JP5069865B2 - High purity magnesium hydroxide powder and method for producing the same - Google Patents
High purity magnesium hydroxide powder and method for producing the same Download PDFInfo
- Publication number
- JP5069865B2 JP5069865B2 JP2006084629A JP2006084629A JP5069865B2 JP 5069865 B2 JP5069865 B2 JP 5069865B2 JP 2006084629 A JP2006084629 A JP 2006084629A JP 2006084629 A JP2006084629 A JP 2006084629A JP 5069865 B2 JP5069865 B2 JP 5069865B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- magnesium hydroxide
- purity
- less
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 title claims description 67
- 239000000347 magnesium hydroxide Substances 0.000 title claims description 67
- 229910001862 magnesium hydroxide Inorganic materials 0.000 title claims description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000843 powder Substances 0.000 title description 27
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 37
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 67
- 239000000395 magnesium oxide Substances 0.000 description 66
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 65
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- 239000012535 impurity Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000011777 magnesium Substances 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 150000002681 magnesium compounds Chemical class 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 8
- 229910001425 magnesium ion Inorganic materials 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010335 hydrothermal treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 241001131796 Botaurus stellaris Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012045 crude solution Substances 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000000887 hydrating effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- -1 hydroxide ions Chemical class 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101000842368 Homo sapiens Protein HIRA Proteins 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102100030473 Protein HIRA Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229910001607 magnesium mineral Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L magnesium sulphate Substances [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000012066 reaction slurry Substances 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Physical Vapour Deposition (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
本発明は、例えばプラズマディスプレイパネル(以下、「PDP」という場合がある)用保護膜を電子ビーム蒸着法、イオンプレーティング法などの真空蒸着法を使用して製造する際に、蒸着源として使用される酸化マグネシウム焼結体用の高純度水酸化マグネシウム粉末及びその製造方法に関する。 The present invention is used, for example, as a deposition source when a protective film for a plasma display panel (hereinafter also referred to as “PDP”) is manufactured using a vacuum deposition method such as an electron beam deposition method or an ion plating method. The present invention relates to a high-purity magnesium hydroxide powder for a magnesium oxide sintered body and a method for producing the same.
放電発光現象を利用したPDPは、大型化しやすい平面ディスプレイとして開発が進められている。透明電極をガラス誘電体で覆う構造である交流型(AC型)PDPでは、イオン衝撃のスパッタリングにより誘電体層表面が変質して放電電圧が上昇することを防止するために、一般的に、誘電体上に保護膜が形成されている。保護膜は、低い放電電圧を有し、耐スパッタリング性に優れていることが要求される。 Development of a PDP using the discharge light emission phenomenon is being promoted as a flat display that is easily increased in size. In the AC type (AC type) PDP having a structure in which the transparent electrode is covered with a glass dielectric, in order to prevent the surface of the dielectric layer from being altered due to ion bombardment sputtering and increasing the discharge voltage, generally, a dielectric is used. A protective film is formed on the body. The protective film is required to have a low discharge voltage and excellent sputtering resistance.
かかる要求を満足する保護膜として、従来から、酸化マグネシウム(以下、「MgO」という場合がある)膜が使用されている。MgO膜は耐スパッタリング性に優れ、かつ、二次電子の放出係数が大きい絶縁体であるため、放電開始電圧を下げることができ、PDPの長寿命化に寄与する。MgO保護膜は、現在、MgOをターゲット材とする電子ビーム蒸着法により誘電体上に形成することが一般的である。 Conventionally, a magnesium oxide (hereinafter sometimes referred to as “MgO”) film has been used as a protective film that satisfies this requirement. Since the MgO film is an insulator having excellent sputtering resistance and a large secondary electron emission coefficient, the discharge start voltage can be lowered, which contributes to extending the life of the PDP. At present, the MgO protective film is generally formed on a dielectric by an electron beam evaporation method using MgO as a target material.
従来、PDP用MgO蒸着材は、MgO単結晶粉砕品が主に使用されていた。しかしながら、PDPの高性能化に伴い、PDPメーカーの要求する技術レベルが高くなり、PDP蒸着材もさらなる改良が望まれ、このため、添加物元素量の調整が容易な高純度多結晶MgO粒子を焼結する焼結体へとシフトしつつある。 Conventionally, MgO single crystal pulverized products have been mainly used as MgO vapor deposition materials for PDP. However, as the performance of PDP increases, the technical level required by PDP manufacturers increases, and further improvement of the PDP vapor deposition material is desired. For this reason, high-purity polycrystalline MgO particles that allow easy adjustment of the amount of additive elements can be obtained. It is shifting to a sintered body to be sintered.
高純度多結晶MgO粒子を焼結する焼結体は、その原料としての水酸化マグネシウムの高純度化が基本である。水酸化マグネシウム粉末の製造方法は、古くから開発され、特許も多く出願されている。PDP用として水酸化マグネシウムの新しい用途が開拓されるとともに、それに好適な物性を有する水酸化マグネシウムを得るための製造方法についても、数々の改良がなされてきた。しかしながら、従来、水酸化マグネシウム由来の酸化マグネシウムは、ある程度高純度のものは存在していたが、個々の金属不純物のすべてが10ppm以下であるような高純度の水酸化マグネシウムは得られていなかった。このため、PDPの高性能化に伴い要求される特性を満たすMgO焼結体用原料としての水酸化マグネシウムは、純度的に必ずしも満足のいくものではなかった。したがって、PDPの高性能化として、特に二次電子放出係数を高め、消費電力の低減を図るには、二次電子放出係数に影響を及ぼす不純物元素を低減させる必要があり、特に、個々の金属不純物のすべてが10ppm以下であるような高純度の水酸化マグネシウムから酸化マグネシウムを製造した場合、不純物含有量を極端に低減することができるため、均一な保護膜を安定して製造することができることが期待できる。 A sintered body that sinters high-purity polycrystalline MgO particles is based on increasing the purity of magnesium hydroxide as a raw material. The manufacturing method of magnesium hydroxide powder has been developed for a long time, and many patents have been filed. New uses of magnesium hydroxide for PDP have been pioneered, and a number of improvements have been made to the production method for obtaining magnesium hydroxide having suitable physical properties. Conventionally, however, magnesium oxide derived from magnesium hydroxide has a certain degree of purity, but high purity magnesium hydroxide in which all individual metal impurities are 10 ppm or less has not been obtained. . For this reason, magnesium hydroxide as a raw material for an MgO sintered body that satisfies the characteristics required with the performance enhancement of PDP has not always been satisfactory in terms of purity. Therefore, in order to improve the performance of the PDP, in particular, to increase the secondary electron emission coefficient and reduce the power consumption, it is necessary to reduce the impurity elements that affect the secondary electron emission coefficient. When magnesium oxide is produced from high-purity magnesium hydroxide in which all impurities are 10 ppm or less, the impurity content can be extremely reduced, so that a uniform protective film can be produced stably. Can be expected.
マグネシウムイオンは、一般に、水酸化物、リン酸塩などとして分離される。水酸化物として分離する方法は古くから実用化され、処理剤の種類によって大別される。水酸化ナトリウムを処理剤とする方法では、マグネシウムイオンを含む溶液に水酸化ナトリウムを加えると、下記式のように、水酸化マグネシウムの沈殿を生ずる。 Magnesium ions are generally separated as hydroxides, phosphates and the like. The method of separating as a hydroxide has been put into practical use for a long time, and is roughly classified according to the type of treatment agent. In the method using sodium hydroxide as a treating agent, when sodium hydroxide is added to a solution containing magnesium ions, precipitation of magnesium hydroxide occurs as shown in the following formula.
Mg2++2OH-=Mg(OH)2 Mg 2+ + 2OH − = Mg (OH) 2
Mg(OH)2の溶解度積は、〔Mg〕〔OH〕2で表わされ、室温では約1.2×10-11mol/lである。マグネシウムイオンに当量の水酸化ナトリウム溶液を一度に加えると、瞬間的に反応して、沈降性が非常に悪く、ろ過が困難な微細沈殿を生ずるので、沈殿粒子の大きなものを得るためにこれまで多くの努力が払われてきた。 Solubility product Mg (OH) 2 is represented by [Mg] [OH] 2, at room temperature is approximately 1.2 × 10 -11 mol / l. When an equivalent amount of sodium hydroxide solution is added to magnesium ion at once, it reacts instantaneously, resulting in fine precipitation that is very poor in settling and difficult to filter. Many efforts have been made.
また、高純度のマグネシウム化合物を得るには、従来、塩田のニガリから得られる塩化マグネシウムに、炭酸ナトリウムを加えて炭酸マグネシウムを沈殿させる方法が採用されていた。しかしこの方法では、高価な炭酸ナトリウムを大量に消費するので、得られるマグネシウム化合物は高価なものとなる。しかも、日本においてはニガリが不足するので、この方法はますます高価になっていた。 In order to obtain a highly pure magnesium compound, conventionally, a method of precipitating magnesium carbonate by adding sodium carbonate to magnesium chloride obtained from bittern in Shioda has been adopted. However, since this method consumes a large amount of expensive sodium carbonate, the resulting magnesium compound is expensive. Moreover, in Japan, there is a shortage of bittern, so this method has become increasingly expensive.
そこで、海水に消石灰、又は焼成ドロマイトの水和により得られるドライムを加えて水酸化マグネシウムを製造し、これにより酸化マグネシウム、炭酸マグネシウムを製造する方法が工業的に実施されるようになった。このような方法では、マグネシウム化合物を安価に量産することができるが、原料から不純物が混入し、得られるマグネシウム化合物の純度は充分でない。高品位の石灰石や、ドロマイトを使用して製造した水酸化マグネシウムを焼成しても、得られる酸化マグネシウムの純度は96〜98.5質量%に過ぎない。 Therefore, magnesium hydroxide is produced by adding dry lime obtained by hydration of slaked lime or calcined dolomite to seawater, thereby producing a method for producing magnesium oxide and magnesium carbonate industrially. In such a method, the magnesium compound can be mass-produced at low cost, but impurities are mixed from the raw material, and the purity of the obtained magnesium compound is not sufficient. Even if high-grade limestone or magnesium hydroxide produced using dolomite is fired, the purity of the obtained magnesium oxide is only 96 to 98.5% by mass.
水酸化マグネシウムの純度を高める方法として、特許文献1(特開昭58−120514号公報)には、不純物として、Fe、Al及びCaを含有する塩化マグネシウム水溶液から高純度塩化マグネシウムを析出分離させ、得られた塩化マグネシウムを水に溶解した後、これにアンモニウムを添加して水酸化マグネシウムを沈殿分離する方法が開示され、MgOとして99.95質量%以上の高純度の水酸化マグネシウムが得られている。また特許文献2(特開2001−302232号公報)には、微細な一次粒子が独立した高純度単結晶からなるMgO微粒子を水和させることにより、MgO換算純度として、99.98質量%以上の高純度水酸化マグネシウムが開示されている。さらに、特許文献3(特開2002−255544号公報)には、特定の無機化合物の含有量が調整されたMgO焼成物を、水溶性マグネシウム塩の存在下、特定の条件下にて水和させることにより、水酸化マグネシウムの純度99.5質量%以上が得られることが開示されている。 As a method for increasing the purity of magnesium hydroxide, Patent Document 1 (Japanese Patent Laid-Open No. 58-120514) discloses that high-purity magnesium chloride is separated from a magnesium chloride aqueous solution containing Fe, Al, and Ca as impurities, Disclosed is a method in which the obtained magnesium chloride is dissolved in water, and then ammonium is added thereto to precipitate and separate magnesium hydroxide. As a result, high purity magnesium hydroxide of 99.95% by mass or more is obtained as MgO. Yes. Further, Patent Document 2 (Japanese Patent Laid-Open No. 2001-302232) discloses that MgO fine particles composed of high-purity single crystals in which fine primary particles are independent are hydrated, whereby the MgO equivalent purity is 99.98% by mass or more. High purity magnesium hydroxide is disclosed. Furthermore, in Patent Document 3 (Japanese Patent Laid-Open No. 2002-255544), an MgO fired product in which the content of a specific inorganic compound is adjusted is hydrated under specific conditions in the presence of a water-soluble magnesium salt. Thus, it is disclosed that a purity of magnesium hydroxide of 99.5% by mass or more can be obtained.
しかしながら、これらの従来技術に開示された高純度の水酸化マグネシウムは、その純度は99.99質量%未満であり、PDPの高性能化に伴い要求される高度な特性を満たす少なくともフォーナイン以上の高純度レベルには到達していない。 However, the high-purity magnesium hydroxide disclosed in these prior arts has a purity of less than 99.99% by mass, which is at least fourine or more that satisfies the advanced characteristics required as the performance of PDP increases. The high purity level has not been reached.
一方、高純度の酸化マグネシウムとして、例えば特許文献4(特開2004−84017号公報)には、AC型プラズマディスプレイパネルの誘電体層の保護膜を形成する際に用いる酸化マグネシウム蒸着材の製造原料となる酸化マグネシウム粉末として、MgO純度が99.98質量%より高く、比表面積が5〜10m2/gの範囲にあり、かつ一次粒子の形状が立方体であることを特徴とする酸化マグネシウム粉末が開示されている。 On the other hand, as high-purity magnesium oxide, for example, Patent Document 4 (Japanese Unexamined Patent Application Publication No. 2004-84017) discloses a raw material for producing a magnesium oxide vapor deposition material used when forming a protective film for a dielectric layer of an AC plasma display panel. Magnesium oxide powder characterized in that the MgO purity is higher than 99.98% by mass, the specific surface area is in the range of 5 to 10 m 2 / g, and the shape of the primary particles is cubic. It is disclosed.
しかしながら、この酸化マグネシウム粉末は、金属マグネシウムを直接酸化する気相酸化法により製造されたものである。気相法によって高純度の酸化マグネシウムを製造する方法は、製造設備が大掛かりになり、しかも巧妙な反応操作が必要である。このため、99.99質量%以上の純度を得ることは難しく、製造コストも高くなると考えられ、いまだ満足するものが得られていないのが実情である。 However, this magnesium oxide powder is produced by a gas phase oxidation method in which metallic magnesium is directly oxidized. The method for producing high-purity magnesium oxide by the vapor phase method requires a large amount of production equipment and requires a sophisticated reaction operation. For this reason, it is difficult to obtain a purity of 99.99% by mass or more, and the production cost is considered to be high, and the actual situation is that a satisfactory product has not yet been obtained.
一方、特許文献5(特開昭61−209911号公報)には、高純度酸化マグネシウムの製造方法が記載されている。ここには、マグネシウムを含有する粗原料を鉱酸で溶解してマグネシウムの鉱酸塩の粗製液を得て、この粗製液にアルカリを添加して粗原料中の不純物を沈殿除去してマグネシウムの鉱酸塩を得て、この精製液にpHが10以上になるまでアルカリを添加し、アルカリ添加液を120℃以上の温度において水熱処理して、マグネシウム水酸化物と硫酸化物の複塩から成るマグネシウム化合物を生成し、マグネシウム化合物を水洗、脱水し、該脱水品を1000℃以上の温度にて過熱することからなることを特徴とする酸化マグネシウムの製造方法が記載されている。 On the other hand, Patent Document 5 (Japanese Patent Laid-Open No. 61-209911) describes a method for producing high-purity magnesium oxide. Here, a crude raw material containing magnesium is dissolved with a mineral acid to obtain a crude solution of a magnesium mineral salt, and an alkali is added to the crude solution to precipitate and remove impurities in the crude raw material. A mineral salt is obtained, and an alkali is added to the purified solution until the pH becomes 10 or more, and the alkali-added solution is hydrothermally treated at a temperature of 120 ° C. or more, and consists of a double salt of magnesium hydroxide and sulfate. A method for producing magnesium oxide is described, which comprises producing a magnesium compound, washing the magnesium compound with water, dehydrating, and heating the dehydrated product at a temperature of 1000 ° C. or higher.
従来から、酸化マグネシウムは、主として、マグネシウム化合物の沈殿物を乾燥、焼成することにより製造されている。しかし、当時は、ファインセラミックス用途にある程度純度を高めたもので十分であったが、今日のように新たにPDP用途が開発され、さらに高純度化されたMgOが要求されるようになり、いまだ改良の要求がある。 Conventionally, magnesium oxide is mainly produced by drying and baking a precipitate of a magnesium compound. However, at that time, it was sufficient to have a certain degree of purity for fine ceramics. However, as today, PDP applications have been newly developed, and more highly purified MgO has been required. There is a need for improvement.
このように、現在、市販品の水酸化マグネシウムでは不純物含有量が多く、PDP用の酸化マグネシウム焼結体用の原料としては不十分である。また、高純度材であっても、凝集粒が大きく、このため、BET比表面積が小さいものでは、焼結後のMgOは相対密度98%以上を得ることが難しいという問題もある。 Thus, currently commercially available magnesium hydroxide has a large impurity content and is insufficient as a raw material for a magnesium oxide sintered body for PDP. Moreover, even if it is a high purity material, there is a problem that it is difficult to obtain a sintered MgO having a relative density of 98% or more if the aggregated grains are large and the BET specific surface area is small.
本発明は、電子ビーム蒸着法等の方法を使用して基板上にMgO膜を成膜するためのターゲット材として使用するMgO焼結体の製造に使用する原料として、市販品の水酸化マグネシウムでは不純物含有量が多く不十分であるという課題を解消する水酸化マグネシウム粉末及びその製造方法を提供することを目的とする。 The present invention is a commercially available magnesium hydroxide as a raw material used for manufacturing a MgO sintered body used as a target material for forming an MgO film on a substrate using a method such as an electron beam evaporation method. An object of the present invention is to provide a magnesium hydroxide powder that solves the problem that the impurity content is large and insufficient and a method for producing the same.
酸化マグネシウム中の一般的な不純物としては、Si、Al、Ca、Feがあげられ、これらは他の不純物元素に比べ比較的多く含まれている。これらの不純物量については、使用するマグネシウム化合物の原料ソースに依存するため、原料ソースの選定は重要である。そこで本発明者らは、上記課題の解決を図るべく、例えば、MgO焼結体の出発原料を合成するにあたり、様々なマグネシウムイオン含有物を用いて水酸化マグネシウムの合成実験を行い、本発明を完成するに至った。 Common impurities in magnesium oxide include Si, Al, Ca, and Fe, which are contained in a relatively large amount compared to other impurity elements. Since these impurity amounts depend on the raw material source of the magnesium compound to be used, selection of the raw material source is important. In order to solve the above problems, for example, the present inventors conducted a synthesis experiment of magnesium hydroxide using various magnesium ion-containing materials when synthesizing a starting material for an MgO sintered body, and It came to be completed.
すなわち、本発明は、Si、Al、Ca、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下であり、純度が99.99質量%以上である水酸化マグネシウム粉末である。本発明の水酸化マグネシウム粉末においては、50%粒子径が1.0×10-6m以下、BET比表面積が8〜30m2/gであることが好ましい。本発明はさらに、この水酸化マグネシウム粉末を焼成して得られる酸化マグネシウム粉末、及びこの酸化マグネシウム粉末を使用したPDP保護膜用蒸着材である。 That is, the present invention is a magnesium hydroxide powder in which each of Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zr, B, and Zn is 10 ppm or less and the purity is 99.99 mass% or more. is there. The magnesium hydroxide powder of the present invention preferably has a 50% particle size of 1.0 × 10 −6 m or less and a BET specific surface area of 8 to 30 m 2 / g. The present invention further provides a magnesium oxide powder obtained by firing this magnesium hydroxide powder, and a vapor deposition material for a PDP protective film using this magnesium oxide powder.
本発明では特に、使用する水酸化マグネシウムの原材料をすべて精製し、その後アルカリ添加による沈殿操作に加えて水熱処理を実施することにより、マグネシウム塩に含有されている不純物をきわめて効果的に分離することにより、PDP用蒸着材の原料を目的とする高純度の水酸化マグネシウムを提供することができる。 In the present invention, in particular, the impurities contained in the magnesium salt are separated very effectively by purifying all the raw materials of magnesium hydroxide to be used, and then performing a hydrothermal treatment in addition to the precipitation operation by adding an alkali. Thus, it is possible to provide high-purity magnesium hydroxide intended for a raw material for a PDP vapor deposition material.
したがって、本発明は、Si、Al、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下であり、かつ、Caが30ppm以下である塩化マグネシウムと電気伝導率を0.1μS/cm以下に精製した純水とを混合した水溶液に、アルカリ分が20〜50質量%のアルカリ水溶液を反応させて、水酸化マグネシウムを生成し、次いで、生成した水酸化マグネシウムを、オートクレーブ中で水熱処理した後、ろ過、水洗、乾燥を行う、高純度の水酸化マグネシウムの製造方法である。 Therefore, according to the present invention, Si, Al, Fe, V, Cr, Mn, Ni, Zr, B, and Zn are each 10 ppm or less, and Ca is 30 ppm or less. An aqueous solution obtained by mixing pure water purified to 1 μS / cm or less is reacted with an alkaline aqueous solution having an alkali content of 20 to 50% by mass to produce magnesium hydroxide, and then the produced magnesium hydroxide is added to the autoclave. This is a method for producing high-purity magnesium hydroxide, which is subjected to hydrothermal treatment with, followed by filtration, washing with water and drying.
本発明の水酸化マグネシウム粉末は、焼成することにより、Si、Al、Ca、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下であり、純度が99.99質量%以上の酸化マグネシウム粉末を提供することができる。特に、従来の湿式法では得られなかった比較的簡単な溶液反応工程の組合せにより、高純度の酸化マグネシウムを製造することができるので、工業上の効果が大きい。 By firing, the magnesium hydroxide powder of the present invention is 10 ppm or less in each of Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zr, B, and Zn, and the purity is 99.99 mass%. The above magnesium oxide powder can be provided. In particular, since a high-purity magnesium oxide can be produced by a combination of relatively simple solution reaction steps that cannot be obtained by a conventional wet method, the industrial effect is great.
本発明は、Si、Al、Ca、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下であり、純度が99.99質量%以上である水酸化マグネシウム粉末を得るために、使用原料を予め精製した後、水酸化マグネシウムを沈殿分離させる。 The present invention provides a magnesium hydroxide powder in which each of Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zr, B, and Zn is 10 ppm or less and the purity is 99.99 mass% or more. In addition, after purifying the raw materials used in advance, magnesium hydroxide is precipitated and separated.
水酸化マグネシウム粉末の原料は、水溶液中でマグネシウムイオンになるマグネシウム化合物として、塩化マグネシウムを使用するのが好ましく、無水塩化マグネシウムがより好ましい。塩化マグネシウムの純度としては、Si、Al、Fe、V、Cr、Mn、Ni、Zr、B、Znは、それぞれ、10ppm以下で、かつ、Caが30ppm以下であることが必要である。また、塩化マグネシウムに限られず、マグネシウム化合物で水に溶解後、Si、Al、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが、10ppm以下で、かつ、Caが30ppm以下となる化合物であれば使用することができる。なお、気相法で金属マグネシウムを酸化して製造した酸化マグネシウムを水和する方法や海水由来の塩化マグネシウムを水和する方法では、原料中に含有される不純物の精製除去が難しく、一度高純度のマグネシウムクリンカーを製造したのち再水和し精製しなければ、スリーナインレベルの高純度水酸化マグネシウムを製造できない。 The raw material of the magnesium hydroxide powder is preferably magnesium chloride, more preferably anhydrous magnesium chloride, as a magnesium compound that becomes magnesium ions in an aqueous solution. As for the purity of magnesium chloride, Si, Al, Fe, V, Cr, Mn, Ni, Zr, B, and Zn each need to be 10 ppm or less and Ca must be 30 ppm or less. Further, not limited to magnesium chloride, after being dissolved in water with a magnesium compound, each of Si, Al, Fe, V, Cr, Mn, Ni, Zr, B, and Zn is 10 ppm or less, and Ca is 30 ppm or less. Any compound can be used. In addition, in the method of hydrating magnesium oxide produced by oxidizing metal magnesium by a vapor phase method or the method of hydrating magnesium chloride derived from seawater, it is difficult to purify and remove impurities contained in the raw material, and once high purity After manufacturing the magnesium clinker, it is necessary to rehydrate and purify it to produce high-purity magnesium hydroxide of three nine levels.
上記の塩化マグネシウム原料に水を混合して塩化マグネシウム水溶液とする。水の添加量は、無水塩化マグネシウムに対して2〜5倍であることが好ましい。このとき水は、イオン交換した超純水を使用する。特に、水中にはSi量が有意に含有されるおそれがあるため、イオン交換樹脂に通して電気伝導率を0.1μS/cm以下まで精製した超純水を使用する必要がある。 Water is mixed with the above magnesium chloride raw material to obtain a magnesium chloride aqueous solution. The amount of water added is preferably 2 to 5 times that of anhydrous magnesium chloride. At this time, ion-exchanged ultrapure water is used as the water. In particular, since the amount of Si may be significantly contained in water, it is necessary to use ultrapure water that has been refined to an electric conductivity of 0.1 μS / cm or less through an ion exchange resin.
次に、塩化マグネシウム水溶液中に含まれるSi等の不純物を精製除去するために、水酸化ナトリウムを用いて本反応を行う前に、マグネシウムイオンに対して、反応率20モル%になるようにアルカリ源を投入して、精製(一次)反応により、高純度の精製MgCl2溶液を得る。上記の反応により、塩化マグネシウム水溶液中に含まれる全マグネシウムイオンの20モル%と水酸化物として沈殿する不純物が、沈殿し除去されて、残った精製塩化マグネシウム溶液の純度が上がる。なお、水酸化ナトリウムは、不純物のコンタミが少ない点で好ましいが、アンモニア水を使用することもできる。また水酸化ナトリウムは、アルカリ分が20〜50質量%のアルカリを溶解した水溶液を使用するのが好ましい。加えて、NaOH自体に混入されているSi等の不純物を精製除去するために、水酸化ナトリウムを本反応に使用する前に、水酸化物イオンに対して、反応率10モル%となるように塩化マグネシウム溶液を投入して予備反応を行い、純度を高める。上記の反応により、水酸化ナトリウム水溶液中の水酸化物イオンの10モル%がマグネシウムイオンと反応し水酸化マグネシウムとして沈殿するとともに、不純物が沈殿し除去され、残った水酸化ナトリウム水溶液の不純物量が低減する。 Next, in order to purify and remove impurities such as Si contained in the magnesium chloride aqueous solution, before performing this reaction using sodium hydroxide, an alkali is used so that the reaction rate is 20 mol% with respect to magnesium ions. The source is charged and a purified (primary) reaction yields a highly purified MgCl 2 solution. By the above reaction, 20 mol% of the total magnesium ions contained in the magnesium chloride aqueous solution and impurities that precipitate as hydroxide are precipitated and removed, and the purity of the remaining purified magnesium chloride solution is increased. Sodium hydroxide is preferable in terms of low impurity contamination, but ammonia water can also be used. Sodium hydroxide is preferably an aqueous solution in which an alkali having an alkali content of 20 to 50% by mass is dissolved. In addition, in order to purify and remove impurities such as Si mixed in NaOH itself, before using sodium hydroxide in this reaction, the reaction rate is 10 mol% with respect to hydroxide ions. A magnesium chloride solution is added to perform a preliminary reaction to increase the purity. By the above reaction, 10 mol% of hydroxide ions in the aqueous sodium hydroxide solution react with magnesium ions and precipitate as magnesium hydroxide, and impurities are precipitated and removed. To reduce.
次に、得られた精製MgCl2溶液を、NaOH等のアルカリ源と二次反応させることにより水酸化マグネシウムスラリーを得る。次いで、得られた水酸化マグネシウムスラリーを、粒子が、50%粒子径1μm以下、比表面積8〜30m2/gの結晶になるように、オートクレーブにて水熱処理(温度:100〜150℃、時間:0〜60分)を施すことで、本発明の水酸化マグネシウムが得られる。オートクレーブ処理することにより、結晶粒を整えることができ、また結晶中に取り込まれている不純物を溶液中に滲出させることができると考えられ、結果として不純物量を減少することができる。 Next, the obtained purified MgCl 2 solution is subjected to a secondary reaction with an alkali source such as NaOH to obtain a magnesium hydroxide slurry. Subsequently, the obtained magnesium hydroxide slurry was hydrothermally treated in an autoclave (temperature: 100 to 150 ° C., time) so that the particles became crystals having a 50% particle diameter of 1 μm or less and a specific surface area of 8 to 30 m 2 / g. : 0 to 60 minutes), the magnesium hydroxide of the present invention is obtained. By performing autoclaving, it is considered that crystal grains can be prepared and impurities incorporated in the crystals can be leached into the solution, and as a result, the amount of impurities can be reduced.
このような製造方法で得た本発明の水酸化マグネシウムは、高純度でかつ分散性に優れるため、焼成時に異常粒成長が発生せず、その後の成型、本焼成品では酸化マグネシウムの理論密度に対する相対密度が98%以上の焼結体を得ることができる。また、このような製造方法で得た本発明の水酸化マグネシウムは、高純度でかつ分散性に優れるため、難燃剤用途等にも使用することができる。 The magnesium hydroxide of the present invention obtained by such a production method has high purity and excellent dispersibility, so that abnormal grain growth does not occur during firing, and the subsequent molding and the fired product with respect to the theoretical density of magnesium oxide. A sintered body having a relative density of 98% or more can be obtained. Moreover, since the magnesium hydroxide of the present invention obtained by such a production method has high purity and excellent dispersibility, it can also be used for flame retardant applications and the like.
これに対して、通常の液相反応で得られる水酸化マグネシウムは、微粒子が凝集した状態であり、ろ過性・水洗効率が悪いため、生産性の低下や不純物含有量が高いといった問題がある。また凝集粒が大きく、BET比表面積が小さい水酸化マグネシウムは、焼成後には異常粒成長した粗大粒子酸化マグネシウムを形成しやすく、成型、本焼成した酸化マグネシウム焼結体の相対密度は90%以下になることもある。本発明はこれらの異常粒成長の問題を解消した。 On the other hand, magnesium hydroxide obtained by a normal liquid phase reaction is in a state in which fine particles are aggregated and has poor filterability and water washing efficiency, and thus has a problem of reduced productivity and high impurity content. Magnesium hydroxide with large agglomerated grains and a small BET specific surface area can easily form coarse-grained magnesium oxide with abnormal grain growth after firing, and the relative density of the sintered and sintered magnesium oxide sintered body is 90% or less. Sometimes. The present invention has solved these abnormal grain growth problems.
以下、実施例を用いて本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
〔実施例1〕
塩化マグネシウム(MgCl2)(不純物各元素の分析値:Si、Al、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下で、かつ、Caが30ppm以下)1.0kgをイオン交換水(電気伝導率が0.1μS/cm以下)に溶解し、溶液を3リットル(MgCl2=約3.5mol/l)にした。MgCl2の反応率が20モル%になるよう、MgCl2溶液とNaOH溶液(アルカリ分20〜50質量%)をそれぞれ定量ポンプ及びローラーポンプでリアクターに送液して、連続反応を実施した。反応スラリーは、リアクターより滞留時間30分間でオーバーフローさせ、凝集剤を生成水酸化マグネシウムに対し500ppm添加して、沈降させ、上澄液(精製塩化マグネシウム溶液)を回収した。
[Example 1]
Magnesium chloride (MgCl 2 ) (analytical values of impurity elements: Si, Al, Fe, V, Cr, Mn, Ni, Zr, B, Zn are each 10 ppm or less and Ca is 30 ppm or less) 1.0 kg Was dissolved in ion-exchanged water (electric conductivity is 0.1 μS / cm or less), and the solution was made up to 3 liters (MgCl 2 = about 3.5 mol / l). As the MgCl 2 in the reaction rate of 20 mol%, MgCl 2 solution and NaOH solution (alkalinity 20-50% by weight) each fed to the reactor at a metering pump and the roller pump, was continuously reacted. The reaction slurry was allowed to overflow from the reactor in a residence time of 30 minutes, and a flocculant was added to the produced magnesium hydroxide in an amount of 500 ppm to cause precipitation, and the supernatant (purified magnesium chloride solution) was recovered.
回収した精製塩化マグネシウム溶液を攪拌しながら、NaOH溶液(アルカリ分20〜50質量%)を、MgCl2の反応率が90モル%となるように投入し30分間攪拌した。作製した水酸化マグネシウムスラリーをオートクレーブで130℃、1時間の水熱処理を実施した。水熱処理した水酸化マグネシウムスラリーをろ過、水洗、乾燥して、水酸化マグネシウム粉末を得た。この水酸化マグネシウムのSEM(走査電子顕微鏡)で撮影した画像を図1〜3に、化学成分、物性値を測定した結果を表1に示す。 While stirring the recovered purified magnesium chloride solution, an NaOH solution (alkaline content: 20 to 50% by mass) was added so that the reaction rate of MgCl 2 was 90 mol% and stirred for 30 minutes. The produced magnesium hydroxide slurry was subjected to hydrothermal treatment at 130 ° C. for 1 hour in an autoclave. The hydrothermally treated magnesium hydroxide slurry was filtered, washed with water and dried to obtain magnesium hydroxide powder. Images taken by SEM (scanning electron microscope) of this magnesium hydroxide are shown in FIGS. 1 to 3, and the results of measuring chemical components and physical properties are shown in Table 1.
さらに得られた、水酸化マグネシウムを、電気炉で1300℃、60分間焼成し、酸化マグネシウムを得た。この酸化マグネシウムの化学成分、物性値を測定した結果を表2に示す。 Further, the obtained magnesium hydroxide was baked in an electric furnace at 1300 ° C. for 60 minutes to obtain magnesium oxide. Table 2 shows the measurement results of chemical components and physical properties of this magnesium oxide.
得られた酸化マグネシウム粉末を湿式のポットミルでアルコール溶媒中24時間、鉄芯入りナイロンボール(約φ15mm)を入れて粉砕した。自然乾燥後、熱風乾燥機で120℃で強熱乾燥し、次いでパワーニーダー(商品名:PK型、(株)ダルトン製)を用いて回転数250rpmで5分間、バインダー(商品名:メトローズ90SH−400、信越化学(株)製)を6質量%添加しながら造粒した。 The obtained magnesium oxide powder was pulverized with a wet pot mill in an alcohol solvent for 24 hours with a nylon ball with an iron core (about φ15 mm). After natural drying, it is ignited with a hot air dryer at 120 ° C., and then a power kneader (trade name: PK type, manufactured by Dalton Co., Ltd.) is used for 5 minutes at a rotational speed of 250 rpm, and a binder (trade name: Metrolose 90SH- 400, manufactured by Shin-Etsu Chemical Co., Ltd.) was granulated while adding 6% by mass.
次いで、造粒粉末をプレス機(商品名:SR100−1P−9H、菅原精機(株)製)で、成形圧力200MPaで成形した後、ガス炉を用いて、大気中1650℃で4個間焼成し、縦3mm、横5mm、厚さ2mmの蒸着材ペレットを得た。このペレットの相対密度、二次電子放出係数の測定を行った。結果を表3に示す。 Next, the granulated powder was molded with a press machine (trade name: SR100-1P-9H, manufactured by Ebara Seiki Co., Ltd.) at a molding pressure of 200 MPa, and then fired for four at 1650 ° C. in the atmosphere using a gas furnace. Thus, a vapor deposition material pellet having a length of 3 mm, a width of 5 mm, and a thickness of 2 mm was obtained. The relative density and secondary electron emission coefficient of the pellet were measured. The results are shown in Table 3.
(物性測定)
なお、水酸化マグネシウム(Mg(OH)2)粉末及び酸化マグネシウム(MgO)粉末の物性値は、以下の方法で測定した。
(1)Mg(OH)2及びMgO中の不純物量の測定
測定した微量不純物としては、Si、Al、Ca、Fe、V、Cr、Mn、Ni、Zr、B及びZnの合計11の金属元素であり、それらの含有量は、ICP発光分光分析装置(商品名:SPS−1700VR、セイコーインスツルメンツ(株)製)を使用し、試料を酸溶解したのち測定した。Mg(OH)2及びMgOの純度は、100.00質量%から測定した上記11種の不純物量の合計値を差し引いた値として算出した。
(2)平均粒径
粉末の平均粒径は、レーザ回折式粒度測定装置(商品名:HIRA、日機装(株)製)により50%粒子径を測定した。
(3)比表面積
粉末の比表面積は、BET法により測定した。
(4)相対密度
蒸着材の嵩密度の測定は、アルキメデス法により求めた。焼結体の相対密度は、MgO単結晶の密度を3.58とし、計算により求めた。
(5)PDP保護膜の特性評価
得られたMgO蒸着材をターゲット材とし、ステンレス基板に電子ビーム蒸着装置を使用して100nmの厚さに成膜することにより、PDP用保護膜測定試料を作製した。得られた測定試料を二次電子測定装置のターゲット位置に設定した後、高真空中で活性化処理を行った後、二次電子放出係数を測定した。なお二次電子放出係数測定時の試料温度は300℃、イオン加速電圧は300Vとした。
(Physical property measurement)
The physical property values of magnesium hydroxide (Mg (OH) 2 ) powder and magnesium oxide (MgO) powder were measured by the following methods.
(1) Measurement of the amount of impurities in Mg (OH) 2 and MgO The measured trace impurities include Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zr, B, and Zn in total 11 metal elements These contents were measured after the sample was acid-dissolved using an ICP emission spectroscopic analyzer (trade name: SPS-1700VR, manufactured by Seiko Instruments Inc.). The purity of Mg (OH) 2 and MgO was calculated as a value obtained by subtracting the total value of the 11 kinds of impurities measured from 100.00% by mass.
(2) Average particle diameter The average particle diameter of the powder was determined by measuring the 50% particle diameter with a laser diffraction particle size measuring device (trade name: HIRA, manufactured by Nikkiso Co., Ltd.).
(3) Specific surface area The specific surface area of the powder was measured by the BET method.
(4) Relative density The bulk density of the vapor deposition material was determined by the Archimedes method. The relative density of the sintered body was calculated by setting the density of the MgO single crystal to 3.58.
(5) Characteristic evaluation of PDP protective film Using the obtained MgO vapor deposition material as a target material, a protective film measurement sample for PDP is produced by forming a film on a stainless steel substrate to a thickness of 100 nm using an electron beam vapor deposition apparatus. did. The obtained measurement sample was set at the target position of the secondary electron measuring device, and then the activation treatment was performed in a high vacuum, and then the secondary electron emission coefficient was measured. The sample temperature at the time of measuring the secondary electron emission coefficient was 300 ° C., and the ion acceleration voltage was 300V.
〔比較例1〕
市販の酸化マグネシウム(気相法高純度酸化マグネシウム微粉末)1.0kgを、60℃に保持した温水30リットルに投入し、4時間攪拌して酸化マグネシウム微粉末を水和させて、水酸化マグネシウムスラリーを得た。次いで、得られた水酸化マグネシウムスラリーをろ過、脱水、乾燥して水酸化マグネシウム固形物とした後、粉砕機で粉砕して、水酸化マグネシウム粉末を製造した。この水酸化マグネシウムの化学成分、物性値を測定した結果を表1に示す。
[Comparative Example 1]
Commercially available magnesium oxide (gas phase method high-purity magnesium oxide fine powder) 1.0 kg was added to 30 liters of warm water maintained at 60 ° C. and stirred for 4 hours to hydrate the magnesium oxide fine powder, and magnesium hydroxide A slurry was obtained. Next, the obtained magnesium hydroxide slurry was filtered, dehydrated and dried to obtain a magnesium hydroxide solid, and then pulverized with a pulverizer to produce a magnesium hydroxide powder. The results of measuring the chemical components and physical properties of this magnesium hydroxide are shown in Table 1.
次いで、得られた水酸化マグネシウムを、電気炉で1300℃、60分間焼成し、酸化マグネシウムを得た。この酸化マグネシウムの化学成分、物性値を測定した結果を表2に示す。以下実施例1と同様にして、縦3mm、横5mm、厚さ2mmの蒸着材ペレットを得た。このペレットの相対密度、二次電子放出係数の測定を行った。結果を表3に示す。 Next, the obtained magnesium hydroxide was baked in an electric furnace at 1300 ° C. for 60 minutes to obtain magnesium oxide. Table 2 shows the measurement results of chemical components and physical properties of this magnesium oxide. Thereafter, in the same manner as in Example 1, vapor deposition material pellets having a length of 3 mm, a width of 5 mm, and a thickness of 2 mm were obtained. The relative density and secondary electron emission coefficient of the pellet were measured. The results are shown in Table 3.
〔比較例2〕
市販のマグネシアクリンカー(海水系高純度マグネシウムクリンカー)を粉砕し、得られた酸化マグネシウム粒状物1.0kgを、0.25mol/lの酢酸マグネシウム水溶液10リットル中に投入し、攪拌下でオートクレーブ中にて130℃、2時間反応させた後、生成物を水洗、ろ過、乾燥して、水酸化マグネシウム粉末を製造した。この水酸化マグネシウムの化学成分、物性値を測定した結果を表1に示す。
[Comparative Example 2]
Commercially available magnesia clinker (seawater-based high-purity magnesium clinker) was pulverized, and 1.0 kg of the obtained magnesium oxide granules were put into 10 liters of a 0.25 mol / l magnesium acetate aqueous solution and stirred into an autoclave. After reacting at 130 ° C. for 2 hours, the product was washed with water, filtered and dried to produce magnesium hydroxide powder. The results of measuring the chemical components and physical properties of this magnesium hydroxide are shown in Table 1.
次いで、得られた水酸化マグネシウムを、電気炉で1300℃、60分間焼成し、酸化マグネシウムを得た。この酸化マグネシウムの化学成分、物性値を測定した結果を表2に示す。以下実施例1と同様にして、縦3mm、横5mm、厚さ2mmの蒸着材ペレットを得た。このペレットの相対密度、二次電子放出係数の測定を行った。結果を表3に示す。 Next, the obtained magnesium hydroxide was baked in an electric furnace at 1300 ° C. for 60 minutes to obtain magnesium oxide. Table 2 shows the measurement results of chemical components and physical properties of this magnesium oxide. Thereafter, in the same manner as in Example 1, vapor deposition material pellets having a length of 3 mm, a width of 5 mm, and a thickness of 2 mm were obtained. The relative density and secondary electron emission coefficient of the pellet were measured. The results are shown in Table 3.
〔比較例3〕
市販の酸化マグネシウム(気相法高純度酸化マグネシウム微粉末)を使用した。この酸化マグネシウムのSEMで撮影した画像を図4に、化学成分、物性値を測定した結果を表2に示す。以下実施例1と同様にして、縦3mm、横5mm、厚さ2mmの蒸着材ペレットを得た。このペレットの相対密度、二次電子放出係数の測定を行った。結果を表3に示す。
[Comparative Example 3]
Commercially available magnesium oxide (gas phase method high purity magnesium oxide fine powder) was used. FIG. 4 shows an image taken with an SEM of magnesium oxide, and Table 2 shows the results of measurement of chemical components and physical properties. Thereafter, in the same manner as in Example 1, vapor deposition material pellets having a length of 3 mm, a width of 5 mm, and a thickness of 2 mm were obtained. The relative density and secondary electron emission coefficient of the pellet were measured. The results are shown in Table 3.
Claims (1)
Si、Al、Fe、V、Cr、Mn、Ni、Zr、B、Znのそれぞれが10ppm以下で、かつ、Caが30ppm以下である塩化マグネシウムと電気伝導率を0.1μS/cm以下に精製した純水とを混合した水溶液に、アルカリ分が20〜50質量%のアルカリ水溶液を反応させて、水酸化マグネシウムを生成し、次いで、生成した水酸化マグネシウムを、オートクレーブ中で水熱処理した後、ろ過、水洗、乾燥を行うことを特徴とする、高純度の水酸化マグネシウムの製造方法。
Each of Si, Al, Ca, Fe, V, Cr, Mn, Ni, Zr, B, and Zn is 10 ppm or less, the purity is 99.99 mass% or more, and the 50% particle size is 1.0 × 10. -6 m or less and a BET specific surface area of 8 to 30 m 2 / g, a method for producing high purity magnesium hydroxide,
Magnesium chloride in which each of Si, Al, Fe, V, Cr, Mn, Ni, Zr, B, and Zn is 10 ppm or less and Ca is 30 ppm or less and the electrical conductivity were refined to 0.1 μS / cm or less. An aqueous solution mixed with pure water is reacted with an alkaline aqueous solution having an alkali content of 20 to 50% by mass to produce magnesium hydroxide, and then the produced magnesium hydroxide is hydrothermally treated in an autoclave and filtered. , Washing with water, and drying, a method for producing high-purity magnesium hydroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006084629A JP5069865B2 (en) | 2006-03-27 | 2006-03-27 | High purity magnesium hydroxide powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006084629A JP5069865B2 (en) | 2006-03-27 | 2006-03-27 | High purity magnesium hydroxide powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007254250A JP2007254250A (en) | 2007-10-04 |
JP5069865B2 true JP5069865B2 (en) | 2012-11-07 |
Family
ID=38628869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006084629A Active JP5069865B2 (en) | 2006-03-27 | 2006-03-27 | High purity magnesium hydroxide powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5069865B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5016993B2 (en) * | 2007-06-27 | 2012-09-05 | タテホ化学工業株式会社 | Magnesium oxide particle aggregate and method for producing the same |
JP5128882B2 (en) * | 2007-09-05 | 2013-01-23 | 関東電化工業株式会社 | Magnesium hydroxide fine particles and method for producing the same |
JP5039624B2 (en) * | 2008-03-31 | 2012-10-03 | タテホ化学工業株式会社 | High purity magnesium hydroxide powder |
CN102123947B (en) * | 2008-06-18 | 2014-02-26 | 丸尾钙株式会社 | Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof |
JP5409461B2 (en) * | 2010-03-19 | 2014-02-05 | 富士フイルム株式会社 | Method for producing metal hydroxide fine particles |
CN102398911B (en) * | 2010-09-13 | 2013-06-19 | 北京有色金属研究总院 | Preparation method for high purity magnesium oxide powder |
JP2012201528A (en) * | 2011-03-24 | 2012-10-22 | Tateho Chemical Industries Co Ltd | Method for producing magnesium oxide sintered body |
CN102198954A (en) * | 2011-04-22 | 2011-09-28 | 辽宁中大超导材料有限公司 | Impurity control method for sintered body magnesium oxide target |
KR101300229B1 (en) * | 2011-06-17 | 2013-08-26 | 일솜 주식회사 | Method for preparing magnesium hydroxide from bitterns |
JP5944714B2 (en) * | 2012-03-27 | 2016-07-05 | タテホ化学工業株式会社 | Magnesium hydroxide particles and resin composition containing the same |
JP5420720B2 (en) * | 2012-06-15 | 2014-02-19 | タテホ化学工業株式会社 | High purity magnesium oxide powder |
JP6059577B2 (en) * | 2012-11-13 | 2017-01-11 | タテホ化学工業株式会社 | Magnesium hydroxide particles and resin composition containing the same |
CN103011208B (en) * | 2012-12-21 | 2014-06-04 | 浙江理工大学 | Preparation method of magnesium oxide nano particle with yolk-shaped core-shell structure |
JP6951022B2 (en) * | 2016-01-07 | 2021-10-20 | 協和化学工業株式会社 | Magnesium hydroxide particles with slow growth rate and low aspect ratio and their manufacturing method |
JP6779435B2 (en) | 2017-02-27 | 2020-11-04 | 株式会社白石中央研究所 | Method for manufacturing calcium carbonate porous sintered body |
CN110325488B (en) | 2017-02-27 | 2022-09-06 | 株式会社白石中央研究所 | High-purity calcium carbonate sintered body and method for producing same, and high-purity calcium carbonate porous sintered body and method for producing same |
CN112408440B (en) * | 2020-12-07 | 2023-02-17 | 上海实业振泰化工有限公司 | Process for preparing superfine coral velvet-shaped environment-friendly magnesium hydroxide by batch hydrothermal method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01320220A (en) * | 1988-06-23 | 1989-12-26 | Nippon Chem Ind Co Ltd | Magnesium hydroxide and its production |
JPH03170325A (en) * | 1989-11-27 | 1991-07-23 | Mitsubishi Materials Corp | Production of magnesium hydroxide |
JPH1112722A (en) * | 1997-06-30 | 1999-01-19 | Tateho Chem Ind Co Ltd | Magnesium oxide for vacuum-deposition |
JP2000233924A (en) * | 1998-12-14 | 2000-08-29 | Kyowa Chem Ind Co Ltd | Magnesium hydroxide particle and its production |
CN1319860C (en) * | 1998-12-14 | 2007-06-06 | 协和化学工业株式会社 | Magnesium hydroxide particles, flame retardant resin composition and formed products thereof |
JP3965270B2 (en) * | 2000-04-19 | 2007-08-29 | 宇部マテリアルズ株式会社 | Highly dispersible high purity magnesium hydroxide powder, method for producing the same, and magnesium hydroxide slurry |
JP3965279B2 (en) * | 2001-02-23 | 2007-08-29 | 宇部マテリアルズ株式会社 | Method for producing high purity highly oriented magnesium hydroxide powder |
JP4255256B2 (en) * | 2002-08-27 | 2009-04-15 | 宇部マテリアルズ株式会社 | Magnesium oxide powder for raw material of magnesium oxide vapor deposition material |
JP4611138B2 (en) * | 2003-10-21 | 2011-01-12 | 宇部マテリアルズ株式会社 | Method for producing magnesium oxide vapor deposition material |
-
2006
- 2006-03-27 JP JP2006084629A patent/JP5069865B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007254250A (en) | 2007-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5069865B2 (en) | High purity magnesium hydroxide powder and method for producing the same | |
JP5016993B2 (en) | Magnesium oxide particle aggregate and method for producing the same | |
US9061919B2 (en) | Magnesium oxide powder having excellent dispersibility and method for producing the same | |
TWI529133B (en) | Method for producing magnesium hydroxide microparticle and magnesium oxide microparticle | |
KR101939265B1 (en) | Method of manufacturing boehmite | |
KR100482912B1 (en) | Indium oxide-tin oxide powder, preparation method thereof and preparation method of indium oxide-tin oxide sintered body | |
JPWO2007074562A1 (en) | Low soda fine aluminum hydroxide and method for producing the same | |
WO2012127771A1 (en) | Process for producing sintered magnesium oxide material | |
JP5115039B2 (en) | Low soda fine aluminum hydroxide and method for producing the same | |
JPH0137331B2 (en) | ||
CN113388725B (en) | Method for producing annealing separator, and grain-oriented electromagnetic steel sheet | |
KR102092183B1 (en) | Preparation method of high purity alumina | |
JP4926835B2 (en) | Magnesium oxide powder | |
KR101305903B1 (en) | Tin oxide powder and manufacturing method of producing the same | |
CN113784923A (en) | Spinel powder | |
JP2011063494A (en) | Cylindrical indium tin oxide powder and method for producing the same | |
JP4638766B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
KR101052344B1 (en) | Method for producing high purity magnesium oxide powder from magnesium chloride | |
JP2007015898A (en) | Method for manufacturing zirconium oxide powder and zirconium oxide powder | |
JP2004284952A (en) | Indium oxide-tin oxide powder | |
JP4638767B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP7585191B2 (en) | Spinel Powder | |
JP2021187691A (en) | Method for producing aluminum oxide powder and method for producing transparent ceramics | |
KR20240080373A (en) | Method For Producing High Purity Magnesium Oxide From Dolomite | |
KR20090003857A (en) | Tin oxide powder and manufacturing method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120820 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150824 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5069865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |