[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5094469B2 - タイミング再生装置および受信装置 - Google Patents

タイミング再生装置および受信装置 Download PDF

Info

Publication number
JP5094469B2
JP5094469B2 JP2008046701A JP2008046701A JP5094469B2 JP 5094469 B2 JP5094469 B2 JP 5094469B2 JP 2008046701 A JP2008046701 A JP 2008046701A JP 2008046701 A JP2008046701 A JP 2008046701A JP 5094469 B2 JP5094469 B2 JP 5094469B2
Authority
JP
Japan
Prior art keywords
information
unit
value
transmission
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008046701A
Other languages
English (en)
Other versions
JP2009033702A (ja
Inventor
圭史 武田
明憲 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008046701A priority Critical patent/JP5094469B2/ja
Publication of JP2009033702A publication Critical patent/JP2009033702A/ja
Application granted granted Critical
Publication of JP5094469B2 publication Critical patent/JP5094469B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スペクトラム拡散通信システムにおいて、受信信号を逆拡散した後のビット復調を高精度に行うための処理タイミングを再生するタイミング再生装置および受信装置に関する。
スペクトラム拡散通信システムでは、送信側の通信装置(送信機)が、送信データに対して1次変調を実行し、さらに1次変調後のデータに対して拡散コードを乗算し、スペクトラム拡散を行う。そして、スペクトラム拡散を実行して得られた信号を、無線周波数帯へ変換した後、対向する通信装置(受信機)へ送信する。一方、受信側の通信装置は、対向する通信装置から信号を受信すると、送信側で乗算した拡散コードと同じ拡散コードを所望のタイミングに同期させて受信信号へ乗算することにより逆拡散を行い、逆拡散された信号のエネルギーを拡散コード周期で積分し、さらに、積分結果を加算して得られる加算結果に基づいてビット判定を行う。
ここで、スペクトラム拡散通信システムの受信側の通信装置に適用可能な従来の技術として、たとえば下記特許文献1に記載のデータ復号回路が存在する。下記特許文献1に記載のデータ復号回路では、相互相関値を利用して拡散コード周期を判別し、拡散コード周期と同じ周期でビットデータの相関値を取ることにより正確にビット判定を行い、受信信号を復調する。
特開平05−327657号公報
しかしながら、上記特許文献1に記載のデータ復号回路は、ビットデータ周期(データのビット周期)と拡散コード周期が整数倍(同じ場合も含む)の関係にある、いわゆる同期しているシステムを想定しており、ビットデータ周期と拡散コード周期が非整数倍の関係にあるシステム、すなわち非同期のシステムへ適用することは検討されなかった。
そのため、拡散コード周期の途中でビットデータが変化する非同期のシステムに対して上記データ復号回路を適用すると、受信信号のエネルギーを積分および加算した後のエネルギー量が理想的なエネルギー量と比較して低くなる場合があり、その結果、判定精度が劣化する、という問題があった。
一方、判定精度の劣化を抑えつつ従来のデータ復号回路を適用してスペクトラム拡散通信システムを実現する場合、ビットデータ周期と拡散コード周期が整数倍の関係となるように考慮して設計を行う必要があり、ビットデータ周期、すなわちビットレートを自由に設定することができない、という問題があった。
本発明は、上記に鑑みてなされたものであって、ビットデータ周期と拡散コード周期がいかなる関係にあろうとも、すなわち、上述した非同期のシステムにおいてもビット誤り率の劣化を抑えて復調を行うための処理タイミングを再生するタイミング再生装置およびこれを備えた受信装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、スペクトラム拡散通信システムの受信装置が備えるタイミング再生装置であって、逆拡散後の受信信号からベースバンド信号を抽出する信号抽出手段と、前記抽出されたベースバンド信号を電力値へ変換し、当該電力値に基づいて、前記信号抽出手段から出力されるベースバンド信号のラッチタイミングの基準クロックを生成する基準クロック生成手段と、を備えることを特徴とする。
この発明によれば、受信信号から抽出したベースバンド信号の電力値に基づいてベースバンド信号のラッチタイミングの基準クロックを生成することとしたので、ビットデータ周期と拡散コード周期とが同期していないシステムであっても、ビット周期を正確に検出する(ベースバンド信号を最適なタイミングでラッチする)ことができ、ビット誤り率の劣化を抑えた復調を実現できる、という効果を奏する。
以下に、本発明にかかる受信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1−1は、本発明にかかるタイミング再生装置を備えた受信装置と通信を行う送信装置の構成例を示す図であり、図1−2は、本発明にかかるタイミング再生装置を備えた受信装置の実施の形態1の構成例を示す図である。図1−1に示した送信装置は、送信データ蓄積部1と、ビットデータ用クロック生成部2−1と、チップレート用クロック生成部2−2と、1次変調部3と、スペクトラム拡散部4と、無線周波数変換部5と、を含む。また、図1−2に示した、受信装置は、逆拡散部7と、ベースバンド成分抽出部8と、タイミング再生部9と、データラッチ部10と、自動利得制御部11と、を含む。また、逆拡散部7は、拡散コード同期部71および乗算部72により構成され、タイミング生成部9は、電力変換部91、巡回加算部92、最大値検出部93および再生クロック生成部94により構成される。なお、逆拡散部7には受信信号の入力端子101および102が接続され、図示していないアンテナで受信され、無線周波数帯からベースバンドへ周波数変換された後の受信信号が入力される。たとえば、受信信号のIチャネル信号(同相成分)が入力端子101から入力され、Qチャネル信号(直交成分)が入力端子102から入力される。また、自動利得制御部11には出力端子103および104が接続され、所定の処理が実行された後のIチャネル信号およびQチャネル信号がこれらの端子から出力される。
つづいて、図1−1に示した送信装置が信号を送信し、その信号を図1−2に示した受信装置が受信する場合の動作について、図2を参照しながら説明する。なお、図2は、実施の形態1のシステムでの信号処理の流れを示す図である。送信装置の送信データ蓄積部1は、通信相手の装置(受信装置)に対して送信する送信データを蓄積しており、ビットデータ用クロック生成部2aで生成されたクロックに基づいたタイミングで送信データを1次変調部3へ出力し、1次変調部3は、受け取った送信データに対して1次変調を実行する。スペクトラム拡散部4は、上記1次変調後の送信データに対して、チップレート用クロック生成部2−1で生成されたクロックに基づいたタイミングで拡散コード(PN(Pseudo Random)コード)を乗算し、スペクトラム拡散を行う。
このときビットレート用クロックとチップレート用クロックが非同期(非整数倍)の関係にあれば、図2に例示したように、拡散コード周期(PNと記載された1つのブロック)の途中でビット(ビットデータ)が変化する。そして、このような場合、上記の課題でも示したように、受信側では、受信処理を実行して得られるエネルギー量が理想的なエネルギー量と比較して低くなる場合がある。なお、図3は、受信データのエネルギー量が理想的なエネルギー量と比較して低くなる場合の一例を示しており、拡散コード周期の途中でビットデータが変化している場合、その部分を用いて算出したエネルギー量(加算後のエネルギー)が理想的なエネルギー量と比較して低くなる様子を示している。
スペクトラム拡散部4でスペクトラム拡散された送信データは、無線周波数変換部5で無線周波数帯の信号に変換された後アンテナを介して相手通信装置(受信装置)へ送信される。
送信装置から送信された信号は、受信装置の図示していないアンテナで受信され、所定の処理が実行された後、入力端子101,102を介して、Iチャネル信号およびQチャネル信号が逆拡散部7へ入力される。逆拡散部7の拡散コード同期部71は、送信側(送信装置)のスペクトラム拡散部4が送信データに対して乗算した拡散コードと同一の拡散コードを生成し、この拡散コードを乗算部72がIチャネル信号およびQチャネル信号に対して所望のタイミングで乗算することにより逆拡散を行う。逆拡散された後のIチャネル信号およびQチャネル信号はベースバンド成分抽出部8へ入力され、ベースバンド成分抽出部8は、Iチャネル信号およびQチャネル信号のベースバンド信号成分を抽出する。
ベースバンド成分抽出部8の動作を詳細に説明する。図4は、ベースバンド成分抽出部8の構成例を示す図であり、ベースバンド成分抽出部8は、積分部81および移動平均部82により構成される。なお、入力されたIチャネル信号およびQチャネル信号に対して処理を実行するため、積分部81および移動平均部82は、Iチャネル信号用とQチャネル信号用の2組が存在する。
ベースバンド成分抽出部8の積分部81は、入力されたIチャネル信号とQチャネル信号、すなわち逆拡散後の受信信号に対して、それぞれM[サンプル]区間(Mは自然数)で積分を行い、周期Mで(M区間ごとに)積分結果をラッチし、ラッチした結果をMで除算することにより、ダウンサンプリングを行う。移動平均部82は、Mで除算して得られた信号(ダウンサンプリングされた信号)N個を用いた移動平均処理を行う。移動平均部82が処理を行った結果として、図2に示した「ベースバンド成分抽出部出力」のような出力が得られる。なお、ベースバンド成分抽出部8の構成を積分部81と移動平均部82とに分けたのは、サンプル/ビット数が大きい場合に回路規模が膨大になるのを防止できるようにしたためである。たとえば、120000サンプル/ビットの信号を扱う場合、単に移動平均部82のみでベースバンド成分抽出部8を構成すると、その段数Nは120000段と膨大な回路規模となってしまう。しかしながら、本実施の形態のように積分部81と移動平均部82で構成するようにした場合、たとえば積分部81のサンプリング周期Mを4000、移動平均部82の段数Nを30として回路規模の削減を図ることが可能となる。ここで、MとNは、M×Nがサンプル/ビット数と等しくなるように、かつ復調に必要な精度が数十サンプル/ビットであることを考慮して設定するのが望ましい。また、サンプル/ビット数が非整数の場合、近似した整数に設定するのが望ましい。
ベースバンド成分抽出部8が抽出したベースバンド信号成分は、図2に示したベースバンド成分抽出部出力のように、送信データのビット周期幅に対応した波形(変化点がビットデータの変化点と一致した波形)となる。したがって、図2の丸印がビット周期幅に対応した理想的なサンプリング点であり、この点をサンプリングすることでエネルギー損失のない復調が可能となる。以後このサンプリング点をデータ識別点と呼ぶ。
基準クロック生成手段に相当するタイミング再生部9は、ベースバンド成分抽出部8により抽出されたベースバンド信号成分を用いて、上記データ識別点の位置を特定する。具体的には、ベースバンド成分抽出部8からベースバンド信号成分が入力されると、まず、電力変換部91がIチャネル信号とQチャネル信号の二乗和を計算することで電力変換を行い(受信信号の電力を算出し)、この変換処理により得られた電力値を巡回加算部92に入力する。そして、巡回加算部92は、入力された電力値に対してIIR(Infinite Impulse Response:無限インパルス応答)巡回加算処理を行う。
図5は、巡回加算部92の構成例を示す図であり、巡回加算部92は、N'段のレジスタにより構成されるレジスタ部921と、レジスタ部921で保持している最も古い値に対して忘却係数α(0<α<1)を乗算する乗算部922と、αが乗算された値と電力変換部91から得られた電力値を加算する加算部923と、により構成される。
巡回加算部92では、電力変換部91で算出された電力値が入力されると、入力された電力値に対して、レジスタ部921がそれまで保持していた値の中の最も古い値に対して乗算部922が忘却係数αを乗算して得られた値を加算した後、レジスタ部921の0番目に入力する。また、電力変換部91から入力された値に上記処理を実行して0番目に入力する前に、レジスタのK番目(ただし、K=0,1,2,3,…,N'−2)に格納されていた値は、K+1番目にシフトされる。また、N'−1番目に格納されていた値(すなわちその時点でレジスタ部921が保持している最も古い値)は、乗算部922へ出力され、乗算部922で忘却係数αが乗算された後、上述のように、電力変換部91から入力された電力値に加算される。なお、忘却係数αは、IIR巡回加算を繰り返すにあたり、値が発散しないように設定する。たとえば、255/256、511/512など、(2^n−1)/2^n(n=1,2,…)の形式が挙げられるが、α<1であれば、この限りではない。
情報検出手段に相当する最大値検出部93では、巡回加算部92のレジスタ部921が備えるN'個のレジスタに格納されている値の中から最大の値(MxVとする)と、N'個のレジスタの中で最大値MxVが存在する位置の情報すなわち何番目のレジスタにMxVが格納されているのかを示す情報(MxPとする)を、ベースバンド成分抽出部8の移動平均部82で用いた段数Nと同じ周期N'で検出する。MxPは、たとえばレジスタの番号(0〜N'−1)とする。上述したように、電力変換部91からの入力があると、各レジスタにそれまで格納されていた情報は隣のレジスタへ再格納される(移動する)。そのため、上記位置情報MxPは、最大値MxVがレジスタ部921へ格納されているすべての情報の中で何番目に入力されたもの(何番目に古いもの)か、を示している。ここで、図2に示したように、IIR巡回加算で得られる値(図2の「巡回加算」に相当)の最大値の位置がちょうど、ベースバンド成分抽出部8から出力される信号に対する理想的なデータ識別点の位置となる。
なお、ビット周期と拡散コード周期が非整数倍の関係にある場合、巡回加算部92で用いられる周期N'(段数)を変更することによって対応する。たとえばベースバンド成分抽出部8により20.02サンプル/ビットにダウンサンプリングされた場合、50回中の1回でN'を20から21にすることにより、50回の平均として20.02サンプル/ビットのタイミングと一致させる。
再生クロック生成部94は、最大値検出部93で検出した最大値の値が格納されているレジスタの位置情報MxPを用いて、最大値の位置(理想的なデータ識別点)でエッジが立ち上がるクロックを生成する。図6は再生クロック生成部94の構成例を示す図であり、再生クロック生成部94は、アップカウンタ生成部941およびクロック生成部942により構成される。アップカウンタ生成部941は、0→1→2→…→(N−1)→0のように、0から(N−1)までカウントアップし、(N−1)まで達したらまた0に戻るようにカウントし、カウント値をクロック生成部942へ出力する。クロック生成部942は、最大値検出部93から入力された最大値位置情報であるMxPとアップカウンタ生成部941から受け取ったカウント値を比較し、クロックを生成する。たとえば、位置情報MxPをレジスタの番号(0,1,2,3,…)とした場合、クロック生成部942は、0→1→2…というアップカウンタ生成部941の出力と、MxPが一致した場合、1という情報を出力し、そのほかの場合は0を出力することによりクロックを生成する。
図2に示したように、この生成されたクロック(図2の「再生クロック」に相当)の位相は、データ識別点のタイミングと一致している。したがって、データラッチ部10が、この生成されたクロックの立ち上がりエッジでベースバンド成分抽出部8の出力信号をラッチすることで、データ識別点をサンプリングすることができる。図2に示した「出力」がラッチされた結果であり、このようにビットデータの値に対応した出力が得られる。
以上のような一連の処理を実行することによりベースバンド成分を抽出し、適切なタイミングでデータをラッチすることにより、エネルギーの損失を抑えた復調が可能となる。
また、最大値検出部93で検出された最大値MxVは、補正手段に相当する自動利得制御部11に入力され、利用される。スペクトラム拡散通信においては、信号成分に対して雑音成分が支配的であり、入力端子101および102から入力されるIチャネルの受信信号およびQチャネルの受信信号の振幅レベルをそれぞれ1に正規化し、受信信号電力(S+N)を求めると、受信信号電力に対して信号成分電力(Signal)と雑音成分電力(Noise)は図7に示すような関係となる。
一般に、スペクトラム拡散システムでは、低C/N(Carrier to Noise ratio)を動作点として回線設計が行なわれているが、逆拡散部7の前段で受信信号が一定振幅に制御され、一定振幅の信号が入力端子101および102へ入力される場合、図7から明らかなように、たとえばC/N=−40[dB]の場合、信号成分(Signal)は、1/1000未満となる。一方、C/Nが高い(たとえばC/N=0[dB])場合、信号成分(Signal)は0.5となる。
したがって、逆拡散部7の前段にアナログAGC(Automatic Gain Control)を組み込み、受信信号を定振幅化しても、ベースバンド成分抽出部8で抽出した信号成分(Signal)は、図7から明らかなように、たとえばC/Nが−40[dB]以上の範囲では、受信C/Nに応じて1/1000未満〜1.0の間で変動する。そして、ベースバンド成分抽出部8通過後の信号成分がこのように大きく変動すると、以下の問題が生じる。
(1)信号成分の変動分のビット数だけ、信号を表現するために必要なビット幅が増加し、後段の回路規模にインパクトを与える。
(2)後段に軟判定ビタビ復号を有する場合は、誤り訂正能力が低下する。
(3)QAM(Quadrature Amplitude Modulation)変調やAPSK(Amplitude Phase Shift Keying)変調など、振幅にもビット情報を乗せる変調方式を適用したシステムでは、受信信号を検波する場合にビット判定エラーが生じやすくなる。
そのため、自動利得制御部11では、最大値MxVを巡回加算部92で用いる忘却係数αに基づいて算出される値でデータラッチ部10の出力信号を除算することで、ベースバンド成分抽出部8の出力信号の振幅レベルの補正を行い、定振幅化を行う。
たとえば、元の信号QAに対して、ベースバンド成分抽出部8の出力振幅が10分の1になったとする。これをQA’とすると、次式(1)のように表される。
A = 10QA’ …(1)
電力変換部91によりQA’は二乗され、巡回加算部92に入力される。忘却係数α=(2n−1)/2nとすると、一般にIIR巡回加算は入力値1が連続したときその結果は2nに収束することから、巡回加算部92内のN'個のレジスタの中の最大値MxVは、次式(2)で表される。
Figure 0005094469
自動利得制御部11は、この最大値MxVに基づいて平均振幅(Aとする)を算出し、算出した平均振幅Aでベースバンド成分信号を除算する。この例では、平均振幅Aは次式(3)で求められる。
Figure 0005094469
したがって、出力振幅が10分の1になったQA’に平均振幅Aを除算した信号QA”は次式(4)のように1となり、振幅の正規化が行われる。
Figure 0005094469
最後に、自動利得制御部11で振幅が補正されたIチャネル信号とQチャネル信号は、それぞれ出力端子23と24より出力される。このように、再生クロック生成のために最大値検出部92で得られる最大値MxVを、自動利得制御にも用いることができ、新たに平均振幅を求める回路を設ける必要がなくなり、回路の共用化を図ることができる。
このように、本実施の形態では、電力変換部91でベースバンド信号を電力値へ変換し、電力値を巡回加算部92がIIR巡回加算し、最大値検出部93は、所定期間(ビット周期)ごとに、巡回加算部92が保持している値の最大値および最大値が格納されているレジスタの位置を検出し、検出された位置の情報に基づいて、ベースバンド信号のラッチタイミングの基準クロックを再生クロック生成部94が生成することとした。これにより、ビットデータ周期と拡散コード周期とが同期していないシステムの受信装置において、ビット周期を正確に検出し(ベースバンド信号を最適なタイミングでラッチし)、エネルギー損失を抑えた、すなわちビット誤り率の劣化を抑えた復調を実現できる。また、ラッチしたベースバンド信号の振幅レベルの補正を、上記検出された最大値を活用して行うこととしたので、受信装置の回路規模を削減できる。
実施の形態2.
つづいて、実施の形態2について説明する。本実施の形態では、ビットデータ周期と拡散コード周期が非同期の関係にあるシステムにおいてエネルギー損失を抑えた、すなわちビット誤り率の劣化を抑えた復調を可能とするのに加え、伝送に用いられるビットレートが複数存在し、使用される伝送ビットレートが未知の場合であっても、ビットレートを検知してエネルギー損失を抑えて正常に復調を行う受信装置について説明する。
通信システムの回線設計においては、伝搬路状況が最も悪い場合を考慮して、伝送ビットレートを決定することが多い。しかしながら、このようにビットレートを決めてしまうと、伝搬路状況が良好なときも、伝搬路状況が最も悪いときを考慮したビットレートが使用されることになり、周波数利用効率の観点からすれば望ましくない。伝送ビットレートを伝搬路状況によって変更できるようにすれば、伝搬路情報が良好なときはビットレートを上げて情報の伝送時間を短縮することができる、すなわち周波数を有効に利用することができるという利点が生まれる。
図8−1は、実施の形態2の送信装置の構成例を示す図であり、図8−2は、実施の形態2の受信装置の構成例を示す図である。
図8−1に示した本実施の形態の送信装置は、上述した実施の形態1の送信装置(図1−1参照)のビットデータ用クロック生成部2−1に代えてビットデータ用クロック生成部2a−1を備え、さらに、ビットレート選択部6が追加された構成をとる。その他の部分については実施の形態1の送信装置と同様であるため、同一の符号を付してその説明は省略する。
図8−2に示した本実施の形態の受信装置は、上述した実施の形態1の受信装置(図1−2参照)が備えていたものと同じ逆拡散部7を備え、また、実施の形態1の受信装置が備えていたベースバンド成分抽出部8、タイミング再生部9、データラッチ部10および自動利得制御部11のブロックを複数(図8−2では3つの場合を示しているがこれに限らない)備え、さらに、判定部12および選択部13が追加された構成をとる。
なお、各ベースバンド成分抽出部(ベースバンド成分抽出部8−1,8−2,8−3)、各データラッチ部(データラッチ部10−1,10−2,10−3)および各自動利得制御部(自動利得制御部11−1,11−2,11−3)は、実施の形態1の受信装置が備えていたベースバンド成分抽出部8、データラッチ部10および自動利得制御部11と同じであるため、詳細な説明は省略する。
以下、本実施の形態の通信動作を説明する。ここでは、一例として、送信装置が3種類のビットレート、1kbps、2kbpsおよび4kbpsから選択した任意のビットレートで信号の伝送を行い、受信装置側では伝送ビットレートがわからないようなシステムを想定する。また、2kbpsで信号が送信された場合の動作を、図9を参照しながら説明する。なお、図9は、実施の形態2の通信システムでの信号処理の流れを示す図である。
送信装置のビットレート選択部6は、伝搬路状況のフィードバック情報を取得し、その情報に基づいて選択可能なビットレート(この例では1kbps、2kbps、4kpbsの3種類)の中から伝送するビットレートを決定し、その結果をビットデータ用クロック生成部2a−1へ送る。なお、ビットレート選択部6は、たとえば時間的に伝搬路状況が悪い環境から良い環境へと変動することが既知である場合、その時間変動を考慮してビットレートを決定し、伝搬路状況のフィードバック情報を使用しないようにしてもよい。また、通信相手との通信距離がわかる場合、距離が近ければ伝搬路状況が良い、距離が遠ければ伝搬路状況が悪いものとして扱い、これを伝搬路状況に代えて使用してもよい。また、テレメトリにより得られた受信電力や受信S/N情報を使用してビットレートを決定するようにしてもよい。さらに、人為的な操作による情報に基づいてビットレートを決定するようにしてもよい。
ビットデータ用クロック生成部2a−1は、ビットレート選択部6が選択したビットレートに応じたクロックを生成する。送信データ蓄積部1、1次変調部3、スペクトラム拡散部4および無線周波数変換部5は、実施の形態1と同様の処理を行い、送信データを相手通信装置へ送信する。
受信装置の逆拡散部7は、実施の形態1と同様の処理を実行して逆拡散を行い、逆拡散された後のIチャネル信号およびQチャネル信号は、ベースバンド成分抽出部8−1〜8−3へ入力される。これは、システムで使用可能な伝送ビットレートが3種類あるためであり、使用可能な伝送ビットレートの数分だけベースバンド成分抽出部を用意している。ここでは、一例として、ベースバンド成分抽出部8−1が1kbps用、ベースバンド成分抽出部8−2が2kbps用、ベースバンド成分抽出部8−3が4kbps用とする。同様に、タイミング再生部、データラッチ部および自動利得制御部も使用可能な伝送ビットレートの数分だけ用意している。
3つのベースバンド成分抽出部8−1、8−2および8−3は、いずれも実施の形態1で示した積分部81と移動平均部82(図4参照)から構成されているが、積分部81のサンプリング周期Mと移動平均部82の段数Nは、各伝送ビットレート(1kbps、2kbps、4kbps)に対応した値を設定する。たとえば、2kbps用のベースバンド成分抽出部8−2でMを4000、Nを30とすると、1kbps用のベースバンド成分抽出部8−1ではMが8000、Nは30であり、4kbps用のベースバンド成分抽出部8−3ではMが2000、Nが30である。
抽出されたベースバンド信号成分は、各ビットレートに対応したタイミング再生部9a−1〜9a−3へ入力される。タイミング再生部9a−1〜9a−3はいずれも同じ構成であり、その構成例を図10に示す。実施の形態2のタイミング再生部9a−1〜9a−3は、実施の形態1のタイミング再生部9(図1−2参照)の最大値検出部93に代えて最大値・平均値検出部95を備え、さらに、信頼度情報算出手段に相当する除算部96が追加された構成をとる。その他の部分については実施の形態1のタイミング再生部9と同様であるため、同一の符号を付して、その説明は省略する。
最大値・平均値検出部95は、実施の形態1で示した最大値検出部93と同様に、巡回加算部92が備えるN'個のレジスタに格納されている値の中から最大の値MxVおよびN'個のレジスタの中で最大値MxVが存在する位置情報MxPをベースバンド成分抽出部の移動平均部82で用いた段数Nと同じ周期N'で検出する。さらに、N'個のレジスタの値の平均値(AvVとする)を算出する。除算部96は、最大値・平均値検出部95で検出された最大値MxVを平均値AvVで除算する。除算結果は、信頼度情報Rnとして判定部12へ出力される。これは電力変換部91で二乗されたデータ系列と、それを1シンボル遅延したデータ系列との自己相関を求める操作に他ならない。信頼度情報Rnは次式(5)のように表される。
n = MxV/AvV …(5)
ここで信頼度情報Rnについて、図11を用いて説明する。図11は、次の4パターンの情報が送信された場合の、IIR巡回加算結果を示す図である。なお、伝送ビットレートは2kbpsとし、受信側では2kbpsに対応したベースバンド成分抽出部8−2でベースバンド成分が抽出され、タイミング再生部9a−2に入力されたとする。
(パターン1)
無信号パターン(0,0,0,0,0,…)
(パターン2)
オール1パターン(1,1,1,1,1,…)
(パターン3)
「−1」と「1」が交互に続くような01パターン(−1,1,−1,1,−1,1,…)
(パターン4)
規則性のないランダムパターン(−1,1,1,−1,1,−1,…)
図11より、(パターン1)の無信号(オール0)パターンの場合、最大値MxVも平均値AvVもおよそ0であり、このときの信頼度情報(R1とする)は約1となる。(パターン2)のオール1パターンの場合、最大値MxVも平均値AvVもおよそ1であり、このときの信頼度情報(R2とする)は約1となる。(パターン3)の01パターンの場合、最大値MxVはおよそ1、平均値AvVはおよそ0.5であり、このときの信頼度情報(R3とする)は約2となる。(パターン4)のランダムパターンの場合、最大値MxVはおよそ1、平均値AvVは0.5から1の間であり、このときの信頼度情報(R4とする)は1から2の間である。したがって、図11に示した4パターンの信頼度情報Rn(n∈{1、2、3、4})の関係は、次式(6)で表される。
Figure 0005094469
上式(6)からも分かるように、上記の4つのパターンでは、信頼度情報が最大となるのは01パターン(パターン3)のR3であり、Rnの値は最大値と平均値との差が大きいほど大きいと言える。
次に、1kbps用のタイミング再生部9a−1で得られる信頼度情報(R9-1とする)、2kbps用のタイミング再生部92で得られる信頼度情報(R9-2とする)、4kbps用のタイミング再生部9a−3で得られる信頼度情報(R9-3とする)について説明する。
図9には、伝送ビットレートが2kbpsだった場合の、1kbps用のベースバンド成分抽出部8−1出力およびタイミング再生部9a−1内部のIIR巡回加算出力、2kbps用のベースバンド成分抽出部8−2出力およびタイミング再生部9a−2内部のIIR巡回加算出力、4kbps用のベースバンド成分抽出部8−3出力およびタイミング再生部9a−3内部のIIR巡回加算出力が示されている。
まず、1kbps用のベースバンド成分抽出部8−1、タイミング再生部9a−1で復調処理が行われた場合、ベースバンド成分抽出部8−1が1kbps用の周期で、すなわち2kbpsのビットデータ周期に対して倍の周期で移動平均を行うため、例えば{0,1}など連続する2ビットが異なるような場合、ベースバンド成分抽出部8−1の出力は図9に示すようなほぼ0に近い値となる。よってIIR巡回加算結果は、図9に示すようになり、最大値MxVと平均値AvVの差は2kbpsの場合と比べて小さい。したがって、タイミング再生部9a−1が最大値MxVを平均値AvVで除算した信頼度情報R9-1の値は、2kbps用のタイミング再生部9a−2が最大値MxVと平均値AvVから算出した信頼度情報R9-2よりも小さい。
つぎに、4kbps用のベースバンド成分抽出部8−3、タイミング再生部9a−3で復調処理が行われた場合は、ベースバンド成分抽出部8−3が4kbps用の周期で、すなわち2kbpsのビットデータ周期に対して半分の周期で移動平均を行うため、例えば{0,1}など連続する2ビットが異なるような場合、ベースバンド成分抽出部8−3の出力は、振幅の最大値と最小値をそれぞれ1、−1とすると、図9に示すように、1→1または−1→−1という無遷移が生じる。よってIIR巡回加算結果は図9に示すようになり、最大値MxVと平均値AvVの差は2kbpsの場合と比べて小さい。したがって信頼度情報R9-3は2kbpsの信頼度情報R9-2よりも小さい。
以上より、1kbpsの信頼度情報R9-1、2kbpsの信頼度情報R9-2、4kbpsの信頼度情報R9-3の関係は、次式(7)のように表される。
9-2>R9-1,R9-3 …(7)
次に、判定部12は、各タイミング再生部9a−1〜9a−3から出力された信頼度情報R9-1、R9-2、R9-3を比較し、値が最大のものを検出し、最大値が得られた入力端子の情報を、選択部13に送る。今回の例では上式(7)から信頼度情報R9-2が最大であるため、信頼度情報R9-2を出力したタイミング再生部9a−2から出力された情報(再生クロック、最大値)に基づいてラッチされ、さらに振幅が補正された信号を判別するための情報を選択部13に送る。なお、1kbps用のタイミング再生部9a−1に対応するデータラッチ部10−1および自動利得制御部11−1、2kbps用のタイミング再生部9a−2に対応するデータラッチ部10−2および自動利得制御部11−2、4kbps用のタイミング再生部9a−3に対応するデータラッチ部10−3および自動利得制御部11−3の動作は、実施の形態1と同じであるため説明を省略する。
選択部13は、判定部12より送られてきた、信頼度情報Rnが最大であった入力端子の情報に対応する入力端子のみを開放する。そのため出力端子103,104からは信頼度情報Rnが最大であったタイミング再生部に対応した信号(今回の例では2kbps用のタイミング再生部9a−2に対応する自動利得制御部11−2から得られた信号)のみが出力される。
以上のような処理を実行することにより、今回の例のように、1kbps、2kbps、4kbpsの3種類のビットレートが送信される可能性があり受信側では伝送ビットレートが未知であるという条件で復調を行う場合であっても、受信機は、自ら受信ビットレートを検出し、正しい復調結果(この例では2kbps用の回路で復調された結果)を出力する。なお復調は、実施の形態1で説明したものと同じ、エネルギーの損失を抑えた復調である。
なお、上記の例では、伝送ビットレートが2kbpsの場合の例について説明したが、1kbpsの場合や4kbpsの場合であっても復調結果を選択できる。
また、信頼度情報Rnを安定させるため、図12に示した構成図のように各タイミング再生部9a−1〜9a−3の除算部96の前段に積分部81−1および81−2を配置するようにしてもよい。図12に示した構成では、たとえば、除算部81−1が最大値MxVを、除算部81−2が平均値AvVを、最大値・平均値検出部95で最大値MxVなどを検出する周期N'と同じN'回で積分する。除算部96は、除算部81−1および81−2から出力された最大値MxV平均値AvVを用いて信頼度情報Rnを算出する。
また、今回は一例として伝送ビットレートが3種類存在する場合を説明したが、ベースバンド成分抽出部、タイミング再生部、データラッチ部および自動利得制御部を、伝送ビットレートの数分だけ持つことで、利用できるビットレートの数は自在に設定することが可能である。また、実施の形態1で述べたとおり、ビットデータ周期と拡散コード周期とは非同期であってもエネルギー損失を抑えた復調が可能であるため、ビットレートの設定に制限はなく、任意のビットレートを設定可能である。
このように、本実施の形態の受信機は、ベースバンド成分抽出部、タイミング再生部、データラッチ部および自動利得制御部からなる処理ブロックをシステムで選択可能な伝送ビットレートの数だけ備え、各処理ブロックではタイミング再生部が、内部の巡回加算部が保持している情報に基づいて、信頼度情報を算出するようにした。そして、最も高い信頼度情報を算出した処理ブロックでラッチされ、振幅レベルが補正された信号を選択して復調することとした。これにより、ビットデータ周期と拡散コード周期が非同期の関係にあるシステムにおいてビット誤り率の劣化を抑えた復調を実現する実施の形態1で示した効果に加え、伝送ビットレートが複数存在し、あらかじめ伝送ビットレートがわかっていない場合においても、伝送ビットレートを検知して受信信号を正常に復調できる。
実施の形態3.
つづいて、実施の形態3について説明する。上述した実施の形態2では、ベースバンド成分抽出部、タイミング再生部、データラッチ部、自動利得制御部を伝送ビットレートの数分だけ用意したが、本実施の形態では回路の共用化を考慮し、これらを1つにする代わりとして伝送ビットレートの数だけ検出処理を行う。すなわち、実施の形態2のように一度に複数の信頼度情報Rnを得るのではなく、ベースバンド成分抽出部、タイミング再生部の設定を順次切り替えて、選択可能な伝送ビットレートそれぞれについての信頼度情報Rnを得るようにする。
図13は、実施の形態3の受信装置の構成例を示す図である。本実施の形態の受信装置は、上述した実施の形態1の受信装置(図1−2参照)のベースバンド成分抽出部8およびタイミング再生部9に代えてベースバンド成分抽出部8bおよびタイミング再生部9bを備え、さらに、伝送ビットレート特定手段を構成する制御部14が追加された構成をとる。その他の部分については実施の形態1の受信装置と同様であるため、同一の符号を付してその説明は省略する。なお、ベースバンド成分抽出部8bは、実施の形態1のベースバンド成分抽出部8(図4参照)と同様に、IチャネルおよびQチャネルに対応した積分部81および移動平均部82を備える。また、タイミング再生部9bは、実施の形態2のタイミング再生部9a−1〜9a−3(図10参照)と同様に、電力変換部91、巡回加算部92、再生クロック生成部94、最大値・平均値検出部95および除算部96を備える。
制御部14は、ベースバンド成分抽出部8bおよびタイミング再生部9bに対して、実行する動作(どの伝送ビットレートに対応した処理を実行するか)の指示を行う。ベースバンド成分抽出部8bは、制御部14からの指示に従い、備えている積分部81のサンプリング周期Mおよび移動平均部82の段数Nを切り替えてベースバンド成分の抽出処理を実行する。タイミング再生部9bは、制御部14からの指示に従い、備えている巡回加算部92のレジスタ数および最大値・平均値検出部95が最大値MxVの検出処理を実行する周期(上記N'に相当)を切り替えて、再生クロック、最大値MxVおよび信頼度情報Rnの生成処理を実行する。なお、送信側の通信装置(送信装置)は、実施の形態2の送信装置(図8−1参照)と同じである。
本実施の形態の通信動作について、図14を参照しながら説明する。図14は、実施の形態3の受信装置が実行する処理の流れの一例を示す図である。なお、実施の形態2の場合と同様に、送信装置は、1kbps、2kbpsおよび4kbpsの3種類の中から選択した伝送ビットレートで信号を伝送し、受信装置側では伝送ビットレートがわからない場合について説明する。
制御部14は、伝送ビットレートに対応した設定値(上記のサンプリング周期M,段数N,検出処理実行周期N')を保持しており、受信処理を開始すると、まずベースバンド成分抽出部8bに1kbps用のMおよびNを、タイミング再生部9bには1kbps用のN'を通知し、通知した情報を使用して信号処理を実行するように指示を行う。ベースバンド成分抽出部8bおよびタイミング再生部9bは、制御部14より取得した情報(M,N,N'の値)に対応した設定に切り替わり、所定の期間(U[シンボル]とする)にわたってこれらのM,N,N’で動作する。ここで、Uは巡回加算部92で設定する忘却係数αの値を参考にしてもよい。たとえば、α=2n-1/2nである場合、U=2n[シンボル]として動作を行う。ベースバンド成分抽出部8bおよびタイミング再生部9bが実行する処理は、実施の形態2で示した、1kbpsの伝送ビットレートに対応する復調処理を実行するベースバンド成分抽出部8−1およびタイミング再生部9a−1が実行する処理と同様であり、制御部14は図14に示す時刻t1にてタイミング再生部9bより信頼度情報Raを取得する。
次に、制御部14は、2kbps用のM,N,N’の情報をベースバンド成分抽出部8bおよびタイミング再生部9bへ通知し、通知内容に従った信号処理を実行するように指示を行う。ベースバンド成分抽出部8bおよびタイミング再生部9bは、制御部14から取得した情報に対応した設定に切り替わる。そして、上述した1kbpsの場合と同様、実施の形態2で示した、2kbpsの伝送ビットレートに対応する復調処理を実行し、制御部14は図14に示す時刻t2にて信頼度情報Rbを取得する。さらに、制御部14は、4kbps用のM,N,N’の情報をベースバンド成分抽出部8bおよびタイミング再生部9bへ通知し、通知内容に従った処理をベースバンド成分抽出部8bおよびタイミング再生部9bが実行して、制御部14は図14に示す時刻t3にて信頼度情報Rcを得る。
制御部14は、想定されるすべての伝送ビットレートに対する復調処理をベースバンド成分抽出部8bおよびタイミング再生部9bに実行させて、それぞれの復調処理で算出される信頼度情報(この例では、Ra、Rb、Rc)をすべて取得すると、取得した信頼度情報Rnの中から最大値を検出する。このように信頼度情報Ra、Rb、Rcを得て最大値が検出されるまでの状態、制御部14が順次ベースバンド成分抽出部8bとタイミング再生部9bに設定値M,N,N’の情報を送る状態を、これ以降サーチモードと呼ぶ。制御部14は、検出した信頼度情報の最大値を所定のしきい値THnと比較し、信頼度情報の最大値がしきい値THnを上回るまでサーチモードを持続させる。なお、ベースバンド成分抽出部8bおよびタイミング再生部9bは、最後に制御部14から通知された情報(M,N,N')に基づいた設定が持続するものとする。すなわち制御部14から出力された情報の入力がなければ、ベースバンド成分抽出部8bおよびタイミング再生部9bの設定が切り替わることはない。
検出された信頼度情報Rnの最大値がしきい値THnを上回った場合、制御部14は、信頼度情報Rnの最大値に対応するM、N,N’の情報をベースバンド成分抽出部8bおよびタイミング再生部9bへ通知し続ける。実施の形態2で説明したとおり、伝送ビットレートとベースバンド成分抽出部8b、タイミング再生部9bが対応している場合に信頼度情報Rnの値は最大値となる。ベースバンド成分抽出部8bおよびタイミング再生部9bは、得られた情報に対応した設定で処理を続ける。このように信頼度情報Rnの最大値に対応した情報を、ベースバンド成分抽出部8bとタイミング再生部9bに送り続ける状態をステーブルモードと呼ぶ。
なお、ステーブルモードでは、制御部14からベースバンド成分抽出部8bおよびタイミング再生部9bへ毎回同じ情報がされることになる。上述したように、一旦情報が通知されると、ベースバンド成分抽出部8bおよびタイミング再生部9bは、通知された内容に従った設定での処理を継続するため、制御部14は、設定されたしきい値THnを信頼度情報Rnが上回っている場合には、値を送出しないようにしてもよい。Rnが基準値THnを下回った場合、制御部14は、再びサーチモードへと移行し、Rnの検出を行うように制御を行う。
このように、本実施の形態では、サーチモードにおいて順次信頼度情報Rnの検出を行い、ステーブルモードにおいてベースバンド成分抽出部8bおよびタイミング再生部9bを、検出した信頼度情報Rnの中から最大値のものに対応する設定にするようにした。これにより、実施の形態2と比較してすべての信頼度情報Ra、Rb、Rcが揃うまでの時間を要するという欠点はあるものの、ビットレートの数だけベースバンド成分抽出部、タイミング再生部、データラッチ部、自動利得制御部を備える必要が無くなる。すなわち、伝送ビットレートが未知の状態で送信された信号の復調が可能な受信装置を実施の形態2の受信装置よりも少ない回路規模で実現できる。
本実施の形態を適用することにより、ビットデータ周期と拡散コード周期が非同期の関係にあるシステムにおいてビット誤り率の劣化を抑えた復調を可能とするのに加え、伝送ビットレートが複数存在し、あらかじめ伝送ビットレートがわかっていない場合においても、回路規模の増大を最小限に抑えつつ伝送ビットレートを検知して正常な復調を行う受信装置が得られる。
実施の形態4.
つづいて、実施の形態4について説明する。上述した実施の形態2および実施の形態3では、信頼度情報Rnを上記巡回加算部92が保持している値の中の最大値MxVと、保持している値の平均値AvVと、に基づいて算出している。これはベースバンド成分抽出部の出力信号を電力変換部で二乗したデータ系列とそれを1シンボル遅延したデータ系列との自己相関を求める操作であったが、自己相関ではなく、相互相関を用いて信頼度情報Rnを求めるようにしてもよい。たとえば、各伝送ビットレートに対応して、M、N、N’が設定されたベースバンド成分抽出部の出力に非線形処理(二乗等)を行った後、非線形処理後のデータ系列と各伝送ビットレート(=シンボルレート)に相当する周波数成分との相互相関値を算出し、これを信頼度情報として用いてもよい。
ここで、ベースバンド成分抽出部の複素出力データをDi(iはサンプル番号、i=0、1、2…)、各ビットレート(シンボルレート)のサンプリング速度をfS1、fS2、fS3とすると、Yサンプル時間における各ビットレートの相互相関値C1、C2、C3は、次式(8)で求めることができる。
Figure 0005094469
ここで、前記信頼度情報Ra、Rb、Rcとして、次式(9)に示すように各相関電力を用いてもよい。
a=C1 2
b=C2 2
c=C3 2 …(9)
また、C1、C2、C3の中の最大値Cmax=Max(C1、C2、C3)の示す、ベクトル角θ=tan-1{(Imaginary Cmax)/(Real Cmax)}情報から前記位置情報MxPを求めてもよい。
さらに、Ra、Rb、Rcの内の最大値Rmax=Max(Ra、Rb、Rc)の情報から前記MxVを求め、それを使用して自動利得制御部11が振幅を補正するようにしてもよい。
このように、本実施の形態では、実施の形態2および3で使用していた自己相関情報に代えて、相互相関情報を用いることとした。すなわち、相互相関情報に基づいて伝送ビットレートを特定する際に使用する信頼度情報を求めるようにした。これにより、ビットデータ周期と拡散コード周期が非同期の関係にあるシステムにおいてビット誤り率の劣化を抑えた復調が可能となり、また、伝送ビットレートが複数存在し、あらかじめ伝送ビットレートがわかっていない場合においても、伝送ビットレートを検知して正常に復調することができることに加えて、タイミング再生、自動利得制御、ビットレート検出の精度を高めることができる。なお、精度を高めることができるのは、自己相関情報が伝搬路で雑音が付加されている受信信号に基づいて算出するのに対して、相互相関情報は受信信号と雑音が付加されていない信号に基づいて算出されるためである。
実施の形態5.
つづいて、実施の形態5について説明する。上述した実施の形態2および実施の形態3の受信装置が備えるタイミング生成部(図10参照)では、上記電力変換部91で電力値へと変換されたベースバンド信号を、上記巡回加算部92の入力としている。これに対して、本実施の形態の受信装置では、判定部12(実施の形態2の場合)および制御部14(実施の形態3の場合)によるビットレートの推定精度をさらに向上させることを目的とし、ベースバンド信号を電力変換するのではなく、1ビット前のベースバンド信号との差分演算を行った値を、巡回加算部92の入力とする。また、実施の形態2および実施の形態3の受信装置が備えるタイミング生成部では巡回加算部92が保持している値の最大値MxVと平均値AvVより信頼度情報Rnを算出していたが、本実施の形態の受信装置では、最大値MxVを尤度情報として活用し、最大値の二乗値(MxV2とする)と平均値AvVより信頼度情報Rnを算出する。
衛星通信においては、衛星がデータ(有意データ)を受信していない場合、オール0パターンを地上局から衛星に送信し、衛星がオール0パターンを受信し続けることがある。このオール0パターンを受信している状態において、実施の形態2および実施の形態3の受信装置が備えるタイミング生成部では、絶えず同じ値が巡回加算部92に入力される。そのため、巡回加算部92のレジスタ内の値が、全て忘却係数αに応じた値で一定となる可能性がある。そして、すべての値が一定となった状態からデータを受信し始めると、巡回加算部92のレジスタ値が一定の状態からIIR巡回加算を行うため、巡回加算部92が保持する値より求める最大値MxVと平均値AvVの差が生じるまでに時間を要することがある。
そこで、本実施の形態では、後述するように、1ビット前のベースバンド信号との差分演算を行った値を巡回加算部92への入力とし、この差分値を上記電力値に代えて使用する。差分を利用することにより、オール0パターン受信時の巡回加算部92への入力は0となるため、データ受信開始時には、巡回加算部92のレジスタ値が全て0の状態からIIR巡回加算を行うことができる。これにより、オール0パターンを受信し続けた後にデータ(オール0パターン以外の有意データ)を受信し始める場合に、巡回加算部92が保持する値より求める最大値MxVと平均値AvVの差が、電力値利用時よりも短時間で出現するようになり、結果として短時間で精度よくビットレートを推定できる。
また、実施の形態2および実施の形態3では信頼度情報Rnを最大値MxVと平均値AvVの比から求めていた。これに対して、本実施の形態では、後述するように、信頼度情報Rnを、最大値MxVの二乗と平均値AvVの比から求める。これは、実施の形態2および実施の形態3で求めていた最大値MxVと平均値AvVの比に対して、さらに最大値MxVを尤度情報として活用することにより、さらなるビットレート推定精度の向上を実現するためである。
図15は、実施の形態5の受信装置が備えるタイミング再生部9cの構成例を示す図である。タイミング再生部9cは、実施の形態2のタイミング再生部9a−1〜9a−3(図10参照)の、電力変換部91に代えて差分抽出部97を備え、さらに最大値・平均値検出部95で検出された最大値MxVを二乗する二乗演算部98を備える。その他の部分についてはタイミング再生部9a−1〜9a−3と同じであるため、同一の符号を付してその説明は省略する。なおタイミング再生部9cは、実施の形態2におけるタイミング再生部9a−1〜9a−3、および実施の形態3におけるタイミング再生部9bの代わりとして用いることができる。
また、図16は、差分抽出部97の構成例を示す図である。差分抽出部97はメモリ部971と差分演算部972を備える。メモリ部971および差分演算部972には、ベースバンド信号が入力され、メモリ部971では1ビット(Nシンボル)分の信号を蓄積する。差分演部972では、ベースバンド成分抽出部から信号が入力されると、この入力信号とメモリ部971に蓄積されている1ビット前の入力信号との差分演算を行う。ここで時刻tにおける信号を(Iチャネル:x[t],Qチャネル:y[t])とし、1ビット前の信号を(x[t−N],y[t−N])とすると、差分演算部972の出力z[t]は次式(10)のように表される。
Figure 0005094469
なお、z[t]は、次式(11)または(12)のように求めてもよい。
Figure 0005094469
Figure 0005094469
差分演算部972により算出された、前記式(10)、(11)および(12)のいずれかのz[t]は、差分抽出部97から巡回加算部92への入力データとなる。
巡回加算部92では、入力データのIIR巡回加算を行い、最大値・平均値検出部95では、巡回加算部92の保持する値より最大値MxVと平均値AvVを検出する。これらの詳細動作は実施の形態2および実施の形態3で示したとおりである。
次に、二乗演算部98は、最大値・平均値検出部95で検出された最大値MxVの二乗演算を行う。除算部96は、二乗演算部98で二乗演算が行われた最大値の二乗MxV2と、最大値・平均値検出部95で検出された平均値AvVの除算を行う(MxV2をAvVで除算する)。この除算部96による除算結果が信頼度情報Rnとなる。この演算により、最大値MxVを尤度情報として、実施の形態2および実施の形態3で信頼度情報として用いていたMxVとAvVの比(MxV/AvV)に重み付けが行われる。
なお、回路規模の制約がある場合、二乗演算部98を省略し、実施の形態2および実施の形態3のように、信頼度情報Rnを最大値MxVと平均値AvVの比としても構わない。すなわち、本実施の形態のタイミング再生部として、実施の形態2および3で示したタイミング再生部(図10参照)の電力変換部91を差分抽出部97に置き換えたものを採用してもよい。
また、二乗演算部98を、実施の形態2のタイミング再生部タイミング再生部9a−1〜9a−3または実施の形態3のタイミング再生部9bに付加し、最大値MxVを二乗した値と平均値AvVから信頼度情報Rnを求めても構わない。
また、差分抽出部97は、実施の形態1の受信装置が備えるタイミング再生部9の電力変換部91の代わりとして用いてもよい。
このように、本実施の形態では、伝送ビットレートの推定処理において、上述した実施の形態で利用していた電力値に代えて、受信ベースバンド信号と1ビット前のベースバンド信号との差分を利用することとした。これにより、オール0パターンを受信し続けた後に有意データを受信し始める場合、伝送ビットレートを推定するための信頼度情報を求める際に用いる平均値AvVが、電力値利用時よりも短時間で精度よく求まる。その結果、短時間で精度よく伝送ビットレートを推定できる。
以上のように、本発明にかかるタイミング再生装置は、スペクトラム拡散通信システムに有用であり、特に、ビットデータ周期と拡散コード周期が整数倍の関係にない場合であってもビット誤り率が劣化することなく受信信号を復調する受信装置を実現する場合に適している。
本発明にかかるタイミング再生装置を備えた受信装置と通信を行う送信装置の構成例を示す図である。 本発明にかかるタイミング再生装置を備えた受信装置の実施の形態1の構成例を示す図である。 実施の形態1のシステムでの信号処理の流れを示す図である。 受信データのエネルギー量が理想的なエネルギー量と比較して低くなる場合の一例を示す図である。 ベースバンド成分抽出部の構成例を示す図である。 巡回加算部の構成例を示す図である。 再生クロック生成部の一例を示す図である。 受信信号電力に対する信号成分電力と雑音成分電力の関係を示す図である。 実施の形態2の送信装置の構成例を示す図である。 実施の形態2の受信装置の構成例を示す図である。 実施の形態2の通信システムでの信号処理の流れを示す図である。 実施の形態2のタイミング再生部の構成例を示す図である。 実施に形態2の巡回加算部から出力されるIIR巡回加算結果の一例を示す図である。 実施の形態2の除算部の変形例を示す図である。 実施の形態3の受信装置の構成例を示す図である。 実施の形態3の受信装置が実行する処理の流れを示す図である。 実施の形態5のタイミング再生部の構成例を示す図である。 実施の形態5のタイミング再生部が備える差分抽出部の構成例を示す図である。
符号の説明
1 送信データ蓄積部
2−1、2a−1 ビットデータ用クロック生成部
2−2 チップレート用クロック生成部
3 1次変調部
4 スペクトラム拡散部
5 無線周波数変換部
6 ビットレート選択部
7 逆拡散部
8、8−1、8−2、8−3、8b ベースバンド成分抽出部
9、9a−1、9a−2、9a−3、9b タイミング再生部
10、10−1、10−2、10−3 データラッチ部
11、11−1、11−2、11−3 自動利得制御部
12 判定部
13 選択部
14 制御部
71 拡散コード同期部
72、922 乗算部
81、81−1、81−2 積分部
82 移動平均部
91 電力変換部
92 巡回加算部
93 最大値検出部
94 再生クロック生成部
95 最大値・平均値検出部
96 除算部
101、102 入力端子
103、104 出力端子
921 レジスタ部
923 加算部
941 アップカウンタ生成部
942 クロック生成部

Claims (21)

  1. スペクトラム拡散通信システムの受信装置が備えるタイミング再生装置であって、
    逆拡散後の受信信号からベースバンド信号を抽出する信号抽出手段と、
    前記抽出されたベースバンド信号を電力値へ変換し、当該電力値に基づいて、前記信号抽出手段から出力されるベースバンド信号のラッチタイミングの基準クロックを生成する基準クロック生成手段と、
    を備え
    前記信号抽出手段は、
    前記受信信号をMサンプル区間(Mは自然数)にわたって積分し、当該積分結果を周期MごとにMで除算する積分手段と、
    前記積分手段から出力された最新のN個(Nは自然数)の信号を対象として平均化処理を実行する移動平均手段と、
    を備えることを特徴とするタイミング再生装置。
  2. 前記MおよびNを回路規模および伝送データのビット周期あたりのサンプリング数に応じて決定した値とすることを特徴とする請求項に記載のタイミング再生装置。
  3. スペクトラム拡散通信システムの受信装置が備えるタイミング再生装置であって、
    逆拡散後の受信信号からベースバンド信号を抽出する信号抽出手段と、
    前記抽出されたベースバンド信号と前回抽出されたベースバンド信号との差分を抽出し、当該差分値に基づいて、前記信号抽出手段から出力されるベースバンド信号のラッチタイミングの基準クロックを生成する基準クロック生成手段と、
    を備えることを特徴とするタイミング再生装置。
  4. 前記信号抽出手段は、
    前記受信信号をMサンプル区間(Mは自然数)にわたって積分し、当該積分結果を周期MごとにMで除算する積分手段と、
    前記積分手段から出力された最新のN個(Nは自然数)の信号を対象として平均化処理を実行する移動平均手段と、
    を備えることを特徴とする請求項に記載のタイミング再生装置。
  5. 前記MおよびNを回路規模および伝送データのビット周期あたりのサンプリング数に応じて決定した値とすることを特徴とする請求項に記載のタイミング再生装置。
  6. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号を電力値へ変換する電力変換手段と、
    複数の情報保持部を含み、前記電力値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出する情報検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    を備えることを特徴とする請求項1またはに記載のタイミング再生装置。
  7. 前記所定の周期を伝送データのビット周期とすることを特徴とする請求項に記載のタイミング再生装置。
  8. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号と前回抽出されたベースバンド信号との差分を抽出する差分抽出手段と、
    複数の情報保持部を含み、前記差分値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出する情報検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    を備えることを特徴とする請求項またはに記載のタイミング再生装置。
  9. 前記所定の周期を伝送データのビット周期とすることを特徴とする請求項に記載のタイミング再生装置。
  10. 請求項1〜のいずれか一つに記載のタイミング再生装置と、
    前記基準クロック生成手段により生成されたクロックを基準として、前記信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、
    を備え、
    前記ラッチ手段によりラッチされたベースバンド信号を復調することを特徴とする受信装置。
  11. 請求項のいずれか一つに記載のタイミング再生装置と、
    前記基準クロック生成手段により生成されたクロックを基準として、前記信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、
    前記最大値に基づいて前記ラッチされた信号の振幅レベルを補正する補正手段と、
    を備え、
    前記補正手段により補正された後のベースバンド信号を復調することを特徴とする受信装置。
  12. 送信装置が予め規定された複数の伝送ビットレートの中から選択した伝送ビットレートを使用してデータ伝送を行うスペクトラム拡散通信システムの受信装置であって、
    請求項1〜のいずれか一つに記載のタイミング再生装置と、前記タイミング再生装置の基準クロック生成手段により生成されたクロックを基準として前記タイミング再生装置の信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、を含み、当該タイミング再生装置の基準クロック生成手段は、前記基準クロックを生成するとともに、入力されたベースバンド信号の電力値に基づいて、自身が生成するクロックの信頼度を算出する受信処理ブロック、
    を前記伝送ビットレート毎に備え、
    さらに、
    前記各タイミング再生装置が算出した信頼度に基づいて、前記各受信処理ブロックによる受信処理結果の中から送信装置が選択した伝送ビットレートに対応した受信処理結果を選択する受信処理結果選択手段、
    を備えることを特徴とする受信装置。
  13. 送信装置が予め規定された複数の伝送ビットレートの中から選択した伝送ビットレートを使用してデータ伝送を行うスペクトラム拡散通信システムの受信装置であって、
    請求項1〜のいずれか一つに記載のタイミング再生装置と、前記タイミング再生装置の基準クロック生成手段により生成されたクロックを基準として前記タイミング再生装置の信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、を含み、前記タイミング再生装置が、さらに、前記基準クロック生成手段により得られた電力値に基づいて自身が生成するクロックの信頼度を算出することとし、前記予め規定された伝送ビットレートのそれぞれに対応した処理を所定期間にわたって順番に実行する受信処理ブロックと、
    前記タイミング再生装置が算出した各伝送ビットレートに対応した信頼度に基づいて、送信装置が選択した伝送ビットレートを特定する伝送ビットレート特定手段と、
    を備え、
    前記伝送ビットレート特定手段が伝送ビットレートを特定した場合、前記受信処理ブロックは、以降、当該特定された伝送ビットレートに対応した処理を実行することを特徴とする受信装置。
  14. 送信装置が予め規定された複数の伝送ビットレートの中から選択した伝送ビットレートを使用してデータ伝送を行うスペクトラム拡散通信システムの受信装置であって、
    請求項のいずれか一つに記載のタイミング再生装置と、前記タイミング再生装置の基準クロック生成手段により生成されたクロックを基準として前記タイミング再生装置の信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、を含み、当該タイミング再生装置の基準クロック生成手段は、前記基準クロックを生成するとともに、入力されたベースバンド信号の電力値に基づいて、自身が生成するクロックの信頼度を算出する受信処理ブロック、
    を前記伝送ビットレート毎に備え、
    さらに、
    前記各タイミング再生装置が算出した信頼度に基づいて、前記各受信処理ブロックによる受信処理結果の中から送信装置が選択した伝送ビットレートに対応した受信処理結果を選択する受信処理結果選択手段、
    を備えることを特徴とする受信装置。
  15. 送信装置が予め規定された複数の伝送ビットレートの中から選択した伝送ビットレートを使用してデータ伝送を行うスペクトラム拡散通信システムの受信装置であって、
    請求項のいずれか一つに記載のタイミング再生装置と、前記タイミング再生装置の基準クロック生成手段により生成されたクロックを基準として前記タイミング再生装置の信号抽出手段により抽出されたベースバンド信号をラッチするラッチ手段と、を含み、前記タイミング再生装置が、さらに、前記基準クロック生成手段により得られた差分値に基づいて自身が生成するクロックの信頼度を算出することとし、前記予め規定された伝送ビットレートのそれぞれに対応した処理を所定期間にわたって順番に実行する受信処理ブロックと、
    前記タイミング再生装置が算出した各伝送ビットレートに対応した信頼度に基づいて、送信装置が選択した伝送ビットレートを特定する伝送ビットレート特定手段と、
    を備え、
    前記伝送ビットレート特定手段が伝送ビットレートを特定した場合、前記受信処理ブロックは、以降、当該特定された伝送ビットレートに対応した処理を実行することを特徴とする受信装置。
  16. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号を電力値へ変換する電力変換手段と、
    複数の情報保持部を含み、前記電力値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出する情報検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    前記電力値および前記予め規定された各伝送ビットレートの周波数成分に基づいて前記クロックの信頼度を算出する信頼度情報算出手段と、
    を備えることを特徴とする請求項1または1に記載の受信装置。
  17. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号を電力値へ変換する電力変換手段と、
    複数の情報保持部を含み、前記電力値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出し、さらに、当該複数の情報についての平均値を算出する最大値平均値検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    前記最大値または前記最大値の二乗値、および前記平均値に基づいて、前記クロックの信頼度を算出する信頼度情報算出手段と、
    を備えることを特徴とする請求項1または1に記載の受信装置。
  18. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号と前回抽出されたベースバンド信号との差分を抽出する差分抽出手段と、
    複数の情報保持部を含み、前記差分値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出する情報検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    前記差分値および前記予め規定された各伝送ビットレートの周波数成分に基づいて前記クロックの信頼度を算出する信頼度情報算出手段と、
    を備えることを特徴とする請求項1または1に記載の受信装置。
  19. 前記基準クロック生成手段は、
    前記抽出されたベースバンド信号と前回抽出されたベースバンド信号との差分を抽出する差分抽出手段と、
    複数の情報保持部を含み、前記差分値に対して、当該複数の情報保持部で保持している情報の中の最も古い情報に忘却係数を乗算して得られた値を加算し、当該加算結果を前記最も古い情報に代えて保持しておく巡回加算手段と、
    所定の周期毎に、その時点で前記巡回加算手段が保持している複数の情報の中の最大値と、当該最大値が当該複数の情報の中で何番目に取得した加算結果なのかを示す順番情報と、を検出し、さらに、当該複数の情報についての平均値を算出する最大値平均値検出手段と、
    前記順番情報に基づいて前記クロックを生成するクロック生成手段と、
    前記最大値または前記最大値の二乗値、および前記平均値に基づいて、前記クロックの信頼度を算出する信頼度情報算出手段と、
    を備えることを特徴とする請求項1または1に記載の受信装置。
  20. さらに、
    前記最大値に基づいて前記ラッチされた信号の振幅レベルを補正する補正手段、
    を備えることを特徴とする請求項119のいずれか一つに記載の受信装置。
  21. 前記所定の周期を伝送データのビット周期とすることを特徴とする請求項1〜2のいずれか一つに記載の受信装置。
JP2008046701A 2007-07-04 2008-02-27 タイミング再生装置および受信装置 Active JP5094469B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046701A JP5094469B2 (ja) 2007-07-04 2008-02-27 タイミング再生装置および受信装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007176495 2007-07-04
JP2007176495 2007-07-04
JP2008046701A JP5094469B2 (ja) 2007-07-04 2008-02-27 タイミング再生装置および受信装置

Publications (2)

Publication Number Publication Date
JP2009033702A JP2009033702A (ja) 2009-02-12
JP5094469B2 true JP5094469B2 (ja) 2012-12-12

Family

ID=40403659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046701A Active JP5094469B2 (ja) 2007-07-04 2008-02-27 タイミング再生装置および受信装置

Country Status (1)

Country Link
JP (1) JP5094469B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923596B2 (en) 2014-05-15 2018-03-20 Mitsubishi Electric Corporation Demodulation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129195A1 (ja) 2014-02-28 2015-09-03 日本電気株式会社 無線送信装置、無線受信装置、無線通信システムおよび無線通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142222B2 (ja) * 1994-08-22 2001-03-07 松下電器産業株式会社 スペクトル拡散通信同期方法とその回路装置
JP2907284B1 (ja) * 1998-04-27 1999-06-21 日本電信電話株式会社 スペクトル拡散信号復調回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923596B2 (en) 2014-05-15 2018-03-20 Mitsubishi Electric Corporation Demodulation apparatus

Also Published As

Publication number Publication date
JP2009033702A (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
US6154487A (en) Spread-spectrum signal receiving method and spread-spectrum signal receiving apparatus
US6614864B1 (en) Apparatus for and method of adaptive synchronization in a spread spectrum communications receiver
JP4098096B2 (ja) スペクトル拡散受信装置
US5764690A (en) Apparatus for despreading and demodulating a burst CDMA signal
US9991930B2 (en) Configurable correlator for joint timing and frequency synchronization and demodulation
US20030081562A1 (en) Apparatus for estimating propagation path characteristics
US20080205492A1 (en) Joint de-spreading and frequency correction using a correlator
KR20090064465A (ko) 송신 전에 사전 회전을 이용하는 코드 분할 다중 접속 시스템
JP2008530951A (ja) 予め符号化された部分応答信号用の復調器および受信器
US8239437B2 (en) Correlation device
US7042925B2 (en) Correlation detection improvement by averaging spread spectrum signals
JP4308105B2 (ja) 同期追従回路
JP5094469B2 (ja) タイミング再生装置および受信装置
US7230976B2 (en) Pre-corrupting reference signals with inter-symbol interference
US20050220186A1 (en) Timing adjustment method and digital filter and receiver using the method
WO2001050698A1 (en) Offset correction in a spread spectrum communication system
WO2022172327A1 (ja) 送信装置、受信装置、通信システム、制御回路、記憶媒体、送信方法および受信方法
JP4945747B2 (ja) 非同期符号変調信号受信装置
CN110535620B (zh) 一种基于判决反馈的信号检测与同步方法
WO2018126197A1 (en) A method for multichannel signal search and demodulation and tech nique to demodulate and detect dbpsk fdma ultra-narrow band signal
JP6242481B2 (ja) 復調装置
JP4814754B2 (ja) 通信装置
JP2778396B2 (ja) スペクトル拡散信号の受信機
US8462875B2 (en) Timing regenerating device
JP3909784B2 (ja) 変調方式、変調方法、復調方法、変調装置および復調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250