JP5074621B2 - Tissue paper - Google Patents
Tissue paper Download PDFInfo
- Publication number
- JP5074621B2 JP5074621B2 JP2011258845A JP2011258845A JP5074621B2 JP 5074621 B2 JP5074621 B2 JP 5074621B2 JP 2011258845 A JP2011258845 A JP 2011258845A JP 2011258845 A JP2011258845 A JP 2011258845A JP 5074621 B2 JP5074621 B2 JP 5074621B2
- Authority
- JP
- Japan
- Prior art keywords
- pulp
- paper
- fiber
- thin paper
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 133
- 239000003623 enhancer Substances 0.000 claims description 56
- 235000019592 roughness Nutrition 0.000 claims description 53
- 239000002250 absorbent Substances 0.000 claims description 45
- 230000002745 absorbent Effects 0.000 claims description 44
- 229920003043 Cellulose fiber Polymers 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 11
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 10
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 10
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 10
- 239000000123 paper Substances 0.000 description 173
- 230000035699 permeability Effects 0.000 description 45
- 239000007788 liquid Substances 0.000 description 44
- 229920002401 polyacrylamide Polymers 0.000 description 17
- 238000005259 measurement Methods 0.000 description 14
- 125000000129 anionic group Chemical group 0.000 description 12
- 229920001131 Pulp (paper) Polymers 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000470 constituent Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 238000010009 beating Methods 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 5
- 239000002504 physiological saline solution Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 206010061592 cardiac fibrillation Diseases 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002600 fibrillogenic effect Effects 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000013431 Pinus clausa Nutrition 0.000 description 2
- 241000048268 Pinus clausa Species 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- NBOCQTNZUPTTEI-UHFFFAOYSA-N 4-[4-(hydrazinesulfonyl)phenoxy]benzenesulfonohydrazide Chemical compound C1=CC(S(=O)(=O)NN)=CC=C1OC1=CC=C(S(=O)(=O)NN)C=C1 NBOCQTNZUPTTEI-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006319 cationized starch Polymers 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004076 pulp bleaching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000019587 texture Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Absorbent Articles And Supports Therefor (AREA)
- Paper (AREA)
Description
本発明は薄葉紙に関し、特に、使い捨ておむつや生理用ナプキン等の吸収性物品において、吸収性コアを被覆するコアラップシートとして好適な薄葉紙に関する。 The present invention relates to a thin paper, and particularly to a thin paper suitable as a core wrap sheet for covering an absorbent core in absorbent articles such as disposable diapers and sanitary napkins.
薄葉紙は、比較的低坪量の薄い紙であるが、使用時には破れが生じない程度の紙強度(引張強度等)が要求される。紙強度を向上させる方法として、従来、紙力増強剤を添加する方法が採用されており、例えば特許文献1には、乾燥紙力増強剤及び湿潤紙力増強剤が添加され、引張強度が特定範囲にある家庭用衛生薄葉紙が記載されている。尚、特許文献1に記載の家庭用衛生薄葉紙は、ロールペーパー、ティッシュペーパー、ちり紙等、柔軟性や手触り感等の官能特性が重視される用途に適用されるものであり、特許文献1に開示されている主たる技術は、これらの官能特性と紙強度との両立を図ることを目的としている。 The thin paper is a thin paper having a relatively low basis weight, but is required to have a paper strength (such as tensile strength) that does not cause tearing during use. As a method for improving paper strength, conventionally, a method of adding a paper strength enhancer has been employed. For example, Patent Document 1 includes a dry paper strength enhancer and a wet paper strength enhancer, and the tensile strength is specified. Household hygiene tissue paper in range is described. The household sanitary thin paper described in Patent Document 1 is applied to uses such as roll paper, tissue paper, dust paper, etc. where sensory characteristics such as flexibility and touch feeling are important, and disclosed in Patent Document 1. The main technology that is being used aims to achieve both of these sensory characteristics and paper strength.
また、紙の構成繊維として、繊維粗度の異なる複数種の親水性セルロース繊維を用いる技術が知られている。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものである。例えば特許文献2には、繊維粗度の異なる2種類の繊維(嵩高性のセルロース繊維、親水性の微細繊維)を主体とし、親水性の微細繊維を厚さ方向の一方の面側に偏在させた吸収紙が記載されている。特許文献2に記載の吸収紙によれば、液透過性に優れる層と液拡散性に優れる層とを厚さ方向に有しているため、液の吸収性に優れるとされている。特許文献2には、特許文献2に記載の吸収紙の使用例として、2枚の該吸収紙の間に吸収性ポリマーが挟持されてなる吸収体が挙げられている。 In addition, a technique using a plurality of types of hydrophilic cellulose fibers having different fiber roughness as a constituent fiber of paper is known. The fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp. For example, Patent Document 2 mainly includes two types of fibers having different fiber roughness (bulky cellulose fibers and hydrophilic fine fibers), and the hydrophilic fine fibers are unevenly distributed on one surface side in the thickness direction. Absorbent paper is described. According to the absorbent paper described in Patent Document 2, since it has a layer having excellent liquid permeability and a layer having excellent liquid diffusibility in the thickness direction, it is said that the liquid absorbability is excellent. Patent Document 2 discloses an absorbent body in which an absorbent polymer is sandwiched between two sheets of absorbent paper as an example of use of the absorbent paper described in Patent Document 2.
使い捨ておむつや生理用ナプキン等の吸収性物品には、液保持性の吸収体を具備するものがあり、該吸収体として、木材パルプや高吸水性樹脂等を含む吸収性コアと、該吸収性コアの外面を被覆するコアラップシートとを含んで構成されているものが知られている。コアラップシートは、吸収体の製造時には木材パルプや高吸水性樹脂等の吸収体形成材料を受けるためのシートとして働き、製造後には吸収性コアを包んで形状化する役割などを果たす。コアラップシートとしては、従来、薄葉紙、不織布等の透水性シートが用いられている。 Some absorbent articles such as disposable diapers and sanitary napkins include a liquid-retaining absorbent, and the absorbent includes an absorbent core containing wood pulp, a superabsorbent resin, and the like. What is comprised including the core wrap sheet | seat which coat | covers the outer surface of a core is known. The core wrap sheet serves as a sheet for receiving an absorber-forming material such as wood pulp or a highly water-absorbent resin during production of the absorbent body, and plays a role of wrapping and shaping the absorbent core after production. Conventionally, water-permeable sheets such as thin paper and nonwoven fabric are used as the core wrap sheet.
コアラップシートには、製造時の搬送テンションに耐えうるシート強度と、使用時には液を素早く透過させ、コアラップシートの下方に配置された吸収性コアに液を速やかに吸収させる高い液透過性が要求される。液透過性を高めるためには、シートの構成繊維の坪量を減らし、シートの密度を低下させる方法が有効であるが、斯かる方法は、構成繊維数の減少とそれに起因する構成繊維の繊維間結合点の数の減少を招くため、シート強度が低下するおそれがある。コアラップシートのシート強度と液透過性とは二律背反の関係にあり、両者をバランス良く両立させることは難しいのが現状である。 The core wrap sheet has a sheet strength that can withstand the conveyance tension during manufacture, and high liquid permeability that allows liquid to quickly permeate during use and allows the absorbent core disposed under the core wrap sheet to absorb liquid quickly. Required. In order to increase the liquid permeability, a method of reducing the basis weight of the constituent fibers of the sheet and reducing the density of the sheet is effective. However, such a method reduces the number of constituent fibers and the fibers of the constituent fibers resulting therefrom. Since the number of inter-bonding points is reduced, the sheet strength may be reduced. The sheet strength and liquid permeability of the core wrap sheet are in a trade-off relationship, and it is difficult to achieve a good balance between the two.
従って本発明の課題は、強度特性が良好で液透過性に優れた薄葉紙を提供することにある。 Accordingly, an object of the present invention is to provide a thin paper having good strength characteristics and excellent liquid permeability.
本発明者らは、紙における強度と液透過性との関係について種々検討した結果、紙の構成繊維として、繊維径が相対的に大きいパルプ(太いパルプ)と相対的に小さいパルプ(細いパルプ)とを用いることで、強度の低下を最小限に抑えつつ、液透過性を向上させることができることを知見し、更に検討した結果、繊維径の指標となる繊維粗度がそれぞれ特定範囲にある2種のパルプ(親水性セルロース繊維)で、両パルプの繊維粗度の差が特定範囲にあるものを紙の構成繊維として用いることが、強度特性と液透過性との両立に有効であることを知見した。 As a result of various investigations on the relationship between strength and liquid permeability in paper, the present inventors have found that, as a constituent fiber of paper, pulp having a relatively large fiber diameter (thick pulp) and relatively small pulp (thin pulp) As a result of further finding out that the liquid permeability can be improved while minimizing the decrease in strength, the fiber roughness as an index of the fiber diameter is in a specific range. It is effective for coexistence of strength characteristics and liquid permeability to use a kind of pulp (hydrophilic cellulose fiber) whose difference in fiber roughness between both pulps is in a specific range as a constituent fiber of paper. I found out.
本発明は、前記知見に基づきなされたもので、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、前記2種の親水性セルロース繊維として、繊維粗度が0.13〜0.16mg/mの第1パルプと繊維粗度が0.17〜0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01〜0.07mg/mであり、前記集合体のフリーネスが400〜550mlである薄葉紙を提供することにより、前記課題を解決したものである。 The present invention has been made on the basis of the above findings, and is a thin paper mainly composed of an assembly of two kinds of hydrophilic cellulose fibers having different fiber roughnesses, to which a paper strength enhancer is added. The hydrophilic cellulose fiber contains a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m. By providing a thin paper in which the difference in fiber roughness between the first pulp and the second pulp is 0.01 to 0.07 mg / m, and the freeness of the aggregate is 400 to 550 ml. It has been solved.
また本発明は、前記薄葉紙を用いた吸収性物品を提供するものである。 The present invention also provides an absorbent article using the thin paper.
本発明によれば、強度特性が良好で液透過性に優れた薄葉紙が提供される。 According to the present invention, a thin paper having good strength characteristics and excellent liquid permeability is provided.
以下、本発明の薄葉紙について詳細に説明する。本発明の薄葉紙は、繊維粗度の異なる2種の親水性セルロース繊維の集合体を必須成分として含有している。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものであり、後述するように市販の繊維粗度計を用いて測定される。即ち、本発明の薄葉紙は、太さの異なる2種の親水性セルロース繊維の集合体を含んでおり、これにより強度特性と液透過性との両立を図っている。 Hereinafter, the thin paper of the present invention will be described in detail. The thin paper of the present invention contains an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness as an essential component. Fiber roughness is used as a measure of fiber thickness in fibers with uneven fiber thickness, such as wood pulp, and is measured using a commercially available fiber roughness meter as described later. Is done. That is, the thin paper of the present invention includes an aggregate of two types of hydrophilic cellulose fibers having different thicknesses, thereby achieving both strength characteristics and liquid permeability.
本発明の薄葉紙には、前記2種の親水性セルロース繊維として、繊維粗度が0.13〜0.16mg/m、好ましくは0.135〜0.155mg/m、更に好ましくは0.14〜0.15mg/mである第1パルプと、繊維粗度が0.17〜0.20mg/m、好ましくは0.175〜0.195mg/m、更に好ましくは0.18〜0.19mg/mである第2パルプとが含有されており、第2パルプの方が第1パルプよりも太い。このように、紙の構成繊維の一部として相対的に太いパルプを用いることで、紙の地合が粗くなり、液透過性が向上する。尚、パルプは、木材、じん皮、葉等の植物繊維を化学的あるいは機械的方法によって単繊維化したものである。 In the thin paper of the present invention, the two kinds of hydrophilic cellulose fibers have a fiber roughness of 0.13 to 0.16 mg / m, preferably 0.135 to 0.155 mg / m, and more preferably 0.14 to 0.14. The first pulp is 0.15 mg / m, and the fiber roughness is 0.17 to 0.20 mg / m, preferably 0.175 to 0.195 mg / m, more preferably 0.18 to 0.19 mg / m. The second pulp is contained, and the second pulp is thicker than the first pulp. Thus, by using a relatively thick pulp as a part of the constituent fibers of the paper, the paper becomes rough and the liquid permeability is improved. Pulp is obtained by converting plant fibers such as wood, kidneys and leaves into single fibers by a chemical or mechanical method.
そして、薄葉紙に含有されている第1パルプと第2パルプとの繊維粗度の差が、0.01〜0.07mg/m、好ましくは0.02〜0.06mg/m、更に好ましくは0.03〜0.05mg/mである。両パルプの繊維粗度の差が0.01mg/m未満では、液透過性の向上効果に乏しく、繊維粗度の差が0.07mg/m超では、紙の強度が著しく低下するおそれがある。 The difference in fiber roughness between the first pulp and the second pulp contained in the thin paper is 0.01 to 0.07 mg / m, preferably 0.02 to 0.06 mg / m, and more preferably 0. 0.03 to 0.05 mg / m. If the difference in fiber roughness between the two pulps is less than 0.01 mg / m, the effect of improving the liquid permeability is poor, and if the difference in fiber roughness exceeds 0.07 mg / m, the strength of the paper may be significantly reduced. .
第1パルプ及び第2パルプそれぞれの平均繊維長は、好ましくは2〜3mm、更に好ましくは2.2〜2.8mmである。両パルプの平均繊維長がそれぞれ前記範囲にあることで、繊維どうしの交絡のバランスが良く、薄葉紙の地合も良いという効果が奏される。両パルプの平均繊維長は同じであっても良く、異なっていても良い。繊維粗度及び平均繊維長は、それぞれ、次のようにして測定される。 The average fiber length of each of the first pulp and the second pulp is preferably 2 to 3 mm, more preferably 2.2 to 2.8 mm. When the average fiber lengths of both pulps are in the above-mentioned ranges, the effects of good balance between fibers and good formation of thin paper are obtained. The average fiber length of both pulps may be the same or different. The fiber roughness and average fiber length are each measured as follows.
<繊維粗度及び平均繊維長の測定>
繊維粗度計FS−200(KAJAANI ELECTRONICS LTD.製)を用いて測定する。測定対象の繊維(パルプ)は未叩解のものとする。先ず、測定対象の繊維の真の重量を求めるために、該繊維を真空乾燥機内にて100℃で1時間乾燥させ、繊維中に存在している水分を除去する。こうして乾燥させた繊維から1gを正確に量りとる(誤差±0.1mg)。次に、量り取った繊維を、該繊維に極力損傷を与えないように注意しつつ、前記繊維粗度計に付属のミキサーで150mlの水中に完全に離解させ、これを全量が5000mlになるまで水で薄めて希釈液を得た。得られた希釈液から50mlを正確に量りとってこれを繊維粗度測定溶液とし、前記繊維粗度計の操作手順に従って目的とする繊維粗度及び平均繊維長をそれぞれ算出する。尚、平均繊維長の算出には、前記操作手順に基づき下記式により計算された値を用いる。
<Measurement of fiber roughness and average fiber length>
It is measured using a fiber roughness meter FS-200 (manufactured by KAJAANI ELECTRONICS LTD.). The fiber (pulp) to be measured shall be unbeaten. First, in order to obtain the true weight of the fiber to be measured, the fiber is dried in a vacuum dryer at 100 ° C. for 1 hour to remove moisture present in the fiber. 1 g is accurately weighed from the fibers thus dried (error ± 0.1 mg). Next, while taking care not to damage the fibers as much as possible, the weighed fibers are completely disaggregated in 150 ml of water with the mixer attached to the fiber roughness meter, and this is until the total amount reaches 5000 ml. Diluted with water to obtain a diluted solution. 50 ml is accurately weighed from the diluted solution thus obtained to make a fiber roughness measurement solution, and the target fiber roughness and average fiber length are calculated according to the operation procedure of the fiber roughness meter. In addition, the value calculated by the following formula based on the said operation procedure is used for calculation of average fiber length.
第1パルプと第2パルプとの含有質量比(第1パルプ/第2パルプ)は、強度特性と液透過性とのバランスの観点から、好ましくは3/7〜7/3、更に好ましくは4/6〜6/4である。相対的に繊維径の太い第2パルプが少なすぎると、十分な液透過性が得られないおそれがあり、逆に第2パルプが多すぎると、薄葉紙の強度の急激な低下が生じるおそれがある。 The content mass ratio between the first pulp and the second pulp (first pulp / second pulp) is preferably 3/7 to 7/3, more preferably 4 from the viewpoint of the balance between strength characteristics and liquid permeability. / 6 to 6/4. If the second pulp having a relatively large fiber diameter is too small, sufficient liquid permeability may not be obtained. Conversely, if the second pulp is too large, the strength of the thin paper may be drastically reduced. .
第1パルプ及び第2パルプ(親水性セルロース繊維)としては、繊維粗度が前記範囲にあり且つ親水性表面を有する繊維であって、その湿潤状態において、繊維どうしが互いに高い自由度を有するシートを形成できるものであれば、特に制限無く用いることができる。そのような親水性セルロース繊維の例には、針葉樹晒クラフトパルプ(NBKP)、広葉樹晒クラフトパルプ(LBKP)等の木材パルプや木綿パルプ、ワラパルプ等の非木材パルプ等の天然セルロース繊維;レーヨン、キュプラ等の再生セルロース繊維;ポリビニルアルコール繊維、ポリアクリロニトリル繊維等の親水性合成繊維;ポリエチレンテレフタレート(PET)繊維、ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維、ポリエステル繊維等の合成繊維を界面活性剤により親水化処理したもの等が挙げられ、これらの1種を単独で又は2種以上を混合して用いることができる。 The first pulp and the second pulp (hydrophilic cellulose fibers) are fibers having a fiber roughness in the above-mentioned range and having a hydrophilic surface, and the fibers have a high degree of freedom between each other in the wet state. If it can form, it can use without a restriction | limiting especially. Examples of such hydrophilic cellulose fibers include natural cellulose fibers such as wood pulp such as softwood bleached kraft pulp (NBKP) and hardwood bleached kraft pulp (LBKP), and non-wood pulp such as cotton pulp and straw pulp; rayon, cupra Recycled cellulose fibers such as: hydrophilic synthetic fibers such as polyvinyl alcohol fibers and polyacrylonitrile fibers; synthetic fibers such as polyethylene terephthalate (PET) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers, and polyester fibers with surfactants The thing etc. which carried out the hydrophilization process are mentioned, These 1 type can be used individually or in mixture of 2 or more types.
これらの親水性セルロース繊維の中でも、特にNBKPが好ましく、第1パルプ及び第2パルプは、それぞれ、NBKPが好ましい。また、本発明で用いるNBKPとしては、この種の紙において通常用いられるNBKPを特に制限無く用いることができる。NBKPとして、パルプの漂白に塩素化合物を使用しないECF(エレメンタリー・クロリンフリー)漂白パルプやTCF(トータル・クロリンフリー)漂白パルプを使用しても良い。 Among these hydrophilic cellulose fibers, NBKP is particularly preferable, and each of the first pulp and the second pulp is preferably NBKP. Further, as NBKP used in the present invention, NBKP usually used in this type of paper can be used without any particular limitation. As NBKP, ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used.
本発明の薄葉紙は、繊維粗度の異なる2種の親水性セルロース繊維(第1パルプ及び第2パルプ)の集合体を主体としている。ここで、「主体としている」とは、第1パルプ及び第2パルプの含有率が50質量%以上であることを意味する。該含有率は、強度特性と液透過性との両立を図る観点から、好ましくは70〜80質量%、更に好ましくは80〜100質量%である。 The thin paper of the present invention is mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers (first pulp and second pulp) having different fiber roughness. Here, “mainly” means that the contents of the first pulp and the second pulp are 50% by mass or more. The content is preferably 70 to 80% by mass, more preferably 80 to 100% by mass, from the viewpoint of achieving both strength characteristics and liquid permeability.
本発明においては、前記2種の親水性セルロース繊維(第1パルプ及び第2パルプ)の集合体のフリーネスを400〜550mlに設定している。即ち、第1パルプ及び第2パルプそれぞれのフリーネスは400〜550mlの範囲にある。フリーネスは、JIS P8121に規定するカナダ標準ろ水度(C.S.F.)で示される値であり、パルプの叩解(水の存在下でパルプを機械的に叩き、磨砕する処理)の度合いを示す値である。通常、フリーネスの値が小さいほど、叩解の度合いが強く、叩解による繊維の損傷が大きくてフィブリル化が進行している。フリーネスが前記範囲にある繊維は、フィブリル化が進行しているため繊維どうしが絡み合い易く、そのため、例えば液透過性の向上の観点から薄葉紙の低坪量化(低密度化)を図ることによって構成繊維の繊維間結合点の数が減少しても、各繊維間結合の強度は、フリーネスが550mlを超え相対的にフィブリル化が進行していない繊維に比して、高い。従って、フリーネスが400〜550mlである繊維の集合体を主体とする薄葉紙は、良好な強度特性を有し得る。 In the present invention, the freeness of the aggregate of the two types of hydrophilic cellulose fibers (first pulp and second pulp) is set to 400 to 550 ml. That is, the freeness of each of the first pulp and the second pulp is in the range of 400 to 550 ml. Freeness is a value indicated by Canadian Standard Freeness (C.S.F.) specified in JIS P8121, and is a value of pulp beating (a process of mechanically tapping and grinding pulp in the presence of water). It is a value indicating the degree. Usually, the smaller the freeness value, the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds. Fibers having a freeness in the above range are easily entangled with each other because fibrillation has progressed. For this reason, for example, from the viewpoint of improving liquid permeability, the fibers are made by reducing the basis weight (reducing density) of the thin paper. Even if the number of interfiber bonding points is reduced, the strength of each interfiber bond is higher than that of fibers in which the freeness exceeds 550 ml and the fibrillation has not progressed relatively. Accordingly, a thin paper mainly composed of an aggregate of fibers having a freeness of 400 to 550 ml can have good strength characteristics.
本発明で用いる2種の親水性セルロース繊維の集合体のフリーネスは、好ましくは450〜525ml、更に好ましくは475〜510mlである。フリーネスが400ml未満の場合は、繊維の絡み合いによる強度改善効果は飽和しており、また、繊維の切断が促進され、透過時間が遅くなるおそれがある。繊維の集合体の叩解は、繊維の集合体を構成する各親水性セルロース繊維(第1パルプ及び第2パルプ)を混合分散させた紙料(スラリー)に対して、ビーダー、ディスクリファイナー等の公知の叩解機を用いて常法に従って実施することができる。 The freeness of the aggregate of the two types of hydrophilic cellulose fibers used in the present invention is preferably 450 to 525 ml, more preferably 475 to 510 ml. When the freeness is less than 400 ml, the strength improvement effect due to the entanglement of the fibers is saturated, and the fiber cutting is promoted, and the permeation time may be delayed. The beating of the fiber aggregate is a known method such as a beader or a disc refiner for a stock (slurry) in which each hydrophilic cellulose fiber (first pulp and second pulp) constituting the fiber aggregate is mixed and dispersed. This can be carried out according to a conventional method using a beating machine.
本発明の薄葉紙は、第1パルプ及び第2パルプ以外の他の繊維を含んでいても良く、他の繊維は、両パルプの如き親水性セルロース繊維でなくても良い。他の繊維としては、例えば、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)等の木材パルプ;楮、三椏、雁皮等の靱皮繊維;藁、竹、ケナフ、麻等の非木材パルプ;ポリエステル繊維、レーヨン繊維、アクリル繊維等の合成繊維等が挙げられる。これら他の繊維の含有率は、好ましくは20質量%以下である。 The thin paper of the present invention may contain fibers other than the first pulp and the second pulp, and the other fibers may not be hydrophilic cellulose fibers such as both pulps. Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like. The content of these other fibers is preferably 20% by mass or less.
本発明の薄葉紙には、良好な強度特性(引張強度)を得る観点から、紙力増強剤が添加されている。紙力増強剤には、乾燥紙力を向上させる乾燥紙力増強剤と、湿潤紙力を向上させる湿潤紙力増強剤とがあり、何れを用いても良い。特に、乾燥紙力増強剤の1種であるカルボキシメチルセルロース(CMC)及びその塩は、汎用性が高く、繊維どうしの凝集効果も低いため、本発明で好ましく用いられる。即ち、本発明においては、紙力増強剤として、少なくともCMC又はその塩が添加されていることが好ましい。 From the viewpoint of obtaining good strength characteristics (tensile strength), a paper strength enhancer is added to the thin paper of the present invention. The paper strength enhancer includes a dry paper strength enhancer that improves the dry paper strength and a wet paper strength enhancer that improves the wet paper strength, either of which may be used. In particular, carboxymethyl cellulose (CMC), which is a kind of dry paper strength enhancer, and a salt thereof are preferably used in the present invention because of their high versatility and low aggregation effect between fibers. That is, in the present invention, at least CMC or a salt thereof is preferably added as a paper strength enhancer.
乾燥紙力増強剤としては、従来公知の乾燥紙力増強剤を用いることができ、例えば、CMC及びその塩、ポリアクリルアミド系樹脂及びその塩、カチオン化デンプン、ポリビニルアルコール(PVA)等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。CMCあるいはポリアクリルアミド系樹脂の塩としては、それぞれ、ナトリウム塩が主に用いられる。ポリアクリルアミド系樹脂としては、例えば、カチオン性又はアニオン性ポリアクリルアミド(PAM)が挙げられる。これらの乾燥紙力増強剤の中でも、特にCMC及びその塩、アニオン性PAM及びその塩が好ましい。 As the dry paper strength enhancer, conventionally known dry paper strength enhancers can be used, and examples thereof include CMC and salts thereof, polyacrylamide resins and salts thereof, cationized starch, polyvinyl alcohol (PVA) and the like. These 1 type can be used individually or in combination of 2 or more types. As the salt of CMC or polyacrylamide resin, sodium salt is mainly used. Examples of the polyacrylamide resin include cationic or anionic polyacrylamide (PAM). Among these dry paper strength enhancers, CMC and salts thereof, anionic PAM and salts thereof are particularly preferable.
湿潤紙力増強剤としては、従来公知の湿潤紙力増強剤を用いることができ、例えば、エポキシ化ポリアミドポリアミン樹脂(PAE)、尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン、メチロール化ポリアミド等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの湿潤紙力増強剤の中でも、特にPAEが好ましい。 As the wet paper strength enhancer, conventionally known wet paper strength enhancers can be used. For example, epoxidized polyamide polyamine resin (PAE), urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine, Examples include methylolated polyamide, and one of these can be used alone or two or more of them can be used in combination. Among these wet paper strength enhancers, PAE is particularly preferable.
本発明において2種以上の紙力増強剤を用いる場合、それらの好ましい組み合わせとして、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤が挙げられる。これら計3種類の紙力増強剤のうち、2種の乾燥紙力増強剤としてはCMCの塩及びアニオン性PAMの塩が好ましく、1種の湿潤紙力増強剤としてはPAEが好ましい。 In the present invention, when two or more kinds of paper strength enhancers are used, a preferable combination thereof includes two kinds of dry paper strength enhancers and one kind of wet paper strength enhancer. Of these three types of paper strength enhancers, CMC salts and anionic PAM salts are preferred as the two dry paper strength enhancers, and PAE is preferred as the one wet strength agent.
また、前記のように、2種の乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩を用い、1種の湿潤紙力増強剤としてPAEを用いた場合、アニオン性PAMの塩の重量平均分子量は、800万以上、特に1000万以上、とりわけ1500万以上が好ましく、また、アニオン性PAMの塩の重量平均分子量の上限は、2500万が好ましい。このように特定の3種類の紙力増強剤を用いる場合において、それらのうちの1種であるアニオン性PAMの塩の重量平均分子量が前記範囲(800万以上2500万以下)であれば、アニオン性PAMの塩自体の接着性の発現による薄葉紙の強度向上効果に加えて、CMCの塩の歩留まりの向上による薄葉紙の強度向上効果が得られるため、両強度向上効果によって薄葉紙のより良好な強度特性が得られる。また、アニオン性PAMの塩の重量平均分子量が2500万以下であると、薄葉紙の製造時においてアニオン性PAMの塩の水中での分散性や粘度が比較的低く抑えられるため、ハンドリング性や抄紙機の汚れ防止の点で良い結果が得られる。 In addition, as described above, when the CMC salt and the anionic PAM salt are used as the two dry paper strength enhancers, and the PAE is used as the one wet paper strength enhancer, the weight of the anionic PAM salt is as follows. The average molecular weight is preferably 8 million or more, particularly preferably 10 million or more, particularly preferably 15 million or more, and the upper limit of the weight average molecular weight of the anionic PAM salt is preferably 25 million. Thus, in the case of using three kinds of specific paper strength enhancers, if the weight average molecular weight of the salt of anionic PAM which is one of them is in the above range (8 million to 25 million), an anion In addition to the effect of improving the strength of the thin paper by developing the adhesiveness of the salt of the PAM, the strength improvement effect of the thin paper can be obtained by improving the yield of the salt of the CMC. Is obtained. Also, when the weight average molecular weight of the anionic PAM salt is 25 million or less, the dispersibility and viscosity of the anionic PAM salt in water can be kept relatively low during the manufacture of the thin paper. Good results can be obtained in terms of prevention of dirt.
本発明の薄葉紙における紙力増強剤の添加量は、薄葉紙の全構成繊維の乾燥質量に対して、好ましくは0.01〜1.5質量%、更に好ましくは0.03〜1.2質量%である。紙力増強剤の添加量が少なすぎると、引張強度等の強度特性が十分に得られず、紙力増強剤の添加量が多すぎると、薄葉紙の硬化(風合いの低下)の他、薄葉紙の製造時におけるヤンキードライヤへの紙の張り付きやメッシュドラムへの紙力増強剤の付着等による、薄葉紙の地合の低下を招くおそれがある。 The addition amount of the paper strength enhancer in the thin paper of the present invention is preferably 0.01 to 1.5% by mass, more preferably 0.03 to 1.2% by mass, based on the dry mass of all the constituent fibers of the thin paper. It is. If the added amount of the paper strength enhancer is too small, sufficient strength properties such as tensile strength cannot be obtained. If the added amount of the paper strength enhancer is excessive, the thin paper is hardened (decrease in texture) and the thin paper There is a possibility that the formation of the thin paper may be lowered due to the sticking of the paper to the Yankee dryer or the attachment of the paper strength enhancer to the mesh drum at the time of manufacture.
また、紙力増強剤として、乾燥紙力増強剤の1種以上と湿潤紙力増強剤の1種以上との組み合わせを用いる場合、乾燥紙力増強剤の総添加質量と湿潤紙力増強剤の総添加質量との比(前者/後者)は、好ましくは0.01〜0.5、更に好ましくは0.03〜0.35である。 When a combination of one or more dry paper strength enhancers and one or more wet paper strength enhancers is used as the paper strength enhancer, the total added mass of the dry paper strength enhancer and the wet paper strength enhancer The ratio to the total added mass (the former / the latter) is preferably 0.01 to 0.5, more preferably 0.03 to 0.35.
また、前述したように、乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩の2種を用い、湿潤紙力増強剤としてPAEの1種を用いる場合、薄葉紙の全構成繊維の乾燥質量に対する各紙力増強剤の添加量は、CMCの塩が好ましくは0.05〜0.5質量%、更に好ましくは0.1〜0.3質量%であり、アニオン性PAMの塩が好ましくは0.001〜0.1質量%、更に好ましくは0.02〜0.05質量%であり、PAEが好ましくは0.5〜1.5質量%、更に好ましくは0.6〜1.2質量%である。 In addition, as described above, when two kinds of CMC salt and anionic PAM salt are used as the dry paper strength enhancer and one type of PAE is used as the wet paper strength enhancer, the dry mass of all the constituent fibers of the thin paper The addition amount of each paper strength enhancer is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass of CMC salt, and preferably 0 to 0.3% of anionic PAM salt. 0.001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass, and PAE is preferably 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass. It is.
本発明の薄葉紙は、前述した、第1パルプ及び第2パルプ(親水性セルロース繊維)等の繊維及び紙力増強剤以外の他の成分を含んでいても良い。他の成分としては、例えば、タルク等の填料、染料、色顔料、抗菌剤、pH調整剤、歩留り向上剤、耐水化剤、消泡剤等の一般的に抄紙用原材料や添加物として使用されているものが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。 The thin paper of the present invention may contain other components other than the fibers such as the first pulp and the second pulp (hydrophilic cellulose fibers) and the paper strength enhancer described above. As other components, for example, fillers such as talc, dyes, color pigments, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents and the like are generally used as raw materials for papermaking and additives. These can be used, and one of these can be used alone or in combination of two or more.
本発明の薄葉紙は、公知の湿式抄紙法によって製造することができる。湿式抄紙法は、NBKP等の繊維の水分散液からなる紙料(スラリー)を調製する紙料調製工程と、紙料から繊維を抄いて繊維ウエブとしたものを搬送しながら乾燥する抄紙工程とを有するものである。抄紙工程は、通常、ワイヤパート、プレスパート、ドライヤパート、サイズプレス、カレンダパート等に分けられ、順次実施される。前述した乾燥紙力増強剤及び湿潤紙力増強剤は、通常、紙料調整工程において紙料に添加される。通常、湿潤紙力増強剤、乾燥紙力増強剤の順で紙料に添加するが、本発明における紙力増強剤の添加順序はこれに制限されず、添加順序をこれとは逆にしても良く、両者を同時に添加しても良い。湿式抄紙法は、例えば、長網抄紙機、ツインワイヤー抄紙機、オントップ抄紙機、ハイブリッド抄紙機又は丸網抄紙機等の抄紙機を用いて常法に従って実施することができる。 The thin paper of the present invention can be produced by a known wet papermaking method. The wet papermaking method includes a stock preparation step for preparing a stock (slurry) made of an aqueous dispersion of fibers such as NBKP, and a paper making step for drying while transporting a fiber made from the stock into a fiber web. It is what has. The paper making process is usually divided into a wire part, a press part, a dryer part, a size press, a calendar part, etc., and is carried out sequentially. The above-mentioned dry paper strength enhancer and wet paper strength enhancer are usually added to the stock in the stock preparation step. Usually, the wet paper strength enhancer and the dry paper strength enhancer are added in the order of the paper strength enhancer, but the order of addition of the paper strength enhancer in the present invention is not limited to this, and the order of addition may be reversed. Both may be added simultaneously. The wet papermaking method can be carried out according to a conventional method using a paper machine such as a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, or a round paper machine.
本発明の薄葉紙の坪量は、液透過性の向上の観点から、比較的低く設定されることが好ましく、具体的には、10〜20g/m2、特に11〜16g/m2、とりわけ12〜14g/m2が好ましい。坪量が低いと紙力の低下が懸念されるが、本発明では、前述したように、構成繊維の一部として相対的に繊維粗度の小さい(繊維径の細い)第1パルプを用い、且つ2種の繊維(第1パルプと第2パルプ)の集合体のフリーネスを特定範囲に設定し、更に紙力増強剤を併用することで、斯かる懸念を払拭している。薄葉紙の坪量が10g/m2未満では、紙力が著しく低下するおそれがあり、また、薄葉紙の坪量が20g/m2超では、液透過性の向上効果に乏しいおそれがある。 The basis weight of the thin paper of the present invention is preferably set to be relatively low from the viewpoint of improving liquid permeability, specifically 10 to 20 g / m 2 , particularly 11 to 16 g / m 2 , especially 12 -14 g / m 2 is preferred. When the basis weight is low, there is a concern about a decrease in paper strength, but in the present invention, as described above, the first pulp having relatively small fiber roughness (thin fiber diameter) is used as a part of the constituent fibers. In addition, the concern is eliminated by setting the freeness of the aggregate of the two types of fibers (first pulp and second pulp) within a specific range and using a paper strength enhancer in combination. If the basis weight of the thin paper is less than 10 g / m 2 , the paper strength may be remarkably reduced, and if the basis weight of the thin paper exceeds 20 g / m 2 , the effect of improving the liquid permeability may be poor.
同様の観点から、本発明の薄葉紙の密度は、好ましくは0.05〜0.2g/cm3、更に好ましくは0.1〜0.2g/cm3である。 From the same viewpoint, the density of the thin paper of the present invention is preferably 0.05 to 0.2 g / cm 3 , more preferably 0.1 to 0.2 g / cm 3 .
薄葉紙の坪量は、次のようにして測定される。JIS P8111の条件にてサンプル(薄葉紙)の調湿を行った後、サンプルから10cm四方(面積100cm2)の測定片を切り出し、該測定片の重量を少数点以下2桁の天秤にて測定し、その測定値を面積で除して該測定片の坪量を算出する。サンプルから切り出した10枚の測定片について、前記手順に従って坪量を算出し、それらの平均値をサンプルの坪量とする。 The basis weight of the thin paper is measured as follows. After conditioning the sample (thin paper) under the conditions of JIS P8111, a 10 cm square (area 100 cm 2 ) measurement piece was cut out from the sample, and the weight of the measurement piece was measured with a two-digit balance below the decimal point. The basis weight of the measurement piece is calculated by dividing the measured value by the area. About 10 measurement pieces cut out from the sample, the basis weight is calculated according to the above procedure, and the average value thereof is taken as the basis weight of the sample.
また、薄葉紙の密度は、次のようにして測定される。20cm四方のサンプル(薄葉紙)を10枚重ねて積層体とし、該積層体を液体窒素で冷却固化させた後、カッターで該積層体の真ん中付近を切断する。そして、10枚のサンプルのうち、カッターによる切断で生じた断面にせん断がかかっていないものを選択し、選択したサンプルの厚みを光学顕微鏡により測定する。尚、サンプルの厚みは、当該サンプルに後述するクレープ等の凹凸がある場合は、その凹凸部における最底部から最上部までの長さ(見掛け厚み)ではなく、構成繊維が堆積している部分の長さ(実質厚み)である。こうして厚みを測定した20cm四方のサンプルの重量Wを、小数点以下2桁の天秤を用い測定する。目的とする密度は、サンプルの重量Wを次式により算出したサンプルの体積Vで除して(即ちW/Vにより)算出する。次式中、Tはサンプルの厚み(cm)、Aはサンプルのクレープ率(%)、Bはサンプルの1辺の長さ(20cm)である。クレープ率は後述する測定方法によって測定される。測定対象の薄葉紙がクレープを有していない場合(クレープ率が0%の場合)、次式においてA=0とする。 V={T×B×B×(100+A)/100} The density of the thin paper is measured as follows. 10 sheets of 20 cm square samples (thin paper) are stacked to form a laminated body, and after cooling and solidifying the laminated body with liquid nitrogen, the vicinity of the center of the laminated body is cut with a cutter. Then, of the 10 samples, one having no shear applied to the cross section generated by cutting with the cutter is selected, and the thickness of the selected sample is measured with an optical microscope. In addition, the thickness of the sample is not the length (apparent thickness) from the bottom to the top of the concavo-convex part when the sample has concavo-convex parts such as crepes described later, but the part where the constituent fibers are deposited Length (substantial thickness). The weight W of the 20 cm square sample whose thickness has been measured in this way is measured using a balance with two decimal places. The target density is calculated by dividing the weight W of the sample by the volume V of the sample calculated by the following equation (that is, by W / V). In the following formula, T is the thickness (cm) of the sample, A is the crepe rate (%) of the sample, and B is the length of one side (20 cm) of the sample. The crepe rate is measured by a measurement method described later. When the thin paper to be measured does not have a crepe (when the crepe rate is 0%), A = 0 in the following equation. V = {T × B × B × (100 + A) / 100}
本発明の薄葉紙は、クレープ(ちりめん状のシワ)を有していても良い。本発明の薄葉紙がクレープを有している場合、そのクレープは、ドライヤパートにおけるヤンキードライヤ等から乾燥状態の繊維ウエブ(薄葉紙)をドクターナイフ等で剥離する際に生じる、ドライクレープであることが好ましい。クレープ率は、次のようにして測定される。 The thin paper of the present invention may have crepes (crepe-like wrinkles). When the thin paper of the present invention has a crepe, the crepe is preferably a dry crepe that is produced when a dry fiber web (thin paper) is peeled off from a Yankee dryer or the like in a dryer part with a doctor knife or the like. . The crepe rate is measured as follows.
<クレープ率の測定方法>
測定対象の薄葉紙から長さ方向(薄葉紙の製造時の搬送方向、MD)に200mm、幅方向(MDに直交する方向、CD)に100mmの矩形形状を切り出してサンプルとする。この矩形形状のサンプルを10分間水中に浸漬した直後のMDの長さCを測定し、次式によりクレープ率を算出する。 クレープ率(%)={(C−200)/200}×100
例えば、10分間浸漬後のMDの長さCが220mmであった場合、前記式により算出される当該薄葉紙のクレープ率は10%である。
<Measurement method of crepe rate>
A rectangular shape of 200 mm in the length direction (conveying direction when manufacturing the thin paper, MD) and 100 mm in the width direction (direction orthogonal to the MD, CD) is cut out from the thin paper to be measured. The length C of the MD immediately after the rectangular sample is immersed in water for 10 minutes is measured, and the crepe rate is calculated by the following equation. Crepe rate (%) = {(C−200) / 200} × 100
For example, when the length C of the MD after immersion for 10 minutes is 220 mm, the crepe rate of the thin paper calculated by the above formula is 10%.
クレープを有する薄葉紙は、クレープを有しない薄葉紙に比して液透過性が高く、また、クレープ率が高くなるほど液透過性が高まる。但し、クレープ率が高くなると、強度特性(引張強度)は低下する傾向がある。本発明においては、斯かる知見に基づき、液透過性と強度特性とのバランスの観点から、薄葉紙のクレープ率は、5〜30%、特に5〜20%、とりわけ7〜15%とすることが好ましい。 Thin paper with crepe has higher liquid permeability than thin paper without crepe, and the higher the crepe rate, the higher the liquid permeability. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease. In the present invention, based on such knowledge, from the viewpoint of balance between liquid permeability and strength properties, the crepe rate of the thin paper is 5 to 30%, particularly 5 to 20%, especially 7 to 15%. preferable.
前述した構成を有する本発明の薄葉紙の製造時の搬送方向(Machine Direction、略してMD)の乾燥引張強度は、600cN/25mm以上、好ましくは600〜1500cN/25mm、更に好ましくは700〜1200cN/25mmであり、更に一層好ましくは800〜1200cN/25mmであり、ことさら好ましくは900〜1200cN/25mmである。また、MDに直交する方向(Cross machine Direction、略してCD)の乾燥引張強度は、150cN/25mm以上、好ましくは150〜350cN/25mm、更に好ましくは180〜300cN/25mmである。MD及びCDそれぞれの乾燥引張強度が前記範囲にある薄葉紙は、実用上十分な強度を有しており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、吸収性物品の製造時にコアラップシート(薄葉紙)が破れる等の不都合を起こし難い。乾燥引張強度は次のようにして測定される。 The dry tensile strength in the transport direction (Machine Direction, MD for short) of the thin paper of the present invention having the above-described configuration is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm. More preferably, it is 800 to 1200 cN / 25 mm, and even more preferably 900 to 1200 cN / 25 mm. Further, the dry tensile strength in a direction orthogonal to MD (Cross machine direction, abbreviated as CD) is 150 cN / 25 mm or more, preferably 150 to 350 cN / 25 mm, and more preferably 180 to 300 cN / 25 mm. A thin paper having a dry tensile strength of each of MD and CD in the above range has a practically sufficient strength. For example, the thin paper is used as a core wrap sheet for covering an absorbent core in an absorbent article such as a disposable diaper. When applied, it is difficult to cause inconveniences such as tearing of the core wrap sheet (thin paper) during manufacture of the absorbent article. The dry tensile strength is measured as follows.
<乾燥引張強度の測定方法>
測定対象のシート(薄葉紙)を室温23℃±2℃、相対湿度50%RH±2%の環境下で12時間放置して一定状態になるよう調湿する。調湿後のシートから、MDに150mm、CDに25mmの寸法の長方形形状を切り出し、この切り出された長方形形状をサンプルとする。このサンプルを、そのMDが引張方向となるように引張試験機(島津製作所製オートグラフAG−1kN)のチャックに無張力で取り付ける。チャック間距離は100mmとする。サンプルを300mm/分の引張速度で引っ張り、サンプルが破断するまでの最大強度を測定する。測定は5回行い、これらの平均値をMDの乾燥引張強度とする。また、CDの乾燥引張強度は、調湿後のシートから、CDに150mm、MDに25mmの寸法の長方形形状を切り出してこれをサンプルとし、このサンプルを、そのCDが引張方向となるように引張試験機のチャックに無張力で取り付け、前記と同様の手順により、CDの乾燥引張強度を求める。
<Measurement method of dry tensile strength>
The sheet to be measured (thin paper) is allowed to stand for 12 hours in an environment of a room temperature of 23 ° C. ± 2 ° C. and a relative humidity of 50% RH ± 2%, and is conditioned to a constant state. A rectangular shape with dimensions of 150 mm for MD and 25 mm for CD is cut out from the humidity-adjusted sheet, and the cut out rectangular shape is used as a sample. This sample is attached to a chuck of a tensile testing machine (manufactured by Shimadzu Autograph AG-1kN) without tension so that the MD is in the tensile direction. The distance between chucks is 100 mm. The sample is pulled at a pulling speed of 300 mm / min, and the maximum strength until the sample breaks is measured. The measurement is performed 5 times, and the average of these values is taken as the MD dry tensile strength. Further, the dry tensile strength of CD is obtained by cutting a rectangular shape having dimensions of 150 mm for CD and 25 mm for MD from the humidity-controlled sheet, and using this as a sample, and pulling this sample so that the CD is in the tensile direction. Attached to the chuck of the testing machine without tension, the dry tensile strength of the CD is determined by the same procedure as described above.
また、下記方法で測定される本発明の薄葉紙の液透過時間は、0.2〜3秒、好ましくは0.3〜2.5秒、更に好ましくは0.5〜2秒である。液透過時間が短いほど、液透過性が高く高評価となる。液透過時間が前記範囲にある薄葉紙は、液透過性に優れており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、尿等の排泄液を素早く透過させて吸収性コアに速やかに吸収させることが可能となり、吸収性物品の防漏性の向上が期待できる。 Moreover, the liquid permeation | transmission time of the thin paper of this invention measured by the following method is 0.2 to 3 second, Preferably it is 0.3 to 2.5 second, More preferably, it is 0.5 to 2 second. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation. The thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
<液透過時間の測定方法>
図1に示すように、上下端が開口している内径35mmの2本の円筒91,92を、両円筒91,92の軸を一致させて上下に配し、8cm四方の測定対象シートS(薄葉紙)を上下の円筒91,92間に挟み込む。このとき、上側の円筒91の下端及び下側の円筒92の上端に設けられた環状のフランジ部にクリップ93を嵌合させ、上下の円筒91,92を連結させることが好ましい。符号94は、円筒91,92の内径と同径同形状の貫通孔を有するゴム製等のパッキンである。このように、上下の円筒91,92で測定対象シートSを挟持固定した状態で、上側の円筒91内に、図1中符合Wで示す生理食塩水(塩化ナトリウム濃度0.9質量%の水溶液)を40g±1g供給する。供給された生理食塩水は、測定対象シートSを透過するか又は測定対象シートSに吸収されて上側の円筒91内からなくなる。生理食塩水の供給開始時から、生理食塩水の水面が測定対象シートSの表面(上側の円筒91側の面)と同位置になるまでの時間を測定し、その時間を液透過時間とする。
<Measurement method of liquid permeation time>
As shown in FIG. 1, two
また、本発明の薄葉紙は、通気性にも優れている。その理由は、主として、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体としているためである。本発明者らは、繊維粗度の異なる2種の親水性セルロース繊維を用いることと薄葉紙の通気性との関係を調べるべく、パルプ配合の異なる2種類の薄葉紙(サンプルA、B)を用意し、これらの透気度を測定した。サンプルAは、第1パルプ及び第2パルプを含むもので後述する実施例1であり、サンプルBは、後述する実施例1において、第2パルプ(繊維粗度0.18mg/mのNBKP)を用いずに第1パルプ(繊維粗度0.15mg/mのNBKP)のみを繊維材料として用いた以外は実施例1と同様の手順で製造した薄葉紙である。サンプルA及びB共に坪量は13g/m2であった。透気度は次のようにして測定される。 The thin paper of the present invention is also excellent in air permeability. The reason is mainly because it mainly comprises an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness. In order to investigate the relationship between the use of two types of hydrophilic cellulose fibers having different fiber roughness and the breathability of thin paper, the present inventors prepared two types of thin paper (samples A and B) having different pulp compositions. The air permeability was measured. Sample A includes the first pulp and the second pulp, and is Example 1 to be described later. Sample B is the second pulp (NBKP having a fiber roughness of 0.18 mg / m) in Example 1 to be described later. A thin paper manufactured in the same procedure as in Example 1 except that only the first pulp (NBKP with a fiber roughness of 0.15 mg / m) was used as the fiber material without using it. Both samples A and B had a basis weight of 13 g / m 2 . The air permeability is measured as follows.
<透気度の測定方法>
透気度の測定はJIS P8117に準じて実施する。15cm四方の測定対象シート(薄葉紙)を32枚用意し、これらを熱風乾燥機により105℃の熱風で30分間乾燥させた後、32枚全てを重ねて1つの積層体とし、該積層体をB形透気度計にセットする。そして、B形透気度計において、標線の0ccをスタ−トとし300ccに達するまでに要する時間を測定する。以上の操作を5回実施し、得られた5つの測定時間の平均値を、当該測定対象シート(薄葉紙)の透気度とする。透気度の単位は、「s/32P・300cc」であり、32枚のシートを300ccの空気が抜けるのに要する時間(秒)を表す。透気度の値が小さいほど空気が抜け易く、通気性に優れると評価できる。
<Measurement method of air permeability>
The air permeability is measured according to JIS P8117. After preparing 32 sheets of 15 cm square measurement object sheets (thin paper) and drying them with hot air dryer for 30 minutes with hot air at 105 ° C., all 32 sheets are stacked to form one laminate, and the laminate is B Set on the air permeability meter. Then, in the B-type air permeability meter, the time required to reach 300 cc is measured using 0 cc of the marked line as a start. The above operation is performed 5 times, and the average value of the obtained five measurement times is defined as the air permeability of the measurement target sheet (thin paper). The unit of air permeability is “s / 32P · 300 cc” and represents the time (seconds) required for 300 cc of air to escape through 32 sheets. It can be evaluated that the smaller the value of the air permeability, the easier the air can escape and the better the air permeability.
繊維材料として第1パルプのみを用いたサンプルBは、透気度が2.1〜2.7s/32P・300ccの範囲であったのに対し、繊維材料として繊維粗度が互いに異なる2種のパルプ(第1及び第2パルプ)を用いたサンプルAは、透気度が1.6〜2.2s/32P・300ccの範囲にあり、サンプルAの方がサンプルBよりも透気度の値が小さかった。このことから、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体として薄葉紙を構成することは、薄葉紙の通気性を向上させる上で有効であることがわかり、斯かる構成を具備する本発明の薄葉紙が通気性に優れることが明らかである。 Sample B using only the first pulp as the fiber material had an air permeability in the range of 2.1 to 2.7 s / 32 P · 300 cc, whereas two kinds of fiber roughness as the fiber material were different from each other. Sample A using pulp (first and second pulp) has an air permeability in the range of 1.6 to 2.2 s / 32 P · 300 cc. Sample A has a higher air permeability than sample B. Was small. From this, it can be seen that it is effective to improve the air permeability of the thin paper to make the thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses. It is clear that the thin paper of the present invention is excellent in air permeability.
本発明の薄葉紙は、強度特性(引張強度)が良好で液透過性及び通気性に優れており、そのような特長が活かされる種々の用途に好適である。特に、本発明の薄葉紙は、使い捨ておむつや生理用ナプキン等の吸収性物品において、液保持性の吸収性コアを被覆するコアラップシートとして好適であり、排泄液が、尿等の比較的低粘性の場合のみならず、軟便等の比較的高粘性の場合であっても、排泄液を素早く透過させて吸収性コアに吸収させることができ、吸収性物品の防漏性の向上に寄与し得る。 The thin paper of the present invention has good strength characteristics (tensile strength), excellent liquid permeability and air permeability, and is suitable for various applications in which such features are utilized. In particular, the thin paper of the present invention is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers and sanitary napkins, and excretory liquid has a relatively low viscosity such as urine. Not only in the case of, but also in the case of relatively high viscosity such as loose stool, the excretory fluid can be quickly permeated and absorbed into the absorbent core, which can contribute to the improvement of the leak-proof property of the absorbent article .
本発明の薄葉紙を用いた本発明の吸収性物品の一例として、吸収性コア及びこれを被覆するコアラップシートを含んで構成される吸収性物品であって、該コアラップシートが、前述した本発明の薄葉紙であるものが挙げられる。より具体的には、本発明の吸収性物品は、肌対向面を形成する液透過性の表面シート、非肌対向面を形成する液不透過性ないし撥水性の裏面シート、及びこれら両シート間に配置された液保持性の吸収体を具備し、該吸収体が、前記吸収性コア及び前記コアラップシート(本発明の薄葉紙)を含んで構成されている。前記コアラップシート(本発明の薄葉紙)は、少なくとも前記吸収性コアの肌対向面及び非肌対向面を被覆することが好ましい。尚、肌対向面は、吸収性物品又はその構成部材(例えば吸収性コア)における、吸収性物品の着用時に着用者の肌側に向けられる面であり、非肌対向面は、吸収性物品又はその構成部材における、吸収性物品の着用時に肌側とは反対側(着衣側)に向けられる面である。前記表面シート、前記裏面シート及び前記吸収性コアとしては、それぞれ、この種の吸収性物品において通常用いられているものを特に制限無く用いることができる。本発明の吸収性物品は、展開型あるいはパンツ型の使い捨ておむつ、生理用ナプキン、失禁パッド等に適用できる。 As an example of the absorbent article of the present invention using the thin paper of the present invention, an absorbent article comprising an absorbent core and a core wrap sheet covering the absorbent core, the core wrap sheet is the book described above. What is the thin paper of invention is mentioned. More specifically, the absorbent article of the present invention includes a liquid-permeable surface sheet that forms a skin-facing surface, a liquid-impermeable or water-repellent back sheet that forms a non-skin-facing surface, and a space between these two sheets. The absorbent body is configured to include the absorbent core and the core wrap sheet (thin paper of the present invention). The core wrap sheet (thin paper of the present invention) preferably covers at least the skin facing surface and the non-skin facing surface of the absorbent core. The skin facing surface is a surface of the absorbent article or a component thereof (for example, an absorbent core) that is directed to the skin side of the wearer when the absorbent article is worn, and the non-skin facing surface is the absorbent article or It is the surface of the component that is directed to the side opposite to the skin side (clothing side) when the absorbent article is worn. As the top sheet, the back sheet and the absorbent core, those usually used in this type of absorbent article can be used without any particular limitation. The absorbent article of the present invention can be applied to unfolded or pants-type disposable diapers, sanitary napkins, incontinence pads, and the like.
以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。特に断らない限り、「%」は「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.
〔実施例1〕
第1パルプ(相対的に繊維径の細いパルプ)として、繊維粗度0.15mg/mのNBKPを用い、第2パルプ(相対的に繊維径の太いパルプ)として、繊維粗度0.18mg/mのNBKPを用いた。第1パルプ及び第2パルプを、両パルプの含有質量比(第1パルプ/第2パルプ)が5/5となるように混合して繊維の集合体を得、該集合体を水中に均一に分散させて、繊維濃度2質量%のスラリーを調製し、このスラリーを叩解機にかけて、集合体のフリーネスを500mlに調整した。更に、このスラリーに、第1紙力増強剤としてCMCのナトリウム塩(乾燥紙力増強剤、第一工業製薬株式会社製、商品名「セロゲンWS−C」)を、スラリー中の全繊維の乾燥質量に対して0.2質量%投入し、次いで、第2紙力増強剤としてPAE(湿潤紙力増強剤、星光PMC株式会社製、商品名「WS4030」)を、スラリー中の全繊維の乾燥質量に対して0.78質量%投入し、各成分が均一になるように十分に撹拌した。こうして得られたスラリーを、ワイヤー目開き径90μm(166メッシュ)の金網抄紙ワイヤー上に散布し、金網抄紙ワイヤー上に紙層を形成させ、サクションボックスを用いて6ml/(cm2・sec)の速度で該紙層を脱水した後、該紙層をドライヤで乾燥させた。こうして得られた薄葉紙を実施例1のサンプルとした。
[Example 1]
NBKP having a fiber roughness of 0.15 mg / m is used as the first pulp (pulp having a relatively small fiber diameter), and the fiber roughness is 0.18 mg / in as the second pulp (a pulp having a relatively large fiber diameter). m NBKP was used. The first pulp and the second pulp are mixed so that the content ratio of the two pulps (first pulp / second pulp) is 5/5 to obtain an aggregate of fibers, and the aggregate is uniformly in water. The slurry was dispersed to prepare a slurry having a fiber concentration of 2% by mass, and this slurry was passed through a beating machine to adjust the freeness of the aggregate to 500 ml. Further, CMC sodium salt (dry paper strength enhancer, trade name “Serogen WS-C”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is used as the first paper strength enhancer, and all fibers in the slurry are dried. Next, 0.2% by mass is added to the mass, and then PAE (wet paper strength enhancer, manufactured by Seiko PMC Co., Ltd., trade name “WS4030”) is used as the second paper strength enhancer. 0.78% by mass with respect to the mass was added, and the components were sufficiently stirred so that each component was uniform. The slurry thus obtained was spread on a wire mesh paper wire having a wire opening diameter of 90 μm (166 mesh), a paper layer was formed on the wire mesh paper wire, and 6 ml / (cm 2 · sec) was formed using a suction box. After dewatering the paper layer at speed, the paper layer was dried with a dryer. The thin paper thus obtained was used as a sample of Example 1.
〔実施例2〜5及び比較例1〜5〕
パルプの種類(繊維粗度)やフリーネス、紙力増強剤の使用形態等を適宜変更した以外は実施例1と同様にして薄葉紙を製造し、それぞれ各実施例及び各比較例のサンプルとした。尚、実施例5では、前記の第1及び第2紙力増強剤に加えて、第3紙力増強剤としてアニオン性PAMのナトリウム塩(乾燥紙力増強剤、MTアクアポリマー製、商品名「アコフロックA95」、重量平均分子量1700万)を用いた。
[Examples 2 to 5 and Comparative Examples 1 to 5]
A thin paper was produced in the same manner as in Example 1 except that the type of pulp (fiber roughness), freeness, usage form of the paper strength enhancer, and the like were appropriately changed, and were used as samples of the respective examples and comparative examples. In Example 5, in addition to the first and second paper strength enhancers, an anionic PAM sodium salt (dry paper strength enhancer, manufactured by MT Aquapolymer, trade name “ Acofloc A95 ", weight average molecular weight 17 million) was used.
実施例及び比較例で使用したパルプ(NBKP)の詳細は次の通り(繊維粗度の小さい順に記載)。これらのパルプは、日本紙パルプ商事又は伊藤忠商事を通じて入手した。
・繊維粗度0.09mg/m(商品名「Cenibra」、Cenibra製)
・繊維粗度0.13mg/m(商品名「Northwood」、ConFor製)
・繊維粗度0.15mg/m(商品名「Cariboo」、Cariboo Pulp and Paper Company製)
・繊維粗度0.16mg/m(商品名「Botnia」、BOTNIA製)
・繊維粗度0.17mg/m(商品名「Alabama Pine」、Alabama Pine,Inc製)
・繊維粗度0.18mg/m(商品名「ARAUCO」、ARAUCO製)
・繊維粗度0.2mg/m(商品名「Crofton CK」、Unifibra製)
The details of the pulp (NBKP) used in Examples and Comparative Examples are as follows (described in ascending order of fiber roughness). These pulps were obtained through Nippon Paper Pulp Trading or Itochu Corporation.
・ Fiber roughness 0.09mg / m (Brand name "Cenibra", made by Cenibra)
-Fiber roughness 0.13mg / m (trade name "Northwood", manufactured by ConFor)
-Fiber roughness 0.15mg / m (Brand name "Cariboo", Cariboo Pulp and Paper Company)
・ Fiber roughness 0.16mg / m (trade name "Botnia", manufactured by BOTNIA)
-Fiber roughness 0.17mg / m (trade name "Alabama Pine", manufactured by Alabama Pine, Inc)
-Fiber roughness 0.18mg / m (trade name "ARAUCO", manufactured by ARAUCO)
・ Fiber roughness 0.2mg / m (trade name "Crofton CK", Unifibra)
〔評価〕
実施例及び比較例の各サンプル(薄葉紙)の各種評価結果は下記表1の通りである。乾燥引張強度及び液透過時間は、それぞれ、前記方法によって測定した。
[Evaluation]
Various evaluation results of each sample (thin paper) of Examples and Comparative Examples are as shown in Table 1 below. The dry tensile strength and the liquid permeation time were measured by the methods described above.
表1に示す結果から明らかなように、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし且つ該集合体のフリーネスが前記特定範囲にある(本発明の範囲内である)、各実施例の薄葉紙は、MDの乾燥引張強度が600cN/25mm以上、CDの乾燥引張強度が150cN/25mm以上で、且つ液透過時間が2秒以下であり、強度特性が良好で液透過性に優れた薄葉紙であることがわかる。特に、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤を用いた形態である、実施例5は、強度特性及び液透過性が他の実施例に比して概ね良好であり、斯かる3種の紙力増強剤の組み合わせの有効性が明らかである。 As is apparent from the results shown in Table 1, the aggregate is mainly composed of two types of hydrophilic cellulose fibers having different fiber roughness, and the freeness of the aggregate is in the specific range (within the scope of the present invention). The thin paper of each example has a dry tensile strength of MD of 600 cN / 25 mm or more, a dry tensile strength of CD of 150 cN / 25 mm or more, a liquid permeation time of 2 seconds or less, good strength characteristics, and liquid permeability. It can be seen that this is an excellent thin paper. In particular, Example 5 which is a form using two dry paper strength enhancers and one wet paper strength enhancer is generally better in strength properties and liquid permeability than the other examples. The effectiveness of the combination of the three kinds of paper strength enhancers is clear.
これに対し、各比較例の薄葉紙は、表1に示す結果から明らかなように、MDの乾燥引張強度が600cN/25mm未満(比較例1、2及び5)あるいは液透過時間が3秒超(比較例1、3及び4)であり、強度特性及び液透過性を高レベルで両立できていない。各比較例が強度特性及び液透過性の点で各実施例に劣る理由は、主として、比較例1は第1パルプと第2パルプとの繊維粗度の差が0.07mg/mを超えているため、比較例2、3及び5は1種の親水性セルロース繊維のみを用いているため、比較例4は前記集合体のフリーネスが前記特定範囲から外れているためと推察される。 On the other hand, as is clear from the results shown in Table 1, the thin paper of each comparative example has an MD dry tensile strength of less than 600 cN / 25 mm (Comparative Examples 1, 2 and 5) or a liquid permeation time of more than 3 seconds ( It is Comparative Examples 1, 3 and 4), and the strength characteristics and liquid permeability are not compatible at a high level. The reason why each comparative example is inferior to each example in terms of strength characteristics and liquid permeability is that, in Comparative Example 1, the difference in fiber roughness between the first pulp and the second pulp exceeds 0.07 mg / m. Therefore, since Comparative Examples 2, 3 and 5 use only one kind of hydrophilic cellulose fiber, it is surmised that Comparative Example 4 is because the freeness of the aggregate is out of the specific range.
91,92 円筒
93 クリップ
94 パッキン
S 測定対象のシート(薄葉紙)
W 生理食塩水
91, 92
W saline
Claims (6)
前記2種の親水性セルロース繊維として、繊維粗度が0.13〜0.16mg/mの第1パルプと繊維粗度が0.17〜0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01〜0.07mg/mであり、前記集合体のフリーネスが400〜550mlであり、
前記第1パルプ及び前記第2パルプの前記繊維粗度は、何れも、繊維粗度計FS−200(KAJAANI ELECTRONICS LTD.製)を用いて該繊維粗度計の操作手順に従って測定されるもので、多数の繊維の繊維粗度の平均値である薄葉紙。 A thin paper mainly composed of an assembly of two kinds of hydrophilic cellulose fibers having different fiber roughnesses, to which a paper strength enhancer is added,
The two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m. cage, the difference in degree of fiber roughness of the first pulp and a second pulp are contained is 0.01~0.07mg / m, Ri freeness is 400~550ml der of the aggregate,
The fiber roughness of the first pulp and the second pulp is measured according to the operation procedure of the fiber roughness meter using a fiber roughness meter FS-200 (manufactured by KAJAANI ELECTRONICS LTD.). A thin paper that is the average value of the fiber roughness of many fibers .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011258845A JP5074621B2 (en) | 2010-12-21 | 2011-11-28 | Tissue paper |
CN201180060711.2A CN103261520B (en) | 2010-12-21 | 2011-11-29 | Tissue paper and method for producing tissue paper |
MYPI2013701034A MY184185A (en) | 2010-12-21 | 2011-11-29 | Tissue paper and method for producing tissue paper |
RU2013133812/05A RU2568218C2 (en) | 2010-12-21 | 2011-11-29 | Napkin paper and methods of production of napkin paper |
PCT/JP2011/077524 WO2012086374A1 (en) | 2010-12-21 | 2011-11-29 | Tissue paper and method for producing tissue paper |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010284526 | 2010-12-21 | ||
JP2010284526 | 2010-12-21 | ||
JP2011258845A JP5074621B2 (en) | 2010-12-21 | 2011-11-28 | Tissue paper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012144833A JP2012144833A (en) | 2012-08-02 |
JP5074621B2 true JP5074621B2 (en) | 2012-11-14 |
Family
ID=46788679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011258845A Active JP5074621B2 (en) | 2010-12-21 | 2011-11-28 | Tissue paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5074621B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6229932B2 (en) * | 2013-09-27 | 2017-11-15 | 大王製紙株式会社 | Absorbent articles |
JP6779163B2 (en) * | 2017-03-28 | 2020-11-04 | 大王製紙株式会社 | How to make paper towels |
JP6926857B2 (en) * | 2017-09-07 | 2021-08-25 | 王子ホールディングス株式会社 | Encapsulation equipment and absorption equipment manufacturing equipment |
JP3225370U (en) * | 2019-12-20 | 2020-02-27 | 花王株式会社 | Thin paper for absorbent articles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3457417B2 (en) * | 1995-04-17 | 2003-10-20 | 花王株式会社 | Absorbent paper, method for producing the same, and absorbent article using the same |
JP2006097191A (en) * | 2004-09-30 | 2006-04-13 | Crecia Corp | Tissue paper having excellent touch |
JP2006132051A (en) * | 2004-11-09 | 2006-05-25 | Oji Nepia Kk | Tissue paper product |
-
2011
- 2011-11-28 JP JP2011258845A patent/JP5074621B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012144833A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6080246B2 (en) | Absorbent articles | |
RU2523979C2 (en) | Conductive webs and method of their manufacturing | |
WO2014073376A1 (en) | Absorbent article | |
ES2679397T3 (en) | Wet-shaped sheet material of a microfibrillated material composition | |
JP5973156B2 (en) | Absorbent articles | |
JP5833415B2 (en) | Absorbent articles | |
JP2001509552A (en) | Medical wrapping paper | |
RU2568218C2 (en) | Napkin paper and methods of production of napkin paper | |
JP5074621B2 (en) | Tissue paper | |
JP5851823B2 (en) | Absorber | |
JP4997349B1 (en) | Production method of tissue paper | |
WO2012086374A1 (en) | Tissue paper and method for producing tissue paper | |
JP5934497B2 (en) | Tissue paper | |
JP3201136U (en) | Absorbent articles | |
KR20170035940A (en) | Sanitary thin paper and absorbent article using same | |
JP5855912B2 (en) | Tissue paper | |
JP2019042403A (en) | Sheet for absorbent article and absorbent article | |
JP5806571B2 (en) | Tissue paper | |
JP3901575B2 (en) | Deodorant laminated sheet | |
JPH08232189A (en) | Absorbent paper and its production | |
JP5828510B2 (en) | Production method of tissue paper | |
JP2019043103A (en) | Laminate sheet, manufacturing method thereof, and absorptive article | |
JP5947693B2 (en) | Tissue paper | |
US1989885A (en) | Specialty paper | |
JP3225370U (en) | Thin paper for absorbent articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120823 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5074621 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |