[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5074998B2 - Appearance inspection method and apparatus for transparent film - Google Patents

Appearance inspection method and apparatus for transparent film Download PDF

Info

Publication number
JP5074998B2
JP5074998B2 JP2008114621A JP2008114621A JP5074998B2 JP 5074998 B2 JP5074998 B2 JP 5074998B2 JP 2008114621 A JP2008114621 A JP 2008114621A JP 2008114621 A JP2008114621 A JP 2008114621A JP 5074998 B2 JP5074998 B2 JP 5074998B2
Authority
JP
Japan
Prior art keywords
defect
area
value
image
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008114621A
Other languages
Japanese (ja)
Other versions
JP2009264915A (en
Inventor
裕彦 峠山
智太郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008114621A priority Critical patent/JP5074998B2/en
Publication of JP2009264915A publication Critical patent/JP2009264915A/en
Application granted granted Critical
Publication of JP5074998B2 publication Critical patent/JP5074998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、反射率が低い透明フィルムの画像にコンピュータ画像処理を施すことにより異物や気泡のような欠陥の有無について外観検査を行う透明フィルムの外観検査方法および透明フィルムの外観検査装置に関するものである。   The present invention relates to a transparent film visual inspection method and a transparent film visual inspection apparatus for performing visual inspection for the presence or absence of defects such as foreign matter and bubbles by performing computer image processing on an image of a transparent film having low reflectance. is there.

一般に、合成樹脂材料により形成された透明フィルムでは異物や気泡が混入していると欠陥品になるから、透明フィルムの検査項目には異物や気泡のような欠陥の有無が含まれる。欠陥の有無の検査は、検査対象である透明フィルムに光を照射し、透過光または反射光を検出することにより行っている。ただし、検査員が目視検査すると、検査能力や体調などによって検査結果にばらつきが生じ、また見落としも多くなると考えられる。   Generally, a transparent film formed of a synthetic resin material becomes a defective product when foreign matter or bubbles are mixed therein, and therefore, inspection items of the transparent film include the presence or absence of defects such as foreign matter and bubbles. The inspection for the presence or absence of defects is performed by irradiating light to a transparent film to be inspected and detecting transmitted light or reflected light. However, when the inspector visually inspects, it is considered that the inspection results vary depending on the inspection ability and physical condition, and the number of oversights increases.

この種の問題を解決するために、検査対象に照射した光の透過光や反射光をラインセンサカメラにより受光し、コンピュータ画像処理の技術を用いることによって、欠陥の有無の外観検査を行うことが考えられている(たとえば、特許文献1参照)。特許文献1の構成を採用すれば、目視による検査に比較して検査結果のばらつきが低減される。   In order to solve this type of problem, it is possible to perform a visual inspection for the presence or absence of defects by receiving transmitted light or reflected light of the light irradiated on the inspection object with a line sensor camera and using a computer image processing technique. It is considered (for example, refer to Patent Document 1). If the structure of patent document 1 is employ | adopted, the dispersion | variation in a test result will be reduced compared with the test | inspection by visual observation.

ところで、特許文献1に記載の技術では、検査対象である透明フィルムを一方向に進行させ、進行方向と直交する方向に複数個のCCDセンサを配列したラインセンサカメラにより透明フィルムの表面を撮像している。   By the way, in the technique described in Patent Document 1, a transparent film to be inspected is advanced in one direction, and the surface of the transparent film is imaged by a line sensor camera in which a plurality of CCD sensors are arranged in a direction orthogonal to the traveling direction. ing.

また、照明に関しては、透明フィルムに対してラインセンサカメラと反対側から照明を行って透過光による撮像を行うことを基本としている。特許文献1には、透明フィルムに対してラインセンサカメラと同じ側から照明を行って反射光による撮像を行ったり、透過光と反射光との両方による撮像を行ったりすることも記載されている。   As for the illumination, it is basically based on the fact that the transparent film is illuminated from the opposite side to the line sensor camera and imaged by transmitted light. Patent Document 1 also describes that a transparent film is illuminated from the same side as the line sensor camera to perform imaging with reflected light, or to perform imaging with both transmitted light and reflected light. .

検査対象が透明フィルムである場合、透過率が高く反射率が低いから、不透明な異物のような欠陥は透過光を用いることにより有無を検出することができるが、気泡のような欠陥では透過光と反射光とのいずれを用いる場合であっても光の散乱の有無による受光強度の相違を検出することになるから、欠陥の有無による光量の変化は少なく、信号対雑音比(S/N)を大きくすることができない。   When the object to be inspected is a transparent film, the transmittance is high and the reflectance is low. Therefore, it is possible to detect the presence or absence of a defect such as an opaque foreign object by using transmitted light. The difference in received light intensity due to the presence or absence of light scattering is detected regardless of whether light is reflected or not, and therefore the change in the amount of light due to the presence or absence of defects is small, and the signal-to-noise ratio (S / N) Cannot be increased.

また、検査対象は厚み寸法が小さく平面度が高いとは言えず、検査対象が良品であってもラインカメラセンサで受光する受光強度が検査対象の場所によって変化する場合があるから、局所的な受光強度の変動を欠陥と誤認する可能性がある。さらに、検査環境における環境光の強度変化が検査結果に影響を与えることがあり、欠陥の検出結果の再現性が低いという問題もある。   In addition, it cannot be said that the inspection object has a small thickness dimension and high flatness, and even if the inspection object is a non-defective product, the received light intensity received by the line camera sensor may vary depending on the location of the inspection object. There is a possibility that the fluctuation of the received light intensity is mistaken as a defect. Further, the change in the intensity of the ambient light in the inspection environment may affect the inspection result, and there is a problem that the reproducibility of the defect detection result is low.

検査対象が透明フィルムである場合について、上述した欠陥の検出の問題点を列挙すれば以下のようになる。
1.S/Nが小さいから、欠陥の判断条件の調節範囲が狭い。すなわち、欠陥の判断条件を厳しく設定すれば欠陥の見落としが多くなり、判断条件を緩く設定すれば欠陥ではない領域を欠陥とする誤認が増加する。
2.環境光が変動すると、欠陥を再現性よく検出することができない。
3.局所的な受光強度の変動を欠陥と誤認する可能性がある。
When the inspection object is a transparent film, the problems of defect detection described above are listed as follows.
1. Since the S / N is small, the adjustment range of the defect determination condition is narrow. That is, if the defect determination conditions are set strictly, defects are overlooked, and if the determination conditions are set loosely, misperceptions of non-defect areas as defects increase.
2. If the ambient light fluctuates, defects cannot be detected with good reproducibility.
3. There is a possibility that a local fluctuation in received light intensity is mistaken as a defect.

特許文献1に記載の技術では、全画素の受光強度(に対応する信号値)の平均値を各画素の受光強度(に対応する信号値)から減算する技術を採用しているから、上述の問題点1、2を解決できると考えられる。
特開2001−91470号公報
The technique described in Patent Document 1 employs a technique of subtracting the average value of the received light intensity (corresponding signal value) of all pixels from the received light intensity (corresponding signal value) of each pixel. It seems that problems 1 and 2 can be solved.
JP 2001-91470 A

しかしながら、特許文献1に記載の技術では、すべての画素の受光強度から一律に全画素の受光強度の平均値を減算しているから、局所的に生じる受光強度の変動には対応できず、問題点3については解決されていない。   However, in the technique described in Patent Document 1, the average value of the light reception intensity of all the pixels is uniformly subtracted from the light reception intensity of all the pixels. Point 3 is not solved.

本発明は上記事由に鑑みて為されたものであり、その目的は、欠陥の有無による受光強度の差が微小であっても欠陥の判断条件を適正に設定でき、かつ環境光が変動しても欠陥を再現性よく検出することを可能にするのはもちろんのこと、局所的に生じる受光強度の変動についても誤認することなく欠陥を精度よく検出することを可能にした透明フィルムの外観検査方法および透明フィルムの外観検査装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the purpose thereof is that even if the difference in received light intensity due to the presence or absence of a defect is small, the determination condition of the defect can be set appropriately and the ambient light varies. In addition to making it possible to detect defects with high reproducibility, it is possible to accurately detect defects without misidentifying local variations in received light intensity. It is another object of the present invention to provide a transparent film appearance inspection apparatus.

請求項1の発明は、透明フィルムを検査対象として照明装置から検査対象の表面に光を照射するとともに、検査対象の表面の各部位からの反射光を画像入力装置により受光して濃淡画像を生成する第1過程と、当該濃淡画像を複数の分割画像に分割する第2過程と、分割画像内において濃淡値の最頻値を求める第3過程と、当該最頻値を含む良品範囲を設定し良品範囲を逸脱する濃淡値を持つ画素を欠陥候補点として抽出する第4過程と、欠陥候補点からなる連結領域のうち統合可能なものを欠陥領域として統合する第5過程と、欠陥領域について重心を求める第6過程と、重心を基準とする検査領域を設定する第7過程と、検査領域内で濃淡値の最頻値を基準値として求める第8過程と、基準値との差分が規定の閾値以上となる濃淡値を持つ画素を欠陥の画素として抽出する第9過程とを有することを特徴とする。   The invention of claim 1 irradiates the surface of the inspection target from the illumination device with the transparent film as the inspection target, and generates a grayscale image by receiving reflected light from each part of the surface of the inspection target by the image input device. A second process for dividing the gray image into a plurality of divided images, a third process for obtaining a mode value of the gray value in the divided image, and a non-defective range including the mode value. A fourth process of extracting pixels having gray values that deviate from the non-defective range as defect candidate points, a fifth process of integrating as a defect area a connectable area consisting of defect candidate points, and a centroid for the defect area The difference between the sixth process, the seventh process for setting the inspection area based on the center of gravity, the eighth process for determining the mode value of the gray value in the inspection area as the reference value, and the reference value is defined. Has a gray value greater than or equal to the threshold value And having a ninth step of extracting a pixel as a pixel defect.

請求項2の発明では、請求項1の発明において、前記分割画像は、前記濃淡画像を分割した方向において、抽出しようとする欠陥に含まれる画素数の2倍以上の画素数を有することを特徴とする。   According to a second aspect of the invention, in the first aspect of the invention, the divided image has a number of pixels that is twice or more the number of pixels included in a defect to be extracted in the direction in which the grayscale image is divided. And

請求項3の発明は、請求項1又は2の発明において、前記第3過程では、前記濃淡画像を分割した方向と当該方向に直交する方向との両方向の各直線上に並ぶ画素についてそれぞれ濃淡値の最頻値を求め、第4過程では各方向について求めた欠陥候補点の論理和を欠陥候補点として採用することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, in the third step, the gray value is determined for pixels arranged on each straight line in both directions of a direction in which the gray image is divided and a direction orthogonal to the direction. In the fourth process, the logical sum of the defect candidate points obtained for each direction is adopted as the defect candidate point.

請求項4の発明は、請求項1又は2の発明において、前記第3過程では、前記濃淡画像を分割した方向と当該方向に直交する方向との両方向の各直線上に並ぶ画素についてそれぞれ濃淡値の最頻値を求め、第4過程では各方向について求めた欠陥候補点からなる連結領域の一方が規定の判定面積を超えるときに当該連結領域を採用することを特徴とする。   According to a fourth aspect of the present invention, in the first or second aspect of the present invention, in the third step, the gray value is determined for pixels arranged on each straight line in both directions of a direction in which the gray image is divided and a direction orthogonal to the direction. The fourth step is characterized in that, in the fourth process, when one of the connected regions made up of defect candidate points obtained in each direction exceeds a prescribed determination area, the connected region is adopted.

請求項5の発明は、請求項1〜4のいずれかの発明において、前記第5過程では、欠陥候補点からなる連結領域のうち面積が規定の最小面積に満たない連結領域を欠陥領域から除外することを特徴とする。   The invention of claim 5 is the invention according to any one of claims 1 to 4, wherein, in the fifth step, a connection region whose area is less than a specified minimum area is excluded from the defect regions among the connection regions composed of defect candidate points. It is characterized by doing.

請求項6の発明は、請求項1〜5のいずれかの発明において、前記第5過程では、欠陥候補点からなる連結領域のうち面積が規定の最大面積を超える連結領域を欠陥領域から除外することを特徴とする。   The invention of claim 6 is the invention according to any one of claims 1 to 5, wherein, in the fifth step, a connection region whose area exceeds a specified maximum area is excluded from the defect regions among the connection regions composed of defect candidate points. It is characterized by that.

請求項7の発明は、透明フィルムを検査対象として検査対象の表面に光を照射する照明装置と、検査対象の表面の各部位からの反射光を受光し受光光量に応じた受光信号を出力する画像入力装置と、画像入力装置により得られる濃淡画像を複数の分割画像に分割する画像分割部と、分割画像内において濃淡画像を分割した方向に延長されている直線上に並ぶ画素について濃淡値の最頻値を求める最頻値抽出部と、最頻値抽出部で求めた最頻値を含む良品範囲を設定し良品範囲を逸脱する濃淡値を持つ画素を欠陥候補点として抽出する欠陥候補抽出部と、欠陥候補点からなる連結領域のうち統合可能なものを欠陥領域として統合する欠陥領域統合部と、欠陥領域について重心を求め重心を基準とする検査領域を設定する検査領域設定部と、検査領域内で濃淡値の最頻値を基準値として求める基準値設定部と、基準値との差分が規定の閾値以上となる濃淡値を持つ画素を欠陥の画素とする欠陥判定部とを備えることを特徴とする。   According to a seventh aspect of the present invention, an illumination device that irradiates light on the surface of the inspection target with a transparent film as an inspection target, and receives reflected light from each part of the surface of the inspection target and outputs a light reception signal corresponding to the amount of received light An image input device, an image dividing unit that divides the gray image obtained by the image input device into a plurality of divided images, and a gray value of pixels arranged on a straight line extending in a direction in which the gray image is divided in the divided image A mode value extraction unit for obtaining the mode value, and a defect candidate extraction for setting a non-defective range including the mode value obtained by the mode value extraction unit and extracting pixels having gray values that deviate from the non-defective range as defect candidate points. A defect area integration unit that integrates as a defect area a connectable area consisting of defect candidate points, and an inspection area setting unit that sets an inspection area based on the center of gravity for the defect area; Inspection A reference value setting unit that obtains a mode value of a gray value within a region as a reference value, and a defect determination unit that uses a pixel having a gray value that has a difference from the reference value equal to or greater than a predetermined threshold as a defective pixel. Features.

請求項1、7の発明によれば、濃淡画像を分割画像に分割し、分割画像内で求めた濃淡値の最頻値を含むように良品範囲を設定し、良品範囲を逸脱する濃淡値を持つ画素を欠陥候補点として抽出するするから、欠陥候補点を抽出する範囲を制限していることにより色むらや照明むらの影響を抑制することができる。すなわち、欠陥の有無による受光強度の差が微小であっても良品範囲を適正に設定することが可能になる。さらに、欠陥候補点からなる連結領域を統合した欠陥領域に対して検査領域を設定し、この検査領域内で欠陥を抽出するから、欠陥領域を含む狭い範囲に制限して欠陥の検証を行うことができ、局所的に生じる受光強度の変動の影響を受けることなく欠陥を精度よく検出することが可能になる。   According to the first and seventh aspects of the invention, the gray image is divided into divided images, the non-defective range is set so as to include the mode value of the gray value obtained in the divided image, and the gray value deviating from the non-defective range is set. Since the pixel having the pixel is extracted as a defect candidate point, the influence of color unevenness and illumination unevenness can be suppressed by limiting the range in which the defect candidate point is extracted. In other words, the non-defective product range can be set appropriately even if the difference in received light intensity due to the presence or absence of defects is small. Furthermore, since an inspection area is set for a defect area obtained by integrating connected areas including defect candidate points, and defects are extracted within the inspection area, verification of defects is limited to a narrow range including the defect area. Therefore, it becomes possible to detect the defect with high accuracy without being affected by the fluctuation of the received light intensity that occurs locally.

請求項2の発明によれば、非欠陥部の画素の濃淡値が最頻値になるから、欠陥候補点を再現性よく抽出することが可能になる。   According to the invention of claim 2, since the gray value of the pixel in the non-defective part becomes the mode value, it becomes possible to extract the defect candidate point with good reproducibility.

請求項3の発明によれば、2方向で求めた欠陥候補点の論理和を欠陥候補点として採用するから、欠陥候補点の個数を多くとることができ、欠陥に対する情報量が増えるとともに欠陥領域の面積も大きくなり、欠陥の方向によらず微小な欠陥でも検出することが可能になる。   According to the invention of claim 3, since the logical sum of the defect candidate points obtained in two directions is adopted as the defect candidate point, the number of defect candidate points can be increased, the amount of information about the defect increases, and the defect area Thus, even a minute defect can be detected regardless of the direction of the defect.

請求項4の発明によれば、濃淡画像内での欠陥の方向に依存せずに欠陥候補点からなる連結領域を抽出することができる。また、各方向のうちの一方向について条件を満たせば欠陥候補点の連結領域として採用するから、一方向で求めた連結領域が条件を満たせば、他方向では連結領域を求める必要がなく、請求項3の方法よりも処理時間を短縮できる可能性がある。   According to the fourth aspect of the present invention, it is possible to extract a connected region including defect candidate points without depending on the direction of the defect in the grayscale image. In addition, if a condition for one direction of each direction is satisfied, the defect candidate point is used as a connection area. Therefore, if the connection area obtained in one direction satisfies the condition, there is no need to obtain a connection area in the other direction. There is a possibility that the processing time can be shortened compared to the method of Item 3.

請求項5の発明によれば、連結領域のうち最小面積以上のもののみを統合するから、ノイズを除去することが可能になり、また不要な処理を行わないから処理時間を短縮できる可能性がある。   According to the invention of claim 5, since only the connected areas having the minimum area or more are integrated, it is possible to remove noise, and it is possible to reduce the processing time because unnecessary processing is not performed. is there.

請求項6の発明によれば、連結領域のうち最大面積以下のもののみを統合するから、色むらや照明むらなどにより生じている連結領域を欠陥と誤認するのを防止できる。   According to the sixth aspect of the present invention, since only the connected areas having the maximum area or less are integrated, it is possible to prevent the connected area caused by uneven color or uneven illumination from being mistaken as a defect.

本実施形態は、図1に示すように、検査対象である透明フィルム1の表面に光を照射する照明装置2と、照明装置2から透明フィルム1の表面に照射された光の反射光を受光する画像入力装置としてのラインセンサカメラ3と、ラインセンサカメラ3の出力から透明フィルム1における異物の混入や気泡の有無を判断する画像処理装置4とを備える。   In the present embodiment, as shown in FIG. 1, an illumination device 2 that irradiates light on the surface of a transparent film 1 to be inspected, and a reflected light of the light emitted from the illumination device 2 to the surface of the transparent film 1 are received. A line sensor camera 3 as an image input device, and an image processing device 4 that determines the presence of foreign matter and bubbles in the transparent film 1 from the output of the line sensor camera 3.

透明フィルム1は、図示しない搬送装置によって長手方向に送られる。また、照明装置2は、直管形の蛍光ランプのような線状光源を備え、透明フィルム1の幅方向(送り方向に直交する方向)の全長に亘る照射領域を有する。   The transparent film 1 is sent in the longitudinal direction by a conveying device (not shown). Moreover, the illuminating device 2 is provided with a linear light source such as a straight tube fluorescent lamp, and has an irradiation region extending over the entire length of the transparent film 1 in the width direction (direction orthogonal to the feeding direction).

ラインセンサカメラ3は、CCDリニアイメージセンサとシリンドリカルレンズからなる受光レンズとを組み合わせたものを用いる。照明装置2から透明フィルム1の表面に照射した光の正反射光がラインセンサカメラ3に入射するように、照明装置2とラインセンサカメラ3との位置関係が設定される。   The line sensor camera 3 uses a combination of a CCD linear image sensor and a light receiving lens made up of a cylindrical lens. The positional relationship between the illuminating device 2 and the line sensor camera 3 is set so that the regular reflection light of the light irradiated on the surface of the transparent film 1 from the illuminating device 2 enters the line sensor camera 3.

本実施形態では、透明フィルム1が一方向に送られているから、線状の領域からの反射光をラインセンサカメラ3で受光することにより、透明フィルム1の送り方向における情報を得ることができる。   In this embodiment, since the transparent film 1 is sent in one direction, information in the feeding direction of the transparent film 1 can be obtained by receiving the reflected light from the linear region with the line sensor camera 3. .

画像処理装置4は、コンピュータを主構成とするものであり、以下の動作を可能とするプログラムを実行する。画像処理装置4は、ラインセンサカメラ3の受光出力をデジタル信号に変換するA/D変換器11と、A/D変換器11から出力された各画素ごとの濃淡値を記憶する画像メモリ12とを備える。画像メモリ12は、ラインセンサカメラ3から出力される各1ラインの濃淡画像を複数ライン分記憶する。すなわち、透明フィルム1の幅方向における全幅を有し、透明フィルム1の送り方向における所定長さを有する領域の画像(2次元画像に相当する画像)が画像メモリ12に格納される。   The image processing apparatus 4 has a computer as a main component and executes a program that enables the following operations. The image processing device 4 includes an A / D converter 11 that converts a light reception output of the line sensor camera 3 into a digital signal, an image memory 12 that stores a gray value for each pixel output from the A / D converter 11, and Is provided. The image memory 12 stores each line of grayscale images output from the line sensor camera 3 for a plurality of lines. That is, an image (an image corresponding to a two-dimensional image) of an area having a full width in the width direction of the transparent film 1 and a predetermined length in the feed direction of the transparent film 1 is stored in the image memory 12.

画像メモリ12に格納された濃淡画像は、画像分割部13によりラインの方向において複数に分割される。いま、図2(a)における矢印Yの方向を透明フィルム1の送り方向とし、矢印Xの方向を透明フィルム1の幅方向とする(X方向が濃淡画像におけるラインの方向であって2次元画像の水平方向に相当する、Y方向は2次元画像の垂直方向に相当する)。画像メモリ12に格納される濃淡画像は、ラインセンサカメラ3により透明フィルム1をm回撮像した濃淡画像P1になる。画像分割部13では、図2(b)のように、矢印Yの方向(透明フィルム1の幅方向)において濃淡画像P1をn個に分割する。以下では、画像分割部13により分割された画像を分割画像と呼ぶ。   The grayscale image stored in the image memory 12 is divided into a plurality of lines in the line direction by the image dividing unit 13. Now, the direction of the arrow Y in FIG. 2A is the feeding direction of the transparent film 1, and the direction of the arrow X is the width direction of the transparent film 1 (the X direction is the direction of the line in the grayscale image and is a two-dimensional image. The Y direction corresponds to the vertical direction of the two-dimensional image). The grayscale image stored in the image memory 12 is a grayscale image P1 obtained by imaging the transparent film 1 m times by the line sensor camera 3. As shown in FIG. 2B, the image dividing unit 13 divides the grayscale image P1 into n pieces in the direction of the arrow Y (the width direction of the transparent film 1). Hereinafter, the image divided by the image dividing unit 13 is referred to as a divided image.

透明フィルム1の幅方向における画素数をp個とすれば、図2(c)のように、分割画像P2は、矢印Xの方向においてm個の画素を有し、矢印Yの方向において(p/n)個の画素を有する。すなわち、分割画像P2はpm/n画素の濃淡画像である。   If the number of pixels in the width direction of the transparent film 1 is p, the divided image P2 has m pixels in the direction of the arrow X and (p) in the direction of the arrow Y as shown in FIG. / N) having pixels. That is, the divided image P2 is a grayscale image with pm / n pixels.

次に、最頻値抽出部14では、各分割画像P2について、各ラインごとに濃淡値に関して最頻値を求める。すなわち、各分割画像P2についてm個の最頻値が得られる。ここに、濃淡値の分布は単峰型になる保証はないが、透明フィルム1の場合、欠陥のない部分の濃淡値が最頻値になることが多いと考えられるから、おおむね単峰型の分布になる。また、分割画像P2における1ラインの画素数(p/n)は適宜に設定されるが、たとえば数十画素を含むように設定される。ここに、分割画像の分割数nはラインセンサカメラ3の画素数pが割り切れるように設定する。   Next, the mode value extraction unit 14 determines the mode value for the gray value for each line for each divided image P2. That is, m mode values are obtained for each divided image P2. Here, the distribution of the gray value is not guaranteed to be a single peak type, but in the case of the transparent film 1, it is considered that the gray value of the part having no defect is often the mode value. Distribution. Further, the number of pixels per line (p / n) in the divided image P2 is set as appropriate, and is set to include, for example, several tens of pixels. Here, the division number n of the divided image is set so that the pixel number p of the line sensor camera 3 is divisible.

最頻値抽出部14で最頻値が求められると、欠陥候補抽出部15において、濃淡画像P1の各ラインについてそれぞれ良品範囲を設定し、良品範囲を逸脱する画素があれば欠陥候補点とする。良品範囲は、最頻値抽出部14で求めた各ラインごとの最頻値を用いて規定する。たとえば、k番目のラインについて求めた最頻値がA(k)であるとすると、良品範囲の上限をA(k)+B、良品範囲の下限をA(k)−Cなどと設定する。値BとCとは等しくても異なっていてもよい。   When the mode value is obtained by the mode value extraction unit 14, the defect candidate extraction unit 15 sets a non-defective product range for each line of the grayscale image P1, and if there is a pixel that deviates from the non-defective product range, the defect candidate point is determined. . The non-defective product range is defined using the mode value for each line obtained by the mode value extraction unit 14. For example, if the mode value obtained for the kth line is A (k), the upper limit of the non-defective product range is set to A (k) + B, and the lower limit of the non-defective product range is set to A (k) -C. The values B and C may be equal or different.

すなわち、欠陥が存在する部位の濃淡値は、通常は最頻値(非欠陥部の濃淡値)よりも大きいか小さいから、上述のように良品範囲を規定するとともに、良品範囲よりも濃淡値が大きいか小さい領域を欠陥候補点として抽出するのである。   That is, since the gray value of the part where the defect exists is usually larger or smaller than the mode value (the gray value of the non-defect portion), the non-defective range is defined as described above, and the gray value is larger than the non-defective range. A large or small region is extracted as a defect candidate point.

いま、欠陥候補抽出部15で抽出された欠陥候補点が、図3のように分布しているものとする。欠陥候補点が欠陥に実際に対応している場合には、欠陥候補点は連結領域Dを形成する。連結領域Dを形成するには、良品範囲を逸脱する画素の8近傍の画素に良品範囲を逸脱する画素が含まれているときに両画素を1グループの画素として扱う操作を行い、この操作を繰り返して得られる画素群を連結領域の画素群とする。   Now, it is assumed that the defect candidate points extracted by the defect candidate extraction unit 15 are distributed as shown in FIG. If the defect candidate point actually corresponds to the defect, the defect candidate point forms a connected region D. In order to form the connected region D, when the pixels that are out of the non-defective range are included in the pixels in the vicinity of the pixels that deviate from the non-defective range, an operation that handles both pixels as one group of pixels is performed. A pixel group obtained by repetition is defined as a pixel group in the connection region.

欠陥候補抽出部15では分割画像P2ごとに欠陥候補点が抽出されるから、抽出された欠陥候補点を分割前の濃淡画像P1に配置して上述した欠陥候補点の連結領域を形成する。   Since the defect candidate extraction unit 15 extracts defect candidate points for each divided image P2, the extracted defect candidate points are arranged in the gray image P1 before division to form the above-described defect candidate point connection region.

ここにおいて、濃淡画像P1を分割した分割画像P2は幅を狭くするほど色むらや照度むらの影響を受けにくくなるが、各ラインごとの濃淡値の最頻値を求める際に、ラインに含まれる画素数が欠陥候補点の個数よりも少ないと最頻値を非欠陥部の濃淡値として求めることができない。実際には、最頻値を欠陥候補点の画素数の2倍以上とすることが必要である。欠陥候補点の画素数は装置の仕様に応じて実験的に求めることができるから、分割画像P2において1ライン当たりの欠陥候補点の画素数の最大値を求めておき、その値の2倍以上の画素が含まれるように分割画像P2の画素数を決定する。   Here, the divided image P2 obtained by dividing the grayscale image P1 is less affected by color unevenness and illuminance unevenness as the width is narrowed, but is included in the line when obtaining the mode value of the grayscale value for each line. If the number of pixels is smaller than the number of defect candidate points, the mode value cannot be obtained as the gray value of the non-defect portion. In practice, it is necessary to set the mode value to at least twice the number of pixels at the defect candidate point. Since the pixel number of the defect candidate point can be obtained experimentally according to the specifications of the apparatus, the maximum value of the pixel number of the defect candidate point per line in the divided image P2 is obtained, and more than twice that value. The number of pixels of the divided image P2 is determined so that the number of pixels is included.

ところで、検査環境における環境光は比較的短時間で変化することがあるから、最頻値を求める際に用いる画素については環境光の変化の影響を受けないタイミングで受光強度を取得する必要がある。本実施形態では、透明フィルム1を撮像するためにラインセンサカメラ3を用いており、ラインセンサカメラ3では1000分の1秒以下の時間で1ラインの画像を取得することができるから、1ライン分の画素については実質的に同時と言えるタイミングで受光強度を取得することが可能になっている。ただし、ラインセンサカメラ3としてCCDリニアイメージセンサを用いることは必須ではなく、他のリニアイメージセンサを用いることも可能である。   By the way, since the ambient light in the inspection environment may change in a relatively short time, it is necessary to obtain the received light intensity at a timing that is not affected by the change in the ambient light for the pixel used when obtaining the mode value. . In this embodiment, the line sensor camera 3 is used to image the transparent film 1, and the line sensor camera 3 can acquire an image of one line in a time of 1/1000 second or less. With respect to the minute pixels, it is possible to acquire the received light intensity at a timing that can be said to be substantially simultaneous. However, it is not essential to use a CCD linear image sensor as the line sensor camera 3, and other linear image sensors can be used.

また、環境光がほとんど変化しない検査環境では、ラインに直交する方向に並ぶ画素列から最頻値を求めてもよい。さらに、ライン上の画素列とラインに直交する方向の画素列との両方について欠陥候補点を求め、両結果を併せて欠陥候補点を決定してもよい。両結果を併せて欠陥候補点とする場合に、両方向について求めた欠陥候補点の論理和を用いることができる。あるいはまた、ライン上の画素列とラインに直交する方向の画素列との両方について欠陥候補点を求め、各方向の欠陥候補点からなる各連結領域の一方の面積が規定した判定面積以上であれば、当該連結領域を欠陥候補抽出部15の出力として採用する。   In an inspection environment in which ambient light hardly changes, the mode value may be obtained from a pixel row arranged in a direction orthogonal to the line. Further, defect candidate points may be obtained for both the pixel column on the line and the pixel column in the direction orthogonal to the line, and the defect candidate point may be determined by combining both results. When combining both results as defect candidate points, the logical sum of the defect candidate points obtained in both directions can be used. Alternatively, defect candidate points are obtained for both the pixel row on the line and the pixel row in the direction orthogonal to the line, and one area of each connected region composed of the defect candidate points in each direction is greater than or equal to the determined determination area. For example, the connected region is adopted as the output of the defect candidate extraction unit 15.

欠陥候補点の連結領域が形成された後、欠陥領域統合部16において、各欠陥候補点の連結領域について1グループに統合可能か否かを評価し、統合可能であれば欠陥領域としてグループ化する。統合可能か否かの評価には、各欠陥候補点の間の距離を求め、当該距離が規定した統合距離内であれば統合可能と判断する。   After the connection area of defect candidate points is formed, the defect area integration unit 16 evaluates whether or not the connection areas of the defect candidate points can be integrated into one group, and if integration is possible, groups them as defect areas. . In the evaluation of whether or not integration is possible, the distance between the defect candidate points is obtained, and if the distance is within the specified integration distance, it is determined that integration is possible.

たとえば、欠陥候補点の連結領域A1,A2、A3、B1、B2、B3が図4のように得られているものとする。ここで、連結領域A1,A2,A3は1つの欠陥であるものとする。つまり、図示例では1つの欠陥に対応する領域が複数(図示例では3個)の連結領域A1,A2,A3に分離されていることになる。このように分離された連結領域A1,A2,A3について、欠陥領域統合部16では、異なる連結領域A1,A2,A3に含まれる各欠陥候補点間の距離を算出し、算出した距離が規定の統合距離内であれば、1つの欠陥領域として統合する。   For example, it is assumed that connection regions A1, A2, A3, B1, B2, and B3 of defect candidate points are obtained as shown in FIG. Here, it is assumed that the connection regions A1, A2, and A3 are one defect. That is, in the illustrated example, a region corresponding to one defect is separated into a plurality (three in the illustrated example) of connected regions A1, A2, and A3. For the connection areas A1, A2, and A3 thus separated, the defect area integration unit 16 calculates the distances between the defect candidate points included in the different connection areas A1, A2, and A3, and the calculated distances are defined. If it is within the integrated distance, it is integrated as one defective area.

一方、欠陥候補点からなる連結領域の面積が極端に小さい場合(図4では領域B2に相当)、当該領域はノイズの可能性がある。そこで、欠陥候補点からなる連結領域の面積を評価し、連結領域のうち規定の最小面積(画素数)に満たないものは欠陥領域としては採用しない。逆に、欠陥候補点からなる連結領域の面積が大きい場合(図4では領域B3に相当)、当該領域は欠陥ではなく透明フィルム1の色むらや照明むらである可能性があるから、連結領域のうち規定の最大面積(画素数)を超えるものも欠陥領域としては採用しない。つまり、各連結領域A1,A2、A3、B1、B2、B3は、面積が規定した範囲内であって、しかも欠陥候補点の間の距離が統合距離内であれば、欠陥領域として統合される。   On the other hand, when the area of the connection region including defect candidate points is extremely small (corresponding to the region B2 in FIG. 4), there is a possibility of noise in the region. Therefore, the area of the connection region composed of defect candidate points is evaluated, and the connection region that does not satisfy the specified minimum area (number of pixels) is not adopted as the defect region. On the other hand, when the area of the connection area composed of defect candidate points is large (corresponding to the area B3 in FIG. 4), the area is not a defect but may be color unevenness or illumination unevenness. Of these, those exceeding the specified maximum area (number of pixels) are not adopted as defect areas. That is, each of the connection areas A1, A2, A3, B1, B2, B3 is integrated as a defect area if the area is within a specified range and the distance between the defect candidate points is within the integration distance. .

欠陥領域統合部16により統合した欠陥領域については、重心算出部17において重心位置を求める。重心位置を求めた後には、検査領域設定部18において重心を基準点とする検査領域を設定する。検査領域の形状についてはとくに制限はないが、通常は矩形状の検査領域を設定する。このようにして検査領域を制限した後に、基準値設定部19において検査領域内の画素について濃淡値の最頻値を求めて基準値とする。検査領域においても欠陥のない領域の濃淡値が最頻値になると考えられるから、この最頻値を基準値とし、欠陥判定部20において、検査領域内の画素のうち基準値との差分が規定した閾値以上となる濃淡値を持つ画素が連結領域を形成し、この連結領域が規定の画素数以上の画素を含むときに、当該連結領域を欠陥に対応する領域と判定する。欠陥判定部20により欠陥と認識された画素があれば、透明フィルム1には異物や気泡のような欠陥が存在すると判定され、欠陥の位置が画素の位置から特定される。   For the defect region integrated by the defect region integration unit 16, the center of gravity calculation unit 17 obtains the center of gravity position. After obtaining the center of gravity position, the inspection region setting unit 18 sets an inspection region with the center of gravity as a reference point. The shape of the inspection area is not particularly limited, but a rectangular inspection area is usually set. After limiting the inspection area in this way, the reference value setting unit 19 obtains the mode value of the gray value for the pixels in the inspection area and sets it as the reference value. In the inspection area, it is considered that the gray value of the area having no defect becomes the mode value. Therefore, the mode value is set as the reference value, and the defect determination unit 20 defines the difference from the reference value among the pixels in the inspection area. When pixels having a gray value that is equal to or greater than the threshold value form a connected region, and the connected region includes pixels that are equal to or greater than the prescribed number of pixels, the connected region is determined to be a region corresponding to a defect. If there is a pixel recognized as a defect by the defect determination unit 20, it is determined that there is a defect such as a foreign object or a bubble in the transparent film 1, and the position of the defect is specified from the position of the pixel.

上述した処理手順を図5にまとめて示す。まず、一方向に搬送されている透明フィルム1を搬送方向に直交する方向(透明フィルム1の幅方向)に画素が並ぶラインセンサカメラ3により複数回撮像することにより複数ライン分の画素を含む濃淡画像P1を取得する(S1)。次に、取得した濃淡画像P1をラインの方向において複数の分割画像P2に分割する(S2)。その後、各分割画像P2の中でラインごとの各画素の濃淡値を求め、濃淡値の最頻値を求める(S3)。この最頻値を基準にして良品範囲をラインごとに規定し、良品範囲を逸脱する画素を欠陥候補点として求める(S4)。欠陥候補点は連結領域を形成するから連結領域を評価し、さらに連結領域の統合の可否を判断し、統合可能な連結領域を統合することにより欠陥領域を確定する(S5)。   The processing procedure described above is summarized in FIG. First, the density including pixels for a plurality of lines is obtained by imaging the transparent film 1 conveyed in one direction a plurality of times by the line sensor camera 3 in which pixels are arranged in a direction orthogonal to the conveyance direction (width direction of the transparent film 1). An image P1 is acquired (S1). Next, the acquired gray image P1 is divided into a plurality of divided images P2 in the line direction (S2). Thereafter, the gray value of each pixel for each line in each divided image P2 is obtained, and the mode value of the gray value is obtained (S3). A non-defective range is defined for each line on the basis of the mode value, and pixels that deviate from the non-defective range are obtained as defect candidate points (S4). Since the defect candidate points form a connection area, the connection area is evaluated, and whether or not the connection areas can be integrated is determined, and the connection areas that can be integrated are integrated to determine the defect area (S5).

欠陥領域が確定すると、欠陥領域の重心を算出し(S6)、重心を基準点に用いて検査領域を設定する(S7)。この検査領域において濃淡値の最頻値を求め(S8)、検査領域内において、求めた最頻値との濃淡差が規定した閾値以上である画素からなる連結領域が規定した画素数以上を含むときに最終的に欠陥として認識する(S9)。   When the defect area is determined, the center of gravity of the defect area is calculated (S6), and the inspection area is set using the center of gravity as a reference point (S7). The mode value of the gray value is obtained in the inspection area (S8), and the connected area including the pixels whose gray level difference from the obtained mode value is equal to or larger than the defined threshold value is included in the inspection area. Sometimes it is finally recognized as a defect (S9).

以上の処理手順により透明フィルム1における欠陥の有無を検査することができる。この検査においては、分割画像P2を用いるとともにラインごとに最頻値を求めることによって、色むらや照明むらの影響を抑制することができる。しかも、ラインごとの最頻値により良品範囲を設定して欠陥候補点を抽出しているから、欠陥の有無による受光強度の差が微小であっても適正な良品範囲を設定できる可能性が高くなる。さらに、欠陥領域を抽出した後に、欠陥領域を含む狭い範囲で検査領域を設定しているから、局所的に生じる受光強度の変動についても誤認することなく欠陥を精度よく検出することが可能になる。   The presence or absence of a defect in the transparent film 1 can be inspected by the above processing procedure. In this inspection, by using the divided image P2 and obtaining the mode value for each line, the influence of uneven color and uneven illumination can be suppressed. In addition, since the defect candidate points are extracted by setting the non-defective range based on the mode value for each line, there is a high possibility that an appropriate non-defective range can be set even if the difference in received light intensity due to the presence or absence of defects is small. Become. Furthermore, since the inspection area is set in a narrow range including the defect area after the defect area is extracted, it becomes possible to detect the defect accurately without misidentifying the fluctuation of the received light intensity that occurs locally. .

本発明の実施形態を示す概略構成図である。It is a schematic structure figure showing an embodiment of the present invention. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の処理手順を示す動作説明図である。It is operation | movement explanatory drawing which shows the process sequence same as the above.

符号の説明Explanation of symbols

1 透明フィルム
2 照明装置
3 ラインセンサカメラ
4 画像処理装置
11 A/D変換器
12 画像メモリ
13 画像分割部
14 最頻値抽出部
15 欠陥候補抽出部
16 欠陥領域統合部
17 重心算出部
18 検査領域設定部
19 基準値設定部
20 欠陥判定部
P1 濃淡画像
P2 分割画像
DESCRIPTION OF SYMBOLS 1 Transparent film 2 Illuminating device 3 Line sensor camera 4 Image processing apparatus 11 A / D converter 12 Image memory 13 Image division part 14 Mode value extraction part 15 Defect candidate extraction part 16 Defect area integration part 17 Center of gravity calculation part 18 Inspection area Setting unit 19 Reference value setting unit 20 Defect determination unit P1 Gray image P2 Divided image

Claims (7)

透明フィルムを検査対象として照明装置から検査対象の表面に光を照射するとともに、検査対象の表面の各部位からの反射光を画像入力装置により受光して濃淡画像を生成する第1過程と、当該濃淡画像を複数の分割画像に分割する第2過程と、分割画像内において濃淡値の最頻値を求める第3過程と、当該最頻値を含む良品範囲を設定し良品範囲を逸脱する濃淡値を持つ画素を欠陥候補点として抽出する第4過程と、欠陥候補点からなる連結領域のうち統合可能なものを欠陥領域として統合する第5過程と、欠陥領域について重心を求める第6過程と、重心を基準とする検査領域を設定する第7過程と、検査領域内で濃淡値の最頻値を基準値として求める第8過程と、基準値との差分が規定の閾値以上となる濃淡値を持つ画素を欠陥の画素として抽出する第9過程とを有することを特徴とする透明フィルムの外観検査方法。   A first process of irradiating the surface of the inspection object from the illumination device with the transparent film as the inspection object, and receiving a reflected light from each part of the surface of the inspection object by the image input device, and generating a grayscale image; A second step of dividing the gray image into a plurality of divided images; a third step of obtaining a mode value of the gray value in the divided image; and a gray value that sets a non-defective range including the mode value and deviates from the non-defective range A fourth process for extracting pixels having a defect candidate point, a fifth process for integrating a connectable area composed of defect candidate points as a defect area, a sixth process for obtaining a center of gravity for the defect area, A seventh process for setting an inspection area based on the center of gravity, an eighth process for obtaining a mode value of a gray value within the inspection area as a reference value, and a gray value at which a difference between the reference value is equal to or greater than a predetermined threshold value Pixels with defective pixels Appearance inspection method for a transparent film and having a ninth step of to extract. 前記分割画像は、前記濃淡画像を分割した方向において、抽出しようとする欠陥に含まれる画素数の2倍以上の画素数を有することを特徴とする請求項1記載の透明フィルムの外観検査方法。   2. The transparent film appearance inspection method according to claim 1, wherein the divided image has a number of pixels equal to or greater than twice the number of pixels included in a defect to be extracted in a direction in which the grayscale image is divided. 前記第3過程では、前記濃淡画像を分割した方向と当該方向に直交する方向との両方向の各直線上に並ぶ画素についてそれぞれ濃淡値の最頻値を求め、第4過程では各方向について求めた欠陥候補点の論理和を欠陥候補点として採用することを特徴とする請求項1又は2記載の透明フィルムの外観検査方法。   In the third process, the mode value of the gray value is obtained for each pixel arranged on each straight line in both the direction in which the gray image is divided and the direction orthogonal to the direction, and in the fourth process, the mode value is obtained for each direction. 3. The method for inspecting the appearance of a transparent film according to claim 1, wherein a logical sum of defect candidate points is adopted as a defect candidate point. 前記第3過程では、前記濃淡画像を分割した方向と当該方向に直交する方向との両方向の各直線上に並ぶ画素についてそれぞれ濃淡値の最頻値を求め、第4過程では各方向について求めた欠陥候補点からなる連結領域の一方が規定の判定面積を超えるときに当該連結領域を採用することを特徴とする請求項1又は2記載の透明フィルムの外観検査方法。   In the third process, the mode value of the gray value is obtained for each pixel arranged on each straight line in both the direction in which the gray image is divided and the direction orthogonal to the direction, and in the fourth process, the mode value is obtained for each direction. 3. The transparent film appearance inspection method according to claim 1 or 2, wherein one of the connection areas composed of defect candidate points exceeds the prescribed determination area. 前記第5過程では、欠陥候補点からなる連結領域のうち面積が規定の最小面積に満たない連結領域を欠陥領域から除外することを特徴とする請求項1〜4のいずれか1項に記載の透明フィルムの外観検査方法。   5. The method according to claim 1, wherein, in the fifth step, a connection region whose area is less than a specified minimum area is excluded from the defect regions among the connection regions including defect candidate points. Appearance inspection method of transparent film. 前記第5過程では、欠陥候補点からなる連結領域のうち面積が規定の最大面積を超える連結領域を欠陥領域から除外することを特徴とする請求項1〜5のいずれか1項に記載の透明フィルムの外観検査方法。   6. The transparent according to claim 1, wherein, in the fifth step, a connected region whose area exceeds a specified maximum area is excluded from the defective regions among the connected regions including defect candidate points. Film appearance inspection method. 透明フィルムを検査対象として検査対象の表面に光を照射する照明装置と、検査対象の表面の各部位からの反射光を受光し受光光量に応じた受光信号を出力する画像入力装置と、画像入力装置により得られる濃淡画像を複数の分割画像に分割する画像分割部と、分割画像内において濃淡画像を分割した方向に延長されている直線上に並ぶ画素について濃淡値の最頻値を求める最頻値抽出部と、最頻値抽出部で求めた最頻値を含む良品範囲を設定し良品範囲を逸脱する濃淡値を持つ画素を欠陥候補点として抽出する欠陥候補抽出部と、欠陥候補点からなる連結領域のうち統合可能なものを欠陥領域として統合する欠陥領域統合部と、欠陥領域について重心を求め重心を基準とする検査領域を設定する検査領域設定部と、検査領域内で濃淡値の最頻値を基準値として求める基準値設定部と、基準値との差分が規定の閾値以上となる濃淡値を持つ画素を欠陥の画素とする欠陥判定部とを備えることを特徴とする透明フィルムの外観検査装置。   An illumination device that irradiates light onto the surface of the inspection target using a transparent film as an inspection target, an image input device that receives reflected light from each part of the surface of the inspection target and outputs a received light signal according to the amount of received light, and image input An image dividing unit that divides a gray image obtained by the apparatus into a plurality of divided images, and a mode for obtaining a mode value of gray values for pixels arranged on a straight line extending in a direction in which the gray image is divided in the divided image. From the defect candidate point and the defect candidate point, a defect candidate extraction unit that sets a non-defective product range including the mode value obtained by the mode extraction unit, and extracts pixels having gray values that deviate from the good product range as defect candidate points A defect area integration unit that integrates the connectable areas that can be integrated as a defect area, an inspection area setting unit that obtains a center of gravity for the defect area and sets an inspection area based on the center of gravity, and a gray value in the inspection area Most An external appearance of a transparent film, comprising: a reference value setting unit that obtains a value as a reference value; and a defect determination unit that uses a pixel having a gray value whose difference from the reference value is equal to or greater than a specified threshold as a defective pixel Inspection device.
JP2008114621A 2008-04-24 2008-04-24 Appearance inspection method and apparatus for transparent film Active JP5074998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114621A JP5074998B2 (en) 2008-04-24 2008-04-24 Appearance inspection method and apparatus for transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114621A JP5074998B2 (en) 2008-04-24 2008-04-24 Appearance inspection method and apparatus for transparent film

Publications (2)

Publication Number Publication Date
JP2009264915A JP2009264915A (en) 2009-11-12
JP5074998B2 true JP5074998B2 (en) 2012-11-14

Family

ID=41390950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114621A Active JP5074998B2 (en) 2008-04-24 2008-04-24 Appearance inspection method and apparatus for transparent film

Country Status (1)

Country Link
JP (1) JP5074998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918603A (en) * 2015-12-25 2017-07-04 中国人民银行印制科学技术研究所 Spectral method of detection and system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101444660B1 (en) 2013-05-31 2014-09-24 주식회사 대양기술 The method for inspecting the defects on the film
JP2016075542A (en) * 2014-10-04 2016-05-12 岡本電機株式会社 Defect detection apparatus and defect detection method of corrugated cardboard sheet in solid color
JP6662126B2 (en) * 2016-03-14 2020-03-11 富士通株式会社 Detecting device, method and program
JP7211169B2 (en) * 2019-03-07 2023-01-24 コニカミノルタ株式会社 Image inspection device and image forming system
JP7411984B2 (en) * 2019-09-24 2024-01-12 株式会社イシダ Inspection equipment
CN111735823B (en) * 2020-07-17 2020-11-24 武汉精立电子技术有限公司 Defect detection method and system for module
KR20220014547A (en) * 2020-07-29 2022-02-07 주식회사 엘지화학 Apparatus for inspecting line defect
CN113030093B (en) * 2020-12-30 2022-07-22 凌云光技术股份有限公司 Battery diaphragm surface defect detection method and system
WO2023162087A1 (en) 2022-02-24 2023-08-31 日本電気株式会社 Image processing device, image processing method, and storage medium
CN116973367B (en) * 2023-07-05 2024-01-30 广东汇发塑业科技有限公司 Method for inspecting degradation defect position of biodegradable film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3202330B2 (en) * 1992-05-26 2001-08-27 三菱レイヨン株式会社 Defect inspection equipment
JP4749523B2 (en) * 1999-08-30 2011-08-17 東洋製罐株式会社 Film defect inspection equipment
JP2001091470A (en) * 1999-09-24 2001-04-06 Sekisui Chem Co Ltd Defect inspection device
JP2002162363A (en) * 2000-11-22 2002-06-07 Mitsubishi Rayon Co Ltd Meandering tracking system for error detector
JP2005114500A (en) * 2003-10-07 2005-04-28 Dainippon Printing Co Ltd Method and instrument for measuring nonuniformity in optical characteristics, and product quality determination device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918603A (en) * 2015-12-25 2017-07-04 中国人民银行印制科学技术研究所 Spectral method of detection and system
CN106918603B (en) * 2015-12-25 2021-04-27 中钞印制技术研究院有限公司 Spectrum detection method and system

Also Published As

Publication number Publication date
JP2009264915A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5074998B2 (en) Appearance inspection method and apparatus for transparent film
KR101832081B1 (en) Surface defect detection method and surface defect detection device
US8472697B2 (en) Method and apparatus for visual inspection
CN107735674B (en) Surface defect detection device, surface defect detection method, and steel product manufacturing method
JP6639896B2 (en) Airtightness inspection device
US20080175466A1 (en) Inspection apparatus and inspection method
JP2009293999A (en) Wood defect detector
KR20180019734A (en) Surface defect detection apparatus and surface defect detection method
JP4150390B2 (en) Appearance inspection method and appearance inspection apparatus
JP5732605B2 (en) Appearance inspection device
JP2010204051A (en) Inspection apparatus and inspection method
KR20160097651A (en) Apparatus and Method for Testing Pattern of Sample using Validity Image Processing Technique, and computer-readable recording medium with program therefor
JP6628185B2 (en) Inspection method for transparent objects
KR100484812B1 (en) Inspection method of surface by image sensor and the same apparatus
JP2012088199A (en) Method and apparatus for inspecting foreign matter
JP2010038723A (en) Flaw inspecting method
KR20130031331A (en) Glass bottle inspection device
JP2012122877A (en) Method for inspecting foreign substance in liquid
JP2017009522A (en) Surface defect detection method, surface defect detection device, and method of manufacturing steel
JP2015059854A (en) Defect inspection method and defect inspection device
JP2008180618A (en) Surface defect detector
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
KR101349662B1 (en) Method for discriminating defect of optical films
JP2010223914A (en) Defect inspection method and defect inspection device of surface of object
JP2007071789A (en) Chestnut quality inspection method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3