[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5093641B2 - Photodegradable coupling agent - Google Patents

Photodegradable coupling agent Download PDF

Info

Publication number
JP5093641B2
JP5093641B2 JP2006120002A JP2006120002A JP5093641B2 JP 5093641 B2 JP5093641 B2 JP 5093641B2 JP 2006120002 A JP2006120002 A JP 2006120002A JP 2006120002 A JP2006120002 A JP 2006120002A JP 5093641 B2 JP5093641 B2 JP 5093641B2
Authority
JP
Japan
Prior art keywords
mmol
methoxy
dithio
nitrophenyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006120002A
Other languages
Japanese (ja)
Other versions
JP2007291005A (en
Inventor
和夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2006120002A priority Critical patent/JP5093641B2/en
Publication of JP2007291005A publication Critical patent/JP2007291005A/en
Application granted granted Critical
Publication of JP5093641B2 publication Critical patent/JP5093641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyrrole Compounds (AREA)

Description

本発明は、光分解性カップリング剤に係り、より詳しくは、2つの反応性基の間に光分解性基を備えた光分解性カップリング剤に関する。   The present invention relates to a photodegradable coupling agent, and more particularly to a photodegradable coupling agent having a photodegradable group between two reactive groups.

有機低分子や高分子の機能特性を究極のサイズ領域で発現させるべく、固体表面を単分子膜で被覆し、かつ、そのパターンを形成する手法ならびに材料に関する研究が活発になっている。このような技術では、金属表面に自己組織化膜と呼ばれる単分子膜を形成し、自己組織化膜の物性に起因した種々の機能性の発現を検討している(非特許文献1)。
上記のような単分子膜を金属材料上に形成することで、さまざまな物性の発現が期待されている。また、単分子膜表面に導入された官能基を介して、DNAやタンパク質などの生体分子をはじめとする様々な有機分子を固定化する方法が開発されている。このような表面は、生体分子間の相互作用の基礎的研究に有用であるのみならず、DNAチップなどの実用的な技術として、非常に有用なものである。
In order to express the functional characteristics of organic small molecules and polymers in the ultimate size region, research on techniques and materials for coating a solid surface with a monomolecular film and forming the pattern is active. In such a technique, a monomolecular film called a self-assembled film is formed on a metal surface, and the expression of various functions due to the physical properties of the self-assembled film is examined (Non-patent Document 1).
Various physical properties are expected to be produced by forming the monomolecular film as described above on a metal material. In addition, methods for immobilizing various organic molecules including biomolecules such as DNA and proteins have been developed through functional groups introduced on the surface of monomolecular films. Such a surface is not only useful for basic research of interactions between biomolecules, but also very useful as a practical technique such as a DNA chip.

しかし、このように形成された単分子膜自体を基体として、これにDNAやタンパク質などの生体分子をはじめとする様々な有機分子を固定化し、種々の機能性を付与し、その後、光照射により切り離して固定化分子の回収が可能になるカップリング剤の研究はほとんど行われていない。   However, using the monomolecular film itself thus formed as a substrate, various organic molecules including biomolecules such as DNA and protein are immobilized on it, and various functionalities are given. There has been little research on coupling agents that can be separated to recover immobilized molecules.

J. Christopher Love, Lara A. Estroff, Jennah K. Kriebe, Ralph G. Nuzzo, and George M. Whitesides, Chem. Rev. 2005, 105, 1103 - 1169J. Christopher Love, Lara A. Estroff, Jennah K. Kriebe, Ralph G. Nuzzo, and George M. Whitesides, Chem. Rev. 2005, 105, 1103-1169

本発明は、以上のような事情に鑑みてなされたものであり、本発明者は、同一分子内にスペーサを介して異なる反応性基を備え、反応性基間を容易に切り離すことができるカップリング剤を利用すれば、上述した種々の問題を解決することが可能になると考えた。
したがって、本発明の課題は、同一分子内に異なる反応性基を備えるカップリング剤であって、両反応性基の間を容易に分解することが可能な新規な光分解性カップリング剤を提供することを主たる課題としている。
The present invention has been made in view of the above circumstances, and the present inventor has provided different reactive groups in the same molecule via a spacer, and can easily separate between reactive groups. It was considered that the use of the ring agent would make it possible to solve the various problems described above.
Therefore, an object of the present invention is to provide a novel photodegradable coupling agent that is a coupling agent having different reactive groups in the same molecule and can easily decompose between the two reactive groups. The main task is to do this.

上記課題を達成するために、本発明に係る光分解性カップリング剤は、両末端に設けられたアミン反応性基と、前記アミン反応性基間に設けられたジスルフィド基とを有し、これらアミン反応性基とジスルフィド基との間に光分解性基を含むことを特徴としている(請求項1)。   In order to achieve the above object, a photodegradable coupling agent according to the present invention has an amine reactive group provided at both ends and a disulfide group provided between the amine reactive groups. A photodegradable group is included between the amine-reactive group and the disulfide group (claim 1).

例えば、下記一般式(1)で表される構成が考えられる(請求項2)。   For example, a configuration represented by the following general formula (1) is conceivable (claim 2).

より具体的には、下記一般式(2)で示されるものや、下記一般式(3)で示されるものが考えられる。 More specifically, those represented by the following general formula (2) and those represented by the following general formula (3) are conceivable.

以上述べたように、この発明に係る光分解性カップリング剤によれば、同一分子内にアミン反応性基とジスルフィド基とを有し、その間に光分解性基を備えているので、金属表面、特に金表面に様々な機能性を付与した後に、光照射により金属表面に固定化した生体分子をはじめとする様々な分子を、光照射により脱離、回収することが可能となる。   As described above, the photodegradable coupling agent according to the present invention has an amine-reactive group and a disulfide group in the same molecule, and has a photodegradable group between them. In particular, it is possible to desorb and recover various molecules including biomolecules immobilized on the metal surface by light irradiation after the light surface has been provided with various functionalities by light irradiation.

また、これらの表面に様々な物質が含まれる溶液を接触させると、固定化分子と特異的な相互作用を示す物質だけが金属表面に吸着する。その後光照射することにより、固定化分子と吸着物質だけを回収することができ、吸着物質の構造決定をすることができる。
上記とは逆に、様々な物質の混合物を固定化することもできる。これに対してマーカー(例えば蛍光色素)を付けた単一分子の溶液を接触させると、その分子が特異的に相互作用する部位だけを検出できる。その部位にのみ光照射することにより、その物質を回収し、構造決定することができる。
In addition, when a solution containing various substances is brought into contact with these surfaces, only substances exhibiting a specific interaction with the immobilized molecule are adsorbed on the metal surface. Thereafter, by irradiation with light, only the immobilized molecules and the adsorbing substance can be recovered, and the structure of the adsorbing substance can be determined.
In contrast to the above, it is also possible to immobilize a mixture of various substances. On the other hand, when a solution of a single molecule with a marker (for example, a fluorescent dye) is brought into contact, only the site where the molecule specifically interacts can be detected. By irradiating only the part with light, the substance can be recovered and the structure can be determined.

さらに、固定化する分子のパターニングも可能である。この方法として、まずフォトマスクを被せて光照射し、その後アミンを含む分子を固定化させる方法と、逆にアミンを含む分子を固定化させた後フォトマスクを用いて光照射する方法が、可能である。固定化させる分子の特性に応じて、いずれかの方法が利用できる。   Furthermore, it is possible to pattern the molecules to be immobilized. As this method, a method of first irradiating light with a photomask and then immobilizing an amine-containing molecule, and conversely immobilizing an amine-containing molecule and then irradiating with a photomask is possible. It is. Any method can be used depending on the characteristics of the molecule to be immobilized.

以下、この発明の最良の実施形態を説明する。   The best mode of the present invention will be described below.

本発明の光分解性カップリング剤は、両末端にアミン反応性基を有し、アミン反応性基間にジスルフィド基を有し、これらアミン反応性基とジスルフィド基との間に光分解性基を介在させたものである。すなわち、下記一般式(4)で表されるように、両末端にアミン反応性基(Su)を有すると共にアミン反応性基間にジスルフィド基(S−S)を有し、それぞれのアミン反応性基とジスルフィド基との間を光分解性基を有するスペーサRを介して連結させたものである。   The photodegradable coupling agent of the present invention has an amine reactive group at both ends, a disulfide group between the amine reactive groups, and a photodegradable group between the amine reactive group and the disulfide group. Is interposed. That is, as represented by the following general formula (4), both amine-reactive groups (Su) are present at both ends and a disulfide group (S—S) is present between the amine-reactive groups. A group and a disulfide group are linked via a spacer R having a photodegradable group.

アミン反応性基(Su)は、生体分子等にあるアミン官能基と共有結合するものであり、N-ヒドロキシスクシンイミド( NHS )エステル基、イミドエステル基、イソシアネート基、ニトロフェニルハライド基などが利用可能であり、好適な例としては、下記の構造式(5)で示されるN-ヒドロキシスクシンイミドエステル基を含有するものである。   Amine reactive groups (Su) are covalently bonded to amine functional groups in biomolecules, and N-hydroxysuccinimide (NHS) ester groups, imide ester groups, isocyanate groups, nitrophenyl halide groups, etc. can be used. As a preferable example, it contains an N-hydroxysuccinimide ester group represented by the following structural formula (5).

スペーサRは、分枝鎖または直鎖の炭化水素などにより形成されてもよく、光分解性基は、光照射により離脱する任意の基をいい、例えば、2−ニトロベンジル誘導体骨格を有する基、ジメトキシベンゾイン基、2−ニトロピペロニルオキシカルボニル(NPOC)基、2−ニトロベラトリルオキシカルボニル(NVOC)基、α−メチル−2−ニトロピペロニルオキシカルボニル(MeNPOC)基、α−メチル−2−ニトロベラトリルオキシカルボニル(MeNVOC)基、2,6−ジニトロベンジルオキシカルボニル(DNBOC)基、α−メチル−2,6−ジニトロベンジルオキシカルボニル(MeDNBOC)基、1−(2−ニトロフェニル)エチルオキシカルボニル(NPEOC)基、1−メチル−1−(2−ニトロフェニル)エチルオキシカルボニル(MeNPEOC)基、9−アントラセニルメチルオキシカルボニル(ANMOC)基、1−ピレニルメチルオキシカルボニル(PYMOC)基、3′−メトキシベンゾイニルオキシカルボニル(MBOC)基、3′,5′−ジメトキシベンゾイルオキシカルボニル(DMBOC)基、7−ニトロインドリニルオキシカルボニル(NIOC)基、5,7−ジニトロインドリニルオキシカルボニル(DNIOC)基、2−アントラキノニルメチルオキシカルボニル(AQMOC)基、α,α−ジメチル−3,5−ジメトキシベンジルオキシカルボニル基、5−ブロモ−7−ニトロインドリニルオシキカルボニル(BNIOC)基等を挙げることができるが、下記一般式〔6〕で表される化合物のように、2−ニトロベンジル誘導体骨格を有する基が特に好ましい。   The spacer R may be formed of a branched or straight chain hydrocarbon or the like, and the photodegradable group refers to any group that can be removed by light irradiation, for example, a group having a 2-nitrobenzyl derivative skeleton, Dimethoxybenzoin group, 2-nitropiperonyloxycarbonyl (NPOC) group, 2-nitroveratryloxycarbonyl (NVOC) group, α-methyl-2-nitropiperonyloxycarbonyl (MeNPOC) group, α-methyl- 2-nitroveratryloxycarbonyl (MeNVOC) group, 2,6-dinitrobenzyloxycarbonyl (DNBOC) group, α-methyl-2,6-dinitrobenzyloxycarbonyl (MeDNBOC) group, 1- (2-nitrophenyl) Ethyloxycarbonyl (NPEOC) group, 1-methyl-1- (2-nitrophenyl) ester Ruoxycarbonyl (MeNPEOC) group, 9-anthracenylmethyloxycarbonyl (AMMOC) group, 1-pyrenylmethyloxycarbonyl (PYMOC) group, 3'-methoxybenzoinyloxycarbonyl (MBOC) group, 3 ', 5'-dimethoxybenzoyloxycarbonyl (DMBOC) group, 7-nitroindolinyloxycarbonyl (NIOC) group, 5,7-dinitroindolinyloxycarbonyl (DNIOC) group, 2-anthraquinonylmethyloxycarbonyl (AQMOC) group , Α, α-dimethyl-3,5-dimethoxybenzyloxycarbonyl group, 5-bromo-7-nitroindolinyloxycarbonyl (BNIOC) group, and the like, which are represented by the following general formula [6] Like a compound, 2-nitrobenzyl Group having a conductor skeleton is particularly preferred.

上述したように、前記(4)式で示される構造を有していれば、アミン反応性基、光分解性基、スペーサの各構造は特に限定されるものではないが、アミン反応性基とジスルフィド基との間に光分解性基を有する光分解性カップリング剤としては、下記(6)式で表される化合物が好ましい。   As described above, each structure of the amine reactive group, the photodegradable group, and the spacer is not particularly limited as long as it has the structure represented by the formula (4). As the photodegradable coupling agent having a photodegradable group between the disulfide group, a compound represented by the following formula (6) is preferable.

より具体的には、n=12である下記(7)式で表される化合物や、n=6である下記(8)式で表される化合物を用いるとよい。 More specifically, a compound represented by the following formula (7) where n = 12, or a compound represented by the following formula (8) where n = 6 may be used.

したがって、このようなカップリング剤によれば、その両末端部に有機官能基を備え、その間にジスルフィド基を有するので、金属表面、特に金表面に様々な機能性を付与した後に、光照射により金属表面に固定化した分子、およびその分子と相互作用を示す物質を光照射により脱離、回収し、その構造決定をすることが可能となる。   Therefore, according to such a coupling agent, since it has an organic functional group at both ends thereof and a disulfide group between them, after imparting various functionalities to a metal surface, particularly a gold surface, by light irradiation. The molecule immobilized on the metal surface and the substance interacting with the molecule can be desorbed and collected by light irradiation, and the structure can be determined.

以下において、実施例により、上述した光分解性カップリング剤をより具体的に説明するが、本発明は、これに限定されるものではない。尚、以下の実施例において、水とはイオン交換蒸留水を指す。   In the following, the above-described photodegradable coupling agent will be described more specifically by way of examples, but the present invention is not limited thereto. In the following examples, water refers to ion exchange distilled water.

アミン反応性基とジスルフィド基とを光分解性基を有するスペーサで連結した光分解性カップリング剤の実施例(12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の合成)   Example of photodegradable coupling agent in which amine reactive group and disulfide group are linked by spacer having photodegradable group (12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy- Synthesis of 2-nitrophenyl) ethyl N-succinimidyl carbonate)

図1に示される工程により合成した。先ず、200 mL ナスフラスコに4-ヒドロキシ-3-メトキシアセトフェノン16.62 g ( 99.98 mmol )、アセトン100 mL、potassium carbonate 15.12 g ( 109.4 mmol ) を入れ、30分間室温で撹拌した後、benzyl bromide 17.76 g ( 103.8 mmol ) を加え、4時間還流し、濃縮した。water 100 mL加え、抽出 ( chloroform 100 mL × 4 )、anhydrous MgSO4で乾燥、ろ過、濃縮、再結晶 (ethyl acetate )、吸引ろ過、真空乾燥し、白色固体(4−ベンジルオキシ−3−メトキシアセトフェノン) 23.80 g ( 92.84 mmol ) を得た(化9:ステップ1)。 It was synthesized by the process shown in FIG. First, 16.62 g (99.98 mmol) of 4-hydroxy-3-methoxyacetophenone, 100 mL of acetone and 15.12 g (109.4 mmol) of potassium carbonate were added to a 200 mL eggplant flask, and the mixture was stirred for 30 minutes at room temperature. Then, 17.76 g of benzyl bromide ( 103.8 mmol) was added, refluxed for 4 hours, and concentrated. Add 100 mL of water, extract (chloroform 100 mL × 4), dry with anhydrous MgSO 4 , filter, concentrate, recrystallize (ethyl acetate), suction filter, vacuum dry, white solid (4-benzyloxy-3-methoxyacetophenone ) 23.80 g (92.84 mmol) was obtained (Chemical 9: Step 1).

上記合成で得られた4−ベンジルオキシ−3−メトキシアセトフェノンの同定結果を以下に示す。
収量 23.80 g ( 92.84 mmol )
収率 93%
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 2.55 ( 3H, s ) CH 3-C=O
δ = 3.95 ( 3H, s ) CH 3O-
δ = 5.24 ( 2H, s ) Ph-CH 2-
δ = 6.89 ( 1H, d, J = 8.3 Hz ) Ar-H
δ = 7.43 ( 7H, m ) Ar-H
The identification results of 4-benzyloxy-3-methoxyacetophenone obtained by the above synthesis are shown below.
Yield 23.80 g (92.84 mmol)
Yield 93%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 2.55 (3H, s) C H 3 -C = O
δ = 3.95 (3H, s) C H 3 O-
δ = 5.24 (2H, s) Ph-C H 2-
δ = 6.89 (1H, d, J = 8.3 Hz) Ar- H
δ = 7.43 (7H, m) Ar- H

次に、氷浴上で300 mL ナスフラスコに4−ベンジルオキシ−3−メトキシアセトフェノン14.08 g ( 54.95 mmol )、acetic acid 150 mL 、fuming HNO3 15mLを入れ、終夜撹拌した後、ice water 300 mL に投入し、吸引ろ過、再結晶 ( ethyl acetate - hexane )、 吸引ろ過、真空乾燥し、黄色結晶(4−ベンジルオキシ−5−メトキシ−2−ニトロアセトフェノン)11.26 g ( 37.36 mmol ) を得た(化10:ステップ2)。 Next, in a 300 mL eggplant flask on an ice bath, put 14.08 g (54.95 mmol) of 4-benzyloxy-3-methoxyacetophenone, 150 mL of acetic acid, and 15 mL of fuming HNO 3 , stir overnight, and then add ice water to 300 mL. Then, suction filtration, recrystallization (ethyl acetate-hexane), suction filtration, and vacuum drying gave 11.26 g (37.36 mmol) of yellow crystals (4-benzyloxy-5-methoxy-2-nitroacetophenone) 10: Step 2).

上記合成で得られた4−ベンジルオキシ−5−メトキシ−2−ニトロアセトフェノンの同定結果を以下に示す。
収量 11.26 g ( 37.36 mmol )
収率 68%
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 2.49 ( 3H, s ) CH 3-C=O
δ = 3.97 ( 3H, s ) CH 3O-
δ = 5.22 ( 2H, s ) Ph-CH 2-
δ = 6.77 ( 1H, s ) Ar-H
δ = 7.41 ( 5H, m ) Ar-H
δ = 7.67 ( 1H, s ) Ar-H
The identification results of 4-benzyloxy-5-methoxy-2-nitroacetophenone obtained by the above synthesis are shown below.
Yield 11.26 g (37.36 mmol)
Yield 68%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 2.49 (3H, s) C H 3 -C = O
δ = 3.97 (3H, s) C H 3 O-
δ = 5.22 (2H, s) Ph-C H 2-
δ = 6.77 (1H, s) Ar- H
δ = 7.41 (5H, m) Ar- H
δ = 7.67 (1H, s) Ar- H

次に、100 mL ナスフラスコに4−ベンジルオキシ−5−メトキシ−2−ニトロアセトフェノン 8.00 g ( 26.55 mmol )、trifluoroacetic acid 40 mL を入れ、 終夜撹拌した。撹拌後、濃縮し5% NaHCO3 aq 100 mL、2N HCl 30 mL を加え、抽出 ( ethyl acetate 100 mL ×4 )、anhydrous MgSO4で乾燥、ろ過、再結晶 ( ethyl acetate - hexane)、吸引ろ過、真空乾燥し、黄色粉体(4−ヒドロキシ−5−メトキシ−2−ニトロアセトフェノン)4.68 g ( 22.17 mmol )を得た(化11:ステップ3)。 Next, 4-benzyloxy-5-methoxy-2-nitroacetophenone 8.00 g (26.55 mmol) and trifluoroacetic acid 40 mL were placed in a 100 mL eggplant flask and stirred overnight. After stirring, concentrate, add 5% NaHCO 3 aq 100 mL, 2N HCl 30 mL, extract (ethyl acetate 100 mL × 4), dry with anhydrous MgSO 4 , filter, recrystallize (ethyl acetate-hexane), suction filter, Vacuum drying gave 4.68 g (22.17 mmol) of yellow powder (4-hydroxy-5-methoxy-2-nitroacetophenone) (Chemical Formula 11: Step 3).

上記合成で得られた4−ヒドロキシ−5−メトキシ−2−ニトロアセトフェノンの同定結果を以下に示す。
収量 4.68 g ( 22.17 mmol )
収率 83%
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 2.49 ( 3H, s ) CH 3-C=O
δ = 4.02 ( 3H, s ) CH 3O-
δ = 5.92 ( 1H, s ) Ar-OH
δ = 6.80 ( 1H, s ) Ar-H
δ = 7.67 ( 1H, s ) Ar-H
The identification result of 4-hydroxy-5-methoxy-2-nitroacetophenone obtained by the above synthesis is shown below.
Yield 4.68 g (22.17 mmol)
Yield 83%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 2.49 (3H, s) C H 3 -C = O
δ = 4.02 (3H, s) C H 3 O-
δ = 5.92 (1H, s) Ar-O H
δ = 6.80 (1H, s) Ar- H
δ = 7.67 (1H, s) Ar- H

また、300 mL ナスフラスコに1,12−dibromododecane 16.15g (49.22 mmol )、acetonitrile 150 mL、potassium thioacetate 1.43g ( 12.53mmol )をいれ、24時間還流した。濃縮した後、water 250 mLを加え、抽出 ( ether 50mL ×3 )、無水MgSO4で乾燥、ろ過、濃縮、カラムクロマトグラフィー ( hexane: ethyl acetate = 95 : 5 )で精製、真空乾燥し、白色固体(12−ブロモドデシル チオアセテート) 3.18 g ( 9.84 mmol )を得た(化12:ステップ4)。 Moreover, 16.15 g (49.22 mmol) of 1,12-dibromododecane, 150 mL of acetate, and 1.43 g (12.53 mmol) of potassium thioacetate were placed in a 300 mL eggplant flask and refluxed for 24 hours. Concentrate, add 250 mL of water, extract (ether 50 mL x 3), dry over anhydrous MgSO 4 , filter, concentrate, purify by column chromatography (hexane: ethyl acetate = 95: 5), vacuum dry, white solid (12-bromododecyl thioacetate) 3.18 g (9.84 mmol) was obtained (Chemical Formula 12: Step 4).

上記合成で得られた12−ブロモドデシルチオアセテートの同定結果を以下に示す。
収量 3.18 g ( 9.84 mmol)
収率 79 %
Rf値 0.36 ( hexane : ethyl acetate = 95 : 5 )
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 1.28 ( 16H, m ) -(CH 2)8-
δ = 1.56 ( 2H, m ) -S-CH2-CH 2-
δ = 1.85 ( 2H, m, J = 7.3 Hz) -CH 2-CH2- Br
δ = 2.32 ( 3H, s) CH 3-C=O
δ = 2.86 ( 2H, t, J = 7.3 Hz) -S-CH 2-
δ = 3.41 ( 2H, t, J = 6.8 Hz) -CH 2- Br
The identification results of 12-bromododecylthioacetate obtained by the above synthesis are shown below.
Yield 3.18 g (9.84 mmol)
Yield 79%
Rf value 0.36 (hexane: ethyl acetate = 95: 5)
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.28 (16H, m) - (C H 2) 8 -
δ = 1.56 (2H, m) -S-CH 2 -C H 2-
δ = 1.85 (2H, m, J = 7.3 Hz) -C H 2 -CH 2 -Br
δ = 2.32 (3H, s) C H 3 -C = O
δ = 2.86 (2H, t, J = 7.3 Hz) -SC H 2-
δ = 3.41 (2H, t, J = 6.8 Hz) -C H 2 -Br

次に、氷浴上、窒素気流下で200 mL二口ナスフラスコにdry-methanol100 mLをいれ、滴下漏斗にacetyl chloride 10 mL を入れ、滴下した後、12-ブロモドモドデシルチオアセテート 2.00 g (6.10 mmol )を加え、室温で撹拌した。濃縮した後、water 100 mL加え、抽出 (ethyl acetate 50mL ×3)、無水 MgSO4で乾燥、ろ過、濃縮し、白色固体を得た。
そして、100 mLナスフラスコに白色固体、1,4-dioxane / water 50 mL、iodine 0.840 g ( 6.62mmol )加え、3時間還流した。溶液が黄色になるまで15% sodium metabisulfite aq加え、濃縮、抽出( chloroform 50 mL ×3)、無水 MgSO4で乾燥、ろ過、濃縮、再結晶、(hexane)、真空乾燥し、白色固体(1,1’−ジチオ-ビス(12−ブロモドデカン))1.09g( 1.94 mmol )を得た(化13:ステップ5)。
Next, put 100 mL of dry-methanol into a 200 mL two-necked eggplant flask on an ice bath and nitrogen stream, add 10 mL of acetyl chloride to the dropping funnel, add dropwise, and then add 2.00 g (6.10) of 12-bromodomoddecylthioacetate. mmol) was added and stirred at room temperature. After concentration, 100 mL of water was added, extracted (ethyl acetate 50 mL × 3), dried over anhydrous MgSO 4 , filtered and concentrated to obtain a white solid.
Then, a white solid, 1,4-dioxane / water 50 mL, iodine 0.840 g (6.62 mmol) was added to the 100 mL eggplant flask and refluxed for 3 hours. Add 15% sodium metabisulfite aq until the solution turns yellow, concentrate, extract (chloroform 50 mL × 3), dry over anhydrous MgSO 4 , filter, concentrate, recrystallize, (hexane), vacuum dry, white solid (1, 1'-dithio-bis (12-bromododecane)) 1.09 g (1.94 mmol) was obtained (Chem. 13: Step 5).

上記合成で得られた1,1’−ジチオ-ビス(12−ブロモドデカン)の同定結果を以下に示す。
収量 1.43 g ( 2.54 mmol )
収率 83 %
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 1.27 (32H, m ) -(CH 2)8-
δ = 1.56 ( 4H, m ) -S-CH2-CH 2-
δ = 1.85 ( 4H, m, J = 7.3 Hz) -CH 2-CH2- Br
δ = 2.68 ( 4H, s) -S-CH 2-
δ = 3.42 ( 4H, t, J = 7.3 Hz) -CH 2- Br
The identification results of 1,1′-dithio-bis (12-bromododecane) obtained by the above synthesis are shown below.
Yield 1.43 g (2.54 mmol)
Yield 83%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.27 (32H, m) - (C H 2) 8 -
δ = 1.56 (4H, m) -S-CH 2 -C H 2-
δ = 1.85 (4H, m, J = 7.3 Hz) -C H 2 -CH 2 -Br
δ = 2.68 (4H, s) -SC H 2-
δ = 3.42 (4H, t, J = 7.3 Hz) -C H 2 -Br

次に、窒素雰囲気下で200mL 二口ナスフラスコに前記ステップ3で得られた4−ヒドロキシ−5−メトキシ−2−ニトロアセトフェノン1.34 g ( 6.36mmol )、dry-DMF 60 mL、potassium carbonate 1.05g ( 7.75mmol )を加え、30分間室温で撹拌した。撹拌後、ステップ5で得られた1,1’−ジチオ-ビス(12−ブロモドデカン) 1.43 g ( 2.54 mmol )を加え70℃で終夜撹拌した。撹拌後、water 100 mL加え、抽出 (ethyl acetate 100 mL×3 )、洗浄 ( sat. NaClaq 100 mL ×5)、無水MgSO4を加え、ろ過、濃縮、カラムクロマトグラフィー (hexane:ethyl acetate= 1 : 1 )で精製、濃縮、真空乾燥し、黄色固体12,12’−ジチオ-ビス(4−ドデシルオキシ−5−メトキシ−2−ニトロアセトフェノン)1.78 g ( 2.17 mmol )を得た(化14:ステップ6)。 Next, 1.34 g (6.36 mmol) of 4-hydroxy-5-methoxy-2-nitroacetophenone obtained in Step 3 above, 60 mL of dry-DMF, 1.05 g of potassium carbonate ( 7.75 mmol) was added and stirred at room temperature for 30 minutes. After stirring, 1.41 g (2.54 mmol) of 1,1′-dithio-bis (12-bromododecane) obtained in Step 5 was added and stirred at 70 ° C. overnight. After stirring, add 100 mL of water, extract (ethyl acetate 100 mL × 3), wash (sat. NaClaq 100 mL × 5), add anhydrous MgSO 4 , filter, concentrate, and column chromatography (hexane: ethyl acetate = 1: 1) Purification, concentration, and vacuum drying gave 1.78 g (2.17 mmol) of yellow solid 12,12′-dithio-bis (4-dodecyloxy-5-methoxy-2-nitroacetophenone) (Chemical Formula 14: Step) 6).

上記合成で得られた12,12’−ジチオ-ビス(4−ドデシルオキシ−5−メトキシ−2−ニトロアセトフェノン)の同定結果を以下に示す。
収量 1.78 g ( 2.17 mmol )
収率 85 %
Rf値 0.66 ( hexane : ethyl acetate = 1 : 1 )
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 1.38 ( 32H, s ) -(CH2)8-
δ = 1.67 ( 4H, m ) -S-CH2- CH 2-
δ = 1.88 ( 4H, m ) -O-CH2- CH 2-
δ = 2.49 ( 6H, s ) -CH 3
δ = 2.68 ( 4H, t, J = 7.1 Hz ) Br-CH 2-
δ = 3.96 ( 6H, s ) CH 3O-
δ = 4.10 ( 4H, t, J = 6.8 Hz ) -O-CH 2-
δ = 6.75 ( 2H, s ) Ar-H
δ = 7.59 ( 2H, s ) Ar-H
The identification results of 12,12′-dithio-bis (4-dodecyloxy-5-methoxy-2-nitroacetophenone) obtained by the above synthesis are shown below.
Yield 1.78 g (2.17 mmol)
Yield 85%
Rf value 0.66 (hexane: ethyl acetate = 1: 1)
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.38 (32H, s) - (CH 2) 8 -
δ = 1.67 (4H, m) -S-CH 2 -C H 2-
δ = 1.88 (4H, m) -O-CH 2 -C H 2-
δ = 2.49 (6H, s) -C H 3
δ = 2.68 (4H, t, J = 7.1 Hz) Br-C H 2-
δ = 3.96 (6H, s) C H 3 O-
δ = 4.10 (4H, t, J = 6.8 Hz) -OC H 2-
δ = 6.75 (2H, s) Ar- H
δ = 7.59 (2H, s) Ar- H

次に、氷浴上で300 mLナスフラスコに12,12’−ジチオ-ビス(4−ドデシルオキシ−5−メトキシ−2−ニトロアセトフェノン) 3.05 g ( 3.72 mmol )、methanol / THF 200 mLを入れ、sodium tetrahydroborate 0.85 g ( 22.5 mmol )をゆっくり加えた。30分間撹拌後、室温で1時間後撹拌した後、sodium tetrahydroborate 0.91 g ( 24.1 mmol )を加え、室温で1時間後撹拌した。濃縮後、water 100 mL加え、抽出 (ethyl acetate 100 mL×3 )、無水 MgSO4、ろ過、カラムクロマトグラフィー ( hexane : ethyl acetate = 1 : 1 )で精製、濃縮、真空乾燥し、黄色固体12,12’−ジチオ-ビス(1−(4-ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エタノール)2.84 g ( 3.44 mmol )を得た(化15:ステップ7)。 Next, 3.05 g (3.72 mmol) of 12,12′-dithio-bis (4-dodecyloxy-5-methoxy-2-nitroacetophenone) and 200 mL of methanol / THF were placed in a 300 mL eggplant flask on an ice bath. Sodium tetrahydroborate 0.85 g (22.5 mmol) was slowly added. After stirring for 30 minutes, after stirring for 1 hour at room temperature, 0.91 g (24.1 mmol) of sodium tetrahydroborate was added, followed by stirring for 1 hour at room temperature. After concentration, add 100 mL of water, extract (ethyl acetate 100 mL × 3), anhydrous MgSO 4 , filter, purify by column chromatography (hexane: ethyl acetate = 1: 1), concentrate, vacuum dry, yellow solid 12, 12'-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethanol) 2.84 g (3.44 mmol) was obtained (Chemical Formula 15: Step 7).

上記合成で得られた12,12’−ジチオ-ビス(1−(4-ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エタノール)同定結果を以下に示す。
収量 2.84 g ( 3.44 mmol )
収率 92%
Rf値 0.58 ( hexane : ethyl acetate = 1 : 1 )
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 1.38 ( 32H, s ) -(CH 2)8-
δ = 1.67 ( 4H, m ) -S-CH2- CH 2-
δ = 1.88 ( 4H, m ) -O-CH2- CH 2-
δ = 2.68 ( 4H, t, J = 7.1 Hz ) Br-CH 2-
δ = 3.96 ( 6H, s ) CH 3O-
δ = 4.06 ( 4H, t, J = 6.8 Hz ) -O-CH 2-
δ = 5.55 ( 2H, q, J = 6.1 Hz ) -CH-CH3
δ = 7.28 ( 2H, s ) Ar-H
δ = 7.55 ( 2H, s ) Ar-H
The identification results of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethanol) obtained by the above synthesis are shown below.
Yield 2.84 g (3.44 mmol)
Yield 92%
Rf value 0.58 (hexane: ethyl acetate = 1: 1)
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.38 (32H, s) - (C H 2) 8 -
δ = 1.67 (4H, m) -S-CH 2 -C H 2-
δ = 1.88 (4H, m) -O-CH 2 -C H 2-
δ = 2.68 (4H, t, J = 7.1 Hz) Br-C H 2-
δ = 3.96 (6H, s) C H 3 O-
δ = 4.06 (4H, t, J = 6.8 Hz) -OC H 2-
δ = 5.55 (2H, q, J = 6.1 Hz) -C H -CH 3
δ = 7.28 (2H, s) Ar- H
δ = 7.55 (2H, s) Ar- H

次に、窒素雰囲気下で100 mL二口ナスフラスコに12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エタノール)0.84 g ( 1.02 mmol )、dry-acetonitrile 100 mL、di(N−succinimidyl)carbonate 1.60 g ( 6.25 mmol )、triethylamine 873 μL入れ、室温で終夜撹拌した。濃縮、water 100 mL、2NHCl 3.2 mL加え、抽出( chloroform 50 mL ×4 )、無水 MgSO4を加え、ろ過、カラムクロマトグラフィー ( hexane: ethyl acetate= 1 : 1 )で精製、濃縮、真空乾燥し、黄白色固体12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)0.65 g ( 0.59 mmol )を得た(化16:ステップ8)。   Next, 0.84 g (1.02 mmol) of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethanol) in a 100 mL two-necked eggplant flask under a nitrogen atmosphere, dry -acetonitrile 100 mL, di (N-succinimidyl) carbonate 1.60 g (6.25 mmol) and triethylamine 873 μL were added and stirred at room temperature overnight. Concentrate, add water 100 mL, 2N HCl 3.2 mL, extract (chloroform 50 mL × 4), add anhydrous MgSO4, filter, purify by column chromatography (hexane: ethyl acetate = 1: 1), concentrate, vacuum dry, yellow A white solid 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) 0.65 g (0.59 mmol) was obtained. Step 8).

上記合成で得られた12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の同定結果を以下に示す。
収量 0.65 g ( 0.59 mmol )
収率 58%
Rf値 ( hexane : ethyl acetate = 1 : 1 )
1H-NMR (CDCl3 /TMS ) 400 MHz
δ = 1.38 ( 32H, s ) -(CH 2)8-
δ = 1.66 ( 4H, m ) -S-CH2- CH 2-
δ = 1.76 (6H, d, J = 6.4 Hz) -CH-CH 3
δ = 1.85 ( 4H, m ) -O-CH2- CH 2-
δ = 2.68 ( 4H, t, J = 7.1 Hz ) Br-CH 2-
δ = 2.80 ( 8H, s ) -CH 2-CH 2-
δ = 4.04 ( 6H, s ) CH 3O-
δ = 4.06 ( 4H, m ) -O-CH 2-
δ = 6.50 ( 2H, q, J = 6.4 Hz ) -CH-CH3
δ = 7.06 ( 2H, s ) Ar-H
δ = 7.62 ( 2H, s ) Ar-H
The identification results of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) obtained by the above synthesis are shown below.
Yield 0.65 g (0.59 mmol)
Yield 58%
Rf value (hexane: ethyl acetate = 1: 1)
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.38 (32H, s) - (C H 2) 8 -
δ = 1.66 (4H, m) -S-CH 2 -C H 2-
δ = 1.76 (6H, d, J = 6.4 Hz) -CH-C H 3
δ = 1.85 (4H, m) -O-CH 2 -C H 2-
δ = 2.68 (4H, t, J = 7.1 Hz) Br-C H 2-
δ = 2.80 (8H, s) -C H 2 -C H 2-
δ = 4.04 (6H, s) C H 3 O-
δ = 4.06 (4H, m) -OC H 2-
δ = 6.50 (2H, q, J = 6.4 Hz) -C H -CH 3
δ = 7.06 (2H, s) Ar- H
δ = 7.62 (2H, s) Ar- H

以上の工程で得られた12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光分解性を調べるために、50 mL メスフラスコに12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)5.536 mg ( 5.02μmol )、THF 50mL入れ、1.00×10-4 mmol/Lの溶液を調製した。この溶液を石英セルに入れ、超高圧水銀灯で一定時間ごとに光照射し、UV測定を行った。そのときの光分解は次式(化17)のようになされ、UVスペクトルを調べると図2に示されるように、時間と共に光分解が進んでいることが確認された。0分での吸収極大は345 nm 12150 L・mol-1・cm -1、300 nm 10132 L・mol-1・cm -1、 246 nm 23306 L・mol-1・cm -1であった。上記のスペクトルから約5分で光分解が終了したいえる。 In order to examine the photodegradability of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) obtained by the above steps In a 50 mL volumetric flask, 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) 5.536 mg (5.02 μmol), THF 50 mL And a 1.00 × 10 −4 mmol / L solution was prepared. This solution was put into a quartz cell, irradiated with light with a super high pressure mercury lamp at regular intervals, and UV measurement was performed. The photolysis at that time was carried out as shown in the following formula (Formula 17), and when the UV spectrum was examined, it was confirmed that the photolysis progressed with time as shown in FIG. The absorption maximum at 0 minute was 345 nm 12150 L · mol −1 · cm −1 , 300 nm 10132 L · mol −1 · cm −1 , and 246 nm 23306 L · mol −1 · cm −1 . It can be said that photolysis was completed in about 5 minutes from the above spectrum.

また、100 mL ビーカーに エチルアセテート 20mL 、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)を約15 mg を入れ、ethyl acetate 溶液を調製した。これに methanol 洗浄した金基板を入れ、終夜静置した。その後、金基板を取り出しethyl acetateで洗浄し、窒素気流で乾燥させ、修飾基板を得た。     In a 100 mL beaker, add 20 mL of ethyl acetate, about 15 mg of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). The ethyl acetate solution was prepared. A methanol-cleaned gold substrate was placed in this and left to stand overnight. Thereafter, the gold substrate was taken out, washed with ethyl acetate, and dried in a nitrogen stream to obtain a modified substrate.

光熱を除くための水フィルター、300 nm以下の波長の光を遮断するパイレックス製ガラスフィルター及び光照射する金基板を乗せる台を用意した。それから、超高圧水銀灯を起動させ、光量が安定するまで、30分間暖気を行った。その後、照時計で照度が100mW/cm2となる位置を探した。光照射は1枚ずつ行った。表面修飾した金基板をチタン製ピンセットで固定し光照射を行った。その後、光照射した金基板をmethanolで超音波洗浄5分間行い、測定を行った。測定後、測定で付着した水滴をmethanolで洗い流し、値が安定するまで光照射、接触角測定を行なった。 A water filter for removing light heat, a Pyrex glass filter for blocking light with a wavelength of 300 nm or less, and a stage on which a gold substrate for light irradiation was placed were prepared. Then, the ultra-high pressure mercury lamp was started and warmed for 30 minutes until the light intensity was stabilized. After that, I looked for a position where the illuminance was 100 mW / cm 2 with a clock. Light irradiation was performed one by one. The surface-modified gold substrate was fixed with titanium tweezers and irradiated with light. Thereafter, the gold substrate irradiated with light was subjected to ultrasonic cleaning with methanol for 5 minutes for measurement. After the measurement, water droplets adhering to the measurement were washed away with methanol, and light irradiation and contact angle measurement were performed until the value became stable.

12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光照射(λ>300nm)によるメカニズムを次式(化18)に、また光照射による接触角変化を図3に示す。   The mechanism by light irradiation (λ> 300 nm) of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is represented by the following formula 18) and FIG. 3 shows a change in contact angle due to light irradiation.

また、上述した修飾基板を用意し、320nm以下の波長の光を遮断する硫酸銅フィルター及び光照射する金基板を乗せる台を用意した。それから、超高圧水銀灯を起動させ、光量が安定するまで、30分間暖気を行った。その後、照時計で照度が100mW/cm2となる位置を探した。光照射は1枚ずつ行った。表面修飾した金基板をチタン製ピンセットで固定し光照射を行った。その後、光照射した金基板をmethanolで超音波洗浄5分間行い、測定を行った。測定後、測定で付着した水滴をmethanolで洗い流し、値が安定するまで光照射、接触角測定を行なった。12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光照射(320nm)による接触角変化を図4に示す。 In addition, the above-described modified substrate was prepared, and a stand on which a copper sulfate filter that blocks light with a wavelength of 320 nm or less and a gold substrate to be irradiated with light was placed. Then, the ultra-high pressure mercury lamp was started and warmed for 30 minutes until the light intensity was stabilized. Then, I looked for a position where the illuminance was 100 mW / cm 2 with a clock. Light irradiation was performed one by one. The surface-modified gold substrate was fixed with titanium tweezers and irradiated with light. Thereafter, the gold substrate irradiated with light was subjected to ultrasonic cleaning with methanol for 5 minutes for measurement. After the measurement, water droplets adhering to the measurement were washed away with methanol, and light irradiation and contact angle measurement were performed until the value became stable. FIG. 4 shows a change in contact angle of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) by light irradiation (320 nm). .

さらに、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の化学修飾の実施例を示す。
100 mLナスフラスコに表面修飾した基板、1,4−dioxane 20 mL、n−dodecylamine 0.1 g ( 0.54 mmol )、triethylamine2.0 μL 入れ、終夜静置した。methanolで超音波洗浄5分間行い。窒素気流下で乾燥後、測定を行なった。測定後、methanolで超音波洗浄5分間行った。
Furthermore, an example of chemical modification of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is shown.
A surface-modified substrate, 20 mL of 1,4-dioxane, 0.1 g (0.54 mmol) of n-dodecylamine, and 2.0 μL of triethylamine were placed in a 100 mL eggplant flask and allowed to stand overnight. Perform ultrasonic cleaning with methanol for 5 minutes. Measurements were taken after drying under a nitrogen stream. After the measurement, ultrasonic cleaning with methanol was performed for 5 minutes.

光熱を除くための水フィルター、300 nm以下の波長の光を遮断するパイレックス製ガラスフィルター及び光照射する金基板を乗せる台を用意した。それから、超高圧水銀灯を起動させ、光量が安定するまで、30分間暖気を行った。その後、照時計で照度が100mW/cm2となる位置を探した。光照射は1枚ずつ行った。化学修飾した金基板をチタン製ピンセットで固定し光照射を行った。その後、光照射した金基板をmethanolで超音波洗浄5分間行い、測定を行った。測定後、測定で付着した水滴をmethanolで洗い流し、値が安定するまで光照射、接触角測定を行なった。 A water filter for removing light heat, a Pyrex glass filter for blocking light with a wavelength of 300 nm or less, and a stage on which a gold substrate for light irradiation was placed were prepared. Then, the ultra-high pressure mercury lamp was activated and warmed up for 30 minutes until the light intensity stabilized. After that, I looked for a position where the illuminance was 100 mW / cm 2 with a clock. Light irradiation was performed one by one. The chemically modified gold substrate was fixed with titanium tweezers and irradiated with light. Thereafter, the gold substrate irradiated with light was subjected to ultrasonic cleaning with methanol for 5 minutes for measurement. After the measurement, water droplets adhering to the measurement were washed away with methanol, and light irradiation and contact angle measurement were performed until the value became stable.

12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の化学修飾によるメカニズムを次式(化19)に、また化学修飾による接触角変化を図5に示す。   The mechanism by chemical modification of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is represented by the following formula (Formula 19): FIG. 5 shows changes in contact angle due to chemical modification.

アミン反応性基とジスルフィド基とを光分解性基を有するスペーサで連結した光分解性カップリング剤の他の実施例(6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート))の合成)   Another example of a photodegradable coupling agent in which an amine reactive group and a disulfide group are linked by a spacer having a photodegradable group (6,6′-dithio-bis (1- (4-hexyloxy-5- Synthesis of methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate)))

図6に示される工程により合成した。先ず、500 mLナスフラスコに1,6-ジブロモヘキサン 24.21 g ( 99.23 mmol )、アセトニトリル 300 mL、チオ酢酸カリウム 2.88 g ( 25.21 mmol )を入れ、24時間還流を行った。室温まで冷却し、濃縮、純水100 mLを加え、抽出 ( ヘキサン 100 mL×3 )、無水硫酸マグネシウムで乾燥、ろ過、濃縮、カラムクロマトグラフィー( ヘキサン : 酢酸エチル = 98 : 2 )で精製、濃縮、真空乾燥し、無色液体 (6-ブロモヘキシル)5.09 g ( 21.26 mmol )を得た(化20:ステップ9)。   It was synthesized by the process shown in FIG. First, 24.21 g (99.23 mmol) of 1,6-dibromohexane, 300 mL of acetonitrile, and 2.88 g (25.21 mmol) of potassium thioacetate were placed in a 500 mL eggplant flask and refluxed for 24 hours. Cool to room temperature, concentrate, add 100 mL of pure water, extract (hexane 100 mL × 3), dry over anhydrous magnesium sulfate, filter, concentrate, purify by column chromatography (hexane: ethyl acetate = 98: 2) and concentrate Then, vacuum drying was performed to obtain 5.09 g (21.26 mmol) of a colorless liquid (6-bromohexyl) (Chemical Formula 20: Step 9).

上記合成で得られた6-ブロモヘキシルの同定結果を以下に示す。
収量 5.09 g ( 21.26 mmol )
収率 84 %
1H-NMR ( CDCl3 / TMS ) 400 MHz
δ = 1.42 ( 4H, m ) -(CH 2)2-
δ = 1.58 ( 2H, m ) -S-CH2-CH 2-
δ = 1.85 ( 2H, m ) Br -CH2-CH 2-
δ = 2.32 ( 3H, s ) CH 3-C=O
δ = 2.86 ( 2H, t, J = 7.3 Hz ) -S-CH 2-
δ = 3.40 ( 2H, t, J = 6.8 Hz ) Br-CH 2-
The identification results of 6-bromohexyl obtained by the above synthesis are shown below.
Yield 5.09 g (21.26 mmol)
Yield 84%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.42 (4H, m)-(C H 2 ) 2-
δ = 1.58 (2H, m) -S-CH 2 -C H 2-
δ = 1.85 (2H, m) Br -CH 2 -C H 2-
δ = 2.32 (3H, s) C H 3 -C = O
δ = 2.86 (2H, t, J = 7.3 Hz) -SC H 2-
δ = 3.40 (2H, t, J = 6.8 Hz) Br-C H 2-

次に、窒素雰囲気下で100 mL 二口ナスフラスコに、前記ステップ1〜3によって得られた 4-ヒドロキシ-5-メトキシ-2-ニトロアセトフェノン 1.14 g ( 5.37 mmol )、炭酸カリウム 0.748 g ( 5.41 mmol )、dry-DMF 50 mLをいれ30分間撹拌し、チオ酢酸 6-ブロモヘキシル 1.40 g ( 5.86 mmol )を加え、70℃で終夜撹拌を行なった。抽出( 酢酸エチル 100 mL×3 )、洗浄( 飽和食塩水 100 mL ×5 )、無水硫酸マグネシウムで乾燥、ろ過、濃縮、カラムクロマトグラフィー( ヘキサン : 酢酸エチル = 1 : 1 → クロロホルム )で精製、濃縮、真空乾燥し、黄色固体(4-(6-アセチルチオヘキシルオキシ)-5-メトキシ-2-ニトロアセトフェノン)1.50 g ( 4.06 mmol )を得た(化21:ステップ10)。   Next, in a 100 mL two-necked eggplant flask under nitrogen atmosphere, 1.14 g (5.37 mmol) of 4-hydroxy-5-methoxy-2-nitroacetophenone obtained in steps 1-3 above, 0.748 g (5.41 mmol) of potassium carbonate. ), 50 mL of dry-DMF was added, and the mixture was stirred for 30 minutes. 1.40 g (5.86 mmol) of 6-bromohexyl thioacetate was added, and the mixture was stirred at 70 ° C. overnight. Extraction (ethyl acetate 100 mL × 3), washing (saturated brine 100 mL × 5), drying over anhydrous magnesium sulfate, filtration, concentration, purification by column chromatography (hexane: ethyl acetate = 1: 1 → chloroform), concentration And vacuum drying to obtain 1.50 g (4.06 mmol) of a yellow solid (4- (6-acetylthiohexyloxy) -5-methoxy-2-nitroacetophenone) (Chemical Formula 21: Step 10).

上記合成で得られた4-(6-アセチルチオヘキシルオキシ)-5-メトキシ-2-ニトロアセトフェノンの同定結果を以下に示す。
収量 1.50 g ( 4.06 mmol )
収率 76 %
1H-NMR ( CDCl3 / TMS ) 400 MHz
δ = 1.60 ( 6H, m ) -(CH 2)2-, -S-CH2-CH 2-
δ = 1.88 ( 2H, m ) -O-CH2-CH 2-
δ = 2.33 ( 3H, s ) CH 3-CO- ( アセトフェノン部位)
δ = 2.49 ( 3H, s ) CH 3-CO- ( アセチルチオ部位 )
δ = 2.88 ( 2H, t, J = 7.1 Hz ) -S-CH 2-
δ = 3.96 ( 3H, s ) CH 3O-
δ = 4.10 ( 2H, t, J = 6.8 Hz ) -O-CH 2-
δ = 6.75 ( 1H, s ) Ar-H
δ = 7.59 ( 1H, s ) Ar-H
The identification results of 4- (6-acetylthiohexyloxy) -5-methoxy-2-nitroacetophenone obtained by the above synthesis are shown below.
Yield 1.50 g (4.06 mmol)
Yield 76%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.60 (6H, m)-(C H 2 ) 2- , -S-CH 2 -C H 2-
δ = 1.88 (2H, m) -O-CH 2 -C H 2-
δ = 2.33 (3H, s) C H 3 -CO- (acetophenone moiety)
δ = 2.49 (3H, s) C H 3 -CO- (acetylthio moiety)
δ = 2.88 (2H, t, J = 7.1 Hz) -SC H 2-
δ = 3.96 (3H, s) C H 3 O-
δ = 4.10 (2H, t, J = 6.8 Hz) -OC H 2-
δ = 6.75 (1H, s) Ar- H
δ = 7.59 (1H, s) Ar- H

次に、氷浴上で200 mL ナスフラスコに4-(6-アセチルチオヘキシルオキシ)-5-メトキシ-2-ニトロアセトフェノン 1.48 g ( 4.02 mmol )、THF 100 mL、メタノール 50 mLをいれ、テトラヒドロホウ酸ナトリウム 0.61 g ( 16.07 mmol )ゆっくり加え、30分間撹拌した後、室温で2時間撹拌した。さらに、テトラヒドロホウ酸ナトリウム 0.48 g ( 12.57 mmol )加え、2時間撹拌した後、テトラヒドロホウ酸ナトリウム 0.494 g ( 13.06 mmol )を加え、2時間撹拌した。濃縮、純水 100 mL加え、抽出 ( 酢酸エチル 100 mL×3 )、anhydrous MgSO4で乾燥、ろ過、濃縮、真空乾燥し、黄色粘体(1-(4-(6-メルカプトヘキシルオキシ)-5-メトキシ-2-ニトロフェニル)エタノール) 1.46 g を得た(化22:ステップ11)。 Next, add 1.48 g (4.02 mmol) of 4- (6-acetylthiohexyloxy) -5-methoxy-2-nitroacetophenone, 100 mL of THF, and 50 mL of methanol to a 200 mL eggplant flask on an ice bath. Sodium acid 0.61 g (16.07 mmol) was slowly added, stirred for 30 minutes, and then stirred at room temperature for 2 hours. Further, 0.48 g (12.57 mmol) of sodium tetrahydroborate was added and stirred for 2 hours, and then 0.494 g (13.06 mmol) of sodium tetrahydroborate was added and stirred for 2 hours. Concentrate, add 100 mL of pure water, extract (ethyl acetate 100 mL × 3), dry with anhydrous MgSO 4 , filter, concentrate and vacuum dry to give a yellow gum (1- (4- (6-mercaptohexyloxy) -5- 1.46 g of (methoxy-2-nitrophenyl) ethanol) was obtained (Chemical 22: Step 11).

上記合成で得られた1-(4-(6-メルカプトヘキシルオキシ)-5-メトキシ-2-ニトロフェニル)エタノールの同定結果を以下に示す。
1H-NMR ( CDCl3 / TMS ) 400 MHz
δ = 1.35 ( 1H, t, J = 7.1 Hz ) -SH
δ = 1.67 ( 10H, m ) -(CH 2)2-, -CH-CH 3, -O-CH2-CH 2-,
-S-CH2-CH 2-, -OH
δ = 2.57 ( 2H, q, J = 7.1 Hz ) -S-CH 2-
δ = 3.99 ( 3H, s ) CH 3O-
δ = 4.06 ( 2H, t, J = 6.8 Hz ) -O-CH 2-
δ = 5.55 ( 2H, q, J = 6.1 Hz ) Ar-CH-
δ = 7.28 ( 1H, s ) Ar-H
δ = 7.55 ( 1H, s ) Ar-H
The identification results of 1- (4- (6-mercaptohexyloxy) -5-methoxy-2-nitrophenyl) ethanol obtained by the above synthesis are shown below.
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.35 (1H, t, J = 7.1 Hz) -S H
δ = 1.67 (10H, m)-(C H 2 ) 2- , -CH-C H 3 , -O-CH 2 -C H 2- ,
-S-CH 2 -C H 2- , -O H
δ = 2.57 (2H, q, J = 7.1 Hz) -SC H 2-
δ = 3.99 (3H, s) C H 3 O-
δ = 4.06 (2H, t, J = 6.8 Hz) -OC H 2-
δ = 5.55 (2H, q, J = 6.1 Hz) Ar-C H-
δ = 7.28 (1H, s) Ar- H
δ = 7.55 (1H, s) Ar- H

次に、200 mL ナスフラスコに1-(4-(6-メルカプトヘキシルオキシ)-5-メトキシ-2-ニトロフェニル)エタノール1.47 g ( crude )、1,4-ジオキサン / 純水 100 mL、ヨウ素 0.58 g ( 4.59 mmol )を加え、60℃、3時間加熱撹拌した。15% ピロ亜硫酸ナトリウム水溶液で中和し、濃縮、抽出( クロロホルム 100 mL ×3 )、無水硫酸マグネシウムで乾燥、ろ過、濃縮、カラムクロマトグラフィー( ヘキサン : 酢酸エチル = 1 : 1 )で精製、濃縮、真空乾燥し、黄色粘体 (6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エタノール))0.85 g ( 1.29 mmol )を得た(化23:ステップ12)。   Next, in a 200 mL eggplant flask, 1.47 g (crude) of 1- (4- (6-mercaptohexyloxy) -5-methoxy-2-nitrophenyl) ethanol, 100 mL of 1,4-dioxane / pure water, iodine 0.58 g (4.59 mmol) was added, and the mixture was heated and stirred at 60 ° C. for 3 hours. Neutralize with 15% sodium pyrosulfite aqueous solution, concentrate, extract (chloroform 100 mL x 3), dry over anhydrous magnesium sulfate, filter, concentrate, purify by column chromatography (hexane: ethyl acetate = 1: 1), concentrate, Vacuum drying gave 0.85 g (1.29 mmol) of yellow viscous body (6,6'-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethanol) (Chemical Formula 23: Step) 12).

上記合成で得られた6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エタノール)の同定結果を以下に示す。
収量 0.85 g ( 1.29 mmol )
両末端の還元( 4.02 mmol )が粗生成物だったので、2段階の収率で計算 64 % とした
1H-NMR ( CDCl3 / TMS ) 400 MHz
δ = 1.53 ( 6H, m ) -(CH 2)2-, -CH-CH 3
δ = 1.73 ( 2H, m ) -S-CH2-CH 2-
δ = 1.88 ( 2H, m ) -O-CH2-CH 2-
δ = 2.70 ( 2H, t, J = 7.3 Hz ) -S-CH 2-
δ = 3.98 ( 3H, s ) -OCH 3
δ = 4.05 ( 2H, t, J = 6.6 Hz ) -O-CH 2-
δ = 5.56 ( 1H, q, J = 6.3 Hz ) Ar-CH-
δ = 7.29 ( 1H, s ) Ar-H
δ = 7.54 ( 1H, s ) Ar-H
The identification results of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethanol) obtained by the above synthesis are shown below.
Yield 0.85 g (1.29 mmol)
Since the reduction at both ends (4.02 mmol) was a crude product, it was calculated as 64% in a two-stage yield.
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.53 (6H, m)-(C H 2 ) 2- , -CH-C H 3
δ = 1.73 (2H, m) -S-CH 2 -C H 2-
δ = 1.88 (2H, m) -O-CH 2 -C H 2-
δ = 2.70 (2H, t, J = 7.3 Hz) -SC H 2-
δ = 3.98 (3H, s) -OC H 3
δ = 4.05 (2H, t, J = 6.6 Hz) -OC H 2-
δ = 5.56 (1H, q, J = 6.3 Hz) Ar-C H-
δ = 7.29 (1H, s) Ar-H
δ = 7.54 (1H, s) Ar-H

次に、窒素雰囲気下で100 mL二口ナスフラスコに6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エタノール) 0.85 g ( 1.29 mmol )、ジ(N-スクシンイミジル カーボネート) 2.01 g ( 7.84 mmol )、dry-アセトニトリル 50 mL、トリエチルアミン 1093μL加え、室温で終夜撹拌した。純水 100 mL、2N 塩酸 3.42 mL加え、抽出( クロロホルム 50 mL ×5 )、無水硫酸マグネシウムで乾燥、ろ過、濃縮、カラムクロマトグラフィー( ヘキサン : 酢酸エチル = 1 : 1 )で精製、濃縮、真空乾燥し、黄白色粉体 (6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート))0.76 g ( 0.807 mmol )を得た(化24:ステップ13)。   Next, in a 100 mL two-necked eggplant flask under a nitrogen atmosphere, 6,5′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethanol) 0.85 g (1.29 mmol), (N-succinimidyl carbonate) 2.01 g (7.84 mmol), dry-acetonitrile 50 mL, triethylamine 1093 μL were added, and the mixture was stirred at room temperature overnight. Add 100 mL of pure water and 3.42 mL of 2N hydrochloric acid, extract (chloroform 50 mL × 5), dry over anhydrous magnesium sulfate, filter, concentrate, purify by column chromatography (hexane: ethyl acetate = 1: 1), concentrate, vacuum dry As a result, 0.76 g (0.807 mmol) of yellowish white powder (6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate)) was obtained ( 24: Step 13).

上記合成で得られた6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の同定結果を以下に示す。
収量 0.76 g ( 0.807 mmol )
収率 63 %
1H-NMR ( CDCl3 / TMS ) 400 MHz
δ = 1.50 ( 4H, m ) -(CH 2)2-
δ = 1.75 ( 5H, m ) -S-CH2-CH 2-, -CH-CH 3
δ = 1.87 ( 2H, m ) -O-CH2-CH 2-
δ = 2.70 ( 2H, t, J = 7.2 Hz ) -S-CH 2-
δ = 2.80 ( 4H, s ) -(CH 2)2- (succinimidyl parts )
δ = 4.04 ( 5H, m ) -OCH 3, -O-CH 2-
δ = 6.49 ( 1H, q, J = 6.4 Hz ) -CH-CH3
δ = 7.06 ( 1H, s ) Ar-H
δ = 7.62 ( 1H, s ) Ar-H
The identification results of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) obtained by the above synthesis are shown below.
Yield 0.76 g (0.807 mmol)
Yield 63%
1 H-NMR (CDCl 3 / TMS) 400 MHz
δ = 1.50 (4H, m)-(C H 2 ) 2-
δ = 1.75 (5H, m) -S-CH 2 -C H 2- , -CH-C H 3
δ = 1.87 (2H, m) -O-CH 2 -C H 2-
δ = 2.70 (2H, t, J = 7.2 Hz) -SC H 2-
δ = 2.80 (4H, s)-(C H 2 ) 2- (succinimidyl parts)
δ = 4.04 (5H, m) -OC H 3 , -OC H 2-
δ = 6.49 (1H, q, J = 6.4 Hz) -C H -CH 3
δ = 7.06 (1H, s) Ar-H
δ = 7.62 (1H, s) Ar-H

以上の工程で得られた6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の光分解性を調べるために、この化合物の1×10-4M THF溶液を調製し、二面石英セルに取った。光熱を除くための水フィルター、300 nm以下の波長の光を遮断するパイレックス製ガラスフィルター、320 nm 以下の波長の光を遮断する硫酸銅フィルター(250 g / L )を用意した。それから、超高圧水銀灯を起動させ、光量が安定するまで、30分間暖気を行った。その後、照度計で365 nm付近の照度が100 mW / cm2となる位置を探した。光照射を一定時間ごとに行い、UVスペクトルを測定し波形変化を調べた。 In order to investigate the photodegradability of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) obtained by the above steps, this compound was used. A 1 × 10 −4 M THF solution was prepared and placed in a double-sided quartz cell. A water filter for removing light heat, a Pyrex glass filter for blocking light of a wavelength of 300 nm or less, and a copper sulfate filter (250 g / L) for blocking light of a wavelength of 320 nm or less were prepared. Then, the ultra-high pressure mercury lamp was activated and warmed up for 30 minutes until the light intensity stabilized. After that, the illuminometer searched for a position where the illuminance near 365 nm was 100 mW / cm 2 . Light irradiation was performed at regular intervals, UV spectra were measured, and changes in waveforms were examined.

6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の光照射(λ>300nm)によるメカニズムを次式(化25)に、また光照射によるスペクトル変化を図7に示す(図7(a)は、300 nmより大きい波長の光を照射させた場合、図7(b)は、320 nmより大きい波長の光を照射させた場合である)。0分での吸収極大は345 nm 11600 L・mol-1・cm -1、300 nm 9100 L・mol-1・cm -1、 246 nm 22500 L・mol-1・cm -1であった。図7(a),(b)のスペクトルから約90秒で光分解が終了したいえる。 The mechanism by light irradiation (λ> 300 nm) of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is represented by the following formula (Formula 25). FIG. 7 shows the change in spectrum caused by light irradiation (FIG. 7A shows the case where light having a wavelength larger than 300 nm is irradiated, and FIG. 7B shows the case where light having a wavelength larger than 320 nm is irradiated. Is the case). The absorption maximum at 0 minute was 345 nm 11600 L · mol −1 · cm −1 , 300 nm 9100 L · mol −1 · cm −1 , and 246 nm 22500 L · mol −1 · cm −1 . From the spectra of FIGS. 7 (a) and 7 (b), it can be said that photolysis was completed in about 90 seconds.

また、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート) を約15 mg を入れ、ethyl acetate溶液を調製した。これに methanol 洗浄した金基板を入れ、終夜静置した。その後、金基板を取り出し ethyl acetateで洗浄し、窒素気流で乾燥させ、修飾基板を得た。   In addition, about 15 mg of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) was added to prepare an ethyl acetate solution. A methanol-cleaned gold substrate was placed in this and left to stand overnight. Thereafter, the gold substrate was taken out, washed with ethyl acetate, and dried in a nitrogen stream to obtain a modified substrate.

光熱を除くための水フィルター、300 nm以下の波長の光を遮断するパイレックス製ガラスフィルター及び光照射する金基板を乗せる台を用意した。それから、超高圧水銀灯を起動させ、光量が安定するまで、30分間暖気を行った。その後、照時計で照度が100mW/cm2となる位置を探した。光照射は1枚ずつ行った。表面修飾した金基板をチタン製ピンセットで固定し光照射を行った。その後、光照射した金基板をmethanol で超音波洗浄5分間行い、測定を行った。測定後、測定で付着した水滴をmethanol で洗い流し、値が安定するまで光照射、接触角測定を行なった。そのときの6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の光照射(λ>300nm)によるメカニズムを次式(化26)に、また、光照射による接触角変化を図8に示す。 A water filter for removing light heat, a Pyrex glass filter for blocking light with a wavelength of 300 nm or less, and a stage on which a gold substrate for light irradiation was placed were prepared. Then, the ultra-high pressure mercury lamp was activated and warmed up for 30 minutes until the light intensity stabilized. After that, I looked for a position where the illuminance was 100 mW / cm 2 with a clock. Light irradiation was performed one by one. The surface-modified gold substrate was fixed with titanium tweezers and irradiated with light. Then, the gold substrate irradiated with light was subjected to ultrasonic cleaning with methanol for 5 minutes, and measurement was performed. After the measurement, water droplets adhering to the measurement were washed away with methanol, and light irradiation and contact angle measurement were performed until the value became stable. The mechanism by light irradiation (λ> 300 nm) of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is 26) and FIG. 8 shows changes in contact angle due to light irradiation.

次に、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)をアミド化し、光照射した場合について調べた。100 mLナスフラスコに表面修飾した基板、1,4-dioxane 20 mL、dodecylamine 0.1 g ( 0.54 mmol )、triethylamine 2.0 μL 入れ、終夜静置した。methanolで超音波洗浄5分間行い。窒素気流下で乾燥後、測定を行なった。6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート) のアミド化及び光照射のメカニズムを次式(化27)に、また光照射による接触角変化を図9に示す。   Next, 6,6'-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) was amidated and examined for light irradiation. A surface-modified substrate, 20 mL of 1,4-dioxane, dodecylamine 0.1 g (0.54 mmol), and triethylamine 2.0 μL were placed in a 100 mL eggplant flask, and allowed to stand overnight. Perform ultrasonic cleaning with methanol for 5 minutes. Measurements were taken after drying under a nitrogen stream. The mechanism of amidation and light irradiation of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) is represented by the following formula (Formula 27): FIG. 9 shows changes in contact angle due to light irradiation.

最後に、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート) の蛍光微粒子によるパターニングの可能性について調べた。
その手順を図10に示す。6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)を用いて表面修飾した金基板に線幅20 mmのフォトマスクを被せ、20分間光照射しパターニングした。methanolで超音波洗浄5分行った。100 mL ビーカーに純水20 mL、トリエチルアミン 約0.5μL 入れ、FluoSpheres ( FS )(粒径 0.2 mm)を2滴加えた溶液の中に金基板を浸し、室温で1晩暗所で静置させた。物理的な吸着を取り除くため水で軽く濯ぎ、窒素気流で乾燥し蛍光顕微鏡で観察し、再度光照射した後再び蛍光顕微鏡で観察した。蛍光微粒子の固定、脱離時の蛍光顕微鏡像を図11に示す。光照射された線幅20 mmの部分は蛍光微粒子が固定されていないので視野が暗いのに対し、残りの未照射部分の活性エステルに粒径 0.2 mmの蛍光微粒子が固定されていて光っているのがわかる(図11の左側)。再度の光照射により固定されていた蛍光微粒子が脱離し、全体が暗くなっているのがわかる(図11の右側)。
Finally, the possibility of patterning with fluorescent fine particles of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) was investigated.
The procedure is shown in FIG. Cover a gold substrate surface-modified with 6,6'-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) with a photomask with a line width of 20 mm. And patterning by light irradiation for 20 minutes. Ultrasonic cleaning with methanol was performed for 5 minutes. In a 100 mL beaker, put 20 mL of pure water and about 0.5 μL of triethylamine, immerse the gold substrate in a solution containing 2 drops of FluoSpheres (FS) (particle size 0.2 mm), and let stand at room temperature overnight in the dark. . Lightly rinsed with water to remove physical adsorption, dried with a nitrogen stream, observed with a fluorescence microscope, irradiated again with light, and then again observed with a fluorescence microscope. FIG. 11 shows a fluorescence microscope image at the time of fixation and desorption of the fluorescent fine particles. The part with 20 mm line width irradiated with light has a dark field of view because the fluorescent fine particles are not fixed, whereas the remaining non-irradiated part of the active ester has fluorescent fine particles with a particle size of 0.2 mm fixed and shining. (Left side of FIG. 11). It can be seen that the fluorescent fine particles fixed by the light irradiation again are detached and the whole becomes dark (right side in FIG. 11).

図1は、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)を合成する過程を示す図である。FIG. 1 is a diagram showing a process of synthesizing 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). 図2は、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光分解特性を示す図である。FIG. 2 is a graph showing the photodegradation characteristics of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). 図3は、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光照射(300nm)による接触角変化を示す特性線図である。FIG. 3 shows the change in contact angle by light irradiation (300 nm) of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). FIG. 図4は、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の光照射(320nm)による接触角変化を示す特性線図である。FIG. 4 shows the change in contact angle due to light irradiation (320 nm) of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). FIG. 図5は、12,12’−ジチオ-ビス(1−(4−ドデシルオキシ−5−メトキシ−2−ニトロフェニル)エチル N−スクシンイミジルカーボネート)の化学修飾による接触角変化を示す特性線図である。FIG. 5 is a characteristic line showing contact angle change by chemical modification of 12,12′-dithio-bis (1- (4-dodecyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). FIG. 図6は、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)を合成する過程を示す図である。FIG. 6 is a diagram showing a process of synthesizing 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). 図7は、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の光分解特性を示す図である。FIG. 7 is a graph showing the photodegradation characteristics of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). 図8は、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)の光照射による接触角変化を示す特性線図である。FIG. 8 is a characteristic diagram showing a change in contact angle of 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) by light irradiation. . 図9は、アミド化された6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート) の光照射による接触角変化を示す特性線図である。FIG. 9 is a graph showing changes in contact angle of amidated 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) by light irradiation. FIG. 図10は、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)を用いたパターニングの手順を示す図である。FIG. 10 is a diagram showing a patterning procedure using 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate). 図11は、6,6’-ジチオ-ビス(1-(4-ヘキシルオキシ−5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジル カーボネート)を用いたパターニングによる蛍光微粒子の固定、脱離(それぞれ左側、右側)時の像を示す蛍光顕微鏡の写真である。FIG. 11 shows immobilization and desorption of fluorescent fine particles by patterning using 6,6′-dithio-bis (1- (4-hexyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) (respectively It is the photograph of the fluorescence microscope which shows the image at the time of the left side and the right side.

Claims (2)

下記一般式(1)で表されることを特徴とする光分解性カップリング剤。


The photodegradable coupling agent represented by following General formula (1).


下記一般式(2)で表されることを特徴とする光分解性カップリング剤。



A photodegradable coupling agent represented by the following general formula (2).



JP2006120002A 2006-04-25 2006-04-25 Photodegradable coupling agent Expired - Fee Related JP5093641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120002A JP5093641B2 (en) 2006-04-25 2006-04-25 Photodegradable coupling agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120002A JP5093641B2 (en) 2006-04-25 2006-04-25 Photodegradable coupling agent

Publications (2)

Publication Number Publication Date
JP2007291005A JP2007291005A (en) 2007-11-08
JP5093641B2 true JP5093641B2 (en) 2012-12-12

Family

ID=38761998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120002A Expired - Fee Related JP5093641B2 (en) 2006-04-25 2006-04-25 Photodegradable coupling agent

Country Status (1)

Country Link
JP (1) JP5093641B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167738B2 (en) * 2007-09-15 2013-03-21 独立行政法人物質・材料研究機構 Cell attachment / culture base material that can provide cell adhesion by light irradiation
JP5526324B2 (en) * 2008-07-15 2014-06-18 独立行政法人物質・材料研究機構 Photoresponsive drug transporter capable of binding drugs
JP5557229B2 (en) * 2009-05-08 2014-07-23 学校法人神奈川大学 Photodegradable heterobivalent crosslinking agent
JP2014001196A (en) * 2011-09-12 2014-01-09 Univ Kanagawa Photodegradable coupling agent

Also Published As

Publication number Publication date
JP2007291005A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4014142B2 (en) Photodegradable silane coupling agent
CN103649102B (en) The blocking group to photo-labile comprising diaryl sulfide skeleton
JP5093641B2 (en) Photodegradable coupling agent
JP2008050321A (en) Photodegradable coupling agent
JP5717138B2 (en) Protein immobilization surface modification material
JP5196287B2 (en) Photodegradable coupling agent
JP5557229B2 (en) Photodegradable heterobivalent crosslinking agent
JP3970811B2 (en) LINKER COMPOUND AND LIGAND AND METHOD FOR PRODUCING THEM
JP2004508349A (en) Substrate having on its surface a molecular layer providing controlled amine group density and space, and method for producing the same
JP2010132559A (en) Water-soluble metal phthalocyanine complex, sensor element and sensor comprising the same and manufacturing method of sensor element
KR101665046B1 (en) Ratiometric fluorescent chemosensor including boronic acid binding to mercury ion selectively, preparation method thereof and detection method of mercury ion using the same
TW201425322A (en) Photodecomposition material, substrate and patterning method thereof
KR101070617B1 (en) Rhodamine Derivative having selectivity for Cu Ion, Detection Method and Chemosensor using the same
JP4376540B2 (en) Metal surface modifiers and new sulfur-containing compounds
JP5385538B2 (en) O-Nitrobenzyl group-containing silazane compound, its production method and use
JP4841551B2 (en) Coupling agents containing photosensitive protecting groups and their use, such as for the functionalization of solid supports
Booth et al. Synthesis of novel biotin anchors
JP6308540B2 (en) Photodegradable coupling agent
Mancini et al. Synthesis of a photo-caged aminooxy alkane thiol
CN108729025B (en) Fluorescence sensor based on amino modified polystyrene and preparation method thereof
JPWO2009113322A1 (en) Photolabile protecting group
JP4196925B2 (en) UV degradable molecules
JP7312403B2 (en) New compound and sensor chip using it
JP3538633B2 (en) Azobenzene derivative compound and self-assembled film comprising the same
JP5267096B2 (en) N, S-di-tert-butoxycarbonylglutathione fluorescent derivative and method for producing glutathione fluorescent derivative using the same as an intermediate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5093641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees