JP5070713B2 - Object detection device - Google Patents
Object detection device Download PDFInfo
- Publication number
- JP5070713B2 JP5070713B2 JP2006051272A JP2006051272A JP5070713B2 JP 5070713 B2 JP5070713 B2 JP 5070713B2 JP 2006051272 A JP2006051272 A JP 2006051272A JP 2006051272 A JP2006051272 A JP 2006051272A JP 5070713 B2 JP5070713 B2 JP 5070713B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- threshold
- num
- high threshold
- low threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Automotive Seat Belt Assembly (AREA)
- Regulating Braking Force (AREA)
- Traffic Control Systems (AREA)
Description
本発明は、レーダによって物体を検出するレーダ検出手段を備える物体検出装置、特に、レーダ検出手段によるレーダ反射強度が第1の閾値よりも高い高閾値物体と、レーダ反射強度が前記第1の閾値よりも低く第2の閾値よりも高い低閾値物体と、を検出する物体検出装置に関するものである。 The present invention relates to an object detection apparatus including radar detection means for detecting an object by a radar, in particular, a high threshold object whose radar reflection intensity by the radar detection means is higher than a first threshold, and a radar reflection intensity that is the first threshold The present invention relates to an object detection device that detects a low threshold object that is lower than and lower than a second threshold.
近年、衝突軽減装置、車間距離制御装置、追従走行装置などの運転支援装置が開発されている。これら運転支援装置では、自車両の前方に存在する物体を検出することが重要となる。物体検出装置には、ミリ波レーダの反射波を解析して歩行者と車両とを識別する検出装置であって、高閾値で検出できたときには車両、低い閾値で検出できたときには歩行者であると識別するようにしたものがある(例えば、特許文献1参照)。すなわち、特許文献1のものは、主に車両を検出するために設定した通常閾値と、比較して反射レベルの低い物標を検出するために設定した低閾値を持つという技術を開示している。
In recent years, driving support devices such as collision mitigation devices, inter-vehicle distance control devices, and tracking travel devices have been developed. In these driving assistance devices, it is important to detect an object existing in front of the host vehicle. The object detection device is a detection device that distinguishes a pedestrian and a vehicle by analyzing a reflected wave of the millimeter wave radar, and is a vehicle when it can be detected with a high threshold, and is a pedestrian when it can be detected with a low threshold. (For example, refer to Patent Document 1). That is,
しかしながら、低閾値の追加に伴い、検出される物体数(物標数)が増大するが、その全てを検出結果として出力して処理対象とすることは計算効率を悪くしてしまう。そこで、検出結果として出力する最大物体数が所定値を超えないように規制することとなるが、従来のものにあっては、具体的に処理対象とする物体を選定する点に関しては考慮されていない。特に、通常閾値ミリ波物標と低閾値ミリ波物標との物標検出数は、常に変動するため、以下のような問題がある。例えば通常閾値に基づき検出された通常閾値ミリ波物標を単純に順に検出結果として出力してしまうと低閾値に基づき検出された低閾値ミリ波物標が全く出力されない場合があり、低閾値ミリ波物標を検出可能にした検知感度の拡大効果が半減してしまう。逆に、例えば低閾値に基づき検出された低閾値ミリ波物標を単純に順に検出結果として出力してしまうと通常閾値に基づき検出された通常閾値ミリ波物標が全く出力されない場合があり、通常閾値のみを用いていた従来からの通常閾値ミリ波物標の検知性能すら確保できないことがある。 However, with the addition of a low threshold, the number of detected objects (target number) increases, but if all of them are output as detection results and set as processing targets, the calculation efficiency deteriorates. Therefore, the maximum number of objects to be output as a detection result is regulated so as not to exceed a predetermined value. However, in the conventional one, the point of specifically selecting the object to be processed is considered. Absent. In particular, since the number of target detections of the normal threshold millimeter wave target and the low threshold millimeter wave target always varies, there are the following problems. For example, if normal threshold millimeter wave targets detected based on the normal threshold are simply output as detection results in order, the low threshold millimeter wave target detected based on the low threshold may not be output at all. The detection sensitivity expansion effect that makes it possible to detect wave targets is halved. Conversely, for example, if the low threshold millimeter wave target detected based on the low threshold is simply output as the detection result in order, the normal threshold millimeter wave target detected based on the normal threshold may not be output at all. Even the detection performance of a conventional normal threshold millimeter wave target that uses only the normal threshold may not be ensured.
本発明は、上記に鑑みてなされたものであって、レベルの異なる2つの閾値を用いて高閾値物体と低閾値物体とを検出する場合の検知感度の拡大と物体検出の信頼性の確保とが可能な物体検出装置を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to increase detection sensitivity and to ensure the reliability of object detection when detecting a high threshold object and a low threshold object using two thresholds having different levels. It is an object to provide an object detection device capable of performing
上述した課題を解決し、目的を達成するために、本発明に係る物体検出装置は、レーダによって物体を検出するレーダ検出手段を備え、前記レーダ検出手段によるレーダ反射強度が第1の閾値よりも高い高閾値物体と、レーダ反射強度が前記第1の閾値よりも低く第2の閾値よりも高い低閾値物体と、を検出する物体検出装置であって、検出された高閾値物体候補数と低閾値物体候補数との総和が検出結果として出力可能に設定された所定の最大物体数を超える場合に、前記高閾値物体候補からの選択が優先されるように前記高閾値物体候補および前記低閾値物体候補からの選択処理を割り振って高閾値物体および低閾値物体を検出結果として選択する選択手段を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, an object detection apparatus according to the present invention includes radar detection means for detecting an object by radar, and the radar reflection intensity by the radar detection means is lower than a first threshold value. An object detection apparatus for detecting a high high threshold object and a low threshold object having a radar reflection intensity lower than the first threshold and higher than a second threshold, wherein the number of detected high threshold objects and the low threshold object number are low. The high threshold object candidate and the low threshold value are given priority in selection from the high threshold object candidate when the sum of the threshold object candidate number exceeds a predetermined maximum number of objects set to be outputable as a detection result. Selection means for assigning a selection process from object candidates and selecting a high threshold object and a low threshold object as a detection result is provided.
また、本発明に係る物体検出装置は、上記発明において、前記選択手段は、前記所定の最大物体数から前記高閾値物体の選択数を引いた数を超えない範囲で前記低閾値物体候補から低閾値物体を選択することを特徴とする。 In the object detection apparatus according to the present invention as set forth in the invention described above, the selection unit is configured to reduce the low threshold object candidate from the low threshold object candidate within a range not exceeding the predetermined maximum object number minus the selection number of the high threshold object. A threshold object is selected.
また、本発明に係る物体検出装置は、上記発明において、前記選択手段は、前記所定の最大物体数よりも小さく設定された所定の優先選択数を超えない範囲で前記高閾値物体候補から高閾値物体を優先的に選択することを特徴とする。 The object detection device according to the present invention is the object detection device according to the above invention, wherein the selection means sets the high threshold object candidate to a high threshold within a range that does not exceed a predetermined priority selection number set smaller than the predetermined maximum object number. An object is preferentially selected.
本発明に係る物体検出装置によれば、検出された高閾値物体候補数と低閾値物体候補数との総和が検出結果として出力可能に設定された所定の最大物体数を超える場合に、高閾値物体候補からの選択が優先されるように高閾値物体候補および低閾値物体候補からの選択処理を割り振って高閾値物体および低閾値物体を検出結果として選択するようにしたので、検出結果には低閾値物体が必ず含まれることとなり第2の閾値を利用する検知感度の拡大効果を常に得ることができるとともに、高閾値物体を優先的に選択するので、第1の閾値を利用する物体検出の信頼性を確保することができるという効果を奏する。 According to the object detection device of the present invention, when the sum of the detected number of high threshold object candidates and the number of low threshold object candidates exceeds a predetermined maximum number of objects that can be output as a detection result, the high threshold value Since the selection process from the high threshold object candidate and the low threshold object candidate is allocated so that the selection from the object candidate is given priority, the high threshold object and the low threshold object are selected as the detection results. Since the threshold object is always included and the detection sensitivity expansion effect using the second threshold can always be obtained, and the high threshold object is preferentially selected, the reliability of object detection using the first threshold There is an effect that the sex can be secured.
以下、図面を参照して、本発明に係る物体検出装置の実施の形態を説明する。本実施の形態は、本発明に係る物体検出装置を、車両に搭載される衝突軽減装置への適用例を示す。本実施の形態に係る衝突軽減装置は、前方物体を検出し、前方物体との衝突を防止/軽減するために各種制御を行う。特に、本実施の形態に係る衝突軽減装置は、前方物体を検出するためにミリ波レーダを備え、ミリ波レーダによる検出結果に基づいて前方物体を検出する。 Hereinafter, an embodiment of an object detection device according to the present invention will be described with reference to the drawings. The present embodiment shows an application example of the object detection device according to the present invention to a collision mitigation device mounted on a vehicle. The collision mitigation apparatus according to the present embodiment detects a front object and performs various controls to prevent / reduce a collision with the front object. In particular, the collision mitigation apparatus according to the present embodiment includes a millimeter wave radar for detecting a forward object, and detects the forward object based on a detection result by the millimeter wave radar.
図1〜図7を参照して、本実施の形態に係る衝突軽減装置1について説明する。図1は、本実施の形態に係る衝突軽減装置1の構成図である。衝突軽減装置1は、前方物体を検出し、前方物体を検出した場合には衝突の可能性に応じてブレーキ制御、サスペンション制御、シートベルト制御および警報制御を行う。衝突軽減装置1は、前方物体を検出するために、ミリ波レーダによるレーダ反射強度の検出結果に基づき高閾値物標と低閾値物標とを設定する。
With reference to FIGS. 1-7, the
このような衝突軽減装置1は、レーダ検出手段に相当するミリ波レーダ2、ブレーキECU(Electronic Control Unit)4、サスペンション制御アクチュエータ5、シートベルトアクチュエータ6、ブザー7および衝突軽減ECU10などを備え、これらがCAN(Controller Area Network)(車内LANの標準インターフェース規格)通信で各種信号を送受信する。
Such a
まず、各物標について説明しておく。高閾値物体に相当する高閾値物標は、主に車両の検知を目的とした設定された第1の閾値を用いることにより、ミリ波レーダ2によるレーダ反射強度の検出結果が第1の閾値よりも高い物体である。低閾値物体に相当する低閾値物標は、車両に比較してレーダ反射強度が低い車両以外の物体の検知を目的として設定された第2の閾値(第1の閾値よりも低い)を用いることにより、ミリ波レーダ2によるレーダ反射強度が第1の閾値よりも低くて第2の閾値よりも高い物体である。
First, each target will be described. The high threshold target corresponding to the high threshold object uses a first threshold set mainly for the purpose of vehicle detection, so that the detection result of the radar reflection intensity by the
ミリ波レーダ2は、ミリ波を利用して物体を検出するためのレーダである。ミリ波レーダ2は、自車両の前側の中央に取り付けられる。ミリ波レーダ2は、ミリ波を水平面内で走査しながら自車両から前方に向けて送信し、反射してきたミリ波を受信する。そして、ミリ波レーダ2は、そのミリ波の送受信データをレーダ信号として衝突軽減ECU10に送信する。この送受信データには、送信したミリ波の情報、送信したミリ波に対する反射波を受信できたか否かの情報、反射波を受信できた場合にはそのレーダ反射強度の情報などが含まれる。
The
ブレーキECU4は、4輪の各ホイールシリンダの油圧を調節し、4輪のブレーキ力を制御するECUである。ブレーキECU4は、各輪の目標ブレーキ力に基づいて油圧制御信号をそれぞれ設定し、その各油圧信号を各ホイールシリンダの油圧を変化させるブレーキ制御アクチュエータに対してそれぞれ送信する。特に、ブレーキECU4は、衝突軽減ECU10から各輪に対する目標ブレーキ力を受信すると、その目標ブレーキ力信号に示される目標ブレーキ力に基づいて油圧制御信号をそれぞれ設定する。ちなみに、ブレーキ制御アクチュエータは、油圧制御信号を受信すると、油圧制御信号に示される目標油圧に基づいてホイールシリンダの油圧を変化させる。
The brake ECU 4 is an ECU that adjusts the hydraulic pressure of each wheel cylinder of the four wheels and controls the braking force of the four wheels. The
サスペンション制御アクチュエータ5は、4輪の各油圧式アクティブサスペンションの油圧を変化させるアクチュエータである。サスペンション制御アクチュエータ5は、衝突軽減ECU10から各輪に対する目標減衰力信号を受信すると、各目標減衰力信号に示される目標減衰力に基づいて目標油圧を設定し、目標油圧に基づいて油圧式アクティブサスペンションの油圧を変化させる。なお、図1には、サスペンション制御アクチュエータ5は1個しか図示してないが、4輪のサスペンション毎にそれぞれ設けられている。
The
シートベルトアクチュエータ6は、各シートベルトを引き込み、シートベルトによる拘束力を変化させるアクチュエータである。シートベルトアクチュエータ6は、衝突軽減ECU10から各シートベルトに対する目標引込量信号を受信すると、各目標引込量信号に示される目標引込量に応じてシートベルトを引き込む。なお、図1には、シートベルトアクチュエータ6は1個しか図示してないが、シートベルトにそれぞれ設けられている。また、ブザー7は、衝突軽減ECU10から警報信号を受信すると、ブザー音を出力する。
The
衝突軽減ECU10は、CPU、ROM、RAMなどからなる電子制御ユニットであり、CPUがROMに格納されている制御プログラムを実行することにより衝突軽減装置1を統括制御する。衝突軽減ECU10は、高閾値物標候補選択部11、低閾値物標候補選択部12、選択手段としての物標選択部13、衝突予測部14および車両制御部15などを備える。衝突軽減ECU10は、CPUのマスタクロックに基づく一定時間毎に、ミリ波レーダ2からのレーダ信号を取り入れ、一定時間毎に、レーダ情報に基づく高閾値物標候補選択部11および低閾値物標候補選択部12による高閾値物標候補および低閾値物標候補の選択処理、選択された高閾値物標候補および低閾値物標候補からの物標選択部13による高閾値物標および低閾値物標の選択出力処理を行う。これにより、前方物体を検出し、検出した前方物体が高閾値物体であるか低閾値物体であるかの種類に応じた衝突の可能性に応じてブレーキECU4、サスペンション制御アクチュエータ5、シートベルトアクチュエータ6、ブザー7に対する制御を行う。
The
高閾値物標候補選択部11および低閾値物標候補選択部12について説明する。衝突軽減ECU10は、ミリ波の出射から受信までの時間に基づいて前方の物体までの距離を演算する。ミリ波レーダ2による物体検出では、反射したミリ波を所定の閾値以上の受信強度で受信できた場合に物体を検出したことになる。ここで、高閾値物標候補選択部11は、主に車両の検知を目的として予め設定された第1の閾値を用いることにより、第1の閾値よりも高いレーダ反射強度で受信できた場合に高閾値物体を検出したことになり、レーダ反射強度を第1の閾値以上で受信する毎に1個の高閾値物標を検出する。そして、検出された高閾値物標の自車線確率や相対速度、距離情報からHth_Num個の高閾値物標候補を選択する。選択する高閾値物標候補の個数は、最大N_Hth個、例えば8個に制限されている。
The high threshold target
また、低閾値物標候補選択部12は、主に車両以外の物体の検知を目的として予め設定された第2の閾値を用いることにより、第1の閾値よりも低くて第2の閾値よりも高いレーダ反射強度で受信できた場合に低閾値物体を検出したことになり、レーダ反射強度を第1の閾値よりも低く第2の閾値よりも高いレベルで受信する毎に1個の低閾値物標を検出する。そして、検出された低閾値物標の自車線確率や相対速度、距離情報からLth_Num個の低閾値物標候補を選択する。選択する低閾値物標候補の個数は、最大N_Lth個、例えば8個に制限されている。
In addition, the low threshold target
次に、物標選択部13について説明する。物標選択部13は、高閾値物標候補選択部11および低閾値物標候補選択部12により選択された高閾値物標候補および低閾値物標候補から、最大物標数Nmaxを超えない範囲で、適正個数の高閾値物標および低閾値物標を検出結果として選択して衝突予測部14等に対して出力する。ここで、検出結果として出力可能な所定の最大物標数(最大物体数)Nmaxは予め設定されており、本実施の形態では、例えばNmax=8個に設定されている。また、物標選択部13は、高閾値物標候補および低閾値物標候補からの選択に際して、高閾値物標候補からの選択が優先されるように選択処理を行うものであり、優先的な選択を行うための所定の優先選択数Npriも予め設定されている。所定の優先選択数Npriは、0<Npri<最大物標数(最大物体数)Nmaxなる数であって、本実施の形態では、例えばNpri=4個に設定されている。なお、優先選択数Npriは、4個に限らないが、最大物標数Nmaxの1/2以上の数であることが望ましい。
Next, the
物標選択部13は、最大物標数Nmax、優先選択数Npri、高閾値物標候補数Hth_Num、低閾値物標候補数Lth_Numによる各種条件に応じて、高閾値物体候補からの選択が優先されるように高閾値物体候補および低閾値物体候補からの選択処理を割り振って高閾値物体および低閾値物体を検出結果として選択する。
The
各種条件に応じた物標選択部13による選択処理例を図2〜図6に示す模式図を参照して説明する。まず、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmax以下の場合には、(Hth_Num+Lth_Num)個の高閾値物標候補および低閾値物標候補を全て高閾値物標および低閾値物標として選択する。
An example of selection processing by the
例えば、図2は、自車の前方物標として、Hth_Num=3個の高閾値物標候補とLth_Num=2個の低閾値物標候補が検出された場合を示している。この場合、(Hth_Num+Lth_Num)≦Nmaxであるので、Hth_Num=3個の高閾値物標候補およびLth_Num=2個の低閾値物標候補を全て高閾値物標および低閾値物標として選択する。図中で括弧付き数字(1)〜(5)の付された物標は、選択された物標を示しており、その数字は選択順を示している。なお、各物標候補内での物標選択の優先順位は、それぞれの物標候補を選択した時の順序に従う。 For example, FIG. 2 shows a case where Hth_Num = 3 high threshold target candidates and Lth_Num = 2 low threshold target candidates are detected as the forward target of the host vehicle. In this case, since (Hth_Num + Lth_Num) ≦ Nmax, Hth_Num = 3 high threshold target candidates and Lth_Num = 2 low threshold target candidates are all selected as the high threshold target and the low threshold target. In the figure, targets with parenthesized numbers (1) to (5) indicate selected targets, and the numbers indicate the order of selection. Note that the priority of target selection within each target candidate follows the order in which each target candidate is selected.
また、図3は、自車の前方物標として、Hth_Num=5個の高閾値物標候補とLth_Num=2個の低閾値物標候補が検出された場合を示している。この場合、(Hth_Num+Lth_Num)≦Nmaxであるので、Hth_Num=5個の高閾値物標候補およびLth_Num=2個の低閾値物標候補を全て高閾値物標および低閾値物標として選択する。なお、図3に示す例では、高閾値物標候補数Hth_Num>優先選択数Npriであるので、物標選択部13は、まず、高閾値物標候補から物標選択優先順位に従い(1)〜(4)で示すように4個(=Npri個)の高閾値物標を優先的に選択した後、低閾値物標候補から物標選択優先順位に従い(5)(6)で示すように2個の低閾値物標を選択し、さらに余っている分につき、高閾値物標候補から(7)で示すように1個の高閾値物標を選択するように選択処理を割り振る。
FIG. 3 shows a case where Hth_Num = 5 high threshold target candidates and Lth_Num = 2 low threshold target candidates are detected as forward targets of the host vehicle. In this case, since (Hth_Num + Lth_Num) ≦ Nmax, Hth_Num = 5 high threshold target candidates and Lth_Num = 2 low threshold target candidates are all selected as the high threshold target and the low threshold target. In the example shown in FIG. 3, since the number of high threshold target candidates Hth_Num> the priority selection number Npri, the
次に、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmaxを超える場合について説明する。この条件において、まず、高閾値物標候補数Hth_Num≦優先選択数Npriの場合には、物標選択部13は、Hth_Num個の高閾値物標と、(Nmax−Npri)個の低閾値物標と、(Npri−Hth_Num)個の低閾値物標とを検出結果として選択する。
Next, a case where the sum of the high threshold target candidate number Hth_Num and the low threshold target candidate number Lth_Num exceeds the maximum target number Nmax will be described. In this condition, first, when the number of high threshold target candidates Hth_Num ≦ priority selection number Npri, the
図4は、自車の前方物標として、Hth_Num=3個の高閾値物標候補とLth_Num=7個の低閾値物標候補が検出された場合を示している。この場合、物標選択部13は、まず、高閾値物標候補から物標選択優先順位に従い(1)〜(3)で示すように3個(=Hth_Num個)の高閾値物標を優先的に選択した後、低閾値物標候補から物標選択優先順位に従い(4)〜(7)で示すように4個(=(Nmax−Npri)個)の低閾値物標を選択し、さらに余っている分につき、低閾値物標候補から(8)で示すように1個(=(Npri−Hth_Num)個)の高閾値物標を選択するように選択処理を割り振る。
FIG. 4 shows a case where Hth_Num = 3 high threshold target candidates and Lth_Num = 7 low threshold target candidates are detected as forward targets of the host vehicle. In this case, the
また、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmaxを超える場合であって、高閾値物標候補数Hth_Num>優先選択数Npriであり、かつ、低閾値物標候補数Lth_Num≧(Nmax−Npri)の場合には、物標選択部13は、Npri個の高閾値物標と、(Nmax−Npri)個の低閾値物標とを検出結果として選択する。
Further, when the sum of the high threshold target candidate number Hth_Num and the low threshold target candidate number Lth_Num exceeds the maximum target number Nmax, the high threshold target candidate number Hth_Num> the priority selection number Npri, and When the number of low threshold target candidates Lth_Num ≧ (Nmax−Npri), the
図5は、自車の前方物標として、Hth_Num=5個の高閾値物標候補とLth_Num=8個の低閾値物標候補が検出された場合を示している。この場合、物標選択部13は、まず、高閾値物標候補から物標選択優先順位に従い(1)〜(4)で示すように4個(=Npri個)の高閾値物標を優先的に選択した後、低閾値物標候補から物標選択優先順位に従い(5)〜(8)で示すように4個(=(Nmax−Npri)個)の低閾値物標を選択するように選択処理を割り振る。
FIG. 5 shows a case where Hth_Num = 5 high threshold target candidates and Lth_Num = 8 low threshold target candidates are detected as forward targets of the host vehicle. In this case, the
さらに、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmaxを超える場合であって、高閾値物標候補数Hth_Num>優先選択数Npriであり、かつ、低閾値物標候補数Lth_Num<(Nmax−Npri)の場合には、物標選択部13は、Npri個の高閾値物標と、Lth_Num個の低閾値物標と、(Nmax−Npri−Lth_Num)個の高閾値物標とを検出結果として選択する。
Further, when the sum of the high threshold target candidate number Hth_Num and the low threshold target candidate number Lth_Num exceeds the maximum target number Nmax, the high threshold target candidate number Hth_Num> the priority selection number Npri, and When the number of low threshold target candidates Lth_Num <(Nmax−Npri), the
図6は、自車の前方物標として、Hth_Num=8個の高閾値物標候補とLth_Num=2個の低閾値物標候補が検出された場合を示している。この場合、物標選択部13は、まず、高閾値物標候補から物標選択優先順位に従い(1)〜(4)で示すように4個(=Npri個)の高閾値物標を優先的に選択した後、低閾値物標候補から物標選択優先順位に従い(5)(6)で示すように2個(=Lth_Num個)の低閾値物標を選択し、さらに余っている分につき、高閾値物標候補から(7)(8)で示すように2個(=(Nmax−Npri−Lth_Num)個)の高閾値物標を選択するように選択処理を割り振る。
FIG. 6 shows a case where Hth_Num = 8 high threshold target candidates and Lth_Num = 2 low threshold target candidates are detected as forward targets of the host vehicle. In this case, the
次に、衝突予測部14について説明する。物標選択部13により高閾値物標と低閾値物標とを含む検出結果が出力されると、衝突予測部14は、それぞれの高閾値物標や低閾値物標に応じた速度を考慮して、これら高閾値物標や低閾値物標に設定されている物体までの距離に基づいて衝突する可能性の段階(例えば、可能性が高い、低い、無しの3段階)を設定する。
Next, the
また、車両制御部15は、衝突予測部14により衝突する可能性の段階が設定されると、衝突する可能性の段階に応じて、ブレーキECU4、サスペンション制御アクチュエータ5、シートベルトアクチュエータ6、ブザー7を制御する。
Further, when the possibility of a collision is set by the
次に、衝突軽減装置1における動作について説明する。特に、物標選択部13における物標選択処理の流れは図7に示すフローチャートを参照して説明する。図7は、本実施の形態に係る物標選択処理の流れを示す概略フローチャートである。
Next, the operation in the
ミリ波レーダ2では、前方にミリ波を走査しながら送信するとともにその反射波を受信し、その送受信データをレーダ信号として衝突軽減ECU10に送信する。衝突軽減ECU10は、ミリ波レーダ2からのレーダ信号を受信する。そして、高閾値物標候補選択部11は、一定時間毎に、レーダ信号によるレーダ反射強度、第1の閾値、自車線確率等に基づいて高閾値物標候補を選択する。同様に、低閾値物標候補選択部12は、一定時間毎に、レーダ信号によるレーダ反射強度、第1の閾値、第2の閾値、自車線確率等に基づいて低閾値物標候補を選択する。そして、物標選択部11は、一定時間毎に、以下の物標選択処理を行う。
The
まず、一定時間毎の処理タイミングであるか否かを判定し(ステップS1)、処理タイミングであれば(ステップS1:Yes)、高閾値物標候補選択部11、低閾値物標候補選択部12から高閾値物標候補および低閾値物標候補を取得する(ステップS2)。そして、取得した高閾値物標候補数Hth_Numおよび低閾値物標候補数Lth_Numを設定する(ステップS3)。なお、最大物標数Nmax、優先選択数Npriは予め設定されているものとする。
First, it is determined whether or not it is the processing timing for every fixed time (step S1), and if it is the processing timing (step S1: Yes), the high threshold target
そこで、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmax以下であるか否かを判定する(ステップS4)。総和が最大物標数Nmax以下であれば(ステップS4:Yes)、Hth_Num個の高閾値物標候補およびLth_Num個の低閾値物標候補を全て高閾値物標および低閾値物標として選択して衝突予測部14に出力する(ステップS5)。 Therefore, it is determined whether or not the sum of the high threshold target candidate number Hth_Num and the low threshold target candidate number Lth_Num is equal to or less than the maximum target number Nmax (step S4). If the sum is equal to or less than the maximum target number Nmax (step S4: Yes), Hth_Num high threshold target candidates and Lth_Num low threshold target candidates are all selected as high threshold targets and low threshold targets. It outputs to the collision prediction part 14 (step S5).
総和が最大物標数Nmax以下でなければ(ステップS4:No)、高閾値物標候補数Hth_Num≦優先選択数Npriであるか否かを判定する(ステップS6)。高閾値物標候補数Hth_Num≦優先選択数Npriの場合には(ステップS6:Yes)、物標選択部13は、まず、Hth_Num個の高閾値物標を優先的に選択し、次いで、(Nmax−Npri)個の低閾値物標を選択し、さらに、(Npri−Hth_Num)個の低閾値物標を選択して検出結果として衝突予測部14に出力する(ステップS7)。
If the sum is not equal to or less than the maximum target number Nmax (step S4: No), it is determined whether or not the high threshold target candidate number Hth_Num ≦ the priority selection number Npri (step S6). When the number of high threshold target candidates Hth_Num ≦ the priority selection number Npri (step S6: Yes), the
一方、高閾値物標候補数Hth_Num≦優先選択数Npriではない場合には(ステップS6:No)、低閾値物標候補数Lth_Num≧(Nmax−Npri)であるか否かを判定する(ステップS8)。低閾値物標候補数Lth_Num≧(Nmax−Npri)の場合には(ステップS8:Yes)、物標選択部13は、まず、Npri個の高閾値物標を優先的に選択し、次いで、(Nmax−Npri)個の低閾値物標を選択し、検出結果として衝突予測部14に出力する(ステップS9)。
On the other hand, when the high threshold target candidate number Hth_Num ≦ the priority selection number Npri is not satisfied (step S6: No), it is determined whether or not the low threshold target candidate number Lth_Num ≧ (Nmax−Npri) (step S8). ). When the number of low threshold target candidates Lth_Num ≧ (Nmax−Npri) (step S8: Yes), the
また、低閾値物標候補数Lth_Num≧(Nmax−Npri)ではない場合には(ステップS8:No)、低閾値物標候補数Lth_Num<(Nmax−Npri)であり、物標選択部13は、まず、Npri個の高閾値物標を優先的に選択し、次いで、Lth_Num個の低閾値物標を選択し、さらに、(Nmax−Npri−Lth_Num)個の高閾値物標を選択し、検出結果として衝突予測部14に出力する(ステップS10)。
Further, when the threshold value candidate number Lth_Num ≧ (Nmax−Npri) is not satisfied (step S8: No), the threshold value candidate number Lth_Num <(Nmax−Npri) is satisfied, and the
このような物標選択処理によって、今回処理対象となる高閾値物標および低閾値物標が選択された場合、衝突予測部14は、それぞれの高閾値物標や低閾値物標に応じた速度を考慮して、これら高閾値物標や低閾値物標に設定されている物体までの距離に基づいて衝突する可能性の段階を設定し、車両制御部15は、衝突する可能性の段階に応じて、ブレーキECU4、サスペンション制御アクチュエータ5、シートベルトアクチュエータ6、ブザー7を制御する。
When the high threshold target and the low threshold target to be processed this time are selected by such target selection processing, the
上述したように、本実施の形態に係る物体検出装置1によれば、検出された高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmax以下であれば、全ての候補を選択する一方、高閾値物標候補数Hth_Numと低閾値物標候補数Lth_Numとの総和が最大物標数Nmaxを超える場合には、高閾値物体候補からの選択が優先されるように高閾値物体候補および低閾値物体候補からの選択処理を割り振って高閾値物体および低閾値物体を検出結果として選択するようにしたので、検出結果には低閾値物体が必ず含まれることとなり第2の閾値を利用する検知感度の拡大効果を常に得ることができるとともに、高閾値物体を優先的に選択するので、第1の閾値を利用する物体検出の信頼性を確保することができる。
As described above, according to the
また、本実施の形態に係る物体検出装置1によれば、所定の最大物標数Nmaxから高閾値物体の選択数を引いた数を超えない範囲で低閾値物体候補から低閾値物体を選択するようにしたので、最大物標数Nmaxによる制限の下に適正数の低閾値物標を含ませて出力させることができる。
Further, according to the
また、本実施の形態に係る物体検出装置1によれば、所定の最大物標数Nmaxよりも小さく設定された所定の優先選択数Npriを超えない範囲で高閾値物体候補から高閾値物体を優先的に選択するようにしたので、適正数の高閾値物標を優先的に選択させることができる。
Also, according to the
本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
例えば、本実施の形態では、車両に搭載される衝突軽減装置への適用例で説明したが、車間距離制御装置、追従走行装置などの他の運転支援装置や周辺監視装置などの他の装置にも適用可能であり、物体検出装置単体としても活用可能である。また、搭載対象としては、車両以外に、ロボットなどに搭載するようにしてもよい。 For example, in the present embodiment, an example of application to a collision mitigation device mounted on a vehicle has been described. However, other driving support devices such as an inter-vehicle distance control device and a following traveling device, and other devices such as a surrounding monitoring device may be used. Can also be applied, and can be used as a single object detection device. Further, as a mounting target, it may be mounted on a robot or the like in addition to the vehicle.
2 ミリ波レーダ
13 物標選択部
2
Claims (1)
検出された高閾値物体候補数と低閾値物体候補数との総和が検出結果として出力可能に設定された所定の最大物体数を超える場合に、前記高閾値物体候補からの選択が優先されるように前記高閾値物体候補および前記低閾値物体候補からの選択処理を割り振って高閾値物体および低閾値物体を検出結果として選択する選択手段を備え、
前記選択手段は、
前記所定の最大物体数から前記高閾値物体の選択数を引いた数を超えない範囲で前記低閾値物体候補から低閾値物体を選択し、
前記所定の最大物体数よりも小さく設定された所定の優先選択数を超えない範囲で前記高閾値物体候補から高閾値物体を優先的に選択することを特徴とする物体検出装置。 Radar detection means for detecting an object by radar, a high-threshold object having a radar reflection intensity higher than the first threshold value by the radar detection means, and a radar reflection intensity lower than the first threshold value than the second threshold value; An object detection device for detecting an object having a high low threshold,
When the sum of the detected number of high threshold object candidates and the number of low threshold object candidates exceeds the predetermined maximum number of objects set to be output as a detection result, selection from the high threshold object candidates is given priority. Selecting means for allocating a selection process from the high threshold object candidate and the low threshold object candidate to select the high threshold object and the low threshold object as a detection result ,
The selection means includes
Selecting a low threshold object from the low threshold object candidates in a range not exceeding a number obtained by subtracting the selected number of the high threshold object from the predetermined maximum number of objects,
Object detection apparatus according to claim you to select a high threshold object from the high threshold object candidate within a range not exceeding a predetermined priority selection number set smaller than the predetermined maximum number of objects preferentially.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006051272A JP5070713B2 (en) | 2006-02-27 | 2006-02-27 | Object detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006051272A JP5070713B2 (en) | 2006-02-27 | 2006-02-27 | Object detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007232412A JP2007232412A (en) | 2007-09-13 |
JP5070713B2 true JP5070713B2 (en) | 2012-11-14 |
Family
ID=38553152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006051272A Expired - Fee Related JP5070713B2 (en) | 2006-02-27 | 2006-02-27 | Object detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5070713B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4211809B2 (en) | 2006-06-30 | 2009-01-21 | トヨタ自動車株式会社 | Object detection device |
JP6561584B2 (en) * | 2015-05-27 | 2019-08-21 | 株式会社デンソー | Vehicle control apparatus and vehicle control method |
JP6799805B2 (en) * | 2016-05-25 | 2020-12-16 | パナソニックIpマネジメント株式会社 | Object detectors, programs and recording media |
JP2018048862A (en) * | 2016-09-20 | 2018-03-29 | 株式会社東芝 | Radar signal processor, radar signal processing method, and radar signal processing program |
CN109901152B (en) * | 2019-03-25 | 2023-04-11 | 西安电子科技大学 | Asynchronous moving platform multi-base sensor system target detection tracking joint estimation method |
US20220258731A1 (en) * | 2021-02-17 | 2022-08-18 | Toyota Jidosha Kabushiki Kaisha | Collision avoidance assist apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3617139B2 (en) * | 1994-10-05 | 2005-02-02 | マツダ株式会社 | Vehicle obstacle detection device |
JP3339295B2 (en) * | 1996-03-26 | 2002-10-28 | 三菱電機株式会社 | Sensor group management device |
JP3843502B2 (en) * | 1996-09-30 | 2006-11-08 | マツダ株式会社 | Vehicle motion recognition device |
JP2000292533A (en) * | 1999-04-12 | 2000-10-20 | Nec Corp | Sensor allocating device |
JP3766340B2 (en) * | 2002-03-19 | 2006-04-12 | 株式会社東芝 | Pulse signal analyzing apparatus and pulse signal analyzing method |
JP4016826B2 (en) * | 2002-12-10 | 2007-12-05 | 株式会社デンソー | Object labeling method and apparatus, program |
JP2004239792A (en) * | 2003-02-07 | 2004-08-26 | Hitachi Ltd | On-vehicle radar system |
-
2006
- 2006-02-27 JP JP2006051272A patent/JP5070713B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007232412A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4304517B2 (en) | Object detection device | |
JP4595833B2 (en) | Object detection device | |
JP4967840B2 (en) | Collision mitigation device | |
JP5070713B2 (en) | Object detection device | |
US10967857B2 (en) | Driving support device and driving support method | |
US10745008B2 (en) | Driving support device and driving support method | |
WO2012140721A1 (en) | Vehicle control device and vehicle control method | |
US10332399B2 (en) | Object detection apparatus | |
JP4428277B2 (en) | Object detection device | |
KR102054926B1 (en) | System and method for detecting close cut-in vehicle based on free space signal | |
JP5012270B2 (en) | Object detection device | |
JP5078944B2 (en) | Vehicle travel control device | |
JP2013114421A (en) | Vehicle control device, and device, method, and program for identifying specific objects | |
JP5109264B2 (en) | Object detection device | |
JP2008008679A (en) | Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus | |
JP2011121491A (en) | Driving support device | |
JP2008152391A (en) | Vehicular proximity monitor | |
JP2018079848A (en) | Travel control device | |
JP6333437B1 (en) | Object recognition processing device, object recognition processing method, and vehicle control system | |
JP4961991B2 (en) | Vehicle periphery monitoring device | |
JP5994757B2 (en) | Vehicle control device | |
JP6394152B2 (en) | Vehicle control device | |
JP2017056795A (en) | Control device of vehicle | |
JP4407315B2 (en) | Target estimation device | |
JP2010267124A (en) | Environment prediction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120724 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120806 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5070713 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |