[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5086256B2 - シリコン噴流流動層 - Google Patents

シリコン噴流流動層 Download PDF

Info

Publication number
JP5086256B2
JP5086256B2 JP2008522948A JP2008522948A JP5086256B2 JP 5086256 B2 JP5086256 B2 JP 5086256B2 JP 2008522948 A JP2008522948 A JP 2008522948A JP 2008522948 A JP2008522948 A JP 2008522948A JP 5086256 B2 JP5086256 B2 JP 5086256B2
Authority
JP
Japan
Prior art keywords
jet
gas
silicon
nozzle
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008522948A
Other languages
English (en)
Other versions
JP2009502704A (ja
Inventor
エドワード エーゲ ポール
エイ ハンセン ジェフリー
シー アレン レヴィ
Original Assignee
アールイーシー シリコン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アールイーシー シリコン インコーポレイテッド filed Critical アールイーシー シリコン インコーポレイテッド
Publication of JP2009502704A publication Critical patent/JP2009502704A/ja
Application granted granted Critical
Publication of JP5086256B2 publication Critical patent/JP5086256B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1854Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement inside the reactor to form a loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1863Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/245Spouted-bed technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00119Heat exchange inside a feeding nozzle or nozzle reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、ポリシリコンを製造するために行う流動層中のシリコン含有ガスの熱分解に関するものである。
多結晶シリコン(ポリシリコン)は、半導体産業および太陽電池産業の両者にとって、重要な原料である。特定の応用例に対する選択肢はあるが、ポリシリコンはここ当分の間好適な原料であろう。そのため、ポリシリコンを製造する可能性および経済性を改善することは、両産業にとって、発展の機会を増大させるだろう。
ポリシリコンの大部分は、ポリシランまたはトリクロロシランをシリコン含有ガス源として用いる、ジーメンス社のホットワイヤ方法によって製造される。通常他の不活性または活性ガスと混合されるシリコン含有ガスは、熱分解され、加熱されたシリコンフィラメント上に堆積する。フィラメントの温度は、ポリシリコンが均一に堆積して、平坦なポリシリコンロッドが製造されるように、注意深くコントロールする必要がある。ジーメンス社のプロセスは、製造されたポリシリコン1kgあたり多量のエネルギーを必要とし、さらに、ポリシリコンロッドを結晶成長に必要なより小さい塊に加工するための実質的に手動労力を必要とする。
多くの人は、優秀な物質移動および熱移動、堆積のための増大した表面、および、一貫生産のため、太陽電池産業および半導体産業のポリシリコンを製造するための魅力的な代替方法として、流動層におけるシリコン含有ガスの熱分解を考慮する。ジーメンスタイプのリアクターと比べて、噴流層リアクターは、何分の1かのエネルギー消費で、かなり高い生産速度を提供する。噴流層リアクターは、一貫工程で高度にオートメーション化されており、人件費をかなり減少させることができる。
先行技術としてのシリコン含有ガスの熱分解に関連する多くの流動層リアクターは、流動化ガスを導入するために、伝統的な分配板を使用する。通常シリコン含有ガスと他のガスとの組合せからなる流動化ガスは、シリコン粒子を流動化させるために、十分な全体の流速で注入される。分配板は、しばしば水平方向または下側方向に向く多くのオリフィスを含んでいる。分配板には共通のプレナムが存在するため、全ての流動化ガスは同時に分配板のオリフィスに入る。オリフィス間のガス分布のコントロールが行われていないため、オリフィスは本質的に不安定である。分配板の設計は、プレート上でのシリコンの堆積および高電力での製造になりがちである。堆積は、水冷された分配板により場合によって減少する。しかしながら、これは、流動層リアクターのエネルギー効率をかなり減少する大きなヒートシンクを作り出す。
引用文献1は、流動化ガスのための単一の噴流ノズルを有する流動層リアクターを開示している。典型的な分配器のオリフィスとは異なり、噴流ノズルは、噴流循環パターンを促進させるために、上方向を向いている。噴流は、伝統的な流動層のように行動する上側のヘッドに放出される。このタイプのシステムは、以後「沈降噴流層」として参照する。噴流は下側の部分で良くコントロールされた循環を提供するのに対し、流動層の領域は完全な転換のための滞留時間および熱シリコン顆粒と接触するシリコン粒子の「捕捉」を提供する。
米国特許第5,810,934号公報
先行技術のシリコン噴流ノズルの設計は、噴流の基部の中および周囲における減少した粒子の動作の領域を含む。減少した動作は、近年形成されている非結合粒子を有するシリコン粒子が噴流チャンバーの表面に付着することを可能とし、望ましくないシリコン堆積物を形成させる。噴流ノズルの近傍の堆積は、完全にそれを包み込み、シリコン製造の効率および継続時間を低減する。上述した設計は、噴流ノズル内でのシリコンの堆積を避けるため、シリコン含有ガスの入口温度をある温度以下に保つために、噴流ノズルを冷却することを開示しているが、噴流チャンバー内におけるノズル表面の上および周囲のシリコン堆積の基本的問題点を扱っていない。
シリコン含有ガスの熱分解および流動シリコン粒子上へのシリコンの堆積による効率的なポリシリコンの形成の継続的必要性が、今なお残っている。
ここに記載されたものは、シリコン含有ガスの熱分解および反応容器内で1つ以上の噴流により循環した流動シリコン粒子または顆粒上へのシリコンの堆積による、ポリシリコンの製造のために沈降噴流層技術を利用した、効率的な技術および装置である。記載された各種の技術および装置構成は、効果的にシリコンの製造を増進する。
最良の結果を出すには、沈降噴流層を形成するために用いられるノズルは平均粒子径の25倍以下にすべきであり、ノズルの数量は制限される。そのため、単一のノズルは、所定の平均粒子径の粒子を有する容器に制限された量の流動化ガスしか提供することができない。
この制限を解消するために、複数の平行な噴流を単一のより大きな直径を有する流動層内において沈降させることができる。このアプローチは、個々に十分にコントロールされる噴流領域の製法の効果を、優れた経済性を有する設計のための大きな流動層の経済性と組み合わせる。複数の噴流を有するシステムは、ここでは、「複数沈降噴流層」として参照する。
シリコン製造のための複数の沈降噴流層は、容器の直径および形状に従って2個から10個あるいはそれ以上の沈降噴流を有することができる。最良の結果は、各々独立した噴流が分離されたガス供給部によって供給され、それにより、各噴流の流れおよび組成が独立してコントロールできるときに、達成される。これは、すべてのオリフィスが中央のプレナムからガスを受け取るとともにガスのコントロールが行われない、分配板を有する流動層リアクターとの大きな相違となる。複数の噴流と分配板との他の大きな相違は間隔である。噴流ノズルは、最良の場合、噴流間のインターフェアレンスの恐れを最小にするよう十分な距離だけ離れて配置される。複数の噴流層における噴流ノズル間の最小距離は約10cmにすべきであり、1平方メートルあたりの噴流ノズルの数は15以下であるべきである。その一方、分配板のオリフィスは通常より近い間隔となるよう配置されている。
堆積の問題は、噴流ノズル直近のジェットを有する噴流設計を増進することで扱うことができる。ジェットの流れは、噴流の周囲の粒子を飽和させ、流動させることで、ノズルの周囲の噴流基部表面を、シリコン含有ガスおよびそうでなければ堆積する可能性のあるシリコン粉体中に、制限し続ける。これは、生産効率を維持し、ポリシリコン粒子の長期間に亘る連続する生産を保証する。噴流ノズル近傍に位置するこれらのジェットは、ここでは、最初の流れが噴流ノズル中であることを示す「二次ジェット」として参照される。1つ以上の沈降噴流および二次ジェットを備える技術は、ここでは、「増加された沈降噴流流動層」として参照される。流動化したガスを複数の沈降噴流および二次オリフィスから上方に流すことによって浮遊した流動化されたシリコン粒子を含む容器は、ここでは、「複数に増加された沈降噴流流動層」リアクターとして参照される。二次オリフィスの噴流近傍の形状、数量および方向は、すべて、噴流ノズル近傍の粒子およびガス循環をコントロールして、噴流チャンバー内での噴流ノズル表面におけるシリコン堆積を実質的に除去するために種々に組み合わされて使用される。
噴流チャンバーの堆積の可能性は、噴流ノズルを噴流チャンバー中に突出させること、それにより、噴流の周囲の動きを改善し、シリコン含有ガスとチャンバー壁との間の接触を減少させることにより、減少させることができる。突出したノズルは、シリコン粒子または粉体が付着するよどんだ領域を最小化し、一方、突出部の周囲の粒子の動きからの浸食を最小化するよう設計される。二次オリフィスは、さらに、一次ノズルの周囲の堆積の危険性を減少するために付加される。
噴流チャンバー中でのシリコン堆積の形成の減少あるいは除去は、そのため、噴流ノズル近傍の二次ジェットの使用、噴流チャンバーの設計、噴流ノズルの設計およびそれらの組合せを通じて、各噴流ノズルでの、あるいは、その近傍でのよどんだゾーンをなくすことによって達成できる。さらに堆積の恐れを減少させるためには、噴流ノズルを冷却することができる。
リアクター中における粒子上のシリコンの堆積を達成するためには、流動化ガスが、「シリコン含有ガス」、すなわち、シラン(SiH)、ジシラン(Si)、高次シラン(Si2n+2)、ジクロロシラン(SiHCl)、トリクロロシラン(SiHCl)、シリコンテトラクロライド(SiCl)、ジブロモシラン(SiHBr)、トリブロモシラン(SiHBr)、シリコン テトラブロマイド(SiBr)、ジヨードシラン(SiH)、トリヨードシラン(SiHI)、シリコン テトラヨウ化物(SiI)、および、それらの混合物から構成されるグループから選択されるガスを含む。流動化ガスは、また、塩素(Cl)、塩化水素(HCl)、臭素(Br)、臭化水素(HBr)、ヨウ素(I)、ヨウ化水素(HI)、および、それらの混合物から構成されるグループのいずれかのガスのような、「ハロゲン含有ガス」を含むことができる。最後に、流動化ガスは、窒素(N)、水素(H)、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、あるいは、それらの混合物のような「不活性ガス」を含むことができる。ノズルおよびオリフィスのいかなるセットをも通してリアクターに供給されるガスの総量は、流動化ガスを構成する。大きな粒子は排出用の底部に分離される一方、容器中の粒子の少なくとも大部分を流動化させるために十分な流動化ガスの量を供給することが最良である。
また、噴流に供給されるシリコン含有ガスの量は、リアクター内の粒子上への望ましいシリコンの堆積を維持するのに十分な量であるべきである。
シリコン含有ガスからのシリコンは、ベッド中多結晶シリコン(ポリシリコン)としてシリコン粒子上に化学気相堆積を通じて維持するが、一様に分解もし、微小粒子への細く、凝集を通じてシリコン粒子上に堆積するか、あるいは、排気ガスとともにダストとして排出されるシリコン粉体を形成する。化学気相堆積も捕捉も、リアクター容器中にシリコン粒子をもたらす。リアクター容器中の平均粒子径は、選択的に大きな粒子を除去すること、リアクター(自然播種)中に新しい微小粒子(種)を作製すること、除去された生物から分離された種をリサイクルすること、除去された生産物の部分を粉砕して作製した種をリサイクルすること、および、それらの組合せによって、望ましい粒子径の近傍に維持される。
分解温度は、壁面ヒーターによる方法、一例としてマイクロ波のような他のエネルギー源による方法、シリコン含有ガスおよび他の流動化ガスを予熱し、加熱したガスをリアクターのセクションに加える方法、それらを組み合わせた方法を含むいくつかの方法で、リアクターに供給される。他の熱源は、少なくとも1つの二次オリフィスを通して反応性物質を注入し、噴流の領域で反応性物質の発熱反応から放出されるエネルギーによって噴流の領域を加熱し、それにより、噴流中の粒子を加熱する。リアクター温度は、使用すべきシリコン含有ガスに対する分離温度から堆積温度の範囲内にすべきである。シリコン含有ガスとしてシランまたは高次シランを使用した生成物に対しては、最適性能は450℃以上の温度で得られる。走査温度は、シリコン含有ガスおよび他の生産物の要求に従って0.1barから10barの範囲である。
図1は、シリコン製造のため複数に増加させた沈降噴流流動層リアクター容器10を示している。図2および3は、容器の底部(ガス入口)から頂部(ガスおよび粉体出口)の4つの領域を含むチャンバーを規定する。最も下部の領域は、流入した流動化ガスが噴流ノズル18から入る噴流チャンバー(I)である。図示したシステムは、単一の噴流チャンバー中3つの平行噴流12を作製する3つの噴流ノズルを有する。ここで議論するように、他の構成は、1つあるいはそれ以上の分離した噴流チャンバーの各々に1つあるいはそれ以上の独立してコントロールできる平行な噴流を用いることができる。噴流チャンバー14は、噴流の循環を安定させるような形状の壁16によって規定され、1つあるいはそれ以上の二次オリフィス20によって囲まれた噴流ノズル18を含む。1つあるいはそれ以上の製品出口22は、出口ライン24を介してリアクターの底部に蓄積される大きな粒子を排出するために設けられている。この生産物出口ライン24は、ガス供給ライン27から供給され、それらが重力で製品扱い部まで流れるように製品としての粒子の埃を取るための逆方向のガス流れ26を有する。最も好ましいガスの流れ26は、ハロゲン含有ガス、不活性ガスまたはそれらの混合物から構成される。より速い速度がより微小な粒子を取り込み、それらをリアクターに戻してリサイクルするために使用される。
噴流ノズル18を通して注入されるガスは、ノズルからのガスおよび粒子の低濃度の上向きの流れ(噴流)12、および、噴流を囲み、チャンバー壁16で規定された環状の領域28中の粒子の高濃度の下向きの流れ、を有するチャンバー14内における沈降噴流循環を作り出す。環状部28内において下向きに流れる粒子は、ノズル18から上向きに移動するガス中に再び取り込まれ、そのため、他のループの噴流12に再び入る。シリコン含有ガスをシリコンに変換する際の重要な部分は、噴流領域14特に噴流12内で起こり、シリコンは、粒子上に堆積するか、または、核形成または摩耗を経て粉体に変換される。
噴流チャンバーの上端は、遷移領域(II)の始まりである。各噴流30の頂部は、遷移領域(II)中に開放される。これは、下側の発達した噴流12と上側の発達した一般的な流動層ゾーンとの間の領域である。遷移は、相関関係から推定され、冷間不活性テストで検証された、最大噴流高さの近傍に位置する。最も好ましい噴流頂部30は、遷移領域に位置する。この領域を規定する壁32は、円筒形状またはテーパー形状またはそれらの組合せから形成されるが、最良の結果は、遷移領域内においてある種のテーパー形状の拡大部を用いることで達成される。テーパーは、水平(0°)から急峻(約45°)までの広い角度範囲を有することができるが、通常は、特定の安息角近辺またはそれよりも急な角度である。角度が小さすぎると、粒子は遷移壁32上で落ち着き、凝集する。テーパー形状の拡大部は、全面積を増加してガスの速度を減少させ、その結果、大きな粒子は、それらが噴流中で成長し続けることができ、均一に除去される噴流チャンバーに重力により再び分離される。
遷移領域は、上側の高濃度の流動層領域(III)にガスおよび粉体を移動させるとともに、上側の高濃度の流動層領域(III)と粒子を交換する。流動層領域(III)内のリアクター壁は、バブリング流動層中にビーズを含むような大きさおよび形状となっている。特に、流動層領域の面積は、低速のバブリング層を維持するのに適切な表面速度を持つように設計されており、その結果、粒子の大部分は十分に混合され、一方、大きな粒子は、底部に向かって分離され、遷移を通じて噴流層に入る。目的は、バブル40として定義された、ガスおよび粒子の低濃度ポケットが上向きに流れ、エマルジョン42として定義された、ガスおよび粒子の高濃度の連続対を撹拌する高濃度相のバブリング流動層中に粒子を維持することである。減少したガス速度は滞留時間を増加し、残留シリコン含有ガスの追加の変換を起こす。バブリング動作により生じる活発な混合は、ガス中の粒子と加熱粒子との間の優れた接触を作り出し、そのために、それらは存在する粒子上に捕捉またはアニールされることで粉体を捉えることができる。粉体の粒子は、また、それらの上に凝集し、種材料として作用する微小粒子を形成する。両方のメカニズムは、さらに、変換されていないシリコン含有ガスからのシリコンの堆積によって促進される。また、噴流と流動層との間で通常の混合により粒子の交換がある。バブル40は、それがベッドを介して立ち上がるように、合体して成長する。望ましいベッドの高さに従って、ベッド領域内に1つ以上の付加的なテーパー拡大部が存在し、さらに、上に向く流動化速度を減少する。ガスの十分な総流量は、バブリング流動層中の噴流より上に粒子を流動化させるために、噴流ノズルおよび二次オリフィスを通じて維持すべきである。しかしながら、流動層領域の容器壁を通っていくつかのポート44が存在する。追加のガスをこれらのポートを通して流動層領域に加えることができ、熱または特別な流動を与えるか、あるいは、自然播種のための摩耗を促進する。ポートは、また、種として微小粒子または凝集した粉体をリサイクルするために使用されたり、特別な装置を導入するために使用されたり、場合によっては、噴流チャンバーにおいて製品出口22からではなく、異なる粒径分布の製品を排出するためにも使用される。必要な場合は、内部装置をこの領域に付加することができ、よりスムーズな流動化および特別の加熱表面を促進する。
バルブ40は、流動層から低濃度のフリーボード領域(IV)に解放される。フリーボード領域(IV)において、微小粒子はガスとともにベッド(III)から排出されるが、大きな粒子は自由になりベッドに戻る。ガスの速度よりも低い終端速度を有する微小粒子または粉体は、排出ガスとともに外に排出される。フリーボード領域には、その上に、いくつかのポートが存在する。2つの主要なポートは、粒子供給ポート46およびガス出口48である。最も好ましい粒子供給ポートは、スプラッシュゾーン上に位置され、最も好ましいガス出口は、上昇による取り込みが安定する高さである移動解放高さより上に位置される。流動層領域(III)と同様に、他のポート44を、例えば、微小粒子をリサイクルするために、あるいは、装置を付加するために、追加することができる。
噴流チャンバー上の3つの領域である領域(II)、(III)および(IV)は、ここでは、「上側のベッド領域」として集合的に参照する。
容器10およびここに記載された他の容器は、予想される圧力、温度および要求あるいは他の構造上の拘束条件を受け入れることのできるいかなる材料によっても構成することができる。容器は、高いシリコン濃度を有する例えば高温用の石英を有する材料で作製される。あるいは、容器構造は、限定はされないが、インコロイ(登録商標)合金およびハステロイ(商標登録)合金のような高温用の金属合金で構成される。内部壁50は、動作温度に耐えるとともにシリコン粒子が容器壁と接触することを保護する材料で部分的に被覆されてもされていなくてもよい。そのような被覆層は、限定するものではないが、単結晶および多結晶シリコン(Si)、シリコンカーバイド(SiC)、シリコンカーバイドで被覆されたグラファイト(C)、シリカ(SiO)およびシリコンナイトライド(SiN)のような高いシリコン温度を有するいかなる材料からも形成される。他の非シリコン材料は、限定するものではないが、タングステンカーバイド(WC)およびモリブデン(Mo)を含む。この内部被覆層の第1の目的は、容器内あるいは容器の領域内、特に、粒子濃度が最も高い領域(I)から(III)内において、シリコン粒子と当接する非汚染表面を提供することである。
熱は、通常、例えば抵抗壁ヒーター52により各領域のリアクターの内壁50を加熱することによって、加えられる。他の方法として、限定はされないが、リアクターに入るガスを予熱する方法、ガスおよびリアクターの部分をマイクロ波加熱する方法、放射熱または化学反応熱により方法をとることができる。リアクターに加えるエネルギーを保つために、それを絶縁層54で囲むことが好ましい。
図2A、4Aおよび4Bはある噴流チャンバーの詳細を示している。シリコン含有ガス、ハロゲン含有ガス、不活性がすあるいはそれらの混合ガスは、噴流チャンバー14、14a、14b内に噴流循環パターンを生成するのに十分な流速で、垂直方向の噴流ノズル18、18a、18bを通してリアクターに入る。循環パターンは、噴流チャンバー14、14a、14b内においてノズル18、18a、18bから上向きに流れる低濃度のガスおよび粒子の混合によって特徴付けられる。この特徴は噴流12、12a、12bであり、それがジェットの翼形状の特徴ではなく狭く延びている点で、流動層の分配ジェットとは異なっている。さらに、噴流は、通常の分配ジェットのように変動せず、連続して安定している。沈降噴流は、それが最大高さに達すると最終的に崩壊し、分解してその上の遷移ゾーンに入る。低濃度の噴流は、噴流チャンバーの壁16、16a、16bに沿って再び噴流入口18、18a、18bまで下降する同芯で環状の高濃度の粒子28、28a、28bの流れによって囲まれる。噴流ノズル18、18a、18bを通るガスの流速は、「最大噴流高さ」を維持しつつ「最小噴流速度」以上の流速を達成するよう設定され、そのため、噴流30の頂部は、噴流チャンバーの端部を超えて遷移領域(II)へは実質的に延びない。最小噴流速度および最大噴流高さの両者は、噴流層の資料中の相関関係およびテストで検証された相関関係から推定される。
噴流ノズルの適切な設計は安定した噴流を提供する。通常、ノズルは、高い速度に対し設計されるが、最大のコントロールを許容する制限された圧力のドロップに対して設計されていない。常に必要というわけではないが、可能な限り噴流を安定化するために、ノズルの近傍の制限部56、56bから排出させることは効果的である。この制限部は、図示の例ではテーパー形状の径減少部であるが、制限部を設けない例から鋭いエッジ形状のオリフィスおよび噴流特性を促進する回転または他の付加的な動きを加える制限部を有する複雑な設計まで、多くの他の構成が可能である。
図5はノズルをより詳細に示しており、ノズルは噴流ノズル18の周囲に冷却チャンネル58を有することができる。この構成は、噴流ノズルのガスを可能な限り堆積温度に近づけるよう予熱した時の、ノズル18の周囲のシリコン堆積温度以下に表面温度を維持するとともに、たぶんそれ以上に二次ジェットの温度を維持する。シリコン堆積温度以下に表面温度を維持することは、ノズルの表面上へのシリコンの堆積を避ける。
噴流ノズル18bは、図4Bおよび6に示すように、噴流チャンバー内に突出できる。これは、さらに、シリコン含有ガスと加熱された噴流チャンバー壁とが接触することを避ける。突出部は、容器へのガス入口の先端として定義され、噴流チャンバー内に残っている、ノズル18bの先端19bの長さのうちいかなる長さにもできる。そのため、先端部は遷移領域に延びることはできない。
各噴流ノズルの周囲には、図2Cおよび3に最良の実施例を示しているように、1つ以上の二次オリフィス20がある。不活性ガス、ハロゲン含有ガスまたはそれらの混合ガスは、二次オリフィス20を通して入り、よどみはシリコンの堆積および生産の障害になるため、噴流ノズル近傍で環状の領域における粒子の動きを促進および維持するジェット60を生成する。これらの二次ジェット60の主な使用は、噴流ノズル18近傍の領域を希釈し、粒子の循環を促進し、噴流ノズルの周囲の粒子の動きを高めることで、樹状突起形成サイトを形成しないようにする。二次ジェットは、シリコン含有ガスが、臨界核生成温度よりかなり高い温度のリアクターに導入され、堆積にセンシティブな場合に、特に有益である。そのようなよどんだ領域と組合せられる堆積は、生産を中止させる重大なシリコンの堆積に最終的につながっている。適切な位置に配置された二次ジェットは、シリコン堆積物の成長を阻害する。
凝集およびシリコン堆積の最も高い可能性のある領域62が、図2Bに示されている。最も重要な領域は、高濃度のシリコン含有ガスが、臨界核生成温度よりも高い温度で壁またはよどんだ粒子と接触する噴流ノズル18の近傍であるが、この領域は噴流チャンバー壁16の大部分を包含している。二次ジェット60が噴流12への粒子の引き込みを促進するため、噴流粒子濃度を増加させる。このことは、粉体生産の代わりに粒子成長へ変換をシフトするシリコン堆積速度を改善する。そのため、二次ジェット60は、また、一般的な操作およびコントロールにおいて有益である。
図5は二次オリフィス20の垂直方向に対する角度αを示しており、図7は水平面におけるジェットの方向βを示している。図5は、噴流近傍の粒子を噴流内で流すために、噴流18に向かって傾いたジェット60を有する一実施例である。垂直に対する角度αは、90°を垂直方向であるとすると、すなわち、図5に示すようにノズルの中心線64と平行方向であるとすると、約15°から165°の間で変化する。図4Aは、実質的に垂直方向に延びるジェット60aを示している。図7は、上から下向きに見たときに、ジェットが向く可能性のある方向を示している。頂部から見たとき、各ジェット60は、噴流ノズルの中心線64に放射状内側に向く方向(水平角度β=0°)から放射状外側に向く反対の方向(β=180°)までのいかなる方向へも向くことができる。言い換えると、二次オリフィス20は、0°がそのライン自体であるとしたとき、オリフィスの中心線と噴流ノズルによって形成される噴流の中心線64との間のラインに対し、0°から180°の角度で水平方向に延びるジェットとして、ガスをチャンバー内上方に注入するよう位置決めされる。図7において、2つの取り得る可能性のある水平方向が、各オリフィス20に対して示されている。示された第1の取り得るジェット方向は、放射状内側に向く、水平角度β=0°の方向である。示された第2の取り得るジェット方向は、噴流の周囲に渦巻き動作を促す、水平角度β=約50°の方向である。図7は図示の都合上2つのジェット方向を示しているが、実際には、図示した各オリフィス20は単一のジェットのみを形成する。あるジェットの方向は、上述した垂直角αおよび水平角βの種々のバリエーションをとることができる。
二次オリフィスは、すべて、図1−3に示されるように、都合良く同じ高さに配置されている。あるいは、より細かいコントロールをするためには、二次ジェットは2つ以上の高さに配置することができる。例えば、図6Aは、単一の突出した噴流ノズルと、垂直方向に向くジェット60cを生成する垂直方向の下部に設けられた二次オリフィス20cと、角度の付けられたジェット60aを生成する上部に設けられた角度の付けられた二次オリフィス20aと、を備えるシステムを示している。
二次オリフィスの設計の一例が図5に示されている。通常、ガス供給路の長さは、二次オリフィス20の直径の少なくとも数倍であり、そのため、樹状突起の除去に好適な芳香性のあるジェットの形成が可能となる。オリフィス20は、望ましい流れのパターンおよび噴流チャンバー全体の設計に従って、丸形状、楕円形状、矩形形状あるいはその他の形状をとることができる。
通常、二次オリフィス内に内部部材は存在しないが、噴流の安定性、噴流の循環、噴流の環状の物質移動を促進するように、流れを偏向させるために内部部材を加えるオプションもある。各オリフィス20は、オリフィスから噴流ノズル開口までの最大でも約0.2cm以上の水平方向の距離を持って、噴流ノズル18から横方向に間隔を開けて設けられている。最も良い例として、二次オリフィスは、噴流ノズルの表面より高い高さに位置し、二次オリフィスで形成されたジェットが噴流および/または噴流の循環の形状に影響を与えるような噴流ノズルからの距離に配置すべきである。場合によっては、ハロゲン含有ガスを注入し、容器の壁が噴流の領域中でエッチングされるように、少なくとも1つの二次オリフィスを配置することが有益である。最も好ましい配置は、望ましい流れのパターンおよび噴流チャンバーの全体の設計に依り決定される。
図4−6は、噴流ノズル18を囲む二次オリフィス20のセットにガスを供給するための一般的な開放プレナム66を示す。他のオプションは、限定されるものではないが、噴流を安定にし、噴流と環状部分との間の物質移動を増すための渦巻き動作を提供するために、二次プレナムに内部部材を加えることを含む。さらに他のオプションは、各オリフィスに均一な流れの分配を保証するようにプレナムの内部部材を付加することであり、プレナムを除去し、各オリフィス20に個別の流量コントロールを使用するオプションも含む。
最も良い態様として、噴流チャンバー14の形状は、環状部分28中の良好な連続した粒子の流れを促進するよう選択される。上方の噴流の流れを囲む環状部に沿って、連続した高濃度の粒子の下方流を得ることが望ましい。粒子が凝集する傾向がある場合は、よどんだ領域の生成を避けることが重要となる。
粒子は、噴流中に再導入するため噴流ノズルに向いてガイドされるべきである。図4Aおよび4Bは、この問題に対するたくさんの解法のうちの2つを示している。図4Aに示す急峻な楕円形状は、環状の壁16aに沿ったスムーズな流れの形成および最終的にノズル18aに再び戻ることを保証する。図6Aおよび6Bに示された、角度γの円錐形状の底部は、同じタイプの流れを達成するが、切り立った角度はよどんだ粒子を助長するゾーンを形成する。噴流チャンバーにおいて、噴流は高濃度のシリコン含有ガスを有しており、もし噴流が加熱されたリアクター壁に近づかなければ、過度の堆積を引き起こすため、噴流からリアクターまでの安全な距離を維持することが最も好ましい。そのため、スムーズな粒子の流れの促進に加えて、壁から噴流までの間をある距離に保つことが最も好ましい。これが、チャンバー底部の噴流ノズルの近傍をほとんど角度がない表面あるいは平坦な表面にすることを勧める理由である。円錐形状の底部の極端な場合は、円周角度γが0°のときである。これは平坦な底部を有する噴流チャンバーと呼ばれ、その一例は図4Bに示されている。他のアプローチは、険しさを増加させる複数の円錐を有する底部を設けることである。噴流チャンバーを設計して、粒子が過度に腐食される高い衝撃や高い流速の領域の形成を避ける一方流れ流れが維持されるようにすることが有益である。図6Aに記載されているように、突出したノズル18bは、また、壁までの距離を増加して、壁への堆積のリスクを減少させる。
材料の選択を含む、他の検討が、ハロゲン含有ガスが蓄積し、腐食の増大が予測される領域の形成を避けるために行われる。もし噴流チャンバーの直径が広すぎると、熱伝達を減少させ、凝集および最終的には樹状突起の形成を起こさせる、壁16近傍の粒子のよどみ層が存在することとなる。的確な寸法は、望ましい噴流サイズおよび流速に従うものであり、噴流層および実験結果における相関から噴流層の技術に詳しい人によって推定される。直径をシリコン含有ガスとの接触を避けるために広くする必要がある場合は、環状部分を流動化するための動きを、付加的に二次ガスによって導入することで行うことができる。
図1−3に示されているように、噴流チャンバー内で分離する大きな粒子を優先的に排出することを保証するために、噴流12の近傍に、噴流チャンバーの底部近傍に配置された製品出口22が存在する。製品の排出が噴流粒子の動きを止めないように注意すべきである。小さな上方への流れは排出ガス導入ポート27から製品出口22に導かれ、製品とともに除かれるダストの量を最小にする。流れがダスト除去に十分であることが最も好ましく、十分に低いと、噴流循環を妨げることはない。出口22は、噴流チャンバー14の3つの葉部に対する共通の出口である。この場合、出口および共通セクションからの影響を最小にするために、噴流チャンバーおよび出口の設計に注意すべきである。循環の衝撃および噴流の安定性を最小化するため、噴流チャンバー内に付加的な挿入物またはポートは存在しない。
熱は、例えば米国特許No.5,810,934に記載されているように、多くの方法でリアクターに加えられる。加熱の第1のモードは、噴流ノズルおよび/または二次オリフィスを通って注入されたガスを予熱し、図1に示されているように、壁ヒーター52でリアクターの壁50を加熱することである。これらのヒーター52はリアクターに沿って全ての部分に配置させることができるが、最も好ましい態様では、限定されるものではないが、そこで熱伝達効率が最も良くなるように、高濃度の十分に混合された粒子が存在する部分(領域I−III)の壁に沿ってのみ配置する。熱ガスは、また、付加的なポート44を通じて流動層領域内に加えられる。リアクターは、熱のロスを最小にするために、絶縁層54によって囲まれるべきである。絶縁層54は広い範囲の種々の材料から構成できる。
複数の噴流は、開構造または閉構造の2つの大きなカテゴリー内において、多くの異なる方法で設けられている。図1−3は、共通の中央底部出口22の周囲に同信条に配置された3つの同一の葉部を有する噴流チャンバー14を備える開構造の設計を示している。各葉部は、噴流ノズルの周囲における噴流/環状粒子の動きを促進するよう明確に形成されており、一方、周囲の部分は、他のチャンバーを備える中央共通出口に対して開かれている。チャンバー14が中央出口22に対し開かれているため、それらは容器の中央において下降流環状部29を共有している。各噴流12は、はっきりと識別でき、最も好ましい態様として、個別のガスの流れでコントロールされる。独立している噴流12の間である程度の粒子が混合するが、これは、複数噴流層の設計基準に従って間隔を開けているため、噴流の不安定さを生じさせない。ある噴流の他の噴流に対する影響を最小化するため、一方のノズル中心線から他方のノズル中心線までの距離は約10cm以上にすべきであり、大きい市販のリアクターの場合は、オリフィスの濃度を50噴流/m以下に維持することが最良である。図2は、葉部の1つにおける独立した噴流の流れパターンを示している。この開放設計は、図示された3つの葉部を有する噴流チャンバーに限定されないが、適切な生産コントロールでより多くの独立した葉部を維持するためには、いくつか実際上の制限がある。1つ以上の二次オリフィス20を各噴流ノズルに設けることもできる。1つ以上の二次オリフィス20を設けた場合、二次オリフィスは、噴流ノズル18を囲むように、間隔を開けて配置されている。開放設計の付加的な効果は、摩擦を増加させて自然播種の程度を増加させることのできる共通の環状ゾーンの間の相互作用の効果である。
図8および9に詳細に記載されているように、閉構造は、2つ以上の個別のの噴流チャンバーを有している。図示された噴流チャンバー114、114a、114b、114cの各々は、お互いに完全に分離している。図示したシステムにおいて、各噴流チャンバーは1つの噴流を含んでいるが、他の実施例では、2つ以上の噴流を噴流チャンバーに含ませることもできる。各噴流チャンバーは、共通の出口170に流れを供給する、噴流ノズルに近接して設けられた個別の製品出口122を有している。システムは、また、別個に設けられた遷移領域(II)および/または共通の流動層領域(IIIb)に解放される別個に設けられた流動層領域(IIIa)を備えるように設計されている。遷移ゾーンの図示した寸法は一例として記載したものであって、他の高さや形状をとることができる。共通の製品出口ヘッダー172は、排出ガスインジェクターノズル176から強い反対方向へのガス流174を有しており、垂直あるいは垂直に近いポート178を通してリアクターのフリーボードおよび主となる流動層に基準よりも小さい粒子を吹き戻す。このポート178は、また、オーバーフローにより主となる流動層の最大ベッド高さを保証するために用いられている。図9A、9Bおよび9Cは、3つの実施例において、遷移領域を有する複数の噴流チャンバーがどのようにして共通の流動層と接続しているのかを示している。図示した種々のシステムは、単なる実施例であり、これらに制限されるものではなく、また、他の構成を除外するものでもない。
リアクターは、各噴流チャンバーのガスの流れに対し個別のコントロールを有しており、噴流安定性の完全なコントロールを行っている。図10は、図1−3に示す開構造のリアクターに対する、そのような実施の可能性のある流量コントローラシステムを示している。例えば、シリコン含有ガス、ハロゲン含有ガスおよび不活性ガスの予熱された混合ガスは、各ガス源供給ライン82上の個別に設けられた流量コントロール80を使用して、各噴流ノズル18に導かれ、各ノズル18に対し適切で安定な流量を保証する。さらに、各ノズルに対する個別のガス流量さらには温度を個別にコントロールすることも可能である。そのような構成の効果は、噴流のいずれかで圧力または流れの異常が認められた場合に、シリコン含有ガスおよびハロゲン含有ガスを、不活性ガスを噴流速度内に維持した状態で、遮断することができることである。図1−3に示すような開放設計は、3つのノズルすべてにおける連続した噴流が最適な流れパターンを維持する助けとなるため、そのような流量コントロール構成よりも効果がある。図8に示すような閉設計はより寛容であり、うまく動作しない噴流の完全なシャットダウンを許容する。各二次ガス供給ライン86における個別の流量コントロール84は、各二次オリフィスに対し適切で安定なガスの流れを保証するために使用される。二次流れにおける圧力または流量の異常は、また、噴流チャンバーに対するシリコン含有ガスまたはハロゲン含有ガスの供給停止を保証する。前述したように、各噴流チャンバーに対し、噴流チャンバー内のオリフィスのセットに対する総流量をコントロールするだけで通常は十分であるが、独立した二次オリフィスを個別にコントロールすることもオプションとして考慮することができる。
独立したガス供給コントロールの他の例も、また、有益である。温度は、通常はハロゲン含有ガスと不活性ガスとの予熱された混合ガスである、二次オリフィス20を通して導入されるガスの制御によって、コントロールすることができる。あるいは、冷却されたガスを、適切な場合に、二次オリフィスを通して注入することもできる。不活性ガス、特に、アルゴン、窒素あるいはそれらの混合のようなガスは、二次オリフィスを通して注入され、反応容器内の水素の分圧を減少させる。そして、前述したように、1つ以上の二次オリフィスを通してハロゲン含有ガスを選択的に注入し、噴流の領域において容器の壁がエッチングされる状態を保持することは、時々有益な手段となる。
実施例1:樹状突起の形成を除去するための冷却ノズルの影響
リアクターシステムは、図1−3に示すように、共通の中央出口を囲む3つの噴流を有する開構成のシステムを用いた。各ノズルの先端を、表面温度を100℃をほとんど超えない温度に保持するために、水冷した。各噴流ノズルから、300°に予熱された、600slmの流量の水素および100slmの流量のシランの混合物を供給した。200℃に予熱された約100slmの流量の水素を、ノズルの周囲の6つの二次オリフィスのセットのそれぞれに、供給した。フリーボード領域(IV)の圧力を、0.35bargにコントロールした。噴流領域の壁は約650℃であり、一方、流動層領域の壁の温度は700℃より十分高い温度であった。測定したベッド温度は約690−700℃であった。数日間の操業の後、一次ノズルおよびその近傍に堆積のサインはなかった。
ノズルの冷却を止めた時、同じ条件のもとたったの数日でかなりの堆積が起こるものと思われる。
実施例2:突出ノズルにおける二次ガスの影響
リアクターシステムは、実施例1と同様に開構成であったが、ノズル先端の冷却は行わなかった。ノズルは、図4Bに示すように、噴流中に数インチ突出していた。
各噴流ノズルから、150℃に予熱された、600slmの流量の水素と100slmの流量のシランの混合物を供給した。各噴流ノズルを囲む6つの二次オリフィスに、水素を供給しなかった。フリーボード領域(IV)の圧力を、0.35bargにコントロールした。噴流領域(I)の壁は、堆積を最小にするために、臨界核生成温度以上でTamman温度以下に加熱され、一方、流動層領域(III)の壁の温度は、粉体の除去およびアニーリングを促進するために、Tamman温度以上のかなり高い温度に加熱された。測定した噴流環状温度は675℃であり、ベッド遷移温度は690℃であり、流動層温度は710℃であった。ほんの数日の操業の後生産を中止したとき、ノズルを囲む表面に、1ノズル当たり0.3kgとかなりの量の堆積があり、ノズル上で成長し始めていた。このことは、堆積を除去するために二次ガスが必要なことを明示している。
各噴流ノズルを囲む6つの二次オリフィスのセットのそれぞれに約100slmの流量の水素を供給した以外同じ条件下で操業したところ、14日の操業の後でも、ノズルおよびその近傍に堆積のサインはなかった。
実施例3:噴流の貫入および個々の噴流の挙動の検証
リアクターシステムは、リアクターの代わりに透明なプレキシグラスのカラムを用いた以外、実施例1、2に近似したシステムを用いた。一次ノズルの直径は0.375”であった。流れはすべて実際の窒素であり、ベッド上の圧力は0.2atmであった。
これらのテストの目的は、噴流の貫入高さと文献データとの相関関係を検証することであった。噴流の貫入流れは、与えられた粒径分布とベッドレベルに対し一次ノズルの流量を増加させることにより決定した。噴流がベッドに貫入した時点の流れを、その噴流の高さが最小の流れとした。
第1のテストのセットは、平均粒子径0.95mmのビーズを用いて行った。
1)50kgのビーズを静止ベッド高さ45cmを許容するリアクターにチャージした。
2)3つの第1のノズルに対する窒素の総流量を1000smlから1700slmの間で変化させ、一方、二次オリフィスに対する窒素の総流量を100から300slmの間で変化させた。
3)45cmの高さでテストを完了した後、静止レベルを約33cmまで下げ、17kgを除去した。流量の変化を繰り返した。
4)45cmの高さでテストを完了した後、静止レベルを約20cmまで下げ、13kgを除去した。流量の変化を繰り返した。
第2のテストのセットは、平均粒子径0.5mmのビーズを用いて行った。
1)50kgのビーズを静止ベッド高さ45cmを許容するリアクターにチャージした。
2)3つの第1のノズルに対する窒素の総流量を1000smlから1700slmの間で変化させ、一方、二次オリフィスに対する窒素の総流量を100から300slmの間で変化させた。
3)45cmの高さでテストを完了した後、静止レベルを約33cmまで下げ、17kgを除去した。流量の変化を繰り返した。
4)45cmの高さでテストを完了した後、静止レベルを約20cmまで下げ、13kgを除去した。流量の変化を繰り返した。
Figure 0005086256
各ベッドレベルでの測定した噴流の貫入流れを、文献から知られるいくつかの相関値とともに表1に示す。主な観察結果は以下の通りであった:
−0.95mmのビーズを使用すると、システムは、3つのノズルすべてにおいて、クリアな噴流を有する十分に噴流化したベッドと似た振る舞いをする。噴流高さおよび流量は、大規模システムに対する相関関係がマッチする。
−より小さい粒子を使用すると、実際上噴流はないが、ベッドは十分に流動化した。これは、オリフィスの直径が正常な噴流に対する平均粒子径の25倍未満であることが必要な場合の相関関係に一致する。この場合、ノズルは平均粒子径より約20倍大きく、そのため、噴流は、存在していたとしても、大変小さいものと考えられる。
−二次流れの大きな効果がある。二次流れを増加させると、噴流中の固形物の量を増加させることによって、噴流を広げ、噴流速度を遅くできる。この効果は、噴流化がより一般的な大きい粒子においてより顕著となる。
種々の実施例をここに記載したが、多くの変更や変形を、当業者の一般的に共通な知識に従って、本発明の範囲内において行うことができる。そのような変形は、実質的に同じ方法で同じ結果を達成できるように、本発明の実施例に対し公知の同等物の置き換えを含む。
図1は、楕円状のチャンバー、3個のノズルおよび中央の排出部を有する、シリコン製造のため複数に増加させた沈降噴流流動層リアクターの開放構造の断面正面図である。 図2Aは、図1の噴流チャンバーの拡大した部分断面正面図である。図2Bは、コントロールできないシリコン堆積が起こる可能性のある領域(斜線部分)を示す、図1の噴流チャンバーの拡大した部分断面正面図である。図2Cは、図1の1つの噴流ノズルの拡大した部分断面正面図である。 図3は、図1の3−3ラインに沿って切り取った拡大部分断面正面図である。 図4Aは、単に単一のノズルと側面の排出部とを有するシリコン製造のための沈降噴流流動層リアクターに対する楕円状の底部を有する噴流チャンバーの断面正面図である。図4Bは、単一の突出したノズルと側面の排出部とを有するシリコン製造のための沈降噴流流動層リアクターに対する平面状の底部を有する噴流チャンバーの断面正面図である。 図5は、シリコン製造のための沈降噴流流動層リアクターに対する二次的オリフィスを有する噴流流動層の噴流ノズルの断面正面図である。 図6Aは、単一の突出した噴流ノズル、垂直方向下側の二次的オリフィス、角度を付けた上側の二次的オリフィスおよび側面の排出部を有するシリコン製造のための沈降噴流流動層リアクターに対する円錐形状の底部を有する噴流チャンバーの断面正面図である。図6Bは、単一の噴流ノズル、角度を付けた二次的オリフィスおよび側面の排出部を有するシリコン製造のための沈降噴流流動層リアクターに対する円錐形状の底部を有する噴流チャンバーの断面正面図である。 図7は、6個の二次的オリフィスを有する噴流流動層の噴流ノズルを示す、沈降噴流流動層リアクターの上から見た断面図である。 図8は、それぞれが単一のノズルを有する、複数の楕円形状の底部を有する噴流チャンバー、側面の排出部および可能性のある中央オーバーフローに対する排出部を有するシリコン製造のため複数に増加させた沈降噴流流動層リアクターの綴じた構造の断面正面図である。 図9Aは、図8の9−9ラインに沿って切り取った図を縮小して示す断面図であり、各々が中央出口への側面の排出部を有する4個の独立した噴流チャンバーを備える実施例を示している。図9Bは、図8の9−9ラインに沿って切り取った図を縮小して示す断面図であり、各々が中央出口への側面の排出部を有する6個の独立した噴流チャンバーを備える実施例を示している。図9Cは、図8の9−9ラインに沿って切り取った図を拡大して示す断面図であり、各々が中央出口への側面の排出部を有する10個の独立した噴流チャンバーを備える実施例を示している。 図10は、3個の独立してコントロールされる噴流ノズルと3個の独立してコントロールされる二次的オリフィスのセットとを有する、シリコン製造のため複数に増加させた沈降噴流流動層リアクターの開放構造に対する流量コントロールシステムの図である。

Claims (21)

  1. 複数のシリコン粒子と;
    粒子を収容するチャンバーを規定する壁を有する容器と;
    沈降噴流中で粒子を循環させるために、シリコン含有ガスをチャンバーの中に上向きに注入するよう位置決めされた開口を有する少なくとも1つの噴流ノズルと;
    噴流ノズルから横方向に間隔を開けて配置され、上向きに噴流に沿って延びるか、あるいは、噴流に向かって延びるジェットとして、ガスをチャンバー中に注入するよう位置決めされた、少なくとも1つの二次的オリフィスと;
    を備えることを特徴とする加熱シリコン堆積リアクターシステム。
  2. 各噴流ノズルの周囲に間隔を開けて配置された複数の二次的オリフィスを、さらに備えることを特徴とする請求項1に記載のリアクターシステム。
  3. 少なくとも1つの二次的オリフィスが、実質的に垂直方向に延びるジェットとして、ガスをチャンバー中に上向きに注入するよう位置決めされていることを特徴とする請求項1または2に記載のリアクターシステム。
  4. 少なくとも1つの二次的オリフィスが、90°がノズルの中心線と平行であるとしたとき、水平に対し15°から165°の角度で延びるジェットとして、ガスをチャンバーの中に上向きに注入するよう位置決めされていることを特徴とする請求項1−3のいずれか1項に記載のリアクターシステム。
  5. 少なくとも1つの二次的オリフィスが、オリフィスの中心線と噴流ノズルによって作られた噴流の中心線との間のラインに対し、0°がライン自身であるとしたとき、0°から180°の角度で水平方向に延びるジェットとして、ガスをチャンバー中に上向きに注入するよう位置決めされていることを特徴とする請求項1−4のいずれか1項に記載のリアクターシステム。
  6. 少なくとも1つの二次的なオリフィスが、ジェットが噴流の形状に影響を与える位置でジェットとしてガスを注入するよう位置決めされていることを特徴とする請求項1−5のいずれか1項に記載のリアクターシステム。
  7. 少なくとも2つの噴流ノズルと;
    各噴流ノズルに接続されるとともに、各噴流ノズルを通るガスの流れを個々に制御できる流量コントローラーと;
    を備えることを特徴とする請求項1−6のいずれか1項に記載のリアクターシステム。
  8. 噴流ノズルに近接して設けられた少なくとも2つの二次的オリフィスのセットと;
    噴流ノズルを囲む1つ以上の二次的オリフィスに接続されるとともに、1つ以上の二次的オリフィスに対するガスの流れを個々に制御できる流量コントローラーと;
    を備えることを特徴とする請求項1−7のいずれか1項に記載のリアクターシステム。
  9. 少なくとも1つの二次的オリフィスが、噴流に影響を与えるために、噴流ノズルの周囲から0.2cm以上離れるとともに噴流ノズルに十分近い、水平方向に位置することを特徴とする請求項1−8のいずれか1項に記載のリアクターシステム。
  10. チャンバーが:
    少なくとも1つの噴流ノズルと沈降噴流とを含む少なくとも1つの噴流チャンバーと;
    少なくとも1つの噴流チャンバーから上向きのガスの動きを受けるために、少なくとも1つの噴流チャンバーと連通するとともにその上に配置される上側のベッド領域と;
    を含む少なくとも2つの領域を有するよう構成されていることを特徴とする請求項1−9のいずれか1項に記載のリアクターシステム。
  11. 少なくとも1つの噴流ノズルが、チャンバーの床よりも上で上側のベッド領域よりも下に位置する先端部を有することを特徴とする請求項10に記載のリアクターシステム。
  12. 容器内の粒子上にシリコンを堆積させるためのプロセスにおいて:
    チャンバー中に噴流を形成し、沈降噴流層中に粒子を維持するように、噴流ノズルを通してシリコン粒子を含むチャンバー中に上向きにシリコンを含むガスを注入する工程と;
    シリコンを、シリコンを含むガスから粒子上に堆積させるために十分な温度で粒子を維持する工程と;
    噴流ノズルから横方向に間隔を開けて設けられ、噴流に沿って、噴流に向かって、まらは、噴流から離れるよう延びるジェットとして、ガスをチャンバー中に注入するよう位置決めされたオリフィスを有する、少なくとも1つの二次的オリフィスを通してガスを注入する工程と;
    を備えることを特徴とするプロセス。
  13. 噴流の形状に影響を与える少なくとも1つのジェットを作製するために、少なくとも1つの二次的オリフィスを通るガスの流れを規制して指向させる工程をさらに備えることを特徴とする請求項12に記載のプロセス。
  14. シリコン堆積物の成長を抑制する少なくとも1つのジェットを作製するために、少なくとも1つの二次的オリフィスを通るガスの流れを規制して指向させる工程をさらに備えることを特徴とする請求項12または13に記載のプロセス。
  15. 少なくとも1つの二次的オリフィスを通して注入する前にガスを加熱する工程をさらに備えることを特徴とする請求項12−14のいずれか1項に記載のプロセス。
  16. 少なくとも1つの二次的オリフィスを通して注入する前にガスを冷却する工程をさらに備えることを特徴とする請求項12−15のいずれか1項に記載のプロセス。
  17. 少なくとも1つの二次的オリフィスを通して注入されたガスが、容器内の水素の分圧を低減するのに好適なガスから構成されることを特徴とする請求項12−16のいずれか1項に記載のプロセス。
  18. 少なくとも1つの二次的オリフィスを通して注入されたガスが、アルゴン、窒素、またはそれらの混合物から構成されることを特徴とする請求項12−17のいずれか1項に記載のプロセス。
  19. 噴流の領域でエッチングされた容器の壁を維持するために、少なくとも1つの二次的オリフィスを通してハロゲン含有ガスを注入する工程をさらに備えることを特徴とする請求項12−18のいずれか1項に記載のプロセス。
  20. 噴流の領域で反応性物質の発熱反応から放出されたエネルギーによって噴流の領域を加熱するために、少なくとも1つの二次的オリフィスを通して反応性物質を注入する工程であって、反応によって生成されたエネルギーの総量が噴流中の粒子を加熱するのに十分である工程をさらに備えることを特徴とする請求項12−19のいずれか1項に記載のプロセス。
  21. バブリング流動層において噴流上の粒子を流動化するために、ノズルおよびオリフィスを通じてのガスの流れの十分な総量を維持する工程をさらに備えることを特徴とする請求項12−20のいずれか1項に記載のプロセス。
JP2008522948A 2005-07-19 2006-07-19 シリコン噴流流動層 Expired - Fee Related JP5086256B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70096405P 2005-07-19 2005-07-19
US60/700,964 2005-07-19
PCT/US2006/028112 WO2007012027A2 (en) 2005-07-19 2006-07-19 Silicon spout-fluidized bed

Publications (2)

Publication Number Publication Date
JP2009502704A JP2009502704A (ja) 2009-01-29
JP5086256B2 true JP5086256B2 (ja) 2012-11-28

Family

ID=37529310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522948A Expired - Fee Related JP5086256B2 (ja) 2005-07-19 2006-07-19 シリコン噴流流動層

Country Status (10)

Country Link
US (1) US20080220166A1 (ja)
EP (1) EP1924349B1 (ja)
JP (1) JP5086256B2 (ja)
KR (1) KR101363911B1 (ja)
CN (1) CN101316651B (ja)
AT (1) ATE456395T1 (ja)
DE (1) DE602006012064D1 (ja)
NO (1) NO20080729L (ja)
TW (1) TWI465600B (ja)
WO (1) WO2007012027A2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435188B2 (ja) * 2006-11-14 2014-03-05 三菱マテリアル株式会社 多結晶シリコンの製造方法および多結晶シリコン製造設備
JP5694927B2 (ja) * 2008-06-30 2015-04-01 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッドMemc Electronic Materials,Incorporated 反応炉壁へのシリコンの析出を低減する流動層反応炉システム及び方法
FR2937053B1 (fr) 2008-10-09 2010-12-17 Commissariat Energie Atomique Dispositif pour la synthese de nanoparticules par depot chimique en phase vapeur en lit fluidise
US8168123B2 (en) * 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
CN102438763B (zh) 2009-04-20 2014-08-13 江苏中能硅业科技发展有限公司 具有包覆有硅化物的金属表面的反应器
US8235305B2 (en) 2009-04-20 2012-08-07 Ae Polysilicon Corporation Methods and system for cooling a reaction effluent gas
US9023425B2 (en) 2009-11-18 2015-05-05 Rec Silicon Inc Fluid bed reactor
US20110158888A1 (en) 2009-12-29 2011-06-30 Memc Electronic Materials, Inc. Methods for reducing the deposition of silicon on reactor walls using peripheral silicon tetrachloride
WO2011116273A2 (en) * 2010-03-19 2011-09-22 Gt Solar Incorporated System and method for polycrystalline silicon deposition
KR101329030B1 (ko) * 2010-10-01 2013-11-13 주식회사 실리콘밸류 유동층 반응기
CN102205222A (zh) * 2011-03-25 2011-10-05 浙江合盛硅业有限公司 制取多晶硅的流化床反应装置
KR101329035B1 (ko) * 2011-04-20 2013-11-13 주식회사 실리콘밸류 유동층 반응기
KR101329032B1 (ko) * 2011-04-20 2013-11-14 주식회사 실리콘밸류 다결정 실리콘 제조장치 및 이를 이용한 다결정 실리콘의 제조방법
TW201304864A (zh) * 2011-06-10 2013-02-01 Rec Silicon Inc 高純度矽塗佈顆粒之製造
FR2977259B1 (fr) * 2011-06-28 2013-08-02 Commissariat Energie Atomique Dispositif a profil specifique de reacteur de type lit a jet pour depot par cvd
US8875728B2 (en) 2012-07-12 2014-11-04 Siliken Chemicals, S.L. Cooled gas distribution plate, thermal bridge breaking system, and related methods
CA2881640A1 (en) 2012-08-29 2014-03-06 Hemlock Semiconductor Corporation Tapered fluidized bed reactor and process for its use
US9587993B2 (en) 2012-11-06 2017-03-07 Rec Silicon Inc Probe assembly for a fluid bed reactor
US9212421B2 (en) 2013-07-10 2015-12-15 Rec Silicon Inc Method and apparatus to reduce contamination of particles in a fluidized bed reactor
US20140312030A1 (en) * 2013-04-23 2014-10-23 Paul D. Steneck Microwave heat treatment apparatus and method
DE102013208274A1 (de) * 2013-05-06 2014-11-20 Wacker Chemie Ag Wirbelschichtreaktor und Verfahren zur Herstellung von granularem Polysilicium
US9662628B2 (en) 2014-08-15 2017-05-30 Rec Silicon Inc Non-contaminating bonding material for segmented silicon carbide liner in a fluidized bed reactor
US9446367B2 (en) 2014-08-15 2016-09-20 Rec Silicon Inc Joint design for segmented silicon carbide liner in a fluidized bed reactor
US9238211B1 (en) 2014-08-15 2016-01-19 Rec Silicon Inc Segmented silicon carbide liner
JP6448816B2 (ja) * 2015-04-01 2019-01-09 ハンワ ケミカル コーポレイション 流動床反応器システム用ガス分配装置、前記ガス分配装置を含む流動床反応器システム、および前記流動床反応器システムを利用した粒子状ポリシリコンの製造方法
CN105568254B (zh) * 2016-02-24 2018-10-30 清华大学 一种用于流化床化学气相沉积反应器的气体入口设备
KR102096577B1 (ko) * 2016-12-29 2020-04-02 한화솔루션 주식회사 폴리실리콘 제조 장치
US10974218B2 (en) * 2017-08-23 2021-04-13 Wacker Chemie Ag Fluidized bed reactor for production of granular polycrystalline silicon
RU183578U1 (ru) * 2017-12-06 2018-09-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Электрическая печь для обжига сыпучих материалов

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977896A (en) * 1972-03-09 1976-08-31 General Atomic Company Process for depositing pyrolytic carbon coatings
US4207360A (en) * 1975-10-31 1980-06-10 Texas Instruments Incorporated Silicon seed production process
DE2626446C3 (de) * 1976-06-12 1978-12-14 Hobeg Hochtemperaturreaktor-Brennelement Gmbh, 6450 Hanau Verfahren zur Beschichtung von Teilchen für die Herstellung von Brenn- und/oder Absorberelementen für Kernreaktoren und Vorrichtung dazu
US4116160A (en) * 1976-10-26 1978-09-26 General Atomic Company Fluidized bed, gas coating apparatus
US4080927A (en) * 1976-10-06 1978-03-28 General Atomic Company Fluidized bed-gas coater apparatus
US4221182A (en) * 1976-10-06 1980-09-09 General Atomic Company Fluidized bed gas coating apparatus
JPS6051601B2 (ja) * 1978-06-19 1985-11-14 バブコツク日立株式会社 流動層炉起動バ−ナ装置
DE2846160A1 (de) * 1978-10-24 1980-05-08 Kernforschungsanlage Juelich Wirbelschichtreaktor mit offenem reaktionsgaszutritt und verfahren zur laminar-durchflussteigerung
JPS57135708A (en) * 1981-02-12 1982-08-21 Shin Etsu Chem Co Ltd Manufacturing of high purity silicon granule
JPS57145021A (en) * 1981-02-27 1982-09-07 Shin Etsu Chem Co Ltd Preparation of silicon granule
US4424199A (en) * 1981-12-11 1984-01-03 Union Carbide Corporation Fluid jet seed particle generator for silane pyrolysis reactor
US4416913A (en) * 1982-09-28 1983-11-22 Motorola, Inc. Ascending differential silicon harvesting means and method
US4546012A (en) * 1984-04-26 1985-10-08 Carbomedics, Inc. Level control for a fluidized bed
JPS6316040A (ja) * 1986-03-28 1988-01-23 Kawasaki Heavy Ind Ltd 粉粒体の熱処理方法
JPS6465010A (en) * 1987-09-04 1989-03-10 Osaka Titanium Device for producing high-purity granular metallic silicon
US5326547A (en) * 1988-10-11 1994-07-05 Albemarle Corporation Process for preparing polysilicon with diminished hydrogen content by using a two-step heating process
US5284676A (en) * 1990-08-17 1994-02-08 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
US5175942A (en) * 1991-07-19 1993-01-05 Gte Products Corporation Method for fluidized bed discharge
GB2271518B (en) * 1992-10-16 1996-09-25 Korea Res Inst Chem Tech Heating of fluidized bed reactor by microwave
US5328713A (en) * 1993-03-16 1994-07-12 Carbon Implants, Inc. Precise regulation of fluidized bed weight in pyrolytically coating substrates
US5798137A (en) * 1995-06-07 1998-08-25 Advanced Silicon Materials, Inc. Method for silicon deposition
JPH119985A (ja) * 1997-06-19 1999-01-19 Ube Ind Ltd 流動層粉体被覆装置及び被覆肥料の製造方法
DE19735378A1 (de) * 1997-08-14 1999-02-18 Wacker Chemie Gmbh Verfahren zur Herstellung von hochreinem Siliciumgranulat
US6410087B1 (en) * 1999-11-01 2002-06-25 Medical Carbon Research Institute, Llc Deposition of pyrocarbon
AU2000267902A1 (en) * 2000-02-18 2001-08-27 Gt Equipment Technologies Inc. Method and apparatus for chemical vapor deposition of polysilicon
US6733826B2 (en) * 2000-12-18 2004-05-11 Osram Sylvania Inc. Method and apparatus for coating electroluminescent phosphors
DE10124848A1 (de) * 2001-05-22 2002-11-28 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium in einer Wirbelschicht
WO2004013044A1 (en) * 2002-07-22 2004-02-12 Lord Stephen M Methods for heating a fluidized bed silicon manufacture apparatus
US20080035056A1 (en) * 2004-04-21 2008-02-14 Kazutoshi Okubo Apparatus For Manufacturing Coated Fuel Particles For High-Temperature Gas-Cooled Reactor
DE102005042753A1 (de) * 2005-09-08 2007-03-15 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von granulatförmigem polykristallinem Silicium in einem Wirbelschichtreaktor

Also Published As

Publication number Publication date
EP1924349B1 (en) 2010-01-27
DE602006012064D1 (de) 2010-03-18
TW200710263A (en) 2007-03-16
KR20080039911A (ko) 2008-05-07
EP1924349A2 (en) 2008-05-28
US20080220166A1 (en) 2008-09-11
WO2007012027A3 (en) 2008-06-05
CN101316651B (zh) 2011-03-02
CN101316651A (zh) 2008-12-03
JP2009502704A (ja) 2009-01-29
KR101363911B1 (ko) 2014-02-21
TWI465600B (zh) 2014-12-21
NO20080729L (no) 2008-04-17
WO2007012027A2 (en) 2007-01-25
ATE456395T1 (de) 2010-02-15

Similar Documents

Publication Publication Date Title
JP5086256B2 (ja) シリコン噴流流動層
JP6038201B2 (ja) 反応炉壁へのシリコンの析出を低減する流動層反応炉システム及び方法
JP6448816B2 (ja) 流動床反応器システム用ガス分配装置、前記ガス分配装置を含む流動床反応器システム、および前記流動床反応器システムを利用した粒子状ポリシリコンの製造方法
US6541377B2 (en) Method and apparatus for preparing polysilicon granules
US8828324B2 (en) Fluidized bed reactor systems and distributors for use in same
KR20140018460A (ko) 입자형 다결정실리콘 제조장치
US20160297684A1 (en) Polycrystalline silicon deposition method
JPH0230611A (ja) 多結晶シリコンの製造方法及び装置
KR101298233B1 (ko) 입자형 폴리실리콘을 제조하는 유동층 반응기
JPH01239014A (ja) 多結晶シリコンの製造方法及び装置
KR101760046B1 (ko) 유동상 반응기 시스템용 가스 분배 장치, 상기 가스 분배 장치를 포함하는 유동상 반응기 시스템, 및 상기 유동상 반응기 시스템을 이용한 입자형 폴리실리콘의 제조 방법
KR20160123655A (ko) 입자형 폴리실리콘 제조용 유동층 반응기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120621

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees