートである。It is a flowchart which shows the content of the opening degree adjustment process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG. 8 is provided implements. 図8に示した冷媒流量制御装置によって電子膨張弁の開度を調節した場合において、一方の冷媒温度センサおよび他方の冷媒温度センサの温度差と時間との関係を示すとともに、電子膨張弁の開度の大きさと時間との関係を示すグラフである。When the opening degree of the electronic expansion valve is adjusted by the refrigerant flow control device shown in FIG. 8, the relationship between the temperature difference between one refrigerant temperature sensor and the other refrigerant temperature sensor and time is shown, and the opening of the electronic expansion valve is also shown. It is a graph which shows the relationship between the magnitude | size of time and time. 本発明の実施の形態4である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device to which the refrigerant | coolant flow control apparatus which is Embodiment 4 of this invention is applied. 図11に示した冷媒流量制御装置が備える弁開度調節手段が実施する処理の内容を示すフローチャートである。It is a flowchart which shows the content of the process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG. 図11に示した冷媒流量制御装置によって電子膨張弁の開度を調節した場合において、一方の冷媒温度センサおよび他方の冷媒温度センサの温度差と時間との関係を示すとともに、電子膨張弁の開度の大きさと時間との関係を示すグラフである。When the opening degree of the electronic expansion valve is adjusted by the refrigerant flow control device shown in FIG. 11, the relationship between the temperature difference between one refrigerant temperature sensor and the other refrigerant temperature sensor and the time is shown, and the electronic expansion valve is opened. It is a graph which shows the relationship between the magnitude | size of time and time.

符号の説明Explanation of symbols

12 蒸発器
13 電子膨張弁
20 他方の冷媒温度センサ(他方の温度センサ)
21 一方の冷媒温度センサ(一方の温度センサ)
30 弁開度調節手段
130 弁開度調節手段
230 弁開度調節手段
330 弁開度調節手段
12 Evaporator 13 Electronic expansion valve 20 The other refrigerant temperature sensor (the other temperature sensor)
21 One refrigerant temperature sensor (one temperature sensor)
30 Valve opening adjusting means 130 Valve opening adjusting means 230 Valve opening adjusting means 330 Valve opening adjusting means 330

Claims (2)

開度に応じて蒸発器に流入する冷媒量を調節する電子膨張弁と、
前記蒸発器における冷媒の入口部から出口部の間に、前記入口部からの距離が互いに異なる態様で設置した冷媒の温度を検出する一方の温度センサおよび他方の温度センサと、
それら温度センサの検出結果に応じて前記電子膨張弁の開度を調節する弁開度調節手段と
を備える冷媒流量制御装置であって、
前記他方の温度センサは、前記一方の温度センサに比して前記入口部に近接するものであり、かつ
前記弁開度調節手段は、前記一方の温度センサによって検出した第1温度から、前記他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、前記温度差が前記設定温度差よりも大きい目標温度差を上回るまで前記電子膨張弁の開度を徐々に絞り、その後、前記温度差が前記目標温度差を上回った時点で、前記温度差が前記目標温度差になるように前記電子膨張弁の開度を拡げることを特徴とする冷媒流量制御装置。
An electronic expansion valve that adjusts the amount of refrigerant flowing into the evaporator according to the opening;
One temperature sensor for detecting the temperature of the refrigerant and the other temperature sensor installed in a manner in which the distance from the inlet portion is different from each other between the inlet portion and the outlet portion of the refrigerant in the evaporator,
A refrigerant flow rate control device comprising: a valve opening degree adjusting means for adjusting the opening degree of the electronic expansion valve according to detection results of the temperature sensors,
The other temperature sensor is closer to the inlet than the one temperature sensor, and the valve opening adjusting means is configured to detect the other temperature from the first temperature detected by the one temperature sensor. When the temperature difference obtained by subtracting the second temperature detected by the temperature sensor is equal to or less than a preset temperature difference , the electronic expansion valve is operated until the temperature difference exceeds a target temperature difference larger than the preset temperature difference. The refrigerant is characterized in that the opening degree of the electronic expansion valve is increased so that the temperature difference becomes equal to the target temperature difference when the temperature difference exceeds the target temperature difference. Flow control device.
開度に応じて蒸発器に流入する冷媒量を調節する電子膨張弁と、
前記蒸発器における冷媒の入口部から出口部の間に、前記入口部からの距離が互いに異なる態様で設置した冷媒の温度を検出する一方の温度センサおよび他方の温度センサと、
それら温度センサの検出結果に応じて前記電子膨張弁の開度を調節する弁開度調節手段と
を備える冷媒流量制御装置であって、
前記他方の温度センサは、前記一方の温度センサに比して前記入口部に近接するものであり、かつ
前記弁開度調節手段は、前記一方の温度センサによって検出した第1温度から、前記他方の温度センサによって検出した第2温度を差し引いた温度差が、予め設定した設定温度差以下になった場合、前記温度差が前記設定温度差よりも大きい目標温度差を上回るまで前記電子膨張弁の開度を徐々に絞り、その後、前記温度差が前記目標温度差を上回った時点で、前記電子膨張弁の開度を前記設定温度差になったときの前記電子膨張弁の開度より予め設定した所定の大きさだけ絞った開度に拡げることを特徴とする冷媒流量制御装置。
An electronic expansion valve that adjusts the amount of refrigerant flowing into the evaporator according to the opening;
One temperature sensor for detecting the temperature of the refrigerant and the other temperature sensor installed in a manner in which the distance from the inlet portion is different from each other between the inlet portion and the outlet portion of the refrigerant in the evaporator,
A refrigerant flow rate control device comprising: a valve opening degree adjusting means for adjusting the opening degree of the electronic expansion valve according to detection results of the temperature sensors,
The other temperature sensor is closer to the inlet than the one temperature sensor, and the valve opening adjusting means is configured to detect the other temperature from the first temperature detected by the one temperature sensor. When the temperature difference obtained by subtracting the second temperature detected by the temperature sensor is equal to or less than a preset temperature difference , the electronic expansion valve is operated until the temperature difference exceeds a target temperature difference larger than the preset temperature difference. When the temperature difference exceeds the target temperature difference, the opening degree of the electronic expansion valve is set in advance from the opening degree of the electronic expansion valve when the set temperature difference is reached. The refrigerant flow control device is characterized in that the refrigerant flow rate is expanded to an opening degree reduced by a predetermined size .
JP2007015049A 2007-01-25 2007-01-25 Refrigerant flow control device Expired - Fee Related JP5098343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015049A JP5098343B2 (en) 2007-01-25 2007-01-25 Refrigerant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015049A JP5098343B2 (en) 2007-01-25 2007-01-25 Refrigerant flow control device

Publications (2)

Publication Number Publication Date
JP2008180458A JP2008180458A (en) 2008-08-07
JP5098343B2 true JP5098343B2 (en) 2012-12-12

Family

ID=39724486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015049A Expired - Fee Related JP5098343B2 (en) 2007-01-25 2007-01-25 Refrigerant flow control device

Country Status (1)

Country Link
JP (1) JP5098343B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196376A (en) * 1984-10-15 1986-05-15 ダイキン工業株式会社 Flow controller for refrigerant of air conditioner
JPH06221690A (en) * 1993-01-28 1994-08-12 Sanyo Electric Co Ltd Freezer device
JPH11201561A (en) * 1998-01-09 1999-07-30 Matsushita Refrig Co Ltd Heat pump type air conditioner
JP2000088363A (en) * 1998-09-16 2000-03-31 Matsushita Refrig Co Ltd Heat pump type air conditioner
JP4395348B2 (en) * 2003-09-26 2010-01-06 東芝キヤリア株式会社 Open showcase
JP4529727B2 (en) * 2005-02-23 2010-08-25 富士電機リテイルシステムズ株式会社 Refrigerant circuit

Also Published As

Publication number Publication date
JP2008180458A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US7331191B2 (en) Heating, ventilation and air conditioning (HVAC) system and method using feedback linearization
US8793003B2 (en) Controlling operations of vapor compression system
JP5886463B1 (en) Air conditioner and operation method thereof
US8196421B2 (en) System and method for controlled expansion valve adjustment
CN103994618B (en) For controlling the method and system of string row's scroll compressor unit
CN109827308A (en) Multi-split system control method and device and multi-split system
US20130186119A1 (en) Adaptive Control of Vapor Compression System
JP2008025932A (en) Control method of air conditioner
JP5514787B2 (en) Environmental test equipment
JP2010249452A (en) Air conditioner
JP2007255845A (en) Refrigerating cycle device
US10704814B2 (en) Expansion valve control
JP6355325B2 (en) Refrigerator and control method of refrigerator
US7856292B2 (en) System and method for lowering a temperature of liquid exiting a heat exchanger in a vapor compression system
JP4867503B2 (en) Cooling system
JP4952535B2 (en) Cooling system
JP5098343B2 (en) Refrigerant flow control device
JP4935403B2 (en) Refrigerant flow control device
CN113375274A (en) Air conditioner control method and device and air conditioner
JP2008185250A (en) Cooling apparatus
JP2007333298A (en) Refrigerant flow control device
JP2008008555A (en) Refrigerant flow controller
JP4935414B2 (en) Cooling system
JP4798116B2 (en) Refrigerant flow control device
US10859298B2 (en) Evaporator control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees