JP5075715B2 - Color separation optical system and imaging apparatus - Google Patents
Color separation optical system and imaging apparatus Download PDFInfo
- Publication number
- JP5075715B2 JP5075715B2 JP2008096059A JP2008096059A JP5075715B2 JP 5075715 B2 JP5075715 B2 JP 5075715B2 JP 2008096059 A JP2008096059 A JP 2008096059A JP 2008096059 A JP2008096059 A JP 2008096059A JP 5075715 B2 JP5075715 B2 JP 5075715B2
- Authority
- JP
- Japan
- Prior art keywords
- color
- dichroic film
- optical system
- light
- separation optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 152
- 238000000926 separation method Methods 0.000 title claims description 140
- 238000003384 imaging method Methods 0.000 title claims description 47
- 230000003595 spectral effect Effects 0.000 claims description 94
- 238000006243 chemical reaction Methods 0.000 claims description 44
- 239000000284 extract Substances 0.000 claims description 25
- 239000003086 colorant Substances 0.000 claims description 19
- 238000002834 transmittance Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 7
- 230000002999 depolarising effect Effects 0.000 claims description 3
- 238000009966 trimming Methods 0.000 description 52
- 238000013461 design Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 230000028161 membrane depolarization Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
- Color Television Image Signal Generators (AREA)
Description
本発明は、入射光を複数の色光に分解する色分解光学系、およびその色分解光学系を備えた撮像装置に関する。 The present invention relates to a color separation optical system that separates incident light into a plurality of color lights, and an imaging device that includes the color separation optical system.
一般に、テレビカメラやビデオカメラ等の撮像装置には、色分解光学系が備えられている。図20は、従来の色分解光学系の構成例を示している。この色分解光学系101は、撮影レンズ102を介して入射した入射光Lを青色光LB、赤色光LR、および緑色光LGの3つの色光成分に分解するものである。色分解光学系101によって分解された各色光に対応する位置には、CCD(Charge Coupled Device)等の各色光用の撮像素子4B,4R,4Gが配置される。この色分解光学系101は、フィリップス型色分解光学系と呼ばれるものであり、光軸Z1に沿って光の入射側から順に、第1のプリズム110と、第2のプリズム120と、第3のプリズム130とを備え、第1のプリズム110で青色光LB、第2のプリズム120で赤色光LR、第3のプリズム130で緑色光LGを取り出す構成とされている。
In general, an imaging apparatus such as a television camera or a video camera is provided with a color separation optical system. FIG. 20 shows a configuration example of a conventional color separation optical system. The color separation
第1のプリズム110の反射・透過面111には、青色光反射ダイクロイック膜DB1が形成されている。第2のプリズム120の反射・透過面121には、赤色光反射ダイクロイック膜DR1が形成されている。第1のプリズム110と第2のプリズム120は、第1のプリズム110における青色光反射ダイクロイック膜DB1が形成された面111と第2のプリズム120における光の入射面とが空気間隔110AGを空けて互いに対向するようにして配置されている。また、第1のプリズム110の光射出面にはトリミングフィルタ151が設けられている。トリミングフィルタ151の光射出面にはダイクロイック膜151Aが形成されている。同様に、第2のプリズム120の光射出面にはダイクロイック膜152Aが形成されたトリミングフィルタ152が設けられ、第3のプリズム130の光射出面にはダイクロイック膜153Aが形成されたトリミングフィルタ153が設けられている。トリミングフィルタ151,152,153は、分光特性を理想とする特性に近づけるために設けられており、青色光反射ダイクロイック膜DB1と赤色光反射ダイクロイック膜DR1とでは十分に整形できなかった波長成分の分光特性を整える役割を持つ。
A blue light reflecting dichroic film DB1 is formed on the reflection /
図22は、一般にカラー撮像系で理想とされている分光特性を赤色(R)成分、青色(B)成分、および緑色(G)成分の3色について示している。なお、図22の理想特性は、各色光成分の最大値が1となるように規格化したものであり、縦軸は透過率強度を示す。この「理想特性」は、色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換により求めることができる。ここで、「色再現媒体」とは、撮像装置によって撮影された画像を再現(表示)するものであり、例えば液晶モニタやプロジェクタ等の表示装置である。図21は、理想特性を求めるための3原色R,G,Bの色度座標の一例を示している。3原色R,G,Bは、色再現媒体で再現可能な色範囲を決定する。 FIG. 22 shows spectral characteristics that are generally ideal in a color imaging system for three colors of a red (R) component, a blue (B) component, and a green (G) component. Note that the ideal characteristics of FIG. 22 are normalized so that the maximum value of each color light component is 1, and the vertical axis indicates the transmittance intensity. This “ideal characteristic” is converted from the chromaticity coordinates of the three primary colors of the color reproduction medium, and can be obtained by primary conversion of the color matching function of the XYZ color system. Here, the “color reproduction medium” reproduces (displays) an image taken by the imaging device, and is a display device such as a liquid crystal monitor or a projector. FIG. 21 shows an example of chromaticity coordinates of the three primary colors R, G, and B for obtaining ideal characteristics. The three primary colors R, G, and B determine the color range that can be reproduced by the color reproduction medium.
図20に示した色分解光学系101を用いて図22に示したような理想特性と同じ特性が得られれば理想的な色再現を行うことができる。しかしながら実際には、完全に理想特性と同じ特性にすることは困難であり、理想特性に近似した特性となるような設計がなされている。従来の色分解光学系101では、各プリズムに形成されたダイクロイック膜DB1,DR1とトリミングフィルタ151,152,153に形成されたダイクロイック膜151A,152A,153Aとを適宜調整することで、理想特性に近似した特性となるような設計がなされていた。図23は、そのような設計を行うことにより得られる従来の一般的な色分解光学系の分光透過特性を示している。
If the same characteristic as the ideal characteristic shown in FIG. 22 is obtained using the color separation
図24は、従来の色分解光学系101で用いられているダイクロイック膜DB1,DR1の設計例を示している。図24に示したように、従来では、ダイクロイック膜DB1,DR1として、その波長対透過率の特性曲線が、図22に示した理想特性の曲線に比べて急峻な立ち上がり、または立ち下がりを見せる特性を持つものが使用されていた。さらに,ダイクロイック膜151A,152A,153Aの施されたトリミングフィルタ151,152,153を用いて各プリズムの射出面から射出する光の不要な波長成分を遮断している。
FIG. 24 shows a design example of the dichroic films DB1 and DR1 used in the conventional color separation
このように、従来では、種々のトリミングフィルタを用いて特性を整えることが通常行われている。例えば特許文献1では、特殊な分光透過特性を持つトリミングフィルタを使用する方法で肌色の輝度レベルを上げて、色再現を向上させる方法が提案されている。その他にも、ダイクロイック膜DR1に代えて第2のプリズム120と第3のプリズム130との接合面にハーフミラーを配置し、トリミングフィルタ152,153として理想特性に近似した透過特性を持つダイクロイック膜を施すことで透過特性を調整する方法などが知られている。図25は、そのような特殊な調整を行うことで理想特性に近似させた従来の色分解光学系の分光特性を示している。
しかしながら、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いるような従来の色分解光学系では、そのダイクロイック膜の特性として、波長選択的に反射率の高い波長域があるため、そのダイクロイック面と撮像面との間で多重反射が生じ、ゴースト・フレアとなって画像品質が劣化する問題がある。図26は、一例として、従来の色分解光学系101において緑色光LGを取り出す第3のプリズム130の射出面側で生ずる多重反射について示している。図26に示したように、撮像素子4Gは、撮像面401Gとカバーガラス402と引き出し電極403とを有し、例えば、緑色用のトリミングフィルタ153を通過した緑色光LGの一部が撮像面401Gで反射され、その戻り光がトリミングフィルタ153のダイクロイック膜153Aの波長選択特性に応じて反射される。このようにして多重反射光160が生じてゴースト・フレアとなる。このため、従来では、ゴースト・フレアを低減した形での理想的な分光特性を持つ撮像系の実現は困難であった。
However, in a conventional color separation optical system that uses a trimming filter with a dichroic film on the exit surface of the prism, the dichroic film has a wavelength range with high reflectivity as a characteristic of the dichroic film. There is a problem that multiple reflection occurs between the imaging surface and a ghost or flare, resulting in a deterioration in image quality. FIG. 26 shows, as an example, multiple reflection that occurs on the exit surface side of the
ところで、図22に示した理想特性では、負の分光感度となる領域があり、特に赤色の分光特性について負の感度となる領域(図22の領域100)が多い。この負の領域は、理論上得られるものであり、この負の部分を実際の光学系で直接的に再現することは不可能である。従来の色分解光学系では、図23に示したように、負の領域は再現できない。一方、この光学系で直接的に再現することができない負の特性を、撮像装置側の信号処理の演算により再現することが考えられる。例えば、図22に示した理想特性に対し、負の領域を無くすような、可逆な変換を施した特性を求め、その変換特性を色分解光学系で再現する理想特性とする。そして、その色分解光学系からの出力に対し、撮像装置側の信号処理で逆変換を施すことで負の領域を再現し、擬似的に本来の理想特性を再現することができる。このような変換特性に最適化された色分解光学系を設計するにあたり、特定の色成分の透過率が低下しないよう、各色について色バランスが整った特性が得られることが好ましい。
By the way, in the ideal characteristic shown in FIG. 22, there is a region where the negative spectral sensitivity is obtained, and in particular, there are many regions (
本発明はかかる問題点に鑑みてなされたもので、その目的は、ダイクロイック膜付きのトリミングフィルタを用いる従来の波長選択手法に比べてゴースト・フレアを低減させることができ、かつ、各色光について色バランスの整った状態で、理想的な分光特性に近い特性を得て色再現性の向上を図ることができるようにした色分解光学系および撮像装置を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to reduce ghost and flare as compared with a conventional wavelength selection method using a trimming filter with a dichroic film, and for each color light. An object of the present invention is to provide a color separation optical system and an image pickup apparatus that are capable of improving the color reproducibility by obtaining characteristics close to ideal spectral characteristics in a well-balanced state.
本発明の第1の観点に係る色分解光学系は、入射光を青色光、赤色光、および緑色光の少なくとも3つの色光成分に分解する色分解光学系であって、光の入射側から順に、第1のダイクロイック膜を有し、第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、第2のダイクロイック膜を有し、第1のダイクロイック膜を透過し第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムとを少なくとも備えている。そして、第1のダイクロイック膜が、第1の色光成分として緑色光を反射する膜構成とされると共に、第2のダイクロイック膜が、第2の色光成分として青色光を反射する膜構成とされ、第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性の短波長側および長波長側の特性曲線に沿う形状を有すると共に、第2のダイクロイック膜の波長に対する透過率を示す透過特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に沿う形状を有している。さらに、第1のダイクロイック膜の反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされているものである。 A color separation optical system according to a first aspect of the present invention is a color separation optical system that decomposes incident light into at least three color light components of blue light, red light, and green light, sequentially from the light incident side. A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film; and a second dichroic film that passes through the first dichroic film and passes through the first dichroic film. A second prism for extracting the second color light component reflected by the second dichroic film, and a third prism for extracting the third color light component transmitted through the first and second dichroic films. The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects blue light as the second color light component. The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film has a shape along the characteristic curve on the short wavelength side and long wavelength side of the ideal green spectral characteristic, and the second dichroic film The slope of the transmission characteristic curve indicating the transmittance with respect to the wavelength has a shape along the characteristic curve on the short wavelength side of the ideal red spectral characteristic. Furthermore, the film configuration is such that the maximum reflectance is 36% or more within the wavelength range of 500 nm to 570 nm in the reflection characteristic curve of the first dichroic film.
本発明の第1の観点に係る色分解光学系では、第1のダイクロイック膜が第1の色光成分として緑色光を反射する膜構成とされ、第1のプリズムにおいて緑色光が取り出される。また、第2のダイクロイック膜が第2の色光成分として青色光を反射する膜構成とされ、第2のプリズムにおいて青色光が取り出される。第3のプリズムからは、第1および第2のダイクロイック膜を透過した第3の色光成分(第1の色光成分および第2の色光成分とは異なる色光)が取り出される。この場合において、第1のダイクロイック膜の特性を示す曲線が、理想的な緑色の分光特性の特性曲線に沿う形状を有していることで、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いることなく、理想的な分光特性に近い特性が得られる。ダイクロイック膜付きのトリミングフィルタを用いる必要が無くなるので、従来、トリミングフィルタのダイクロイック膜に起因して生じていたゴースト・フレアの発生が抑制される。これらにより、ゴースト・フレアを低減した形での理想的な分光特性を持つ撮像系の実現が可能となる。
さらに、この色分解光学系では、第1のダイクロイック膜の反射特性曲線が、各色の分光特性のバランスを考慮して所定波長範囲内で所定の反射率の値となるような膜構成とされていることで、最終的な色光の取り出し段階で、相対的に特定の色光のみが極端に減衰することがなく、色バランスの整った状態が得られる。これにより、特に第1のプリズムで取り出される緑色光の取り出し効率が向上すると共に、各色光が色バランスの整った状態となる。
In the color separation optical system according to the first aspect of the present invention, the first dichroic film has a film configuration that reflects green light as the first color light component, and the first prism extracts green light. The second dichroic film has a film configuration that reflects blue light as the second color light component, and blue light is extracted by the second prism. From the third prism, a third color light component (color light different from the first color light component and the second color light component) transmitted through the first and second dichroic films is extracted. In this case, the trimming filter with the dichroic film is used on the exit surface of the prism because the curve indicating the characteristic of the first dichroic film has a shape that follows the characteristic curve of the ideal green spectral characteristic. Therefore, characteristics close to ideal spectral characteristics can be obtained. Since it is not necessary to use a trimming filter with a dichroic film, it is possible to suppress the occurrence of ghosts and flares conventionally caused by the dichroic film of the trimming filter. Thus, it is possible to realize an imaging system having ideal spectral characteristics with reduced ghost and flare.
Further, in this color separation optical system, the reflection characteristic curve of the first dichroic film is configured to have a predetermined reflectance value within a predetermined wavelength range in consideration of the balance of spectral characteristics of each color. As a result, in the final color light extraction stage, only a specific color light is not significantly attenuated, and a state in which the color balance is in order is obtained. As a result, the efficiency of extracting green light extracted by the first prism is improved, and each color light is in a state where the color balance is in order.
本発明の第2の観点に係る色分解光学系は、入射光を青色光、赤色光、および緑色光の少なくとも3つの色光成分に分解する色分解光学系であって、光の入射側から順に、第1のダイクロイック膜を有し、第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、第2のダイクロイック膜を有し、第1のダイクロイック膜を透過し第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムとを少なくとも備えている。そして、第1のダイクロイック膜が、第1の色光成分として緑色光を反射する膜構成とされると共に、第2のダイクロイック膜が、第2の色光成分として赤色光を反射する膜構成とされ、第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性の短波長側および長波長側の特性曲線に沿う形状を有すると共に、第2のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に沿う形状を有している。さらに、第1のダイクロイック膜の反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされているものである。 A color separation optical system according to a second aspect of the present invention is a color separation optical system that decomposes incident light into at least three color light components of blue light, red light, and green light, and sequentially from the light incident side. A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film; and a second dichroic film that passes through the first dichroic film and passes through the first dichroic film. A second prism for extracting the second color light component reflected by the second dichroic film, and a third prism for extracting the third color light component transmitted through the first and second dichroic films. The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects red light as the second color light component. The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film has a shape along the characteristic curve on the short wavelength side and long wavelength side of the ideal green spectral characteristic, and the second dichroic film The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength has a shape along the characteristic curve on the short wavelength side of the ideal red spectral characteristic. Furthermore, the film configuration is such that the maximum reflectance is 36% or more within the wavelength range of 500 nm to 570 nm in the reflection characteristic curve of the first dichroic film.
本発明の第2の観点に係る色分解光学系では、第1のダイクロイック膜が第1の色光成分として緑色光を反射する膜構成とされ、第1のプリズムにおいて緑色光が取り出される。また、第2のダイクロイック膜が第2の色光成分として赤色光を反射する膜構成とされ、第2のプリズムにおいて赤色光が取り出される。第3のプリズムからは、第1および第2のダイクロイック膜を透過した第3の色光成分(第1の色光成分および第2の色光成分とは異なる色光)が取り出される。この場合において、第1のダイクロイック膜の特性を示す曲線が、理想的な緑色の分光特性の特性曲線に沿う形状を有していることで、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いることなく、理想的な分光特性に近い特性が得られる。ダイクロイック膜付きのトリミングフィルタを用いる必要が無くなるので、従来、トリミングフィルタのダイクロイック膜に起因して生じていたゴースト・フレアの発生が抑制される。これらにより、ゴースト・フレアを低減した形での理想的な分光特性を持つ撮像系の実現が可能となる。
さらに、この色分解光学系では、第1のダイクロイック膜の反射特性曲線が、各色の分光特性のバランスを考慮して所定波長範囲内で所定の反射率の値となるような膜構成とされていることで、最終的な色光の取り出し段階で、相対的に特定の色光のみが極端に減衰することがなく、色バランスの整った状態が得られる。これにより、特に第1のプリズムで取り出される緑色光の取り出し効率が向上すると共に、各色光が色バランスの整った状態となる。
In the color separation optical system according to the second aspect of the present invention, the first dichroic film has a film configuration that reflects green light as the first color light component, and the first prism extracts green light. The second dichroic film has a film configuration that reflects red light as the second color light component, and the second prism extracts red light. From the third prism, a third color light component (color light different from the first color light component and the second color light component) transmitted through the first and second dichroic films is extracted. In this case, the trimming filter with the dichroic film is used on the exit surface of the prism because the curve indicating the characteristic of the first dichroic film has a shape that follows the characteristic curve of the ideal green spectral characteristic. Therefore, characteristics close to ideal spectral characteristics can be obtained. Since it is not necessary to use a trimming filter with a dichroic film, it is possible to suppress the occurrence of ghosts and flares conventionally caused by the dichroic film of the trimming filter. Thus, it is possible to realize an imaging system having ideal spectral characteristics with reduced ghost and flare.
Further, in this color separation optical system, the reflection characteristic curve of the first dichroic film is configured to have a predetermined reflectance value within a predetermined wavelength range in consideration of the balance of spectral characteristics of each color. As a result, in the final color light extraction stage, only a specific color light is not significantly attenuated, and a state in which the color balance is in order is obtained. As a result, the efficiency of extracting green light extracted by the first prism is improved, and each color light is in a state where the color balance is in order.
本発明の第1または第2の観点に係る色分解光学系において、第1のダイクロイック膜の反射特性曲線の傾きが、430nm以上670nm以下の波長範囲内で立ち上がる部分では、理想的な緑色の分光特性の短波長側の特性曲線に沿う形で低反射率から高反射率に変化をする形状を有し、430nm以上670nm以下の波長範囲内で立ち下がる部分では、理想的な緑色の分光特性の長波長側の特性曲線に沿う形で高反射率から低反射率に立ち下がる変化をする形状を有していることが好ましい。 In the color separation optical system according to the first or second aspect of the present invention, in the portion where the slope of the reflection characteristic curve of the first dichroic film rises within the wavelength range of 430 nm to 670 nm, an ideal green spectrum It has a shape that changes from a low reflectance to a high reflectance along the characteristic curve on the short wavelength side of the characteristic, and in the portion that falls within the wavelength range of 430 nm to 670 nm, the ideal green spectral characteristic It is preferable to have a shape that changes from a high reflectance to a low reflectance along the characteristic curve on the long wavelength side.
また、本発明の第1または第2の観点に係る色分解光学系において、第1のプリズムよりも前側もしくは赤色光を取り出すプリズムの射出面側の少なくとも一方に配置され、視感度に近似した特性を持つ吸収型フィルタをさらに備えていても良い。また、第1のプリズムよりも前側に配置され、赤外光をカットするコートタイプの赤外カットフィルタをさらに備えていても良い。また、第1のプリズムよりも前側に配置され、紫外光を遮断する紫外カットフィルタをさらに備えていても良い。また、第1のプリズムよりも前側に配置され、入射光の特定方向への偏光を解消する偏光解消板をさらに備えていても良い。
これらにより、理想的な分光特性に近い特性をより得やすくなる。
In the color separation optical system according to the first or second aspect of the present invention, the color separation optical system is disposed on at least one of the front side of the first prism or the exit surface side of the prism that extracts red light, and approximates the visibility. An absorptive filter having the above may be further provided. Further, a coat type infrared cut filter that is disposed in front of the first prism and cuts infrared light may be further provided. Further, an ultraviolet cut filter that is disposed in front of the first prism and blocks ultraviolet light may be further provided. Moreover, you may further provide the depolarizing plate which arrange | positions ahead of the 1st prism and cancels the polarization | polarized-light in the specific direction of incident light.
As a result, it becomes easier to obtain characteristics close to ideal spectral characteristics.
また、少なくとも1つのプリズムの射出面に反射防止膜が施されていても良い。これにより、ゴースト・フレアの低減により有利となる。 Further, an antireflection film may be provided on the exit surface of at least one prism. This is advantageous in reducing ghost and flare.
ここで、本発明の第1または第2の観点に係る色分解光学系において、「理想的な分光特性」とは、「目的とする所定の分光特性」である。例えば、RGB表色系の等色関数で示される理想特性に対し、さらに負の値を減らすような、逆変換可能な変換を施した特性である。
または、色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想特性に対し、さらに負の値を減らすような、逆変換可能な変換を施した特性であっても良い。
Here, in the color separation optical system according to the first or second aspect of the present invention, “ideal spectral characteristics” are “target predetermined spectral characteristics”. For example, it is a characteristic obtained by performing reverse conversion so as to further reduce a negative value with respect to the ideal characteristic indicated by the color matching function of the RGB color system.
Or, conversion that can be inversely converted to reduce the negative value with respect to the ideal characteristics converted from the chromaticity coordinates of the three primary colors of the color reproduction medium and indicated by the primary conversion of the color matching function of the XYZ color system. The applied characteristics may be used.
本発明の第3の観点に係る色分解光学系は、本発明の第1の観点に係る色分解光学系における第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性の短波長側および長波長側の特性曲線に略等しい形状を有すると共に、第2のダイクロイック膜の波長に対する透過率を示す透過特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に略等しい形状を有しているものである。 In the color separation optical system according to the third aspect of the present invention, the slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film in the color separation optical system according to the first aspect of the present invention is ideal. The shape of the transmission characteristic curve, which has substantially the same shape as the characteristic curve on the short wavelength side and the long wavelength side of the green spectral characteristic, and the transmittance characteristic curve showing the transmittance with respect to the wavelength of the second dichroic film is ideal red spectral characteristic It has a shape substantially equal to the characteristic curve on the short wavelength side.
本発明の第4の観点に係る色分解光学系は、本発明の第2の観点に係る色分解光学系における第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性の短波長側および長波長側の特性曲線に略等しい形状を有すると共に、第2のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に略等しい形状を有しているものである。 In the color separation optical system according to the fourth aspect of the present invention, the slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film in the color separation optical system according to the second aspect of the present invention is ideal. The shape of the reflection characteristic curve showing the reflectance with respect to the wavelength of the second dichroic film is substantially equal to the characteristic curve on the short wavelength side and the long wavelength side of the green spectral characteristic, and the ideal red spectral characteristic It has a shape substantially equal to the characteristic curve on the short wavelength side.
ここで、本発明の第3または第4の観点に係る色分解光学系において、「理想的な分光特性の特性曲線に略等しい形状」としては、例えば、規格化された所定の理想特性曲線の傾きに対して、その特性曲線の傾きが±10%以内に入るような形状であることが好ましい。 Here, in the color separation optical system according to the third or fourth aspect of the present invention, the “shape substantially equal to the ideal characteristic curve of spectral characteristics” is, for example, a standardized predetermined ideal characteristic curve. The shape is preferably such that the slope of the characteristic curve falls within ± 10% of the slope.
本発明による撮像装置は、上記逆変換可能な変換を施した特性を理想特性として最適化された本発明の第1ないし第4のいずれか一の観点に係る色分解光学系と、この色分解光学系によって分解された各色光に対応して設けられ、入射した各色光に応じた電気信号を出力する撮像素子と、撮像素子によって得られた信号値に基づいて、理想特性における負の値を再現するような逆変換を施す演算回路とを備えたものである。
本発明による撮像装置では、本発明の色分解光学系によって色バランスの整った状態で得られた各色光に基づいて、色再現性の高い撮像信号が得られる。
An image pickup apparatus according to the present invention includes a color separation optical system according to any one of the first to fourth aspects of the present invention, which is optimized with the characteristics subjected to the conversion that can be inversely converted as an ideal characteristic, and the color separation. An image sensor that is provided corresponding to each color light decomposed by the optical system and outputs an electrical signal corresponding to each incident color light, and a negative value in the ideal characteristics based on the signal value obtained by the image sensor And an arithmetic circuit for performing inverse transformation to reproduce.
In the image pickup apparatus according to the present invention, an image pickup signal with high color reproducibility can be obtained based on each color light obtained in a state in which the color balance is adjusted by the color separation optical system of the present invention.
本発明の第1ないし第4のいずれか一の観点に係る色分解光学系によれば、第1のダイクロイック膜の特性を示す曲線が、理想的な緑色の分光特性の特性曲線に沿う形状または略等しい形状を有するような構成となるようにしたので、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いることなく、理想的な分光特性に近い特性を得ることが可能となる。これにより、ダイクロイック膜付きのトリミングフィルタを用いる従来の波長選択手法に比べてゴースト・フレアを低減させることができ、かつ、理想的な分光特性に近い特性を得て色再現性の向上を図ることができる。また、第1のダイクロイック膜の反射特性曲線が、各色の分光特性のバランスを考慮して、所定波長範囲内で所定の反射率となるようにダイクロイック膜を構成したので、各色光について色バランスの整った状態で理想的な分光特性を得ることができる。 According to the color separation optical system according to any one of the first to fourth aspects of the present invention, the curve indicating the characteristic of the first dichroic film has a shape along the characteristic curve of the ideal green spectral characteristic or Since the configuration has substantially the same shape, characteristics close to ideal spectral characteristics can be obtained without using a trimming filter with a dichroic film on the exit surface of the prism. This makes it possible to reduce ghosts and flares compared to the conventional wavelength selection method using a trimming filter with a dichroic film, and to improve the color reproducibility by obtaining characteristics close to ideal spectral characteristics. Can do. In addition, since the dichroic film is configured so that the reflection characteristic curve of the first dichroic film has a predetermined reflectance within a predetermined wavelength range in consideration of the balance of spectral characteristics of each color, the color balance of each color light is adjusted. Ideal spectral characteristics can be obtained in a well-organized state.
本発明の撮像装置によれば、上記本発明の高性能の色分解光学系によって得られた色光に応じた撮像信号を出力するようにしたので、色再現性が高く、かつ、各色光について分光特性のバランスの良い撮像を行うことができる。特に、負の値を減らすような逆変換可能な変換を施した特性を理想特性として色分解光学系を最適化し、その色分解光学系を介して得られた信号値に基づいて、理想特性における負の値を再現するような逆変換を施す演算を行うようにしたので、色分解光学系で直接的に得られない負の分光感度となる部分を擬似的に再現できる。 According to the imaging apparatus of the present invention, since the imaging signal corresponding to the color light obtained by the high-performance color separation optical system of the present invention is output, the color reproducibility is high and each color light is spectrally separated. Imaging with a good balance of characteristics can be performed. In particular, the color separation optical system is optimized with the characteristics subjected to reverse conversion that reduces negative values as ideal characteristics, and the ideal characteristics are determined based on the signal values obtained through the color separation optical system. Since an operation for performing an inverse transformation to reproduce a negative value is performed, a portion having negative spectral sensitivity that cannot be directly obtained by the color separation optical system can be reproduced in a pseudo manner.
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
図1は、本発明の第1の実施の形態に係る色分解光学系1を備えた撮像装置の要部構成を示している。この撮像装置は例えばテレビカメラの撮像部分として利用される。色分解光学系1は、撮影レンズ2を介して入射した入射光Lを青色光LB、赤色光LR、および緑色光LGの3つの色光成分に分解するものである。色分解光学系1によって分解された各色光に対応する位置には、CCD等の各色光用の撮像素子4B,4R,4Gが配置されている。この撮像装置は、撮像素子4B,4R,4Gから出力された各色の信号値Rs,Gs,Bsに基づいて、後述するような、理想特性における負の値を再現するような逆変換を施す演算を行う演算回路60を備えている。
FIG. 1 shows a main configuration of an imaging apparatus including a color separation
色分解光学系1は、フィリップス型色分解光学系と呼ばれるものであり、光軸Z1に沿って光の入射側から順に、IR(赤外)カットフィルタ3と、第1のプリズム10と、第2のプリズム20と、第3のプリズム30とを備えている。本実施の形態における色分解光学系1は、第1のプリズム10で緑色光LG、第2のプリズム20で青色光LB、第3のプリズム30で赤色光LRを取り出す構成例である。
The color separation
第1のプリズム10は、第1の面11、第2の面12、および第3の面13を有している。第1のプリズム10の第3の面13は光射出面である。この射出面にはトリミングフィルタ51が設けられている。このトリミングフィルタ51には、従来用いられていたような特性調整用のダイクロイック膜は設けられておらず、その代わりに、トリミングフィルタ51の光射出面にゴースト・フレア防止用の反射防止膜51ARが形成されている。なお、トリミングフィルタ51を設けることなく、第1のプリズム10の第3の面13に直接、反射防止膜51ARを形成するようにしても良い。
The
第1のプリズム10の第2の面12には、第1のダイクロイック膜としての緑色光反射ダイクロイック膜DGが形成されている。緑色光反射ダイクロイック膜DGは、第1の色光成分として緑色光LGを反射し、青色光LBおよび赤色光LRを透過する膜構成とされている。緑色光反射ダイクロイック膜DGは、後述するように、目的とする所定の分光特性に応じた膜特性で設計されている。
A green light reflecting dichroic film DG as a first dichroic film is formed on the
第2のプリズム20は、第1の面21、第2の面22、および第3の面23を有している。第2のプリズム20は、第1のプリズム10に対して所定の空気間隔10AGを空けて配置されている。より詳しくは、第2のプリズム20の第1の面21と、第1のプリズム10の第2の面12とが略平行となるように、空気間隔10AGを空けて対向配置されている。第2のプリズム20の第3の面23は光射出面である。この射出面にはトリミングフィルタ52が設けられている。このトリミングフィルタ52には、第1のプリズム10におけるトリミングフィルタ51と同様、特性調整用のダイクロイック膜は設けられておらず、その代わりに、トリミングフィルタ52の光射出面にゴースト・フレア防止用の反射防止膜52ARが形成されている。なお、トリミングフィルタ52を設けることなく、第2のプリズム20の第3の面23に直接、反射防止膜52ARを形成するようにしても良い。
The
第2のプリズム20の第2の面22には、第2のダイクロイック膜としての青色光反射ダイクロイック膜DBが形成されている。青色光反射ダイクロイック膜DBは、第2の色光成分として青色光LBを反射し、赤色光LRを透過する膜構成とされている。青色光反射ダイクロイック膜DBは、後述するように、目的とする所定の分光特性に応じた膜特性で設計されている。
A blue light reflecting dichroic film DB as a second dichroic film is formed on the
第3のプリズム30は、第1の面31、および第2の面32を有している。第3のプリズム30は、青色光反射ダイクロイック膜DBを介して第2のプリズム20に接合されている。より詳しくは、第2のプリズム20の第2の面22と、第3のプリズム30の第1の面31とが青色光反射ダイクロイック膜DBを介して接合されている。第3のプリズム30の第2の面32は光射出面である。この射出面にはトリミングフィルタ53が設けられている。このトリミングフィルタ53には、第1のプリズム10におけるトリミングフィルタ51と同様、特性調整用のダイクロイック膜は設けられておらず、その代わりに、トリミングフィルタ53の光射出面にゴースト・フレア防止用の反射防止膜53ARが形成されている。なお、トリミングフィルタ53を設けることなく、第3のプリズム30の第2の面32に直接、反射防止膜53ARを形成するようにしても良い。
The
IRカットフィルタ3は、第1のプリズム10の前側に配置されている。IRカットフィルタ3は、理想的な分光特性に近い特性をより得やすくするために、視感度に近似した特性を持つ吸収型フィルタで構成されていることが好ましい。ここでいう「視感度に近似した特性を持つ吸収型フィルタ」とは、「視感度補正フィルタ」と呼ばれ、人間の目の感度特性に近似し、緑から赤の波長に向かって減衰する透過率を持ち、赤外域でも透過率が低下しているような吸収型フィルタである。なお、IRカットフィルタ3を第1のプリズム10の前側ではなく、赤色光を取り出すプリズム(図1では第3のプリズム30)の光射出面側に配置しても良い。また、IRカットフィルタ3を、第1のプリズム10の前側と赤色光を取り出すプリズムの光射出面側の双方に配置しても良い。また、吸収型フィルタだけでは赤外光を十分に除去できない場合には、赤外光をカットするコートタイプの赤外カットフィルタをさらに備えていても良い。図1では、平板状の吸収型フィルタに赤外光をカットする膜3Rをコートした構成例を示している。ただし、赤色光を取り出すプリズムの光射出面側にIRカットフィルタ3を配置する場合は、赤外カット用のコートは施さず、吸収型フィルタのみで構成することが好ましい。その場合さらに、吸収型フィルタに反射防止膜を施した構成にすることがより好ましい。
The IR cut
なお、図示しないが、この色分解光学系1において、第1のプリズム10よりも前側に配置され、紫外光をカットする吸収タイプもしくはコートタイプの紫外カットフィルタをさらに備えていても良い。
Although not shown, the color separation
ここで、本実施の形態における色分解光学系1によって光学的に再現しようとしている理想特性について説明する。
Here, ideal characteristics to be optically reproduced by the color separation
本実施の形態において、撮像装置の出力として最終的に再現したい特性は、例えば図2(A)に示したような理想特性である。これは、規格化されていないだけで、図22に示した一般的な理想特性と実質的に同じである。この理想特性は、例えば、色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示されるものである。または、RGB表色系の等色関数で示される理想特性そのものであっても良い。このような理想特性には負の分光感度となる領域が存在するが、その負の分光感度となる領域は、色分解光学系1で光学的に直接的に再現することはできない。そこで、本実施の形態では、図2(A)に示した理想特性に対し、負の領域を無くすような、可逆な変換を施した特性をあらかじめ演算により求め、その変換特性を色分解光学系1で再現する理想特性(目的とする所定の分光特性)としている。そして、その色分解光学系1からの出力(撮像素子4B,4R,4Gから出力された各色の信号値Rs,Gs,Bs)に対し、撮像装置側の信号処理回路(演算回路60)で逆変換を施す演算を行うことで負の領域を再現し、擬似的に本来の理想特性を再現するようにしている。
In the present embodiment, the characteristic that is finally desired to be reproduced as the output of the imaging device is an ideal characteristic as shown in FIG. This is not standardized and is substantially the same as the general ideal characteristic shown in FIG. This ideal characteristic is, for example, converted from the chromaticity coordinates of the three primary colors of the color reproduction medium, and is indicated by the primary conversion of the color matching function of the XYZ color system. Or the ideal characteristic itself shown by the color matching function of RGB color system may be sufficient. Although such an ideal characteristic has a region having a negative spectral sensitivity, the region having the negative spectral sensitivity cannot be optically directly reproduced by the color separation
図2(B)は、図2(A)に示した各色の理想特性R(x),G(x),B(x)に対し、上記した負の領域を無くすような可逆な変換を施した変換特性R’(x),G’(x),B’(x)の一例を示している。このような変換は、以下の[数1]に示すような1次変換の演算により行うことができる。Mは、変換特性R’(x),G’(x),B’(x)として負の値ができるだけ少なくなるような行列とする。ここで、R’(x),G’(x),B’(x)に逆行列M-1を掛けて逆変換することで、元の理想特性R(x),G(x),B(x)に近似した特性を求めることができる。 FIG. 2B performs a reversible conversion that eliminates the negative region described above on the ideal characteristics R (x), G (x), and B (x) of each color shown in FIG. An example of the conversion characteristics R ′ (x), G ′ (x), and B ′ (x) is shown. Such conversion can be performed by the calculation of primary conversion as shown in the following [Equation 1]. M is a matrix that minimizes negative values as much as possible for the conversion characteristics R ′ (x), G ′ (x), and B ′ (x). Here, R ′ (x), G ′ (x), and B ′ (x) are multiplied by the inverse matrix M −1 to perform inverse transformation, so that the original ideal characteristics R (x), G (x), B A characteristic approximate to (x) can be obtained.
本実施の形態においては、緑色光反射ダイクロイック膜DGおよび青色光反射ダイクロイック膜DBの膜特性を、この変換特性R’(x),G’(x),B’(x)を理想特性とした設計とし、変換特性R’(x),G’(x),B’(x)に近似した特性が得られるようにしている。ここで、変換特性R’(x),G’(x),B’(x)は、負の値ができるだけ少なくなるような特性とされているので、理論的には、色分解光学系1で光学的に直接的に再現することが可能である。その後、撮像装置側の演算回路60での演算により、逆行列M-1を掛けることで、元の理想特性R(x),G(x),B(x)に近似した特性を求めることができる。これにより、仮想的に負の領域となる部分も再現が可能となる。
In the present embodiment, the film characteristics of the green light reflecting dichroic film DG and the blue light reflecting dichroic film DB are the conversion characteristics R ′ (x), G ′ (x), and B ′ (x) as ideal characteristics. The design is such that characteristics approximate to the conversion characteristics R ′ (x), G ′ (x), and B ′ (x) are obtained. Here, since the conversion characteristics R ′ (x), G ′ (x), and B ′ (x) are such characteristics that negative values are minimized, theoretically, the color separation
図3(A),(B)は、本実施の形態における緑色光反射ダイクロイック膜DGの反射特性曲線の一例を示している。緑色光反射ダイクロイック膜DGは、波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性(上記した一次変換された変換特性G’(x))の短波長側および長波長側の特性曲線に沿う形状を有している。具体的には、緑色光反射ダイクロイック膜DGは、その反射特性曲線の傾きが、430nm以上670nm以下の波長範囲内で立ち上がる部分では、図3(A)に示したように、理想的な緑色の分光特性の短波長側の特性曲線に沿う形で低反射率から高反射率に変化をする形状を有するように構成されている。より具体的には、その反射特性曲線が、430nm以上670nm以下の波長範囲内において、最低反射率と最高反射率との間の範囲の20%から80%に変化する平均傾き値が0.2(%/nm)以上2.0(%/nm)以下となる形状を有していることが好ましい。 3A and 3B show an example of the reflection characteristic curve of the green light reflecting dichroic film DG in the present embodiment. In the green light reflecting dichroic film DG, the inclination of the reflection characteristic curve indicating the reflectance with respect to the wavelength is the short wavelength side and the long wavelength of the ideal green spectral characteristic (the conversion characteristic G ′ (x) subjected to the primary conversion described above). It has a shape along the side characteristic curve. Specifically, the green light reflecting dichroic film DG has an ideal green color as shown in FIG. 3A in the portion where the slope of the reflection characteristic curve rises within the wavelength range of 430 nm to 670 nm. It is configured to have a shape that changes from a low reflectance to a high reflectance along a characteristic curve on the short wavelength side of the spectral characteristics. More specifically, the average slope value at which the reflection characteristic curve changes from 20% to 80% of the range between the lowest reflectance and the highest reflectance within a wavelength range of 430 nm to 670 nm is 0.2%. It is preferable to have a shape of (% / nm) or more and 2.0 (% / nm) or less.
緑色光反射ダイクロイック膜DGはまた、図3(B)に示したように、430nm以上670nm以下の波長範囲内で立ち下がる部分では、理想的な緑色の分光特性の長波長側の特性曲線に沿う形で高反射率から低反射率に立ち下がる変化をする形状を有している。より具体的には、その反射特性曲線が、430nm以上670nm以下の波長範囲内において、最高反射率と最低反射率との間の範囲の80%から20%に変化する平均傾き値が−2.0(%/nm)以上−0.2(%/nm)以下となる形状を有していることが好ましい。 As shown in FIG. 3B, the green light reflecting dichroic film DG follows the characteristic curve on the long wavelength side of the ideal green spectral characteristic at the portion falling within the wavelength range of 430 nm to 670 nm. It has a shape that changes from high reflectivity to low reflectivity. More specifically, the average slope value at which the reflection characteristic curve changes from 80% to 20% of the range between the highest reflectance and the lowest reflectance within the wavelength range of 430 nm to 670 nm is −2. It preferably has a shape of 0 (% / nm) or more and -0.2 (% / nm) or less.
また、青色光反射ダイクロイック膜DBは、波長に対する透過率を示す透過特性曲線の傾きが、理想的な赤色の分光特性(上記した一次変換された変換特性R’(x))の短波長側の特性曲線に沿う形状を有するように構成されている。 In addition, the blue light reflecting dichroic film DB has a slope of the transmission characteristic curve indicating the transmittance with respect to the wavelength on the short wavelength side of the ideal red spectral characteristic (the above-described primary-converted conversion characteristic R ′ (x)). It is comprised so that it may have a shape along a characteristic curve.
本実施の形態において、緑色光反射ダイクロイック膜DGは、波長に対する反射率を示す反射特性曲線の傾きが、理想的な緑色の分光特性の短波長側および長波長側の特性曲線に略等しい形状を有していても良い。また、青色光反射ダイクロイック膜DBは、波長に対する透過率を示す透過特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に略等しい形状を有していても良い。
ここで、「理想的な分光特性の特性曲線に略等しい形状」としては、例えば、規格化された所定の理想特性曲線を一次変換した、図2(B)に示したような変換特性曲線の傾きに対して、その特性曲線の傾きが±10%以内に入るような形状であることが好ましい。
In the present embodiment, the green light reflecting dichroic film DG has a shape in which the slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength is substantially equal to the characteristic curve on the short wavelength side and the long wavelength side of the ideal green spectral characteristic. You may have. The blue light reflecting dichroic film DB may have a shape in which the slope of the transmission characteristic curve indicating the transmittance with respect to the wavelength is substantially equal to the characteristic curve on the short wavelength side of the ideal red spectral characteristic.
Here, the “shape substantially equal to the characteristic curve of the ideal spectral characteristic” is, for example, a conversion characteristic curve such as that shown in FIG. The shape is preferably such that the slope of the characteristic curve falls within ± 10% of the slope.
このように、本実施の形態における緑色光反射ダイクロイック膜DGおよび青色光反射ダイクロイック膜DBは、その特性曲線の傾きが、理想とする分光特性に応じた設計とされている。さらに、本実施の形態では、緑色光反射ダイクロイック膜DGの反射特性曲線が、図4に示したような特性となるような設計とされている。すなわち、緑色光反射ダイクロイック膜DGの反射特性曲線が、所定の波長範囲Wλ内ではその反射率の最大値Pが所定の範囲Wt内となるような膜設計とされている。
ここで、波長範囲Wλは、例えば500nm以上570nm以下の範囲である。
また、反射率の最大値Pの範囲Wtは、36%以上(100%以下)の範囲である。
As described above, the green light reflecting dichroic film DG and the blue light reflecting dichroic film DB in the present embodiment are designed such that the slopes of the characteristic curves correspond to the ideal spectral characteristics. Further, in the present embodiment, the green light reflecting dichroic film DG is designed so that the reflection characteristic curve has the characteristics shown in FIG. That is, the reflection characteristic curve of the green light reflecting dichroic film DG is designed such that the maximum reflectance P is within the predetermined range Wt within the predetermined wavelength range Wλ.
Here, the wavelength range Wλ is, for example, a range from 500 nm to 570 nm.
Further, the range Wt of the maximum value P of the reflectance is a range of 36% or more (100% or less).
次に、本実施の形態における撮像装置の作用、特に色分解光学系1の光学的な作用および効果を説明する。
Next, the operation of the imaging apparatus in the present embodiment, particularly the optical operation and effect of the color separation
この撮像装置において、図示しない光源によって照射された図示しない被写体からの被写体光は、撮影レンズ2を介して色分解光学系1に入射される。色分解光学系1では入射光Lを青色光LB、赤色光LR、および緑色光LGの3つの色光成分に分解する。より詳しくは、まず、入射光Lのうち緑色光LGが、緑色光反射ダイクロイック膜DGによって反射され、第1のプリズム10から第1の色光成分として取り出される。また、緑色光反射ダイクロイック膜DGを透過した青色光LBが、青色光反射ダイクロイック膜DBによって反射され、第2のプリズム20から第2の色光成分として取り出される。さらに、緑色光反射ダイクロイック膜DGおよび青色光反射ダイクロイック膜DBを透過した赤色光LRが、第3の色光成分として第3のプリズム30から取り出される。色分解光学系1によって分解された各色光は、各色光に対応した設けられた撮像素子4B,4R,4Gに入射する。撮像素子4B,4R,4Gでは、入射した各色光に応じた電気信号を撮像信号として出力する。
In this imaging apparatus, subject light from a subject (not shown) irradiated by a light source (not shown) is incident on the color separation
本実施の形態では、緑色光反射ダイクロイック膜DGの特性を示す曲線が、理想的な緑色の分光特性の特性曲線に沿う形状を有すると共に、青色光反射ダイクロイック膜DBの透過特性を示す曲線が、理想的な赤色の分光特性の短波長側の特性曲線に沿う形状を有していることで、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いることなく、理想的な分光特性に近い特性が得られる。ダイクロイック膜付きのトリミングフィルタを用いる必要が無くなるので、従来、トリミングフィルタのダイクロイック膜に起因して生じていたゴースト・フレアの発生が抑制される。これらにより、ゴースト・フレアを低減した形での理想的な分光特性を持つ撮像系の実現が可能となる。 In the present embodiment, the curve indicating the characteristic of the green light reflecting dichroic film DG has a shape along the characteristic curve of the ideal green spectral characteristic, and the curve indicating the transmission characteristic of the blue light reflecting dichroic film DB is By having a shape along the characteristic curve on the short wavelength side of the ideal red spectral characteristic, the characteristic close to the ideal spectral characteristic can be obtained without using a trimming filter with a dichroic film on the exit surface of the prism. can get. Since it is not necessary to use a trimming filter with a dichroic film, it is possible to suppress the occurrence of ghosts and flares conventionally caused by the dichroic film of the trimming filter. Thus, it is possible to realize an imaging system having ideal spectral characteristics with reduced ghost and flare.
また、本実施の形態では、色分解光学系1が、緑色光反射ダイクロイック膜DGの反射特性曲線が、各色の分光特性のバランスを考慮して所定波長範囲Wλ内で所定の最大値Pとなるように各ダイクロイック膜が構成されていることで、最終的な色光の取り出し段階で、相対的に特定の色光のみが極端に減衰することがなく、色バランスの整った状態が得られる。
Further, in the present embodiment, the color separation
この緑色光反射ダイクロイック膜DGの反射率を所定波長範囲Wλ内で所定の最大値Pの範囲Wtとすることの利点について、図5(A),(B)を参照してより具体的に説明する。この色分解光学系1では、緑色光反射ダイクロイック膜DGで反射された成分が緑色光LGとして第1のプリズム10から取り出される。このため、例えば図5(A)に示したように、緑色光反射ダイクロイック膜DGの反射率の最大値Pが所定の範囲Wtから外れて極端に低い場合、緑色光LGとして取り出される光の割合が他の色光に対して相対的に少なくなってしまう。これに対し、図5(B)に示したように、反射率の最大値Pが所定の範囲Wtとなるような値であれば、他の色光とのバランスを取ることができる。これにより、特に第1のプリズム10で取り出される緑色光LGの取り出し効率が向上すると共に、各色光が色バランスの整った状態となる。
The advantage of setting the reflectance of the green light reflecting dichroic film DG within the predetermined wavelength range Wλ to the predetermined maximum value range Wt will be described more specifically with reference to FIGS. 5 (A) and 5 (B). To do. In the color separation
以下、本実施の形態により得られる分光特性を、実際の設計例により示す。
図6は、この色分解光学系1で用いられている緑色光反射ダイクロイック膜DGおよび青色光反射ダイクロイック膜DBの具体的な設計例での特性を示している。図6に示した特性は、例えば図7および図8に具体的に数値データとして示した膜設計により得られる。ただし、膜物質、層数および各層の膜厚は図7および図8の例に限定されるものではない。図9は、図6に示した膜設計の施されたプリズム部分全体(第1、第2および第3のプリズム10,20,30全体)での分光透過特性を示している。
Hereinafter, the spectral characteristics obtained by this embodiment will be shown by actual design examples.
FIG. 6 shows characteristics in a specific design example of the green light reflecting dichroic film DG and the blue light reflecting dichroic film DB used in the color separation
図10は、撮像装置におけるプリズム部以外の光学要素の分光特性の一例を示している。図10では、プリズム部以外の光学要素の特性として、図示しない色温度3200Kの光源と、撮影レンズ2と、IRカットフィルタ3と、撮像素子4R,4G,4BとしてのCCDとを示している。図11は、図10に示したプリズム部以外の光学要素の特性と図9に示したプリズム部分全体での特性とを合わせた、撮像装置における光学系全体での総合的な分光透過特性を示している。
FIG. 10 shows an example of spectral characteristics of optical elements other than the prism portion in the imaging apparatus. In FIG. 10, as the characteristics of the optical elements other than the prism portion, a light source having a color temperature of 3200K, a photographing
図12は、色分解光学系1からの出力に対し、上記した負の値を再現するような逆変換(図2(A),(B)参照)を施す演算を行った逆変換特性(B1,R1,G1)を示している。図12にはまた、比較のために、理想特性(B0,R0,G0)についても併せて示している。なお、ここでいう理想特性とは、撮像装置として最終的に再現したい所望の理想特性(図2(A)参照)である。このように、本実施の形態によれば、最終的には、仮想的に負の感度部分を再現できており、理想特性に近い特性が得られている。
FIG. 12 shows an inverse transformation characteristic (B1) obtained by performing an inverse transformation (see FIGS. 2A and 2B) for reproducing the negative value described above on the output from the color separation
図13は、本実施の形態による設計例での色再現性を、従来の一般的な色分解光学系を用いた場合と比較して示したu’v’色度図である。横軸がu’色度座標値を示し、縦軸がv’色度座標値を示す。図中、破線で囲まれた三角形の領域は、色再現媒体(モニタ)の3原色R,G,Bの色度座標値を結んだものであり、色再現媒体において再現可能な色範囲を示す。この三角形の周辺に向かうほど、より高い彩度となる。なお、図13は色度座標を拡大して示しているため隠れているが、色再現媒体の原色の赤色Rの座標点は右上方向に存在し、原色の青色Bの座標点は左下方向に存在している。また図中、三角形の領域内に白抜きの丸「○」の座標点は物体白色を示す。また、図中、三角形の領域内に黒塗りの三角形「▲」で示した座標点は、従来の構成による任意の色の座標点を表す。白抜きの四角形「□」で示した座標点は、本実施の形態による設計例での任意の色の座標点を表す。従来の構成と本実施の形態による設計例とにおいて、理想点からのずれ量(再現色のずれ量)は、各座標点を結ぶ実線で示されている。従来の構成では、右上の赤色領域において突出して再現色が動いてしまっていたが、本実施の形態による設計例では大きく改善されている。本実施の形態による設計例では、全体的なバランスとして突出して色が理想点から動くところがなくなり、色再現性が向上している。B(ブルー),G(グリーン),R(レッド),C(シアン),Y(イエロー),M(マゼンタ),skin(肌色)の7色での色差平均は約8.9から約6.9に改善した。 FIG. 13 is a u′v ′ chromaticity diagram showing the color reproducibility in the design example according to the present embodiment in comparison with the case where a conventional general color separation optical system is used. The horizontal axis represents the u ′ chromaticity coordinate value, and the vertical axis represents the v ′ chromaticity coordinate value. In the figure, a triangular area surrounded by a broken line connects the chromaticity coordinate values of the three primary colors R, G, and B of the color reproduction medium (monitor), and indicates a color range that can be reproduced on the color reproduction medium. . The closer to the triangle, the higher the saturation. 13 is hidden because the chromaticity coordinates are enlarged, the primary red color R coordinate point of the color reproduction medium is present in the upper right direction, and the primary blue color B coordinate point is in the lower left direction. Existing. In the figure, the coordinate point of the white circle “◯” in the triangular area indicates the object white color. Also, in the figure, coordinate points indicated by black triangles “▲” in the triangular area represent coordinate points of an arbitrary color according to the conventional configuration. Coordinate points indicated by white squares “□” represent coordinate points of an arbitrary color in the design example according to the present embodiment. In the conventional configuration and the design example according to the present embodiment, the deviation amount from the ideal point (reproduction color deviation amount) is indicated by a solid line connecting the coordinate points. In the conventional configuration, the reproduced color has moved in the red area in the upper right, but the design example according to the present embodiment is greatly improved. In the design example according to the present embodiment, as a whole balance, there is no place where the color moves from the ideal point, and the color reproducibility is improved. The average color difference of the seven colors B (blue), G (green), R (red), C (cyan), Y (yellow), M (magenta), and skin (skin color) is about 8.9 to about 6. Improved to 9.
図14は、本実施の形態に係る色分解光学系1におけるゴーストの発生量を、従来の構成と比較して示したものである。ここで、従来の構成とは、図20に示したように、ダイクロイック膜151A,152A,153Aが形成されたトリミングフィルタ151,152,153を備えた色分解光学系101の場合である。これに対し、本実施の形態に係る色分解光学系1では、トリミングフィルタ51,52,53の光射出面には、ダイクロイック膜に代えてゴースト・フレア防止用の反射防止膜51AR,52AR,53ARが形成されている。
FIG. 14 shows the amount of ghost generation in the color separation
図14では一例として、緑色光LGが射出される側でのゴーストの発生量を示している。図14において、符号95を付した曲線は、従来の構成におけるトリミングフィルタ153と本実施の形態におけるトリミングフィルタ53との緑色光LGの透過率を示している。符号91を付した曲線は、従来の構成におけるトリミングフィルタ153のダイクロイック膜153Aの反射率を示している。符号92を付した曲線は、本実施の形態におけるトリミングフィルタ53の反射防止膜53ARの反射率を示している。従来の構成における緑色光LGのゴーストの発生量は、符号95を付した透過率と符号91を付した反射率とを掛け合わせたものとなる。符号93を付した曲線は、この従来のゴーストの発生量を示している。一方、本実施の形態における緑色光LGのゴーストの発生量は、符号95を付した透過率と符号92を付した反射率とを掛け合わせたものとなる。符号94を付した曲線は、この本実施の形態でのゴーストの発生量を示している。従来に比べて、本実施の形態ではゴーストの発生量が大幅に低減されている。なお、図9では、反射防止膜53ARとして、可視光全域で反射を低減する一般的な反射防止コートの例を示している。ただし、プリズム射出面から射出する波長帯域で特に反射率を低減するような、特定波長域での反射防止コートを使用しても良い。
FIG. 14 shows, as an example, the amount of ghost generated on the side where the green light LG is emitted. In FIG. 14, a curve denoted by
以上説明したように、本実施の形態に係る色分解光学系1によれば、ダイクロイック膜付きのトリミングフィルタを用いる従来の波長選択手法に比べてゴースト・フレアを低減させることができ、かつ、理想的な分光特性に近い特性を得て色再現性の向上を図ることができる。また、第1のダイクロイック膜の反射特性曲線が、各色の分光特性のバランスを考慮して、所定波長範囲内で所定の反射率となるようにダイクロイック膜を構成したので、各色光について色バランスの整った状態で理想的な分光特性を得ることができる。
As described above, according to the color separation
また、本実施の形態に係る撮像装置によれば、本実施の形態に係る高性能の色分解光学系1によって得られた色光に応じた撮像信号を出力するようにしたので、色再現性が高く、かつ、各色光について分光特性のバランスの良い撮像を行うことができる。特に、負の値を減らすような逆変換可能な変換を施した特性を理想特性として色分解光学系1を最適化し、その色分解光学系1を介して得られた信号値に基づいて、理想特性における負の値を再現するような逆変換を施す演算を行うようにしたので、色分解光学系1で直接的に得られない負の分光感度となる部分を擬似的に再現できる。
[第2の実施の形態]
Further, according to the imaging apparatus according to the present embodiment, since the imaging signal corresponding to the color light obtained by the high-performance color separation
[Second Embodiment]
次に、本発明の第2の実施の形態を説明する。なお、上記第1の実施の形態と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。 Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the component substantially the same as the said 1st Embodiment, and description is abbreviate | omitted suitably.
図15は、本発明の第2の実施の形態に係る色分解光学系1−1の構成を示している。この色分解光学系1−1は、図1の色分解光学系1とは色光を取り出す順番が異なっている。この色分解光学系1−1は、第1のプリズム10で緑色光LG、第2のプリズム20で赤色光LR、第3のプリズム30で青色光LBを取り出す構成とされている。
FIG. 15 shows the configuration of a color separation optical system 1-1 according to the second embodiment of the present invention. The color separation optical system 1-1 is different from the color separation
本実施の形態に係る色分解光学系1−1において、第1のプリズム10の第2の面12には、図1の色分解光学系1と同様、第1のダイクロイック膜として緑色光反射ダイクロイック膜DGが形成されている。本実施の形態における緑色光反射ダイクロイック膜DGの反射特性曲線の特徴は、図3(A),(B)と同様である。
In the color separation optical system 1-1 according to the present embodiment, the
図1の色分解光学系1では、第2のプリズム20の第2の面22には、第2のダイクロイック膜として青色光反射ダイクロイック膜DBが形成されていたが、本実施の形態に係る色分解光学系1−1では、第2のダイクロイック膜として青色光反射ダイクロイック膜DBに代えて赤色光反射ダイクロイック膜DRが形成されている。赤色光反射ダイクロイック膜DRは、第2の色光成分として赤色光LRを反射し、青色光LBを透過する膜構成とされている。赤色光反射ダイクロイック膜DRは、波長に対する反射率を示す反射特性曲線の傾きが、理想的な赤色の分光特性(上記した一次変換された変換特性R’(x))の短波長側の特性曲線に沿う形状を有するように構成されている。
In the color separation
本実施の形態において、赤色光反射ダイクロイック膜DRは、波長に対する反射率を示す反射特性曲線の傾きが、理想的な赤色の分光特性の短波長側の特性曲線に略等しい形状を有していても良い。
ここで、「理想的な分光特性の特性曲線に略等しい形状」としては、例えば、規格化された所定の理想特性曲線を一次変換した、図2(B)に示したような変換特性曲線の傾きに対して、その特性曲線の傾きが±10%以内に入るような形状であることが好ましい。
In the present embodiment, the red light reflecting dichroic film DR has a shape in which the slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength is substantially equal to the characteristic curve on the short wavelength side of the ideal red spectral characteristic. Also good.
Here, the “shape substantially equal to the characteristic curve of the ideal spectral characteristic” is, for example, a conversion characteristic curve such as that shown in FIG. The shape is preferably such that the slope of the characteristic curve falls within ± 10% of the slope.
この色分解光学系1−1では、まず、入射光Lのうち緑色光LGが、緑色光反射ダイクロイック膜DGによって反射され、第1のプリズム10から第1の色光成分として取り出される。また、緑色光反射ダイクロイック膜DGを透過した赤色光LRが、赤色光反射ダイクロイック膜DRによって反射され、第2のプリズム20から第2の色光成分として取り出される。さらに、緑色光反射ダイクロイック膜DGおよび赤色光反射ダイクロイック膜DRを透過した青色光LBが、第3の色光成分として第3のプリズム30から取り出される。
In the color separation optical system 1-1, first, the green light LG of the incident light L is reflected by the green light reflecting dichroic film DG and extracted from the
本実施の形態における緑色光反射ダイクロイック膜DGおよび赤色光反射ダイクロイック膜DRは、その特性曲線の傾きが、理想とする分光特性に応じた設計とされている。さらに、本実施の形態では、緑色光反射ダイクロイック膜DGの反射特性曲線が、図16に示したような特性となるような設計とされている。すなわち、緑色光反射ダイクロイック膜DGの反射特性曲線が、所定の波長範囲Wλ内ではその反射率の最大値Pが所定の範囲Wt内となるような膜設計とされている。
ここで、波長範囲Wλは、例えば500nm以上570nm以下の範囲である。
また、反射率の最大値Pの範囲Wtは、36%以上(100%以下)の範囲である。
In the present embodiment, the green light reflecting dichroic film DG and the red light reflecting dichroic film DR are designed such that the slopes of their characteristic curves correspond to the ideal spectral characteristics. Furthermore, in the present embodiment, the green light reflecting dichroic film DG is designed so that the reflection characteristic curve has the characteristics shown in FIG. That is, the reflection characteristic curve of the green light reflecting dichroic film DG is designed such that the maximum reflectance P is within the predetermined range Wt within the predetermined wavelength range Wλ.
Here, the wavelength range Wλ is, for example, a range from 500 nm to 570 nm.
Further, the range Wt of the maximum value P of the reflectance is a range of 36% or more (100% or less).
図17に、本実施の形態における緑色光反射ダイクロイック膜DGおよび赤色光反射ダイクロイック膜DRの具体的な設計例での特性を示す。 FIG. 17 shows characteristics in a specific design example of the green light reflecting dichroic film DG and the red light reflecting dichroic film DR in the present embodiment.
本実施の形態では、緑色光反射ダイクロイック膜DGの特性を示す曲線が、理想的な緑色の分光特性の特性曲線に沿う形状を有すると共に、赤色光反射ダイクロイック膜DRの反射特性を示す曲線が、理想的な赤色の分光特性の短波長側の特性曲線に沿う形状を有していることで、プリズムの射出面にダイクロイック膜付きのトリミングフィルタを用いることなく、理想的な分光特性に近い特性が得られる。ダイクロイック膜付きのトリミングフィルタを用いる必要が無くなるので、従来、トリミングフィルタのダイクロイック膜に起因して生じていたゴースト・フレアの発生が抑制される。これらにより、ゴースト・フレアを低減した形での理想的な分光特性を持つ撮像系の実現が可能となる。 In the present embodiment, the curve indicating the characteristic of the green light reflecting dichroic film DG has a shape along the characteristic curve of the ideal green spectral characteristic, and the curve indicating the reflecting characteristic of the red light reflecting dichroic film DR is: By having a shape along the characteristic curve on the short wavelength side of the ideal red spectral characteristic, the characteristic close to the ideal spectral characteristic can be obtained without using a trimming filter with a dichroic film on the exit surface of the prism. can get. Since it is not necessary to use a trimming filter with a dichroic film, it is possible to suppress the occurrence of ghosts and flares conventionally caused by the dichroic film of the trimming filter. Thus, it is possible to realize an imaging system having ideal spectral characteristics with reduced ghost and flare.
また、本実施の形態では、緑色光反射ダイクロイック膜DGの反射特性曲線が、各色の分光特性のバランスを考慮して所定波長範囲Wλ内で所定の反射率となるように各ダイクロイック膜が構成されていることで、最終的な色光の取り出し段階で、相対的に特定の色光のみが極端に減衰することがなく、色バランスの整った状態が得られる。特に第1のプリズム10で取り出される緑色光LGの取り出し効率が向上すると共に、各色光が色バランスの整った状態とすることができる。その他の構成、作用および効果については、図1の色分解光学系1と同様である。
[第3の実施の形態]
In the present embodiment, each dichroic film is configured such that the reflection characteristic curve of the green light reflecting dichroic film DG has a predetermined reflectance within a predetermined wavelength range Wλ in consideration of the balance of spectral characteristics of each color. As a result, in the final color light extraction stage, only a specific color light is not significantly attenuated, and a state in which the color balance is arranged is obtained. In particular, the extraction efficiency of the green light LG extracted by the
[Third Embodiment]
次に、本発明の第3の実施の形態を説明する。なお、上記第1または第2の実施の形態と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。 Next, a third embodiment of the present invention will be described. Note that components that are substantially the same as those in the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted as appropriate.
図18は、本発明の第5の実施の形態に係る色分解光学系1−2の構成を示している。この色分解光学系1−4は、図1に示した色分解光学系1に対して、第1のプリズム10よりも前側に配置された偏光解消板55をさらに備えたものである。その他の構成は、図1に示した色分解光学系1と同様である。偏光解消板55は、入射光の特定方向への偏光を解消するためのものである。
FIG. 18 shows a configuration of a color separation optical system 1-2 according to the fifth embodiment of the present invention. The color separation optical system 1-4 further includes a
図19は、偏光解消板55を設けなかった場合のプリズム部分全体(第1、第2および第3のプリズム10,20,30全体)での、偏光成分ごとの分光透過特性の一例を示している。入射光の成分が例えば特定の直線偏光成分に偏っていると、入射光が無偏光状態である場合に比べて分光特性が変化してしまう。図19には、入射光として互いに直交する直線偏光成分(P偏光およびS偏光)が、それぞれ単独で入射した場合の特性を示している。また、入射光が無偏光である場合の特性を、(P+S)/2として示している。本実施の形態では、第1のプリズム10よりも前側に偏光解消板55を配置していることで、入射光の特定方向への偏光を解消し、図19の(P+S)/2で示したような安定した分光特性を得ることができる。
FIG. 19 shows an example of the spectral transmission characteristics for each polarization component in the entire prism portion (the entire first, second and
なお、その他の実施の形態における構成例に対しても同様に、第1のプリズム10よりも前側に偏光解消板55を設けるようにしても良い。
[その他の実施の形態]
Similarly to the configuration examples in the other embodiments, the
[Other embodiments]
本発明は、上記各実施の形態に限定されず、その他の変形実施が可能である。
例えば、上記各実施の形態では、色分解光学系として3つのプリズムを備え、3つの色光に分解する例を示したが、本発明は、4つ以上のプリズムを備え、4つ以上の色光に分解するような色分解光学系にも適用することが可能である。
The present invention is not limited to the above embodiments, and other modifications can be made.
For example, in each of the above-described embodiments, an example in which three prisms are provided as a color separation optical system and the light is separated into three color lights has been shown. However, the present invention includes four or more prisms and is provided with four or more color lights. The present invention can also be applied to a color separation optical system that decomposes.
L…入射光、LB…青色光成分、LR…赤色光成分、LG…緑色光成分、DB…青色光反射ダイクロイック膜、DR…赤色光反射ダイクロイック膜、DG…緑色光反射ダイクロイック膜、1,1−1,1−2…色分解光学系、2…撮影レンズ、3…IRカットフィルタ、4R,4G,4B…撮像素子、10…第1のプリズム、20…第2のプリズム、30…第3のプリズム、51…第1のトリミングフィルタ、52…第2のトリミングフィルタ、53…第3のトリミングフィルタ、51AR…第1の反射防止膜、52AR…第2の反射防止膜、53AR…第3の反射防止膜、55…偏光解消板。 L ... incident light, LB ... blue light component, LR ... red light component, LG ... green light component, DB ... blue light reflecting dichroic film, DR ... red light reflecting dichroic film, DG ... green light reflecting dichroic film, 1,1 -1, 1-2 ... color separation optical system, 2 ... photographing lens, 3 ... IR cut filter, 4R, 4G, 4B ... imaging element, 10 ... first prism, 20 ... second prism, 30 ... third 51 ... first trimming filter, 52 ... second trimming filter, 53 ... third trimming filter, 51AR ... first antireflection film, 52AR ... second antireflection film, 53AR ... third Antireflection film, 55... Depolarization plate.
Claims (12)
光の入射側から順に、
第1のダイクロイック膜を有し、前記第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、
第2のダイクロイック膜を有し、前記第1のダイクロイック膜を透過し前記第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、
前記第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムと
を少なくとも備え、
前記第1のダイクロイック膜が、前記第1の色光成分として緑色光を反射する膜構成とされると共に、前記第2のダイクロイック膜が、前記第2の色光成分として青色光を反射する膜構成とされ、
前記第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な緑色の分光特性の短波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で低反射率から高反射率に変化し、最低反射率と最高反射率との間の範囲の20%から80%に変化する部分では平均傾き値が0.2(%/nm)以上2.0(%/nm)以下となり、かつ、長波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で高反射率から低反射率に変化し、最低反射率と最高反射率との間の範囲の20%から80%に変化する部分では平均傾き値が−2.0(%/nm)以上−0.2(%/nm)以下となる形状を有すると共に、
前記第2のダイクロイック膜の波長に対する透過率を示す透過特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な赤色の分光特性の短波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で低透過率から高透過率に変化し、最低透過率と最高透過率との間の範囲の20%から80%に変化する部分では平均傾き値が0.2(%/nm)以上2.0(%/nm)以下となる形状を有し、
かつ、
前記第1のダイクロイック膜の前記反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされている
ことを特徴とする色分解光学系。 A color separation optical system that decomposes incident light into at least three color light components of blue light, red light, and green light,
In order from the light incident side,
A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film;
A second prism that has a second dichroic film and extracts a second color light component transmitted through the first dichroic film and reflected by the second dichroic film;
A third prism for extracting a third color light component transmitted through the first and second dichroic films,
The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects blue light as the second color light component. And
The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. It changes from a low reflectance to a high reflectance within the wavelength range of 430 nm to 670 nm so as to follow the characteristic curve on the short wavelength side of the ideal green spectral characteristic indicated by the primary conversion of the color function. The average slope value is 0.2 (% / nm) or more and 2.0 (% / nm) or less in the portion where the range between the maximum reflectance and 20% changes to 80%, and the characteristics on the long wavelength side. Along the curve, it changes from high reflectance to low reflectance within the wavelength range of 430 nm or more and 670 nm or less, and the average slope in the portion that changes from 20% to 80% of the range between the lowest reflectance and the highest reflectance. The value is −2.0 (% / nm) or more and −0. And having a shape of 2 (% / nm) or less ,
The slope of the transmission characteristic curve indicating the transmittance with respect to the wavelength of the second dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. It changes from low transmittance to high transmittance within the wavelength range of 430 nm or more and 670 nm or less along the characteristic curve on the short wavelength side of the ideal red spectral characteristic shown by the primary conversion of the color function. The portion where the average slope value is 0.2 (% / nm) or more and 2.0 (% / nm) or less in a portion that changes from 20% to 80% of the range between the maximum transmittance ,
And,
A color separation optical system characterized in that the maximum reflectance value is 36% or more within a wavelength range of 500 nm or more and 570 nm or less in the reflection characteristic curve of the first dichroic film. .
光の入射側から順に、
第1のダイクロイック膜を有し、前記第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、
第2のダイクロイック膜を有し、前記第1のダイクロイック膜を透過し前記第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、
前記第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムと
を少なくとも備え、
前記第1のダイクロイック膜が、前記第1の色光成分として緑色光を反射する膜構成とされると共に、前記第2のダイクロイック膜が、前記第2の色光成分として赤色光を反射する膜構成とされ、
前記第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な緑色の分光特性の短波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で低反射率から高反射率に変化し、最低反射率と最高反射率との間の範囲の20%から80%に変化する部分では平均傾き値が0.2(%/nm)以上2.0(%/nm)以下となり、かつ、長波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で高反射率から低反射率に変化し、最低反射率と最高反射率との間の範囲の20%から80%に変化する部分では平均傾き値が−2.0(%/nm)以上−0.2(%/nm)以下となる形状を有すると共に、
前記第2のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な赤色の分光特性の短波長側の特性曲線に沿うように430nm以上670nm以下の波長範囲内で低反射率から高反射率に変化し、最低反射率と最高反射率との間の範囲の20%から80%に変化する平均傾き値が0.2(%/nm)以上2.0(%/nm)以下となる形状を有し、
かつ、
前記第1のダイクロイック膜の前記反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされている
ことを特徴とする色分解光学系。 A color separation optical system that decomposes incident light into at least three color light components of blue light, red light, and green light,
In order from the light incident side,
A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film;
A second prism that has a second dichroic film and extracts a second color light component transmitted through the first dichroic film and reflected by the second dichroic film;
A third prism for extracting a third color light component transmitted through the first and second dichroic films,
The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects red light as the second color light component. And
The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. It changes from a low reflectance to a high reflectance within the wavelength range of 430 nm to 670 nm so as to follow the characteristic curve on the short wavelength side of the ideal green spectral characteristic indicated by the primary conversion of the color function. The average slope value is 0.2 (% / nm) or more and 2.0 (% / nm) or less in the portion where the range between the maximum reflectance and 20% changes to 80%, and the characteristics on the long wavelength side. Along the curve, it changes from high reflectance to low reflectance within the wavelength range of 430 nm or more and 670 nm or less, and the average slope in the portion that changes from 20% to 80% of the range between the lowest reflectance and the highest reflectance. The value is −2.0 (% / nm) or more and −0. And having a shape of 2 (% / nm) or less ,
The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the second dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. It changes from a low reflectance to a high reflectance within a wavelength range of 430 nm or more and 670 nm or less so as to follow the characteristic curve on the short wavelength side of the ideal red spectral characteristic shown by the primary conversion of the color function. An average slope value that changes from 20% to 80% of the range between the maximum reflectance and a shape that is 0.2 (% / nm) to 2.0 (% / nm) ,
And,
A color separation optical system characterized in that the maximum reflectance value is 36% or more within a wavelength range of 500 nm or more and 570 nm or less in the reflection characteristic curve of the first dichroic film. .
ことを特徴とする請求項1又は2に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1又は2に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1ないし4のいずれか1項に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1ないし4のいずれか1項に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1ないし4のいずれか1項に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1ないし4のいずれか1項に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
ことを特徴とする請求項1ないし4のいずれか1項に記載の色分解光学系。The color separation optical system according to claim 1, wherein the color separation optical system is a color separation optical system.
光の入射側から順に、 In order from the light incident side,
第1のダイクロイック膜を有し、前記第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、 A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film;
第2のダイクロイック膜を有し、前記第1のダイクロイック膜を透過し前記第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、 A second prism that has a second dichroic film and extracts a second color light component transmitted through the first dichroic film and reflected by the second dichroic film;
前記第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムと A third prism for extracting a third color light component transmitted through the first and second dichroic films;
を少なくとも備え、Comprising at least
前記第1のダイクロイック膜が、前記第1の色光成分として緑色光を反射する膜構成とされると共に、前記第2のダイクロイック膜が、前記第2の色光成分として青色光を反射する膜構成とされ、 The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects blue light as the second color light component. And
前記第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な緑色の分光特性の短波長側および長波長側の特性曲線の傾きに対して±10%以内に入る略等しい形状を有すると共に、前記第2のダイクロイック膜の波長に対する透過率を示す透過特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な赤色の分光特性の短波長側の特性曲線の傾きに対して±10%以内に入る略等しい形状を有し、 The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. The second dichroic film has substantially the same shape within ± 10% with respect to the slope of the characteristic curve on the short wavelength side and the long wavelength side of the ideal green spectral characteristic shown by the primary conversion of the color function. The slope of the transmission characteristic curve indicating the transmittance with respect to the wavelength of the color is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and is subjected to the primary conversion of the color matching function of the XYZ color system. It has approximately the same shape that falls within ± 10% with respect to the slope of the characteristic curve on the short wavelength side of the ideal red spectral characteristic shown,
かつ、And,
前記第1のダイクロイック膜の前記反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされていることを特徴とする色分解光学系。A color separation optical system characterized in that the maximum reflectance value is 36% or more within a wavelength range of 500 nm or more and 570 nm or less in the reflection characteristic curve of the first dichroic film. .
光の入射側から順に、 In order from the light incident side,
第1のダイクロイック膜を有し、前記第1のダイクロイック膜によって反射された第1の色光成分を取り出す第1のプリズムと、 A first prism that has a first dichroic film and extracts a first color light component reflected by the first dichroic film;
第2のダイクロイック膜を有し、前記第1のダイクロイック膜を透過し前記第2のダイクロイック膜によって反射された第2の色光成分を取り出す第2のプリズムと、 A second prism that has a second dichroic film and extracts a second color light component transmitted through the first dichroic film and reflected by the second dichroic film;
前記第1および第2のダイクロイック膜を透過した第3の色光成分を取り出す第3のプリズムと A third prism for extracting a third color light component transmitted through the first and second dichroic films;
を少なくとも備え、Comprising at least
前記第1のダイクロイック膜が、前記第1の色光成分として緑色光を反射する膜構成とされると共に、前記第2のダイクロイック膜が、前記第2の色光成分として赤色光を反射する膜構成とされ、 The first dichroic film has a film configuration that reflects green light as the first color light component, and the second dichroic film has a film configuration that reflects red light as the second color light component. And
前記第1のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な緑色の分光特性の短波長側および長波長側の特性曲線の傾きに対して±10%以内に入る略等しい形状を有すると共に、前記第2のダイクロイック膜の波長に対する反射率を示す反射特性曲線の傾きが、RGB表色系の等色関数、又は色再現媒体の3原色の色度座標から換算され、XYZ表色系の等色関数の一次変換で示される理想的な赤色の分光特性の短波長側の特性曲線の傾きに対して±10%以内に入る略等しい形状を有し、 The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the first dichroic film is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and the like of the XYZ color system, etc. The second dichroic film has substantially the same shape within ± 10% with respect to the slope of the characteristic curve on the short wavelength side and the long wavelength side of the ideal green spectral characteristic shown by the primary conversion of the color function. The slope of the reflection characteristic curve indicating the reflectance with respect to the wavelength of the color is converted from the color matching function of the RGB color system or the chromaticity coordinates of the three primary colors of the color reproduction medium, and is subjected to the primary conversion of the color matching function of the XYZ color system. It has approximately the same shape that falls within ± 10% with respect to the slope of the characteristic curve on the short wavelength side of the ideal red spectral characteristic shown,
かつ、And,
前記第1のダイクロイック膜の前記反射特性曲線における500nm以上570nm以下の波長範囲内ではその反射率の最大値が36%以上となるような膜構成とされている In the reflection characteristic curve of the first dichroic film, the film structure is such that the maximum reflectance is 36% or more within a wavelength range of 500 nm to 570 nm.
ことを特徴とする色分解光学系。 A color separation optical system.
前記色分解光学系によって分解された各色光に対応して設けられ、入射した各色光に応じた電気信号を出力する撮像素子と、 An image sensor that is provided corresponding to each color light separated by the color separation optical system and outputs an electrical signal corresponding to each incident color light;
前記撮像素子によって得られた信号値に基づいて、前記理想特性における負の値を再現する逆変換を施す演算回路と An arithmetic circuit for performing an inverse transformation that reproduces a negative value in the ideal characteristic based on a signal value obtained by the image sensor;
を備えたことを特徴とする撮像装置。An imaging apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008096059A JP5075715B2 (en) | 2008-04-02 | 2008-04-02 | Color separation optical system and imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008096059A JP5075715B2 (en) | 2008-04-02 | 2008-04-02 | Color separation optical system and imaging apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009251097A JP2009251097A (en) | 2009-10-29 |
JP5075715B2 true JP5075715B2 (en) | 2012-11-21 |
Family
ID=41311913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008096059A Active JP5075715B2 (en) | 2008-04-02 | 2008-04-02 | Color separation optical system and imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5075715B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5033741B2 (en) * | 2008-09-16 | 2012-09-26 | 富士フイルム株式会社 | Color characteristic conversion coefficient determination method, prism set, and imaging apparatus |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2823096B2 (en) * | 1991-03-18 | 1998-11-11 | 富士写真光機株式会社 | Color separation optics |
JP2870234B2 (en) * | 1991-06-21 | 1999-03-17 | キヤノン株式会社 | Color separation optics |
JPH05341111A (en) * | 1992-06-10 | 1993-12-24 | Matsushita Electric Ind Co Ltd | Color separation prism device |
JPH0727908A (en) * | 1993-07-12 | 1995-01-31 | Canon Inc | Color separation optical system |
JPH08275182A (en) * | 1995-03-28 | 1996-10-18 | Canon Inc | Television camera in common use for color mode and infrared ray mode |
JP4797289B2 (en) * | 2001-07-04 | 2011-10-19 | ソニー株式会社 | Imaging device |
JP2004289545A (en) * | 2003-03-24 | 2004-10-14 | Victor Co Of Japan Ltd | Color separation optical system and image pickup device using the same |
JP2005208256A (en) * | 2004-01-21 | 2005-08-04 | Fujinon Corp | Trimming filter, color separation optical system, color composite optical system, imaging apparatus and projector |
US7663668B2 (en) * | 2004-04-05 | 2010-02-16 | Mitsubishi Electric Corporation | Imaging device |
JP2007298279A (en) * | 2006-04-27 | 2007-11-15 | Sony Corp | Color measuring device |
JP5094502B2 (en) * | 2007-03-30 | 2012-12-12 | 富士フイルム株式会社 | Color separation optical system and imaging apparatus |
JP5066420B2 (en) * | 2007-09-28 | 2012-11-07 | 富士フイルム株式会社 | Color separation optical system and imaging apparatus |
-
2008
- 2008-04-02 JP JP2008096059A patent/JP5075715B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009251097A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5066420B2 (en) | Color separation optical system and imaging apparatus | |
JP5094502B2 (en) | Color separation optical system and imaging apparatus | |
US7839571B2 (en) | Color-separation optical system and imaging apparatus | |
JP2008250122A (en) | Color separation optical system and imaging apparatus | |
JP4940361B2 (en) | Device for capturing color images | |
JP2000137172A (en) | Image pickup device | |
US8310765B2 (en) | Color separating optical system | |
JP2007184805A (en) | Color image reproducing device | |
JP5075714B2 (en) | Color separation optical system and imaging apparatus | |
JP2003284082A (en) | Apparatus and method for accurate electronic color capture and reproduction | |
JP4820773B2 (en) | Color separation optical system and imaging apparatus | |
KR20120037454A (en) | Method and system for color correction for three-dimensional(3d) projection | |
JP2001042230A (en) | Image pickup optical system | |
JP5075715B2 (en) | Color separation optical system and imaging apparatus | |
JP2001078212A (en) | Image pickup device | |
JP2010021791A (en) | Image capturing apparatus, and image processing method therefor, and program | |
JP5033741B2 (en) | Color characteristic conversion coefficient determination method, prism set, and imaging apparatus | |
JP2002365413A (en) | Color separation optical system | |
JP5906755B2 (en) | Imaging apparatus, imaging method, and program | |
JP5087521B2 (en) | Optical element and method for manufacturing optical element | |
JP2011248047A (en) | Color separation optical system and imaging device | |
JP2010041231A (en) | Infrared ray radiation type imaging device and control program for the same | |
JP2003102029A (en) | Color imaging device, optical filter for color imaging device, and interchangeable lens for the color imaging device | |
JP2007201536A (en) | Imaging apparatus | |
JP2010074213A (en) | Imaging apparatus and signal processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100604 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111107 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20111117 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5075715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |