[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5068354B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5068354B2
JP5068354B2 JP2010197305A JP2010197305A JP5068354B2 JP 5068354 B2 JP5068354 B2 JP 5068354B2 JP 2010197305 A JP2010197305 A JP 2010197305A JP 2010197305 A JP2010197305 A JP 2010197305A JP 5068354 B2 JP5068354 B2 JP 5068354B2
Authority
JP
Japan
Prior art keywords
temperature
frost
evaporator
evaporation temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010197305A
Other languages
Japanese (ja)
Other versions
JP2012052758A (en
Inventor
守 濱田
肇 藤本
祐介 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010197305A priority Critical patent/JP5068354B2/en
Publication of JP2012052758A publication Critical patent/JP2012052758A/en
Application granted granted Critical
Publication of JP5068354B2 publication Critical patent/JP5068354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は、冷蔵冷凍倉庫に設置される冷凍装置等の蒸発器において、冷媒温度を制御することにより、蒸発器フィン表面に生成される霜の密度を高密度化し、結果、霜の高さ方向の成長を抑制し、冷却運転時間を延長可能とするものである。   The present invention increases the density of frost generated on the surface of the evaporator fin by controlling the refrigerant temperature in an evaporator such as a refrigeration apparatus installed in a refrigerated warehouse, resulting in the frost height direction. It is possible to suppress the growth of water and extend the cooling operation time.

冷凍装置は、圧縮機、凝縮器、膨張手段、蒸発器とで構成され、その冷凍サイクル回路内に冷媒が充填されている。圧縮機で圧縮された冷媒は、高温高圧のガス冷媒となり、凝縮器に送り込まれる。凝縮器に流れ込んだ冷媒は、空気に熱を放出することにより液化する。液化した冷媒は、膨張手段で減圧されて気液二相状態となり、蒸発器にて周囲空気から熱を吸収することでガス化し、圧縮機へ戻る。   The refrigeration apparatus includes a compressor, a condenser, expansion means, and an evaporator, and a refrigerant is filled in the refrigeration cycle circuit. The refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the condenser. The refrigerant that has flowed into the condenser is liquefied by releasing heat into the air. The liquefied refrigerant is decompressed by the expansion means to be in a gas-liquid two-phase state, and is gasified by absorbing heat from ambient air in the evaporator and returns to the compressor.

冷蔵冷凍倉庫においては、倉庫内を10℃より低い温度帯に制御しなければならない。そのときの冷媒の蒸発温度は0℃より低くなるため、蒸発器フィン表面に霜が発生する。霜が発生すると、風量低下及び熱抵抗の増大により、冷却能力が低下するため、定期的に霜を取り除く除霜運転が必要となってくる。   In a refrigerated warehouse, the inside of the warehouse must be controlled to a temperature range lower than 10 ° C. Since the refrigerant evaporating temperature at that time is lower than 0 ° C., frost is generated on the evaporator fin surface. When frost is generated, the cooling capacity is reduced due to a decrease in the air volume and an increase in thermal resistance. Therefore, a defrosting operation that periodically removes frost is required.

除霜運転は、冷却運転を停止し、蒸発器及びドレンパンに設置したヒータで加熱することで行われるため、庫内温度上昇や、消費電力増大といった問題が発生していた。   Since the defrosting operation is performed by stopping the cooling operation and heating with a heater installed in the evaporator and the drain pan, problems such as an increase in internal temperature and an increase in power consumption have occurred.

そこで、蒸発器の吸込空気温度と湿度を計測し、計測した外気温度と湿度から定まる各空気状態に対応する着霜しない蒸発温度の下限値をあらかじめ設定して、実際の蒸発温度をあらかじめ設定した着霜しない蒸発温度以上に制御して着霜を抑制するものがある。(例えば、特許文献1参照)。   Therefore, the intake air temperature and humidity of the evaporator were measured, the lower limit value of the evaporation temperature corresponding to each air condition determined from the measured outside air temperature and humidity was set in advance, and the actual evaporation temperature was set in advance. Some control frost formation by controlling the temperature to be equal to or higher than the evaporation temperature at which no frost formation occurs. (For example, refer to Patent Document 1).

また、運転開始時などの庫内温度が設定温度よりも高い状態から庫内温度まで冷やし込むプルダウン運転時に、蒸発温度を高くして着霜領域拡大を抑制し、プルダウン運転時における着霜領域の拡大に起因する冷却能力の低下を抑えるものがある。(例えば、特許文献2参照)。   Also, during pull-down operation where the internal temperature is higher than the set temperature, such as at the start of operation, the evaporating temperature is increased to suppress the expansion of the frost area and the frost area during pull-down operation is suppressed. There is a thing which suppresses the fall of the cooling capacity resulting from expansion. (For example, refer to Patent Document 2).

特公昭61−27665号公報Japanese Patent Publication No. 61-27665 特開2007−298218号公報JP 2007-298218 A

しかしながら、吸込空気温度と湿度から決定される着霜しない蒸発温度以上で運転するものに関しては、冷却能力不足が発生し、庫内温度が設定温度に到達せず入庫品の品質が低下する問題がある。庫内温度を設定温度に保つためには、ある程度蒸発温度を下げなければならず、したがって蒸発器の着霜を避けることは出来ない。   However, for those that operate above the evaporating temperature that does not form frost, which is determined from the intake air temperature and humidity, there is a problem that the cooling capacity is insufficient, the internal temperature does not reach the set temperature, and the quality of the goods received decreases. is there. In order to keep the inside temperature at the set temperature, the evaporation temperature must be lowered to some extent, and therefore frosting of the evaporator cannot be avoided.

また、プルダウン時にのみ着目して、プルダウン時に庫内温度が設定温度域に到達するまで、蒸発温度が所定値以上となるように制御して着霜領域の拡大を抑制するものに関しては、プルダウン後の着霜領域拡大が問題となってくる。実際プルダウン時よりも、プルダウン後の運転時間のほうが長いため、プルダウン後の着霜領域拡大を抑制することも重要である。   Also, focusing on only when pulling down, control the evaporation temperature to be equal to or higher than a predetermined value until the internal temperature reaches the set temperature range when pulling down. The expansion of the frost formation area becomes a problem. Since the operation time after the pull-down is longer than the actual pull-down, it is also important to suppress the frosting area expansion after the pull-down.

本発明は、上記の課題を考慮してなされたもので、蒸発器の着霜状態を検知し、その検知した着霜状態に基づいて、プルダウンから除霜運転に至るまで、冷却不足にならない範囲で蒸発温度を上げた運転を行うことにより、蒸発器のフィン表面に生成される霜の密度を高くし、それにより霜の成長を抑制して、冷却運転時間を延長できるようにするものである。   The present invention has been made in consideration of the above-mentioned problems, and detects the frosting state of the evaporator, and based on the detected frosting state, the range in which the cooling does not become insufficient from the pull-down to the defrosting operation. By increasing the evaporation temperature, the density of frost generated on the fin surface of the evaporator is increased, thereby suppressing frost growth and extending the cooling operation time. .

本発明の冷凍装置は、圧縮機、凝縮器、膨張手段、蒸発器を備えた冷媒回路を有する冷凍装置において、蒸発器の蒸発温度を検出する蒸発温度検出手段、蒸発器の着霜量を検知する着霜検知手段、圧縮機の回転数を調整する圧縮機回転数調整手段を備え、着霜検知手段の検知結果に応じて冷却能力不足を生じない蒸発温度を決定し、蒸発温度検出手段の検出値が決定された冷却能力不足を生じない蒸発温度になるように、圧縮機回転数調整手段で圧縮機の回転数を調整する。   The refrigerating apparatus of the present invention is a refrigerating apparatus having a refrigerant circuit including a compressor, a condenser, an expansion means, and an evaporator. Evaporation temperature detecting means for detecting the evaporation temperature of the evaporator; Frosting detection means for adjusting the rotation speed of the compressor, and determining the evaporation temperature that does not cause a lack of cooling capacity according to the detection result of the frosting detection means. The rotation speed of the compressor is adjusted by the compressor rotation speed adjusting means so that the evaporating temperature at which the detected value is determined does not cause the cooling capacity shortage.

この発明の冷凍装置は、着霜検知手段の検知結果に応じて冷却能力不足を生じない蒸発温度を決定し、蒸発温度検出手段の検出値がその冷却能力不足を生じない蒸発温度になるように、圧縮機回転数調整手段で圧縮機の回転数を調整する。これにより、冷凍装置は冷却不足に陥ることなく、蒸発器の表面に生成される霜を高密度化して霜の成長を抑制することができる。したがって、冷却運転において、蒸発器を構成しているフィン間の霜による閉塞が遅延され、冷却運転時間が延長される。その結果、除霜回数が減少し、庫内温度上昇や消費電力増大が抑制されることとなる。   According to the refrigeration apparatus of the present invention, an evaporation temperature that does not cause insufficient cooling capacity is determined according to the detection result of the frost detection means, and the detected value of the evaporation temperature detecting means becomes an evaporation temperature that does not cause insufficient cooling capacity. Then, the rotation speed of the compressor is adjusted by the compressor rotation speed adjusting means. Thereby, the refrigeration apparatus can suppress the growth of frost by densifying the frost generated on the surface of the evaporator without falling under cooling. Therefore, in the cooling operation, blockage due to frost between the fins constituting the evaporator is delayed, and the cooling operation time is extended. As a result, the number of times of defrosting is reduced, and the rise in the internal temperature and the increase in power consumption are suppressed.

この発明の実施の形態1の冷凍装置の概略図である。1 is a schematic diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1の着霜検知手段の概略図である。FIG. 2 is a schematic diagram of frost formation detection means according to Embodiment 1 of the present invention. この発明の実施の形態1の冷却能力の時間変化を示した図である。FIG. 5 is a diagram showing a change over time in cooling capacity according to Embodiment 1 of the present invention. この発明の実施の形態1の蒸発器と着霜検知手段の位置関係を示した模式図である。FIG. 3 is a schematic diagram showing a positional relationship between an evaporator and frost detection means according to Embodiment 1 of the present invention. この発明の実施の形態1の着霜検知手段における無着霜時と着霜時の反射光の量を示した模式図である。FIG. 5 is a schematic diagram showing the amount of reflected light when no frost is formed and when frost is formed in the frost detection means according to Embodiment 1 of the present invention. この発明の実施の形態1の着霜検知手段における霜層厚さと光量の関係、及び光量と着霜検知手段の出力の関係を示した図である。FIG. 3 is a diagram showing the relationship between the frost layer thickness and the light amount in the frost detection means of Embodiment 1 of the present invention, and the relationship between the light amount and the output of the frost detection means. この発明の実施の形態1を説明する空気線図である。FIG. 2 is an air diagram illustrating Embodiment 1 of the present invention. この発明の実施の形態1を説明する低蒸発温度と高蒸発温度で運転したときに生成される霜高さと運転時間との関係、及び除霜運転開始時を比較した図である。FIG. 6 is a diagram comparing the relationship between the frost height generated when operating at a low evaporation temperature and a high evaporation temperature and the operation time, and the time when the defrost operation is started, illustrating Embodiment 1 of the present invention. この発明の実施の形態1の制御フロー図である。FIG. 3 is a control flow diagram of Embodiment 1 of the present invention. この発明の実施の形態1の蒸発器のフィンの閉塞率と風量比を示した図である。FIG. 3 is a diagram showing a fin blocking rate and an air flow ratio of the evaporator according to Embodiment 1 of the present invention. この発明の実施の形態2の冷凍装置の概略図である。FIG. 5 is a schematic diagram of a refrigeration apparatus according to Embodiment 2 of the present invention. この発明の実施の形態2の制御フロー図である。FIG. 6 is a control flow diagram of Embodiment 2 of the present invention. 図12Aに続く制御フロー図である。It is a control flow figure following Drawing 12A. この発明の実施の形態1,2の蒸発器における着霜検知手段の位置を示した図である。FIG. 3 is a diagram showing the position of frost formation detection means in the evaporators of Embodiments 1 and 2 of the present invention. この発明の実施の形態1,2の蒸発器における着霜検知手段の位置、及び空気流れ、冷媒流れを示した図である。FIG. 4 is a diagram showing the position of frost formation detection means, air flow, and refrigerant flow in the evaporators of Embodiments 1 and 2 of the present invention. この発明の実施の形態1,2の蒸発器における着霜検知手段の位置を示した図である。FIG. 3 is a diagram showing the position of frost formation detection means in the evaporators of Embodiments 1 and 2 of the present invention. この発明の実施の形態1,2の冷凍装置の別の構成を示す概略図である。FIG. 6 is a schematic diagram showing another configuration of the refrigeration apparatus according to Embodiments 1 and 2 of the present invention. この発明の実施の形態1,2の圧縮機動作と蒸発温度挙動を示した図である。FIG. 5 is a diagram showing compressor operation and evaporation temperature behavior according to Embodiments 1 and 2 of the present invention. この発明の実施の形態1,2の圧縮機動作を示した図である。FIG. 5 is a diagram illustrating compressor operations according to Embodiments 1 and 2 of the present invention.

実施の形態1.
図1はこの発明の実施の形態における冷凍装置の概略図である。冷凍装置1は圧縮機2、凝縮器3、膨張弁等の膨張手段4、蒸発器5などから成る冷凍サイクル回路(冷媒回路)、凝縮器用ファン6、及び蒸発器用ファン7を含んで構成され、蒸発器5、蒸発器用ファン7は冷凍庫12の内部に設置される。また、冷凍装置1は、圧縮機回転数検出手段8、圧縮機回転数調整手段9、蒸発温度検出手段10、庫内温度検出手段11、蒸発器5の着霜量を検出する着霜検知手段21を備えている。なお、上記の圧縮機回転数検出手段8、蒸発温度検出手段10、庫内温度検出手段11は、それらを測定するセンサ等からなる。また圧縮機回転数調整手段9は、電子回路やマイクロコンピュータで構成できる。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a refrigeration apparatus according to an embodiment of the present invention. The refrigeration apparatus 1 includes a compressor 2, a condenser 3, an expansion means 4 such as an expansion valve, a refrigeration cycle circuit (refrigerant circuit) composed of an evaporator 5, etc., a condenser fan 6, and an evaporator fan 7. The evaporator 5 and the evaporator fan 7 are installed inside the freezer 12. In addition, the refrigeration apparatus 1 includes a compressor rotation speed detection means 8, a compressor rotation speed adjustment means 9, an evaporation temperature detection means 10, an internal temperature detection means 11, and a frost detection means for detecting the amount of frost formation on the evaporator 5. 21. The compressor rotational speed detecting means 8, the evaporation temperature detecting means 10, and the internal temperature detecting means 11 are composed of sensors for measuring them. The compressor rotation speed adjusting means 9 can be constituted by an electronic circuit or a microcomputer.

着霜検知手段21は、たとえば、図2のように赤外領域の波長をもった光を照射できる発光ダイオード(LED)からなる発光素子21aと、同じくフォトダイオード(PD)からなる受光素子21bと、それらに接続された制御装置22から構成されている。制御装置22による制御により、発光素子21aから発光された光が、蒸発器5を構成しているフィン5aで反射し、受光素子21bにかえってくる。このかえってくる光の量に応じて、電流等を出力することで、フィン5aへの着霜量を検知する。
なお着霜検知手段21には、庫外空気温度と蒸発温度とを利用するもの、フィン間若しくはフィンと電極との間の静電容量を利用するもの、フィンの放射温度を利用するものなど、他の着霜検知手段を採用しても良い。
The frost detection means 21 includes, for example, a light emitting element 21a composed of a light emitting diode (LED) capable of irradiating light having an infrared wavelength as shown in FIG. 2, and a light receiving element 21b composed of a photodiode (PD). The control device 22 is connected to them. Under the control of the control device 22, the light emitted from the light emitting element 21a is reflected by the fin 5a constituting the evaporator 5 and returned to the light receiving element 21b. The amount of frost formation on the fin 5a is detected by outputting a current or the like according to the amount of light that is returned.
The frost detection means 21 uses the outside air temperature and the evaporation temperature, uses the capacitance between the fins or between the fins and the electrode, uses the radiation temperature of the fins, etc. Other frost detection means may be employed.

次に動作について説明する。図1に示す冷凍装置1において、圧縮機2で圧縮された冷媒は高温高圧のガス冷媒となり、凝縮器3に送り込まれる。凝縮器3に流れ込んだ冷媒は、凝縮器用ファン6により導入される空気に熱を放出することにより液化する。液化した冷媒は膨張手段4に流れ込む。液状態の冷媒は膨張手段4で減圧されて気液二相流状態となり、蒸発器5に送り込まれ、蒸発器用ファン7で導入される空気から熱を吸収することでガス化し、圧縮機2へ戻される。   Next, the operation will be described. In the refrigeration apparatus 1 shown in FIG. 1, the refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant and is sent to the condenser 3. The refrigerant flowing into the condenser 3 is liquefied by releasing heat to the air introduced by the condenser fan 6. The liquefied refrigerant flows into the expansion means 4. The liquid refrigerant is decompressed by the expansion means 4 to become a gas-liquid two-phase flow state, sent to the evaporator 5, and gasified by absorbing heat from the air introduced by the evaporator fan 7, to the compressor 2. Returned.

蒸発器5での冷媒の蒸発温度が0℃以下の場合、空気中に存在している水分が蒸発器5に付着し、霜となって堆積する。その堆積量は時間とともに増加する。その結果、蒸発器5を構成しているフィン5aに付着した霜による熱抵抗、通風抵抗増加により、図3に示すように、時間とともに蒸発器5の冷却能力が低下する。そのため、例えば図4(b)の蒸発器を側面から見た模式図に示すように、冷凍・冷蔵倉庫に用いられる冷却装置の蒸発器5にヒータ23を設け、ヒータ23の熱を利用して除霜運転により霜を融かすことができるようにしている。また、除霜時には、ドレン水の受け皿であるドレンパン24をドレンパンヒータ25で加熱し、ドレン水が再凍結しないようにしている。   When the evaporation temperature of the refrigerant in the evaporator 5 is 0 ° C. or lower, moisture present in the air adheres to the evaporator 5 and accumulates as frost. The amount of deposition increases with time. As a result, as shown in FIG. 3, the cooling capacity of the evaporator 5 decreases with time due to increased thermal resistance and ventilation resistance due to frost adhering to the fins 5a constituting the evaporator 5. Therefore, for example, as shown in the schematic view of the evaporator of FIG. 4 (b) as seen from the side, a heater 23 is provided in the evaporator 5 of the cooling device used in the freezing / refrigeration warehouse, and the heat of the heater 23 is used. The frost can be melted by the defrosting operation. Further, at the time of defrosting, the drain pan 24, which is a tray for drain water, is heated by the drain pan heater 25 so that the drain water does not freeze again.

通常、冷凍装置は蒸発温度を低めにして運転を行い、庫内温度が設定温度に到達したら圧縮機運転を停止(サーモ・オフ)し、設定温度からある値以上高くなったら圧縮機運転を再開(サーモ・オン)することで庫内温度を設定温度に保っている。この際、蒸発温度が必要以上に低いと、低密度な霜が成長し積層高さ方向に霜が成長しやすくなり、蒸発器5のフィン間の閉塞(単に、フィン閉塞ともいう)を早めてしまうことになる。   Normally, the refrigeration unit operates at a lower evaporation temperature, stops the compressor operation (thermo-off) when the internal temperature reaches the set temperature, and resumes the compressor operation when the set temperature rises above a certain value. (Thermo-on) keeps the internal temperature at the set temperature. At this time, if the evaporation temperature is lower than necessary, low-density frost grows and frost tends to grow in the stacking height direction, and the closure between the fins of the evaporator 5 (simply referred to as fin closure) is accelerated. Will end up.

フィン閉塞が早くなるということは、蒸発器5の能力低下が早くなり、除霜運転間隔が短くなるということである。したがって、除霜運転による庫内温度上昇抑制、消費電力増大抑制のためには、霜の積層高さ方向の成長を遅延化してフィン閉塞を遅らせ、除霜運転間隔を長くする必要がある。   The fact that the fins are closed earlier means that the capacity reduction of the evaporator 5 is accelerated and the defrosting operation interval is shortened. Therefore, in order to suppress the rise in the internal temperature and the increase in power consumption due to the defrosting operation, it is necessary to delay the growth of the frost in the stacking height direction, delay the fin blockage, and lengthen the defrosting operation interval.

蒸発器5と着霜検知手段21の位置関係を図4(a)及び図5 の蒸発器を上側から見た模式図に示す。この場合において、図5のように蒸発器5のフィン5aに霜40が付着すると、発光素子21aから発せられた光が霜で反射される。その反射光量は図6の上段に示すように、霜層厚さに応じて受光素子21bに戻る光量が増加する。また、図6の下段に示すように、受光素子21bに戻る光量に応じて、着霜検知手段21の出力(例えば電流に変換した出力値)も変化するので、着霜検知手段21の出力からフィン5aに生成された霜の厚さが検知可能となる。   The positional relationship between the evaporator 5 and the frost detection means 21 is shown in a schematic view of the evaporator of FIG. 4 (a) and FIG. 5 as viewed from above. In this case, when frost 40 adheres to fin 5a of evaporator 5 as shown in FIG. 5, light emitted from light emitting element 21a is reflected by the frost. As shown in the upper part of FIG. 6, the amount of reflected light increases in amount of light returning to the light receiving element 21b in accordance with the frost layer thickness. Further, as shown in the lower part of FIG. 6, the output of the frost detection means 21 (for example, the output value converted into current) also changes according to the amount of light returning to the light receiving element 21b. The thickness of the frost generated on the fin 5a can be detected.

一方、蒸発器5のフィン5aに生成される霜は、条件によって密度が異なる。例えば、同一空気温湿度条件では、フィン5aの表面温度、すなわち蒸発器5における冷媒の蒸発温度が高いほど高密度な霜が生成され、逆に蒸発温度が低いほど低密度な霜が生成される。これを図7の空気線図で説明する。図7に示すように、蒸発温度ET、庫内温度(空気温度)Ta、空気露点温度Tdpとすると、(Tdp-ET)/(Ta-ET)が小さいほど、生成される霜の密度は高くなる。霜の密度は温度境界層厚さにも関係し、温度境界層厚さが厚いほど密度は低くなり、温度境界層厚さが薄いほど密度は高くなるが、ここでは温度境界層厚さは一定と考える。   On the other hand, the density of the frost generated on the fins 5a of the evaporator 5 varies depending on conditions. For example, under the same air temperature and humidity conditions, the higher the surface temperature of the fin 5a, that is, the higher the evaporation temperature of the refrigerant in the evaporator 5, the higher the density frost is generated, and the lower the evaporation temperature, the lower the density frost is generated. . This will be described with reference to the air diagram of FIG. As shown in FIG. 7, when the evaporation temperature ET, the internal temperature (air temperature) Ta, and the air dew point temperature Tdp, the smaller the (Tdp-ET) / (Ta-ET), the higher the density of the generated frost. Become. The density of frost is also related to the temperature boundary layer thickness. The higher the temperature boundary layer thickness, the lower the density, and the thinner the temperature boundary layer thickness, the higher the density, but here the temperature boundary layer thickness is constant. I think.

つまり、同一空気温湿度条件であれば、低蒸発温度よりも高蒸発温度で運転を行うことで、高密度な霜を成長させ霜の積層高さ方向の成長を抑制させることが可能となる。図8は、時間の経過と蒸発器のフィンに生成される霜高さとの関係を、冷媒の2つの蒸発温度(低蒸発温度、高蒸発温度)との関係で示した図である。図8からは、高蒸発温度の方が低蒸発温度に比べて霜の高さ方向の成長が遅れ、除霜運転間隔を延長できることが可能となることがわかる。また、図8は着霜検知手段21で検知した霜高さにより除霜運転開始判定が可能なことも示している。   In other words, under the same air temperature and humidity conditions, by operating at a higher evaporation temperature than at a low evaporation temperature, it is possible to grow high-density frost and suppress the growth of frost in the stacking height direction. FIG. 8 is a diagram showing the relationship between the passage of time and the height of the frost generated on the fins of the evaporator in terms of the relationship between the two evaporation temperatures (low evaporation temperature and high evaporation temperature) of the refrigerant. From FIG. 8, it is understood that the growth in the frost height direction is delayed at the high evaporation temperature compared to the low evaporation temperature, and the defrosting operation interval can be extended. FIG. 8 also shows that the defrosting operation start determination can be made based on the frost height detected by the frost detection means 21.

しかしながら、ただ、蒸発温度を上昇させるだけでは、冷却能力が不足して庫内温度が上昇してしまう可能性がある。また、着霜が進むにつれて、風量低下、及び熱抵抗が増大し、同一蒸発温度でも冷却能力は低下するため、蒸発温度を着霜状況に応じて決定するのは困難となる。   However, simply increasing the evaporation temperature may cause insufficient cooling capacity and increase the internal temperature. Further, as the frosting progresses, the air volume decreases and the thermal resistance increases, and the cooling capacity decreases even at the same evaporation temperature. Therefore, it is difficult to determine the evaporation temperature according to the frosting state.

そこで本実施の形態1では、蒸発器5の着霜量を検知する着霜検知手段21を備え、着霜検知手段21により検知した霜層厚さを基に冷却能力不足にならない範囲で、蒸発温度を最も高くする制御を可能にしている。以下にその制御内容を説明する。   Therefore, in the first embodiment, the frost detection means 21 for detecting the amount of frost formation of the evaporator 5 is provided, and the evaporation is performed within a range in which the cooling capacity is not insufficient based on the frost layer thickness detected by the frost detection means 21. This makes it possible to control the highest temperature. The details of the control will be described below.

図9に本実施の形態1による冷凍装置の制御フローの一例を示す。冷却運転開始後、S-1では、ある任意の蒸発温度ETで運転する。蒸発温度ETは圧縮機回転数調整手段9で圧縮機2の回転数を変化させることで調整する。S-2では、庫内温度検出手段11で検出した庫内温度が設定温度に達したかどうかを判定する。S-2で庫内温度が設定温度に達したと判断すると、S-3で、サーモ・オフ(サーモOFF)しない蒸発温度ETを決定する。   FIG. 9 shows an example of a control flow of the refrigeration apparatus according to the first embodiment. After starting the cooling operation, in S-1, the operation is performed at an arbitrary evaporation temperature ET. The evaporation temperature ET is adjusted by changing the rotational speed of the compressor 2 by the compressor rotational speed adjusting means 9. In S-2, it is determined whether or not the internal temperature detected by the internal temperature detection means 11 has reached the set temperature. If it is determined in S-2 that the internal temperature has reached the set temperature, an evaporation temperature ET that does not perform thermo-off (thermo OFF) is determined in S-3.

サーモ・オフしない蒸発温度ETの決定は、例えば次のように行う。圧縮機2のサーモ・オフ後、それが再びサーモ・オン(サーモON)する際に、蒸発温度ETをサーモ・オフ前の蒸発温度ETから、あらかじめ決めた値だけ上昇させる。この動作を繰り返すことでサーモ・オフしない蒸発温度ET(特にその限界付近値)を決定することができる。予め決められた値とは、例えば1℃などである。   The determination of the evaporation temperature ET that does not perform thermo-off is performed as follows, for example. When the compressor 2 is thermo-off after being thermo-off, the evaporating temperature ET is increased by a predetermined value from the evaporating temperature ET before thermo-off. By repeating this operation, it is possible to determine the evaporation temperature ET (particularly a value near its limit) that does not thermo-off. The predetermined value is 1 ° C., for example.

S-3でサーモ・オフしない蒸発温度ETを決定して、その蒸発温度ETを維持するように圧縮機周波数を調整しながら運転を継続すると、フィン5aへの着霜が進んでいき、風量低下と熱抵抗増加により冷却能力が低下する。冷却能力が低下すると、蒸発温度ETを下げて能力を上げる必要がある。   When the evaporation temperature ET that does not thermo-off is determined in S-3 and the operation is continued while adjusting the compressor frequency so as to maintain the evaporation temperature ET, frosting on the fin 5a progresses and the air volume decreases. And cooling capacity decreases due to increased thermal resistance. When the cooling capacity decreases, it is necessary to lower the evaporation temperature ET to increase the capacity.

そこで、S-4では、着霜検知手段21で検知した蒸発器5のフィン5aの霜層厚さが予め決められた厚さt_f0以上かどうか判定し、t_f0以上である場合は、S-5でその霜層厚さに応じて能力低下を予測し、蒸発温度ETを決定する。   Therefore, in S-4, it is determined whether the frost layer thickness of the fin 5a of the evaporator 5 detected by the frost detection means 21 is equal to or greater than a predetermined thickness t_f0. Then, the capacity drop is predicted according to the frost layer thickness, and the evaporation temperature ET is determined.

ここで、霜層厚さに応じた蒸発温度ETの決定方法について説明する。S-3における無着霜時(運転初期)の風量をVa_i、蒸発温度をET_i、庫内温度をTa_i、とし、S-5(現在)における風量をVa、決定する蒸発温度をET、庫内温度をTa、着霜検出手段21で検出された霜層厚さをt_fとする。   Here, a method of determining the evaporation temperature ET according to the frost layer thickness will be described. Va_i for non-frosting (initial stage of operation) in S-3, Va_i for evaporation temperature, Ta_i for chamber temperature, Va for S-5 (current), ET for evaporation temperature to be determined, and chamber interior The temperature is Ta, and the frost layer thickness detected by the frost detection means 21 is t_f.

S-3における運転開始時の能力Q_iは、空気の密度をρaとすると、以下の式(1)の関係が成り立つと考えて良い。   The capacity Q_i at the start of operation in S-3 may be considered to hold the relationship of the following formula (1), where ρa is the air density.

Q_i = Va_i×(Ta_i-ET_i)×ρa (1)         Q_i = Va_i x (Ta_i-ET_i) x rho (1)

また、S-5における冷却必要能力はS-3における冷却必要能力Q_iとほぼ等しいと考えて良く、以下の式(2)の記関係が成り立つ。   Further, it may be considered that the required cooling capacity in S-5 is substantially equal to the required cooling capacity Q_i in S-3, and the following relationship is established.

Q_i = Va×(Ta-ET)×ρa (2)         Q_i = Va × (Ta-ET) × ρa (2)

また、空気の密度ρaは一定と考えてよく、上記2つの式から以下の式(3)が成り立つ。   The air density ρa may be considered constant, and the following equation (3) is established from the above two equations.

Va_i×(Ta_i-ET_i)=Va×(Ta-ET) (3)         Va_i x (Ta_i-ET_i) = Va x (Ta-ET) (3)

以上より、S-5で決定される蒸発温度ETは以下の式(4)で求められる。     From the above, the evaporation temperature ET determined in S-5 is obtained by the following equation (4).

ET=(Va_i/Va)×(ET_i-Ta_i)+ Ta (4)         ET = (Va_i / Va) x (ET_i-Ta_i) + Ta (4)

ここで、初期風量Va_iは機器固有の値で、ET_iはS-3で決定され、庫内温度Ta_i、Taは庫内温度検出手段11によって検出された値であるので、蒸発温度ETを決定する際に不明な値は、現在の風量Vaである。   Here, the initial air volume Va_i is a value unique to the device, ET_i is determined in S-3, and the internal temperature Ta_i, Ta is a value detected by the internal temperature detection means 11, so the evaporation temperature ET is determined. The unknown value is the current air volume Va.

現在の風量Vaについては、着霜検知手段21で検出された霜層厚さtfから、以下のようにして推算する。   The current air volume Va is estimated from the frost layer thickness tf detected by the frost detection means 21 as follows.

まず、霜層厚さtfから次式(5)で表される閉塞率αを算出する。ここで、FPは蒸発器5のフィン5a間のピッチ、FTはフィン5aの板厚を示す。   First, the blockage rate α expressed by the following equation (5) is calculated from the frost layer thickness tf. Here, FP represents the pitch between the fins 5a of the evaporator 5, and FT represents the plate thickness of the fins 5a.

α=2×tf/(FP-FT) (5)         α = 2 × tf / (FP-FT) (5)

無着霜時の風量に対する現在の風量の比(風量比)βと閉塞率αの関係は図10に示すように、上に凸の曲線となる。この曲線は、β=−α^2+1のように簡単な式で近似可能で、霜層厚さtfから閉塞率αを算出することで、現在の風量比βが算出できる。前述した近似式は、ここに示したものに限らず、機器によって最も良くあう近似式、例えば、β=−α^4+1等他のものを用いても良い。   The relationship between the current air volume ratio (air volume ratio) β to the air volume during non-frosting and the blockage rate α is an upwardly convex curve as shown in FIG. This curve can be approximated by a simple equation such as β = −α ^ 2 + 1, and the current air flow ratio β can be calculated by calculating the blockage rate α from the frost layer thickness tf. The approximate expression described above is not limited to the one shown here, but an approximate expression that best suits the device, such as β = −α ^ 4 + 1, may be used.

風量比βが算出できたら、初期風量Va_iに風量比βをかけることで、現在の風量Vaが導かれ、上記式(4)により、検出された霜層厚さに応じた蒸発温度ETが決定される。   Once the air volume ratio β is calculated, the current air volume Va is derived by multiplying the initial air volume Va_i by the air volume ratio β, and the evaporation temperature ET corresponding to the detected frost layer thickness is determined by the above equation (4). Is done.

S-6では、着霜検知手段21によりフィン5aに生成された霜が、除霜の必要な霜層厚さであるかどうかを判定し、除霜が必要と判定されれば、除霜運転に移行し、除霜運転が終了したら、S-1に戻る。一方、まだ除霜が必要でないと判定されたら、S-5へ戻って、蒸発温度を改めて決定しながら、冷却運転を継続する。
なお、S−6では、着霜状況を直接検知する着霜検知手段21で除霜運転の開始判定を行うので、着霜していないのに除霜してしまうといった無駄な除霜運転を排除できる。
In S-6, it is determined whether or not the frost generated on the fin 5a by the frost detection means 21 has a frost layer thickness that needs to be defrosted. When the defrosting operation is completed, the process returns to S-1. On the other hand, if it is determined that defrosting is not yet required, the process returns to S-5, and the cooling operation is continued while determining the evaporation temperature again.
In S-6, since the start of the defrosting operation is determined by the frost detection means 21 that directly detects the frost formation state, useless defrosting operation such as defrosting even though the frost has not been removed is eliminated. it can.

上記実施の形態1の制御により、冷却運転開始から除霜運転開始まで冷却不足を起こさない範囲で蒸発温度を上昇させ、霜層密度を高くして霜の高さ方向の成長を抑制することが可能となる。これにより、除霜運転間隔が延長され(すなわち、冷却運転時間が延長され)、除霜運転による庫内温度上昇や消費電力増大を抑制することが可能となる。   By controlling the first embodiment, it is possible to increase the evaporation temperature within a range that does not cause insufficient cooling from the start of the cooling operation to the start of the defrosting operation, thereby increasing the frost layer density and suppressing the growth in the frost height direction. It becomes possible. Thereby, the defrosting operation interval is extended (that is, the cooling operation time is extended), and it is possible to suppress an increase in the internal temperature and an increase in power consumption due to the defrosting operation.

実施の形態2.
次に示す実施の形態2は、図11に示すように、実施の形態1の構成に庫内湿度を検出する庫内湿度検出手段(センサ)13を付け加えたものである。従って、実施の形態1と同じところは省略して説明する。
Embodiment 2. FIG.
In the second embodiment, as shown in FIG. 11, an internal humidity detecting means (sensor) 13 for detecting the internal humidity is added to the configuration of the first embodiment. Therefore, the same parts as those in the first embodiment are omitted.

図7でも説明したように、蒸発温度ET、庫内温度(空気温度)Ta、空気露点温度Tdpとすると、(Tdp-ET)/(Ta-ET)が小さいほど、霜密度は高くなる。また、同じ蒸発温度ETでは、空気の状態が相対湿度100%の線に近いほど、(Tdp-ET)/(Ta-ET)が大きくなる傾向となり、霜密度が低くなる。   As described in FIG. 7, assuming that the evaporation temperature ET, the internal temperature (air temperature) Ta, and the air dew point temperature Tdp, the smaller the (Tdp-ET) / (Ta-ET), the higher the frost density. Further, at the same evaporation temperature ET, the closer the air condition is to a line with 100% relative humidity, the larger the (Tdp-ET) / (Ta-ET) tends to be, and the lower the frost density.

このような傾向は、運転開始時、除霜運転終了後、倉庫内へ保管物を搬入したとき等に発生する。本実施の形態では、庫内湿度検出手段13で検出された庫内湿度が高くなり、(Tdp-ET)/(Ta-ET)が大きくなるような場合には、まず、蒸発温度ETを上げて、除湿優先の運転を実施した後、蒸発温度ETを下げて冷却優先の運転を実施する。このような運転を実施することで、生成される霜の密度を高くし、高さ方向の成長を抑制する運転が可能となる。   Such a tendency occurs when stored items are brought into the warehouse at the start of operation, after the completion of the defrosting operation, and the like. In the present embodiment, when the internal humidity detected by the internal humidity detecting means 13 becomes high and (Tdp-ET) / (Ta-ET) increases, first, the evaporation temperature ET is raised. After dehumidifying priority operation, the evaporating temperature ET is lowered and cooling priority operation is performed. By carrying out such an operation, it is possible to increase the density of the generated frost and suppress the growth in the height direction.

図12A,Bに本実施の形態2による冷凍装置の制御フローの一例を示す。ある任意の蒸発温度ETで冷却運転開始後、S-1で、庫内温度検出手段11の検出値と庫内湿度検出手段13の検出値から庫内の相対湿度RHと、露点温度Tdpとを求める。S-2では、相対湿度RHを予め決められた値RH0と比較する。   12A and 12B show an example of the control flow of the refrigeration apparatus according to the second embodiment. After starting the cooling operation at an arbitrary evaporation temperature ET, in S-1, the relative humidity RH in the cabinet and the dew point temperature Tdp are calculated from the detection value of the cabinet temperature detection means 11 and the detection value of the cabinet humidity detection means 13. Ask. In S-2, the relative humidity RH is compared with a predetermined value RH0.

ここで、予め決められた値RH0とは、例えば、相対湿度80%などであるが、冷凍装置を使用する環境に応じて設定しても良い。   Here, the predetermined value RH0 is, for example, 80% relative humidity, but may be set according to the environment in which the refrigeration apparatus is used.

S-2で相対湿度RHがRH0以上と判定された場合は、S-3で(Tdp-ET)/(Ta-ET)があらかじめ決められた値γより小さくなるような蒸発温度ETを決定して運転を実施する。ここで、予め決められた値γとは、冷凍装置の使用条件によって設定可能で、冷蔵条件であれば、例えばγ=0.7などに設定できる。例えば、空気温度0℃で露点温度-1.4℃(相対湿度90%)とすると、γが0.7より小さくなるにはET=-5℃で運転することになる。
なお、S-2で、相対湿度RHが予め決められた値RH0より小さければ、直ちにS-5に進む。
If the relative humidity RH is determined to be RH0 or higher in S-2, determine the evaporation temperature ET so that (Tdp-ET) / (Ta-ET) is smaller than the predetermined value γ in S-3. Drive. Here, the predetermined value γ can be set according to the use conditions of the refrigeration apparatus, and can be set to γ = 0.7, for example, under the refrigeration conditions. For example, if the air temperature is 0 ° C. and the dew point temperature is −1.4 ° C. (relative humidity 90%), the operation is performed at ET = −5 ° C. for γ to be smaller than 0.7.
If the relative humidity RH is smaller than the predetermined value RH0 in S-2, the process immediately proceeds to S-5.

その後、S-4で相対湿度がRH0より低くなったかどうか判定を行い、小さくなったと判定された場合は、除湿優先の運転は終了し、S-5に移行し冷却優先の運転に移行する。なお、相対湿度がRH0より低くなっていなければ、S-3に戻る。   Thereafter, in S-4, it is determined whether or not the relative humidity has become lower than RH0. If it is determined that the relative humidity has decreased, the dehumidification priority operation ends, and the process proceeds to S-5 to shift to the cooling priority operation. If the relative humidity is not lower than RH0, the process returns to S-3.

S-5では、まず、任意の蒸発温度で運転を行い、S-6で、蒸発温度が設定温度に到達したかどうか判定を行う。S-6で設定温度に到達したと判定した場合は、S-7で実施の形態1の図9のS-3と同様にサーモ・オフしない蒸発温度ETを決定して、運転を行う。なお、蒸発温度が設定温度に到達していなければ、S-5に戻る。   In S-5, first, operation is performed at an arbitrary evaporation temperature. In S-6, it is determined whether or not the evaporation temperature has reached a set temperature. If it is determined in S-6 that the set temperature has been reached, the evaporation temperature ET that is not thermo-off is determined in S-7 as in S-3 of FIG. If the evaporation temperature has not reached the set temperature, the process returns to S-5.

S-8では、実施の形態1の図9のS-4と同様、着霜検知手段21で検知した霜層厚さt_fが予め決められた厚さt_f0以上かどうか判定し、検知した霜層厚さt_fがt_f0以上である場合は、S-9で実施の形態1の図9のS-5と同様に、霜層厚さに応じた蒸発温度ETを決定して、運転を行う。なお、検知した霜層厚さt_fがt_f0未満であれば、S-11に進む。   In S-8, as in S-4 of FIG. 9 of Embodiment 1, it is determined whether or not the frost layer thickness t_f detected by the frost detection means 21 is greater than or equal to a predetermined thickness t_f0, and the detected frost layer When the thickness t_f is equal to or greater than t_f0, the operation is performed by determining the evaporation temperature ET according to the frost layer thickness in S-9, as in S-5 of FIG. 9 of the first embodiment. If the detected frost layer thickness t_f is less than t_f0, the process proceeds to S-11.

S-10では、着霜検知手段21により検知されたフィン5aに生成された霜量が、除霜の必要な霜層厚さであるかどうかを判定し、除霜が必要と判定すれば、除霜運転に移行し、除霜運転が終了したらS-1に戻る。ここでの判断は着霜検知手段21から得られた値と予め定めた値との比較によって行うことが出来る。一方、まだ除霜が必要でないと判定したら、S-15へ進む。   In S-10, if the amount of frost generated on the fin 5a detected by the frost detection means 21 is determined to be the frost layer thickness that requires defrosting, and if it is determined that defrosting is necessary, When the defrosting operation is completed and the defrosting operation is completed, the process returns to S-1. This determination can be made by comparing the value obtained from the frost detection means 21 with a predetermined value. On the other hand, if it is determined that defrosting is not yet necessary, the process proceeds to S-15.

S-11、S-12では、S-2、S-3と同様の処理を行う。S-11で、相対湿度RHが予め決めた値RH0未満と判定された場合は、S-7に戻る。一方、S-11で、相対湿度RHがRH0以上と判定された場合はS-12で、(Tdp-ET)/(Ta-ET)があらかじめ決められた値γより小さくなるような蒸発温度ETを決定し、S-13で、あらためてフィンの除霜が必要か否かを判断する。除霜が必要な場合は除霜運転を行う。除霜が不要な場合はS-14でS-4と同様の判断を行う。S-14で相対湿度RHがRH0以上と判定された場合はS-7に進み、そうでなければS-12に戻る。   In S-11 and S-12, the same processing as S-2 and S-3 is performed. If it is determined in S-11 that the relative humidity RH is less than the predetermined value RH0, the process returns to S-7. On the other hand, if it is determined in S-11 that the relative humidity RH is equal to or higher than RH0, in S-12, the evaporation temperature ET such that (Tdp-ET) / (Ta-ET) is smaller than the predetermined value γ. In S-13, it is determined again whether or not the fins need to be defrosted. When defrosting is necessary, defrosting operation is performed. When defrosting is unnecessary, the same judgment as S-4 is performed in S-14. If it is determined in S-14 that the relative humidity RH is RH0 or higher, the process proceeds to S-7, and if not, the process returns to S-12.

S-15〜S-18では、図示のように、S-11〜S-14とほぼ同様の処理を行う。   In S-15 to S-18, as shown in the figure, substantially the same processing as S-11 to S-14 is performed.

以上のとおり、S-10、S-13、S-17では、着霜状況を実際に検知している着霜検知手段21の検出結果に基づいて除霜運転の開始判定を行うため、着霜していないのに除霜してしまうといった無駄な除霜運転を排除できる。   As described above, in S-10, S-13, and S-17, the start of the defrosting operation is determined based on the detection result of the frosting detection means 21 that actually detects the frosting condition. Unnecessary defrosting operations such as defrosting can be eliminated.

上記の制御により、庫内が高相対湿度となり霜密度が低くなる条件となっても、蒸発温度を上昇させてフィン5aに生成される霜の密度を高くし、冷却運転中における霜の積層高さ方向の成長を抑制することができる。また、冷却運転開始から除霜開始まで冷却不足を起こさない範囲で蒸発温度を上昇させ、霜層密度を高くして霜の高さ方向の成長を抑制することが可能となる。その結果、除霜間隔が延長(冷却運転時間が延長)され、除霜運転による庫内温度上昇や消費電力増大を抑制することが可能となる。   The above control increases the evaporation temperature to increase the density of frost generated on the fins 5a even if the inside of the refrigerator has a high relative humidity and the frost density is low, and the frost stacking height during the cooling operation is increased. Growth in the vertical direction can be suppressed. In addition, it is possible to increase the evaporation temperature within a range that does not cause insufficient cooling from the start of the cooling operation to the start of defrosting, thereby increasing the frost layer density and suppressing the growth in the frost height direction. As a result, the defrosting interval is extended (cooling operation time is extended), and it is possible to suppress an increase in the internal temperature and an increase in power consumption due to the defrosting operation.

本発明の上記実施の形態1,2においては、図13に示すように着霜検知手段21を最も着霜量が多い箇所に配置したほうが良い。風上側の着霜量が多くなる場合は風上側、風下側の着霜量が多くなる場合は風下側に配置する。着霜量の多い側に着霜検知手段21を設置することで、より正確に能力低下を推算することが可能となる。また、このとき、図14に示すように着霜量が多い側に冷媒入口を配置し、着霜量が少ない側に圧力損失により冷媒温度が低下した冷媒出口を配置して、着霜量が多い側の蒸発温度を高くすると、霜密度をより高くすることが可能となり効果は増大する。   In the first and second embodiments of the present invention, as shown in FIG. 13, it is better to place the frost detection means 21 at a location where the frost amount is the largest. When the amount of frost formation on the windward side increases, it is arranged on the leeward side when the amount of frost formation on the leeward side increases. By installing the frost detection means 21 on the side where the amount of frost formation is large, it becomes possible to estimate the capacity reduction more accurately. Further, at this time, as shown in FIG. 14, the refrigerant inlet is arranged on the side where the amount of frost formation is large, and the refrigerant outlet where the refrigerant temperature is reduced due to pressure loss is arranged on the side where the amount of frost formation is small. When the evaporation temperature on the larger side is increased, the frost density can be increased and the effect is increased.

また、本発明の実施の形態1,2においては、図15に示すように、着霜検知手段21を移動可能にして、蒸発器5全体の着霜状態が検知できるようにしても良い。このような構成とすることで、偏着霜した場合にも着霜状況の誤検知が少なくなる。   In the first and second embodiments of the present invention, as shown in FIG. 15, the frost detection means 21 may be movable so that the frost formation state of the entire evaporator 5 can be detected. By setting it as such a structure, the false detection of a frosting condition reduces also when uneven frosting is carried out.

また、本発明の実施の形態1,2においては、図16に示すように、冷媒回路中の膨張手段を電子膨張弁34とし、蒸発器5の出口に蒸発器出口温度検出手段35を備える構成としてもよい。この構成により、蒸発器5出口部の冷媒過熱度(SH)を制御可能とし、負荷が高く能力が欲しい状況では、目標冷媒過熱度SHを小さくして(例えば3[K])、冷却能力を高めて蒸発温度をより高くするような制御としても良い。逆に、負荷が低く蒸発温度が十分高くなる場合は、冷却時の運転効率を高めるために、目標冷媒過熱度SHを大きく(例えば10[K])する制御として、省エネ効果を高めても良い。   In the first and second embodiments of the present invention, as shown in FIG. 16, the expansion means in the refrigerant circuit is an electronic expansion valve 34, and the evaporator outlet temperature detecting means 35 is provided at the outlet of the evaporator 5. It is good. With this configuration, the refrigerant superheat degree (SH) at the outlet of the evaporator 5 can be controlled. In situations where the load is high and the capacity is desired, the target refrigerant superheat degree SH is reduced (for example, 3 [K]) to reduce the cooling capacity. It is good also as control which raises and raises evaporation temperature more. Conversely, when the load is low and the evaporation temperature is sufficiently high, the energy-saving effect may be enhanced as control for increasing the target refrigerant superheat degree SH (for example, 10 [K]) in order to increase the operation efficiency during cooling. .

さらに、本発明の実施の形態1,2においては、蒸発温度を上げて霜密度を高くすることを目的としているが、低負荷の場合等では、圧縮機2の回転可能回転数の最小値になってしまい、蒸発温度を決定された温度まで上げることが出来ない事態も考えられる。この場合は、サーモ・オンとサーモ・オフ(サーモON/OFF)が繰り返される。サーモ・オンの場合には、圧縮機回転数を急激に上昇させてしまい、図17に示すように一次的に蒸発温度が下降し、霜密度が低くなってしまう。そこで、サーモON/OFFを繰り返す場合の圧縮機2の再起動は、図18に示すように、通常よりも回転数上昇スピードを遅くしても良い。このようにすることで、再起動時の一次的な蒸発温度低下を抑制し、高密度な霜を成長させることが可能となる。   Furthermore, in the first and second embodiments of the present invention, the purpose is to increase the frost density by increasing the evaporation temperature. However, in the case of a low load, etc., the minimum rotation speed of the compressor 2 is reduced. Thus, there may be a situation where the evaporation temperature cannot be raised to the determined temperature. In this case, thermo-on and thermo-off (thermo ON / OFF) are repeated. In the case of thermo-on, the compressor rotational speed is rapidly increased, and the evaporation temperature is temporarily lowered as shown in FIG. 17, resulting in a lower frost density. Therefore, the restart of the compressor 2 in the case of repeating the thermo ON / OFF may make the rotational speed increase speed slower than usual as shown in FIG. By doing in this way, it becomes possible to suppress the primary evaporating temperature fall at the time of restart and to grow high-density frost.

1 冷凍装置、2 圧縮機、3 凝縮器、4 膨張手段、5 蒸発器、5a フィン、6 凝縮器用ファン、7 蒸発器用ファン、8 圧縮機回転数検出手段、9 圧縮機回転数調整手段、10 蒸発温度検出手段、11 庫内温度検出手段、12 冷凍庫、13 庫内湿度検出手段、21 着霜検知手段、21a 発光素子、21b 受光素子、22 制御装置、23 蒸発器ヒータ、24 ドレンパン、25 ドレンパンヒータ、40 霜。   DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus, 2 Compressor, 3 Condenser, 4 Expansion means, 5 Evaporator, 5a Fin, 6 Condenser fan, 7 Evaporator fan, 8 Compressor rotation speed detection means, 9 Compressor rotation speed adjustment means, 10 Evaporation temperature detection means, 11 Inside temperature detection means, 12 Freezer, 13 Inside humidity detection means, 21 Frost detection means, 21a Light emitting element, 21b Light receiving element, 22 Control device, 23 Evaporator heater, 24 Drain pan, 25 Drain pan Heater, 40 frost.

Claims (11)

圧縮機、凝縮器、膨張手段、蒸発器を備えた冷媒回路を有する冷凍装置において、
前記蒸発器の蒸発温度を検出する蒸発温度検出手段、前記蒸発器の着霜量を検知する着霜検知手段、前記圧縮機の回転数を調整する圧縮機回転数調整手段を備え、
前記着霜検知手段の検知結果に応じて冷却能力不足を生じない蒸発温度を決定し、前記蒸発温度検出手段の検出値が冷却能力不足を生じない前記蒸発温度になるように、前記圧縮機回転数調整手段で前記圧縮機の回転数を調整することを特徴とした冷凍装置。
In a refrigeration apparatus having a refrigerant circuit including a compressor, a condenser, expansion means, and an evaporator,
Evaporation temperature detection means for detecting the evaporation temperature of the evaporator, frost detection means for detecting the amount of frost formation of the evaporator, compressor rotation speed adjustment means for adjusting the rotation speed of the compressor,
According to the detection result of the frost detection means, an evaporation temperature that does not cause insufficient cooling capacity is determined, and the compressor rotation is performed so that the detected value of the evaporation temperature detection means becomes the evaporation temperature that does not cause insufficient cooling capacity. A refrigerating apparatus characterized by adjusting the number of rotations of the compressor by a number adjusting means.
空調を行う庫内の温度を検出する庫内温度検出手段を備え、庫内温度が設定温度に到達してから、冷却能力不足を生じない前記蒸発温度を決定することを特徴とする請求項1に記載の冷凍装置。   2. An in-chamber temperature detecting means for detecting an in-chamber temperature for performing air conditioning is provided, and the evaporating temperature that does not cause a lack of cooling capacity is determined after the in-chamber temperature reaches a set temperature. The refrigeration apparatus described in 1. 能力不足を生じない前記蒸発温度の決定は、運転初期における前記蒸発器を通過する風量、蒸発温度及び庫内温度、前記能力不足を生じない蒸発温度の決定時における前記蒸発器を通過する風量、庫内温度及び前記着霜検知手段の検知結果に基づいて決定することを特徴とする請求項1または2に記載の冷凍装置。   Determination of the evaporation temperature that does not cause a shortage of capacity is the amount of air that passes through the evaporator in the initial stage of operation, the evaporation temperature and the internal temperature, the amount of air that passes through the evaporator when determining the evaporation temperature that does not cause the lack of capacity, The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is determined based on an internal temperature and a detection result of the frost detection means. 前記庫内の湿度を検出する庫内湿度検出手段を備え、前記庫内湿度検出手段の検出値が予め決められた値よりも大きい場合、前記庫内温度検出手段と前記庫内湿度検出手段から検出される庫内温度Ta及び庫内露点温度Tdp、前記蒸発温度検出手段から検出される蒸発温度ETを用いて表される(Tdp-ET)/(Ta-ET)が、予め決められた値よりも小さくなるような蒸発温度ETを決定し、決定した蒸発温度ETとなるように前記圧縮機回転数調整手段で前記圧縮機の回転数を調整することを特徴とする請求項1〜3のいずれか一項に記載の冷凍装置。   When the inside humidity detecting means for detecting the inside humidity is provided, and the detected value of the inside humidity detecting means is larger than a predetermined value, the inside temperature detecting means and the inside humidity detecting means (Tdp-ET) / (Ta-ET) expressed in advance using the detected internal temperature Ta and internal dew point temperature Tdp, and the evaporation temperature ET detected from the evaporation temperature detecting means. The evaporation temperature ET is determined so as to be smaller than that, and the rotation speed of the compressor is adjusted by the compressor rotation speed adjusting means so as to be the determined evaporation temperature ET. The refrigeration apparatus according to any one of the above. 前記着霜検知手段の検知結果が予め定めた所定の値に到るまでは、前記圧縮機がサーモ・オフしない蒸発温度を維持するように前記圧縮機の回転数を制御することを特徴とする請求項1〜4のいずれか一項に記載の冷凍装置。   Until the detection result of the frosting detection means reaches a predetermined value, the rotation speed of the compressor is controlled so as to maintain an evaporation temperature at which the compressor is not thermo-off. The refrigeration apparatus according to any one of claims 1 to 4. 前記着霜検知手段の検知結果と予め定めた値との比較に基づいて、除霜運転の除霜開始判定を行うことを特徴とする請求項1〜5のいずれか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 5, wherein a defrosting start determination of the defrosting operation is performed based on a comparison between a detection result of the frosting detection unit and a predetermined value. . 前記蒸発器の風上側と風下側を比べて、着霜量が多くなる側に前記着霜検知手段を配置したことを特徴とする請求項1〜6のいずれか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 6, wherein the frost detection means is arranged on a side where the amount of frost formation increases compared to the windward side and leeward side of the evaporator. 前記蒸発器の風上側と風下側を比べて、着霜量が多くなる側に冷媒の入口を配置したことを特徴とする請求項1〜7のいずれか一項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 7, wherein an inlet of the refrigerant is arranged on a side where the amount of frost formation is increased by comparing the windward side and the leeward side of the evaporator. 前記着霜検知手段を移動可能とし、前記蒸発器全面の着霜状況を検知可能にしたことを特徴とする請求項1〜8のいずれか一項に記載の冷凍装置。   The refrigerating apparatus according to any one of claims 1 to 8, wherein the frost detection means is movable to detect a frost formation state on the entire surface of the evaporator. 前記蒸発器の出口温度を検出する蒸発器出口温度検出手段を備え、前記蒸発温度検出手段と前記蒸発器出口温度検出手段とから決定される冷媒過熱度を前記膨張手段で制御可能とし、負荷が高く能力を優先する運転の場合は目標冷媒過熱度を小さくし、負荷が小さく効率を優先する運転の場合は目標冷媒過熱度を大きくすることを特徴とする請求項1〜9のいずれか一項に記載の冷凍装置。   Evaporator outlet temperature detection means for detecting the outlet temperature of the evaporator is provided, the refrigerant superheat degree determined from the evaporation temperature detection means and the evaporator outlet temperature detection means can be controlled by the expansion means, and the load is 10. The target refrigerant superheat degree is decreased in an operation where priority is given to high capacity, and the target refrigerant superheat degree is increased in an operation where priority is given to efficiency with a small load. The refrigeration apparatus described in 1. 前記圧縮機がサーモ・オフ後にサーモ・オンする場合、前記圧縮機の回転数上昇速度を通常の起動時よりも遅くすることを特徴とする請求項1〜10のいずれか一項に記載の冷凍装置。   The refrigeration according to any one of claims 1 to 10, wherein when the compressor is thermo-on after thermo-off, the rotational speed increase speed of the compressor is made slower than during normal startup. apparatus.
JP2010197305A 2010-09-03 2010-09-03 Refrigeration equipment Active JP5068354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197305A JP5068354B2 (en) 2010-09-03 2010-09-03 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197305A JP5068354B2 (en) 2010-09-03 2010-09-03 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012052758A JP2012052758A (en) 2012-03-15
JP5068354B2 true JP5068354B2 (en) 2012-11-07

Family

ID=45906271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197305A Active JP5068354B2 (en) 2010-09-03 2010-09-03 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5068354B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000063B2 (en) 2012-10-29 2016-09-28 三菱重工業株式会社 Refrigeration cycle system for vehicles, refrigeration cycle system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522917B2 (en) * 1986-05-20 1996-08-07 三洋電機株式会社 Refrigeration equipment
JP2606489B2 (en) * 1990-07-16 1997-05-07 ダイキン工業株式会社 Operation control device for refrigeration equipment
JP2002061925A (en) * 2000-08-23 2002-02-28 Daikin Ind Ltd Air conditioner
JP2008138915A (en) * 2006-11-30 2008-06-19 Daikin Ind Ltd Refrigerating device
JP5197244B2 (en) * 2008-09-02 2013-05-15 三菱電機株式会社 Refrigeration cycle apparatus, refrigeration apparatus and air conditioner
JP4749459B2 (en) * 2008-12-15 2011-08-17 三菱電機株式会社 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2012052758A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP3864989B1 (en) Refrigeration equipment
TWI391620B (en) Refrigeration air conditioning unit
US8484989B2 (en) Refrigeration system having an energy saving operation
JP5183618B2 (en) Heat pump equipment
JP5594425B2 (en) Refrigeration equipment
KR100775894B1 (en) Cooling storage
JP2010002071A (en) Refrigerator
JP2017190936A (en) refrigerator
CN108885050A (en) Refrigerator
CN112219075A (en) Method for terminating evaporator defrost by using air temperature measurement
JP6019386B2 (en) refrigerator
JP2012255631A (en) Freezing device
JP6706146B2 (en) refrigerator
US10837686B2 (en) Control method for refrigerator
CN103086097B (en) The method for operating the refrigeration system for cargo container
JP4609590B2 (en) Refrigeration equipment
US11549740B2 (en) Refrigerator and controlling method for the same
CN112189120B (en) Method for terminating defrosting of evaporator
JP2008138915A (en) Refrigerating device
JP5068354B2 (en) Refrigeration equipment
JP2012117775A (en) Load side device of freezer/refrigerator
JP6529661B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
KR20090099356A (en) Refrigerator having dehumidifying apparatus
JP2001263912A (en) Refrigerator
TWI642884B (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250