[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5066576B2 - Magnetic detector - Google Patents

Magnetic detector Download PDF

Info

Publication number
JP5066576B2
JP5066576B2 JP2009536984A JP2009536984A JP5066576B2 JP 5066576 B2 JP5066576 B2 JP 5066576B2 JP 2009536984 A JP2009536984 A JP 2009536984A JP 2009536984 A JP2009536984 A JP 2009536984A JP 5066576 B2 JP5066576 B2 JP 5066576B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
effect element
magnetoresistive effect
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009536984A
Other languages
Japanese (ja)
Other versions
JPWO2009048018A1 (en
Inventor
貴史 野口
一成 瀬下
徳男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009536984A priority Critical patent/JP5066576B2/en
Publication of JPWO2009048018A1 publication Critical patent/JPWO2009048018A1/en
Application granted granted Critical
Publication of JP5066576B2 publication Critical patent/JP5066576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、従来に比べてX−Y平面上に位置する磁石の検知範囲を広げることが可能な磁気検出装置に関する。   The present invention relates to a magnetic detection device capable of expanding a detection range of a magnet located on an XY plane as compared with the conventional case.

例えば磁石から生じる外部磁界を検知するための磁気検出装置には磁気抵抗効果素子(GMR素子)が設けられている。   For example, a magneto-resistance effect element (GMR element) is provided in a magnetic detection device for detecting an external magnetic field generated from a magnet.

前記磁気抵抗効果素子1は、固定磁性層、フリー磁性層及び前記固定磁性層とフリー磁性層との間に介在する非磁性層の積層構造を備えた巨大磁気抵抗効果素子(GMR素子)であり、例えば、前記固定磁性層の磁化方向は+X方向に固定されている。   The magnetoresistive effect element 1 is a giant magnetoresistive effect element (GMR element) having a laminated structure of a pinned magnetic layer, a free magnetic layer, and a nonmagnetic layer interposed between the pinned magnetic layer and the free magnetic layer. For example, the magnetization direction of the fixed magnetic layer is fixed in the + X direction.

図14は、前記磁気抵抗効果素子1の上方に磁石2が対向した状態を示す平面図である。前記磁石2の上下面が着磁面であり、図15〜図17に示すように、例えば、前記磁石2の上面2aがS極、下面2bがN極に着磁されている。   FIG. 14 is a plan view showing a state where the magnet 2 is opposed to the magnetoresistive element 1. The upper and lower surfaces of the magnet 2 are magnetized surfaces, and as shown in FIGS. 15 to 17, for example, the upper surface 2a of the magnet 2 is magnetized to the S pole and the lower surface 2b is magnetized to the N pole.

この磁気検出装置は、双極検知に対応可能となっている。例えば、今、図15に示すように、前記磁石2が磁気抵抗効果素子1に対して+X方向に位置すると、磁気抵抗効果素子1には、固定磁性層の磁化方向(PIN方向)と反対方向(−X方向)の水平磁場成分H1が進入する。   This magnetic detection device is compatible with bipolar detection. For example, as shown in FIG. 15, when the magnet 2 is positioned in the + X direction with respect to the magnetoresistive element 1, the magnetoresistive element 1 has a direction opposite to the magnetization direction (PIN direction) of the pinned magnetic layer. A horizontal magnetic field component H1 in the (−X direction) enters.

前記磁気抵抗効果素子1を構成するフリー磁性層は、水平磁場成分の方向を向き、固定磁性層の磁化方向(PIN方向)との関係で磁気抵抗効果素子1の電気抵抗値が変動する。このとき、固定磁性層の磁化方向(PIN方向)と略反対方向の水平磁場成分H1が進入すると磁気抵抗効果素子1の電気抵抗値は大きくなる。これにより前記磁気抵抗効果素子1が組み込まれたセンサ回路の電位が中点電位から大きく変動して、磁石2からの外部磁界が作用していることを示すオン信号が出力されるように制御されている。また、図示しないが磁石2が磁気抵抗効果素子1に対して−X方向に位置した場合、磁気抵抗効果素子1には、固定磁性層の磁化方向(PIN方向)と同一方向(+X方向)の水平磁場成分が進入する。これにより磁気抵抗効果素子1の電気抵抗値は小さくなり、前記磁気抵抗効果素子1が組み込まれたセンサ回路の電位が中点電位から大きく変動し、オン信号が出力されるように制御されている。
特開2000−252545号公報 特開2003−130933号公報
The free magnetic layer constituting the magnetoresistive effect element 1 faces the direction of the horizontal magnetic field component, and the electric resistance value of the magnetoresistive effect element 1 varies depending on the magnetization direction (PIN direction) of the pinned magnetic layer. At this time, when a horizontal magnetic field component H1 in a direction substantially opposite to the magnetization direction (PIN direction) of the pinned magnetic layer enters, the electrical resistance value of the magnetoresistive effect element 1 increases. As a result, the potential of the sensor circuit in which the magnetoresistive effect element 1 is incorporated fluctuates greatly from the midpoint potential, and an ON signal indicating that an external magnetic field from the magnet 2 is acting is output. ing. Although not shown, when the magnet 2 is positioned in the −X direction with respect to the magnetoresistive effect element 1, the magnetoresistive effect element 1 has the same direction (+ X direction) as the magnetization direction (PIN direction) of the pinned magnetic layer. A horizontal magnetic field component enters. As a result, the electrical resistance value of the magnetoresistive effect element 1 is reduced, and the potential of the sensor circuit in which the magnetoresistive effect element 1 is incorporated is greatly varied from the midpoint potential, and an ON signal is output. .
JP 2000-252545 A JP 2003-130933 A

従来の双極対応型の磁気検出装置では、X−Y平面上に位置する磁石2の検知範囲は図14に示すAの領域に限られていた。   In the conventional bipolar magnetic detection device, the detection range of the magnet 2 located on the XY plane is limited to the area A shown in FIG.

図16に示すように、磁石2が前記磁気抵抗効果素子1に対して+Y方向、あるいは−Y方向に位置したとき、前記磁石2の検知ができなかった。   As shown in FIG. 16, when the magnet 2 was positioned in the + Y direction or the −Y direction with respect to the magnetoresistive element 1, the magnet 2 could not be detected.

図16に示すように、磁石2が磁気抵抗効果素子1に対して+Y方向に位置すると、磁気抵抗効果素子1には−Y方向の水平磁場成分H2が進入する。しかしながら固定磁性層の磁化方向(PIN方向)は+X方向であるため、固定磁性層の磁化方向とフリー磁性層の磁化方向とは略直交関係になり、磁気抵抗効果素子1の電気抵抗値は中間値となる。この結果、前記磁気抵抗効果素子1が組み込まれた電気回路の電位が中点電位から変動せず、あるいは電位が変動しても中点電位からの変動量が小さく、磁石2からの外部磁界が作用していないことを示すオフ信号が生成されてしまい、よって前記磁気抵抗効果素子1に対して+Y方向あるいは−Y方向に位置したときの磁石2の検知が不可能であった。   As shown in FIG. 16, when the magnet 2 is positioned in the + Y direction with respect to the magnetoresistive effect element 1, a horizontal magnetic field component H <b> 2 in the −Y direction enters the magnetoresistive effect element 1. However, since the magnetization direction (PIN direction) of the pinned magnetic layer is the + X direction, the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer are substantially orthogonal, and the electric resistance value of the magnetoresistive effect element 1 is intermediate. Value. As a result, the potential of the electric circuit incorporating the magnetoresistive effect element 1 does not vary from the midpoint potential, or even if the potential varies, the variation from the midpoint potential is small, and the external magnetic field from the magnet 2 is reduced. An off signal indicating that it is not acting is generated, and therefore it is impossible to detect the magnet 2 when the magnetoresistive element 1 is positioned in the + Y direction or the −Y direction.

また前記磁石2が磁気抵抗効果素子1の真上に位置したときは、図17に示すように、前記磁石2からは前記磁気抵抗効果素子1に対して垂直磁場成分H3が作用するが、そもそも磁気抵抗効果素子1の電気抵抗値を変動させるための水平磁場成分が作用しないため、磁石2が磁気抵抗効果素子1の真上(及び真下)に位置したときも死角領域となってしまう。   When the magnet 2 is positioned directly above the magnetoresistive effect element 1, as shown in FIG. 17, a perpendicular magnetic field component H3 acts on the magnetoresistive effect element 1 from the magnet 2, but in the first place. Since a horizontal magnetic field component for changing the electric resistance value of the magnetoresistive effect element 1 does not act, a blind spot region is formed even when the magnet 2 is positioned directly above (and directly below) the magnetoresistive effect element 1.

特許文献1には「ホールセンサ」に関する発明が、特許文献2には、「磁気センサ素子」に関する発明が開示されているが、上記した従来技術の問題点については何ら記載されておらず、当然にその解決手段も開示されていない。   Patent Document 1 discloses an invention related to “Hall Sensor”, and Patent Document 2 discloses an invention related to “Magnetic Sensor Element”. However, the above-described problems of the prior art are not described at all. The solution is not disclosed.

そこで本発明は上記従来の問題点を解決するためのものであり、特に、従来に比べてX−Y平面上に位置する磁石の検知範囲を広げることが可能な磁気検出装置を提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, to provide a magnetic detection device capable of expanding the detection range of a magnet located on the XY plane as compared with the conventional one. It is aimed.

本発明における磁気検出装置は、下面及び上面が着磁面の磁石に対し異なる高さ位置に配置され、前記磁石からの外部磁界を受けて電気抵抗値が変動する磁気抵抗効果素子を備え、
前記磁気抵抗効果素子は、少なくとも、高さ方向(Z方向)に固定磁性層、フリー磁性層、及び、前記固定磁性層とフリー磁性層との間に介在する非磁性層を積層した構造を備え、
前記固定磁性層の磁化方向は、前記Z方向に直交するX方向の一方向に固定されており、前記磁気抵抗効果素子のX方向の両側に間隔を空けて第1の磁性体と、第2の磁性体とが設けられており、
前記第1の磁性体及び第2の磁性体のX方向に向く対向面は、前記X方向及びZ方向に直交するY方向に互いにずれて配置されていることを特徴とするものである。
The magnetic detection device according to the present invention includes a magnetoresistive effect element whose lower surface and upper surface are arranged at different height positions with respect to the magnet of the magnetized surface, and whose electric resistance value fluctuates by receiving an external magnetic field from the magnet,
The magnetoresistive effect element has a structure in which at least a pinned magnetic layer, a free magnetic layer, and a nonmagnetic layer interposed between the pinned magnetic layer and the free magnetic layer are stacked in the height direction (Z direction). ,
The magnetization direction of the fixed magnetic layer is fixed in one direction of the X direction orthogonal to the Z direction, and the first magnetic body and the second magnetic material are spaced apart from each other in the X direction of the magnetoresistive element. And a magnetic body,
The opposing surfaces of the first magnetic body and the second magnetic body facing the X direction are arranged so as to be shifted from each other in the Y direction perpendicular to the X direction and the Z direction.

これにより、前記磁石が前記磁気抵抗効果素子に対してY方向に位置したとき、磁気抵抗効果素子に進入する水平磁場成分の方向が、従来のY方向からX方向に傾く方向に変更させられ、前記磁気抵抗効果素子に対してY方向に位置する磁石の検知が可能となる。   Thereby, when the magnet is positioned in the Y direction with respect to the magnetoresistive effect element, the direction of the horizontal magnetic field component entering the magnetoresistive effect element is changed to a direction inclined from the conventional Y direction to the X direction, A magnet located in the Y direction with respect to the magnetoresistive element can be detected.

また、磁石2が磁気抵抗効果素子に対してX方向に位置したときは、水平磁場成分の磁束密度の増幅が可能であり、X方向への検知範囲を従来よりも広げることができる。以上により、従来に比べて、X−Y平面上に位置する磁石の検知範囲を広げることができる。   Further, when the magnet 2 is positioned in the X direction with respect to the magnetoresistive effect element, the magnetic flux density of the horizontal magnetic field component can be amplified, and the detection range in the X direction can be expanded as compared with the conventional case. By the above, compared with the past, the detection range of the magnet located on an XY plane can be expanded.

また本発明では、前記第1の磁性体及び第2の磁性体には、前記対向面からX方向と略平行な方向であって互いに磁気抵抗効果素子から離れる方向に延びるX方向延出部と、前記X方向延出部の前記対向面と反対面側からY方向へ略平行な方向であって互いに離れる方向に延びるY方向延出部とを備えることが好ましい。X方向延出部を設けることで、より適切に、磁気抵抗効果素子に、Y方向からX方向に傾く水平磁場成分を進入させることができ、また、Y方向延出部を設けることで、磁石から生じる外部磁界の集磁効果を高めることができ、効果的に、従来に比べて、X−Y平面上に位置する磁石の検知範囲を広げることができる。   In the present invention, the first magnetic body and the second magnetic body may include an X-direction extending portion extending in a direction substantially parallel to the X direction from the opposing surface and away from the magnetoresistive element. It is preferable that a Y-direction extension portion extending in a direction substantially parallel to the Y direction from the opposite surface side of the X-direction extension portion to the Y-direction and extending away from each other. By providing the X-direction extension portion, a horizontal magnetic field component inclined in the X direction from the Y direction can be made to enter the magnetoresistive element more appropriately, and by providing the Y-direction extension portion, the magnet As a result, it is possible to enhance the magnetic flux collection effect of the external magnetic field generated from the magnetic field, and to effectively widen the detection range of the magnet located on the XY plane as compared with the conventional case.

また本発明では、前記第1の磁性体及び第2の磁性体の対向面は、Z方向にずれて配置されていることが好ましい。これにより、前記磁石が前記磁気抵抗効果素子の真上あるいは真下に位置しても磁気抵抗効果素子には、固定磁性層の磁化方向と同一方向あるいは反対方向に近づく水平磁場成分を進入させることができ、磁気抵抗効果素子の真上あるいは真下に位置する磁石の検知が可能となる。   In the present invention, it is preferable that the opposing surfaces of the first magnetic body and the second magnetic body are shifted in the Z direction. As a result, even if the magnet is positioned directly above or below the magnetoresistive element, a horizontal magnetic field component approaching the same direction as or opposite to the magnetization direction of the pinned magnetic layer can enter the magnetoresistive element. In addition, it is possible to detect a magnet located directly above or below the magnetoresistive element.

あるいは本発明における磁気検出装置は、下面及び上面が着磁面の磁石に対し異なる高さ位置に配置され、前記磁石からの外部磁界を受けて電気抵抗値が変動する磁気抵抗効果素子を備え、
前記磁気抵抗効果素子は、少なくとも、高さ方向(Z方向)に固定磁性層、フリー磁性層、及び、前記固定磁性層とフリー磁性層との間に介在する非磁性層を積層した構造を備え、
前記固定磁性層の磁化方向は、前記X方向の一方向に固定されており、前記磁気抵抗効果素子のX方向の両側に間隔を空けて第1の磁性体と、第2の磁性体とが設けられており、
前記第1の磁性体及び第2の磁性体のX方向を向く対向面は、前記Z方向に互いにずれて配置されていることを特徴とするものである。
Alternatively, the magnetic detection device according to the present invention includes a magnetoresistive element in which the lower surface and the upper surface are arranged at different height positions with respect to the magnetized surface magnet, and the electric resistance value fluctuates by receiving an external magnetic field from the magnet,
The magnetoresistive effect element has a structure in which at least a pinned magnetic layer, a free magnetic layer, and a nonmagnetic layer interposed between the pinned magnetic layer and the free magnetic layer are stacked in the height direction (Z direction). ,
The magnetization direction of the pinned magnetic layer is fixed in one direction of the X direction, and the first magnetic body and the second magnetic body are spaced apart on both sides of the magnetoresistive element in the X direction. Provided,
The opposing surfaces of the first magnetic body and the second magnetic body facing in the X direction are arranged so as to be shifted from each other in the Z direction.

これにより、前記磁石が前記磁気抵抗効果素子の真上あるいは真下に位置しても磁気抵抗効果素子には、固定磁性層の磁化方向と同一方向あるいは反対方向、又はそれらに近づく水平磁場成分を進入させることができ、磁気抵抗効果素子の真上あるいは真下に位置する磁石の検知が可能となり、従来に比べて、X−Y平面上に位置する磁石の検知範囲を広げることができる。   As a result, even if the magnet is located directly above or below the magnetoresistive effect element, the magnetoresistive effect element enters the same direction as or opposite to the magnetization direction of the pinned magnetic layer, or a horizontal magnetic field component approaching them. Therefore, it is possible to detect a magnet located directly above or below the magnetoresistive element, and the detection range of the magnet located on the XY plane can be expanded as compared with the conventional case.

また本発明では、前記第1の磁性体及び第2の磁性体には、X方向に略平行で磁気抵抗効果素子から互いに離れる方向に延出するとともにZ方向にずれて配置されたX方向延出部と、各X方向延出部からZ方向と略平行な方向であって磁気抵抗効果素子に近づく方向に延出するZ方向延出部とを有し、前記Z方向延出部のX方向を向く一方の面が前記対向面であることが好ましい。   In the present invention, the first magnetic body and the second magnetic body may extend in a direction parallel to the X direction and extend away from the magnetoresistive effect element and be offset in the Z direction. A Z-direction extension portion extending from each X-direction extension portion in a direction substantially parallel to the Z-direction and approaching the magnetoresistive effect element, and extending from the X-direction extension portion. It is preferable that one surface facing the direction is the facing surface.

これにより、前記磁石が前記磁気抵抗効果素子の真上あるいは真下に位置してもより効果的に、磁石の検知が可能となる。   As a result, even when the magnet is positioned directly above or below the magnetoresistive element, the magnet can be detected more effectively.

本発明の磁気検出装置によれば、従来に比べてX−Y平面上に位置する磁石の検知範囲を広げることが可能である。   According to the magnetic detection device of the present invention, it is possible to widen the detection range of the magnet located on the XY plane as compared with the conventional case.

図1は本実施形態における磁気検出装置の斜視図、図2は磁気検出装置を図1の矢印方向から見た側面図、図3は、本実施形態における磁石の検知範囲を説明するための平面図、図4は、磁石が磁気抵抗効果素子に対して+X方向に位置したときの平面図、図5は、磁石が磁気抵抗効果素子に対して−X方向に位置したときの平面図、図6は、磁石が磁気抵抗効果素子に対して+Y方向に位置したときの平面図、図7は、磁石が磁気抵抗効果素子に対して−Y方向に位置したときの平面図、図8は、磁石が磁気抵抗効果素子の真上に位置したときの側面図、図9は本実施形態における磁気抵抗効果素子の積層構造を示す断面図、図10は本実施形態における磁気検出装置の回路構成図、である。   1 is a perspective view of a magnetic detection device according to the present embodiment, FIG. 2 is a side view of the magnetic detection device viewed from the direction of the arrow in FIG. 1, and FIG. 3 is a plan view for explaining a magnet detection range according to the present embodiment. FIG. 4 is a plan view when the magnet is positioned in the + X direction with respect to the magnetoresistive effect element. FIG. 5 is a plan view when the magnet is positioned in the −X direction with respect to the magnetoresistive effect element. 6 is a plan view when the magnet is positioned in the + Y direction with respect to the magnetoresistive effect element, FIG. 7 is a plan view when the magnet is positioned in the −Y direction with respect to the magnetoresistive effect element, and FIG. FIG. 9 is a cross-sectional view showing a laminated structure of the magnetoresistive effect element in the present embodiment, and FIG. 10 is a circuit configuration diagram of the magnetic detection device in the present embodiment. .

X方向、Y方向及びZ方向の各方向は残りの2方向に対して直交する関係にある。各図では、X方向を、互いに反平行な+X方向及び−X方向で、Y方向を互いに反平行な+Y方向及び−Y方向で表している。以下で「X方向」という場合は、+X方向、−X方向の双方を含む意味か、あるいは+X方向、−X方向の方向を特定しない意味で使用する。「Y方向」についても同様である。   Each direction of the X direction, the Y direction, and the Z direction is orthogonal to the remaining two directions. In each figure, the X direction is represented by + X direction and −X direction which are antiparallel to each other, and the Y direction is represented by + Y direction and −Y direction which are antiparallel to each other. In the following, the term “X direction” is used in a sense that includes both the + X direction and the −X direction, or does not specify the + X direction and the −X direction. The same applies to the “Y direction”.

図1及び図2に示すように、本実施形態の磁気検出装置10は、基板11と、前記基板11に設置された磁気センサ12と、第1の磁性体13と、第2の磁性体14とを有して構成される。   As shown in FIGS. 1 and 2, the magnetic detection device 10 of this embodiment includes a substrate 11, a magnetic sensor 12 installed on the substrate 11, a first magnetic body 13, and a second magnetic body 14. And is configured.

前記磁気センサ12は、磁気抵抗効果素子、固定抵抗素子、及び集積回路等が組み込まれてパッケージ化された構造である。   The magnetic sensor 12 has a structure in which a magnetoresistive effect element, a fixed resistance element, an integrated circuit, and the like are incorporated and packaged.

前記第1の磁性体13は、前記磁気センサ12に対して+X方向に離れた位置に基板11上に土台15を介して設けられ、前記第2の磁性体14は、前記磁気センサ12に対して−X方向に離れた位置に基板11に形成された貫通孔11aに裏側から差し込まれて設けられている。   The first magnetic body 13 is provided on the substrate 11 via a base 15 at a position away from the magnetic sensor 12 in the + X direction, and the second magnetic body 14 is disposed with respect to the magnetic sensor 12. The through hole 11a formed in the substrate 11 is inserted from the back side at a position separated in the -X direction.

前記第1の磁性体13及び第2の磁性体14はNiFe等の軟磁性材料で形成されることが好適である。   The first magnetic body 13 and the second magnetic body 14 are preferably formed of a soft magnetic material such as NiFe.

図1及び図2に示すように、第1の磁性体13及び第2の磁性体14には夫々、Z方向と略平行な方向に延出するZ方向延出部13a,14aが設けられ、前記Z方向延出部13a,14aの磁気センサ12を介して内側に向くX方向の一面が夫々、対向面13a1,14a1である。ここで「Z方向と略平行」とはZ方向に対して10°までの傾き範囲を含む意味である。   As shown in FIGS. 1 and 2, the first magnetic body 13 and the second magnetic body 14 are each provided with Z-direction extending portions 13a and 14a extending in a direction substantially parallel to the Z-direction, One surface in the X direction facing inward through the magnetic sensor 12 of the Z-direction extending portions 13a and 14a is a facing surface 13a1 and 14a1, respectively. Here, “substantially parallel to the Z direction” means to include an inclination range of up to 10 ° with respect to the Z direction.

図1,図2に示すように各Z方向延出部13a,14aの前記対向面13a1,14a1とは反対側からX方向に略平行で磁気センサ12から離れる方向にX方向延出部13b,14bが設けられている。ここで「X方向と略平行」とはX方向に対して25°までの傾き範囲を含む意味である。   As shown in FIG. 1 and FIG. 2, the X-direction extending portions 13 b in a direction substantially parallel to the X direction and away from the magnetic sensor 12 from the opposite side of the facing surfaces 13 a 1 and 14 a 1 of the Z-direction extending portions 13 a and 14 a. 14b is provided. Here, “substantially parallel to the X direction” means to include an inclination range of up to 25 ° with respect to the X direction.

図2に示すように、第1の磁性体13のX方向延出部13bは、第2の磁性体14のX方向延出部14bよりも高さ方向(Z方向)において高い位置にあり、前記第1の磁性体13の前記Z方向延出部13aは前記X方向延出部13bから下方向に折れ曲がって形成されている。一方、第2の磁性体14の前記Z方向延出部14aは前記X方向延出部14bから上方向に折れ曲がって形成されている。   As shown in FIG. 2, the X-direction extension 13b of the first magnetic body 13 is at a higher position in the height direction (Z direction) than the X-direction extension 14b of the second magnetic body 14, The Z-direction extension 13a of the first magnetic body 13 is bent downward from the X-direction extension 13b. On the other hand, the Z-direction extension 14a of the second magnetic body 14 is bent upward from the X-direction extension 14b.

図1に示すように、第1の磁性体13及び第2の磁性体14には、前記X方向延出部13b、14bの前記対向面13a1,14a1側と反対面側からY方向に略平行な方向であって、互いに離れる方向に延びるY方向延出部13c,14cが設けられている。ここで「Y方向と略平行」とはY方向に対して10°までの傾き範囲を含む意味である。   As shown in FIG. 1, the first magnetic body 13 and the second magnetic body 14 are substantially parallel to the Y direction from the opposite surface side of the facing surfaces 13a1 and 14a1 of the X direction extending portions 13b and 14b. Y-direction extending portions 13c and 14c extending in directions away from each other are provided. Here, “substantially parallel to the Y direction” means including an inclination range of up to 10 ° with respect to the Y direction.

図9に示すように、前記磁気センサ12内に組み込まれる磁気抵抗効果素子20は、下から下地層60、反強磁性層61、固定磁性層62、非磁性材料層63、フリー磁性層64及び保護層65の順に積層されて成る。前記下地層60は例えばTa、反強磁性層61は例えばIrMn、固定磁性層62は例えばCoFe、非磁性材料層63はCu又は酸化マグネシウムや酸化アルミニウム等、フリー磁性層64は例えばNiFe、保護層65は例えばTaで形成される。例えば積層順を逆にしたり、固定磁性層62を積層フェリ構造で形成する等、図9の積層構造から変更が可能であるが、少なくとも固定磁性層62、非磁性材料層63、及びフリー磁性層64の3層構造を有していなければならない。   As shown in FIG. 9, the magnetoresistive effect element 20 incorporated in the magnetic sensor 12 includes a base layer 60, an antiferromagnetic layer 61, a fixed magnetic layer 62, a nonmagnetic material layer 63, a free magnetic layer 64, and The protective layers 65 are laminated in this order. The underlayer 60 is, for example, Ta, the antiferromagnetic layer 61 is, for example, IrMn, the pinned magnetic layer 62 is, for example, CoFe, the nonmagnetic material layer 63 is, for example, Cu, magnesium oxide, or aluminum oxide, and the free magnetic layer 64 is, for example, NiFe, a protective layer 65 is made of Ta, for example. For example, the stacking structure shown in FIG. 9 can be changed by reversing the stacking order or forming the pinned magnetic layer 62 with a stacked ferrimagnetic structure, but at least the pinned magnetic layer 62, the nonmagnetic material layer 63, and the free magnetic layer. Must have 64 three-layer structure.

前記反強磁性層61と前記固定磁性層62の間には交換結合磁界(Hex)が生じて前記固定磁性層62の磁化方向(PIN方向)は一方向に固定される。この実施形態では前記固定磁性層62の磁化方向(PIN方向)は+X方向である。   An exchange coupling magnetic field (Hex) is generated between the antiferromagnetic layer 61 and the pinned magnetic layer 62, and the magnetization direction (PIN direction) of the pinned magnetic layer 62 is pinned in one direction. In this embodiment, the magnetization direction (PIN direction) of the pinned magnetic layer 62 is the + X direction.

一方、前記フリー磁性層64の磁化方向は固定されず、作用する水平磁場成分の方向に向けられる。   On the other hand, the magnetization direction of the free magnetic layer 64 is not fixed and is directed to the direction of the acting horizontal magnetic field component.

本実施形態の磁気検出装置10の特徴的部分は、磁気抵抗効果素子20のX方向の両側に所定の間隔T1,T2(例えば、0.1〜0.3)を空けて第1の磁性体13と第2の磁性体14が設けられ、前記第1の磁性体13及び前記第2の磁性体14のX方向に向く対向面13a1,14a1は、互いに、Y方向及びZ方向にずれて配置されている点にある(図2や図4を参照)。   A characteristic part of the magnetic detection device 10 of the present embodiment is that the first magnetic body is provided with predetermined intervals T1 and T2 (for example, 0.1 to 0.3) on both sides in the X direction of the magnetoresistive effect element 20. 13 and the second magnetic body 14 are provided, and the opposing surfaces 13a1 and 14a1 facing the X direction of the first magnetic body 13 and the second magnetic body 14 are arranged so as to be shifted from each other in the Y direction and the Z direction. (See FIGS. 2 and 4).

これによりX−Y平面上に位置する磁石30の検知範囲を図3に示す領域Bにまで広げることができる。   Thereby, the detection range of the magnet 30 located on the XY plane can be expanded to the area B shown in FIG.

前記磁石30は例えば上面30aがS極に下面30bがN極に着磁されている(図8参照)。前記磁石の幅寸法T4、長さ寸法T5は、10〜30mmで、厚さ寸法T6は10〜20mmである(図3、図8参照)。   For example, the upper surface 30a of the magnet 30 is magnetized to the S pole and the lower surface 30b is magnetized to the N pole (see FIG. 8). The magnet has a width dimension T4 and a length dimension T5 of 10 to 30 mm, and a thickness dimension T6 of 10 to 20 mm (see FIGS. 3 and 8).

前記磁石30は磁気抵抗効果素子20よりも上方に位置し、図8のように、磁気抵抗効果素子20の真上に前記磁石30が位置したとき、前記磁気抵抗効果素子20と前記磁石30間の高さ寸法はT3である。図8に示す磁石30と磁気抵抗効果素子20間の高さ寸法T3は、30〜50mmの範囲内である。   The magnet 30 is located above the magnetoresistive effect element 20, and when the magnet 30 is located directly above the magnetoresistive effect element 20 as shown in FIG. The height dimension is T3. The height dimension T3 between the magnet 30 and the magnetoresistive effect element 20 shown in FIG. 8 is in the range of 30 to 50 mm.

図3に示す磁石30が磁気抵抗効果素子20に対して、+X方向、−X方向、+Y方向、−Y方向及び真上に位置したときについて考察する。   Consider the case where the magnet 30 shown in FIG. 3 is positioned in the + X direction, the −X direction, the + Y direction, the −Y direction, and directly above the magnetoresistive effect element 20.

図4は、磁石30が磁気抵抗効果素子20に対して+X方向に位置したときの状態を示す。前記磁石30から生じた外部磁界の一部は、第1の磁性体13に集磁し、前記第1の磁性体13の対向面13a1から第2の磁性体14の対向面14a1に向けて磁束が導かれる。このとき前記第1の磁性体13と前記第2の磁性体14の間に位置する磁気抵抗効果素子20には、−X方向に近い方向の水平磁場成分H4が進入する。前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)は、+X方向であるため、水平磁場成分H4が流入することで、前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)とフリー磁性層64の磁化方向の関係は略反平行になり、前記磁気抵抗効果素子20の電気抵抗値は大きくなる。   FIG. 4 shows a state when the magnet 30 is positioned in the + X direction with respect to the magnetoresistive effect element 20. Part of the external magnetic field generated from the magnet 30 is collected in the first magnetic body 13, and the magnetic flux is directed from the facing surface 13 a 1 of the first magnetic body 13 toward the facing surface 14 a 1 of the second magnetic body 14. Is guided. At this time, a horizontal magnetic field component H4 in a direction close to the −X direction enters the magnetoresistive effect element 20 positioned between the first magnetic body 13 and the second magnetic body 14. Since the magnetization direction (PIN direction) of the pinned magnetic layer 62 of the magnetoresistive effect element 20 is the + X direction, when the horizontal magnetic field component H4 flows in, the magnetization direction of the pinned magnetic layer 62 of the magnetoresistive effect element 20 The relationship between the (PIN direction) and the magnetization direction of the free magnetic layer 64 is substantially antiparallel, and the electric resistance value of the magnetoresistive element 20 is increased.

図5は、磁石30が磁気抵抗効果素子20に対して−X方向に位置したときの状態を示す。前記磁石30から生じた外部磁界の一部は、第2の磁性体14に集磁し、前記第2の磁性体14の対向面14a1から第1の磁性体13の対向面13a1に向けて磁束が導かれる。このとき前記第1の磁性体13と前記第2の磁性体14の間に位置する磁気抵抗効果素子20には、+X方向に近い方向の水平磁場成分H5が進入する。前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)は、+X方向であるため、水平磁場成分H5が流入することで、前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)とフリー磁性層64の磁化方向の関係は略平行になり、前記磁気抵抗効果素子20の電気抵抗値は小さくなる。   FIG. 5 shows a state where the magnet 30 is positioned in the −X direction with respect to the magnetoresistive effect element 20. A part of the external magnetic field generated from the magnet 30 is collected in the second magnetic body 14, and the magnetic flux is directed from the facing surface 14 a 1 of the second magnetic body 14 toward the facing surface 13 a 1 of the first magnetic body 13. Is guided. At this time, a horizontal magnetic field component H5 in a direction close to the + X direction enters the magnetoresistive effect element 20 positioned between the first magnetic body 13 and the second magnetic body 14. Since the magnetization direction (PIN direction) of the pinned magnetic layer 62 of the magnetoresistive effect element 20 is the + X direction, the magnetization direction of the pinned magnetic layer 62 of the magnetoresistive effect element 20 by the flow of the horizontal magnetic field component H5. The relationship between the (PIN direction) and the magnetization direction of the free magnetic layer 64 is substantially parallel, and the electric resistance value of the magnetoresistive effect element 20 becomes small.

図10の回路構成に示すように前記磁気抵抗効果素子20を含めたブリッジ回路が構成されている。図10に示すように磁気抵抗効果素子20は2個設けられているが1個でもよい。複数の磁気抵抗効果素子20を設ける場合、例えば前記磁気抵抗効果素子20をX方向に並設するが、前記磁気抵抗効果素子20の配置は限定されない。また前記磁気抵抗効果素子20と直列接続される固定抵抗素子25は外部磁界に対して電気抵抗値が変動しない素子である。また他の例としては、前記固定抵抗素子25に代えて、固定磁性層の磁化方向が、磁気抵抗効果素子20と反対方向である−X方向を向いた磁気抵抗効果素子を使用してもよい。これにより出力(差動電位)を大きくできる。図10に示す符号26は入力端子、符号27はグランド端子である。   As shown in the circuit configuration of FIG. 10, a bridge circuit including the magnetoresistive effect element 20 is configured. As shown in FIG. 10, two magnetoresistive elements 20 are provided, but one may be used. When a plurality of magnetoresistive elements 20 are provided, for example, the magnetoresistive elements 20 are arranged in parallel in the X direction, but the arrangement of the magnetoresistive elements 20 is not limited. The fixed resistance element 25 connected in series with the magnetoresistive effect element 20 is an element whose electric resistance value does not vary with respect to an external magnetic field. As another example, instead of the fixed resistance element 25, a magnetoresistive effect element in which the magnetization direction of the fixed magnetic layer faces the −X direction, which is the opposite direction to the magnetoresistive effect element 20, may be used. . As a result, the output (differential potential) can be increased. Reference numeral 26 shown in FIG. 10 is an input terminal, and reference numeral 27 is a ground terminal.

図10に示すようにブリッジ回路に設けられた2つの出力取出し部22,23が差動増幅器28に接続され、さらに差動増幅器28が比較回路29を介して外部出力端子24に接続されている。   As shown in FIG. 10, two output extraction sections 22 and 23 provided in the bridge circuit are connected to a differential amplifier 28, and further the differential amplifier 28 is connected to an external output terminal 24 via a comparison circuit 29. .

図4、図5で説明したように、磁石30が磁気抵抗効果素子20に対して+X方向あるいは−X方向に位置すると、磁気抵抗効果素子20の電気抵抗値の変動が大きくなり、その結果、出力取出し部22,23の電位が中点電位から大きく変動する。このため差動増幅器28から出力される差動電位も大きく変動し、そして前記差動電位が比較回路29にて定められた基準電位(閾値)を上回り、あるいは下回ることでオン信号が生成される。磁石30からの外部磁界が検知されたことを示す前記オン信号は、外部出力端子24から出力される。   As described with reference to FIGS. 4 and 5, when the magnet 30 is positioned in the + X direction or the −X direction with respect to the magnetoresistive effect element 20, the fluctuation of the electric resistance value of the magnetoresistive effect element 20 increases, and as a result, The potentials of the output extraction units 22 and 23 vary greatly from the midpoint potential. For this reason, the differential potential output from the differential amplifier 28 also fluctuates greatly, and an ON signal is generated when the differential potential exceeds or falls below the reference potential (threshold value) determined by the comparison circuit 29. . The ON signal indicating that an external magnetic field from the magnet 30 has been detected is output from the external output terminal 24.

また本実施形態では、前記磁気抵抗効果素子20のX方向の両側に第1の磁性体13及び第2の磁性体14を設けることで、前記磁石30が前記磁気抵抗効果素子20に対してX方向に位置したときは水平磁場成分の磁束密度を増幅でき、従来に比べて、前記磁石30の+X方向及び−X方向への検知範囲を広げることができる。磁束密度を数mT程度上げることができる。   In the present embodiment, the first magnetic body 13 and the second magnetic body 14 are provided on both sides in the X direction of the magnetoresistive effect element 20, so that the magnet 30 is X with respect to the magnetoresistive effect element 20. When positioned in the direction, the magnetic flux density of the horizontal magnetic field component can be amplified, and the detection range of the magnet 30 in the + X direction and the −X direction can be expanded as compared with the conventional case. The magnetic flux density can be increased by several mT.

続いて、図6は、磁石30が磁気抵抗効果素子20に対して+Y方向に位置したときの状態を示す。前記磁石30から生じた外部磁界の一部は、第2の磁性体14に集磁し、前記第2の磁性体14の対向面14a1から第1の磁性体13の対向面13a1に向けて磁束が導かれる。このとき前記第1の磁性体13と前記第2の磁性体14の間に位置する磁気抵抗効果素子20には、−Y方向から+X方向に傾く水平磁場成分H6が進入する。すなわち第1の磁性体13及び第2の磁性体14が無かった従来のように−Y方向から作用していた水平磁場成分の方向を本実施形態のように第1の磁性体13及び第2の磁性体14を設けることで−Y方向から+X方向に傾く方向に変更することが可能である。前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)は、+X方向であるため、水平磁場成分H6が流入することで、前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)とフリー磁性層64の磁化方向間の角度は、90°よりも小さくなり、よって前記磁気抵抗効果素子20の電気抵抗値は中間値よりも小さくなる。   Subsequently, FIG. 6 shows a state when the magnet 30 is positioned in the + Y direction with respect to the magnetoresistive effect element 20. A part of the external magnetic field generated from the magnet 30 is collected in the second magnetic body 14, and the magnetic flux is directed from the facing surface 14 a 1 of the second magnetic body 14 toward the facing surface 13 a 1 of the first magnetic body 13. Is guided. At this time, a horizontal magnetic field component H6 inclined from the −Y direction to the + X direction enters the magnetoresistive effect element 20 positioned between the first magnetic body 13 and the second magnetic body. That is, the direction of the horizontal magnetic field component acting from the −Y direction as in the prior art in which the first magnetic body 13 and the second magnetic body 14 are not provided is changed to the first magnetic body 13 and the second magnetic body 13 as in this embodiment. By providing the magnetic body 14, the direction can be changed from the −Y direction to the + X direction. Since the magnetization direction (PIN direction) of the pinned magnetic layer 62 of the magnetoresistive effect element 20 is the + X direction, when the horizontal magnetic field component H6 flows in, the magnetization direction of the pinned magnetic layer 62 of the magnetoresistive effect element 20 The angle between the (PIN direction) and the magnetization direction of the free magnetic layer 64 becomes smaller than 90 °, and thus the electric resistance value of the magnetoresistive effect element 20 becomes smaller than the intermediate value.

図7は、磁石30が磁気抵抗効果素子20に対して−Y方向に位置したときの状態を示す。前記磁石30から生じた外部磁界の一部は、第1の磁性体13に集磁し、前記第1の磁性体13の対向面13a1から第2の磁性体14の対向面14a1に向けて磁束が導かれる。このとき前記第1の磁性体13と前記第2の磁性体14の間に位置する磁気抵抗効果素子20には、+Y方向から−X方向に傾いた水平磁場成分H7が進入する。前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)は、+X方向であるため、水平磁場成分H7が流入することで、前記磁気抵抗効果素子20の固定磁性層62の磁化方向(PIN方向)とフリー磁性層64の磁化方向間の角度は90°よりも大きくなり、前記磁気抵抗効果素子20の電気抵抗値は中間値よりも大きくなる。   FIG. 7 shows a state when the magnet 30 is positioned in the −Y direction with respect to the magnetoresistive effect element 20. Part of the external magnetic field generated from the magnet 30 is collected in the first magnetic body 13, and the magnetic flux is directed from the facing surface 13 a 1 of the first magnetic body 13 toward the facing surface 14 a 1 of the second magnetic body 14. Is guided. At this time, a horizontal magnetic field component H7 inclined from the + Y direction to the −X direction enters the magnetoresistive element 20 positioned between the first magnetic body 13 and the second magnetic body 14. Since the magnetization direction (PIN direction) of the pinned magnetic layer 62 of the magnetoresistive effect element 20 is the + X direction, when the horizontal magnetic field component H7 flows in, the magnetization direction of the pinned magnetic layer 62 of the magnetoresistive effect element 20 The angle between the (PIN direction) and the magnetization direction of the free magnetic layer 64 becomes larger than 90 °, and the electric resistance value of the magnetoresistive effect element 20 becomes larger than the intermediate value.

したがって、図6や図7に示すように磁石30が磁気抵抗効果素子20に対して+Y方向及び−Y方向に位置したときでも、図10に示す出力取出し部22,23における中点電位からの電位変動量を従来に比べて大きくでき、比較回路29にてオン信号を生成することができる。   Therefore, even when the magnet 30 is positioned in the + Y direction and the −Y direction with respect to the magnetoresistive effect element 20 as shown in FIG. 6 and FIG. 7, the output from the midpoint potential in the output extraction portions 22 and 23 shown in FIG. The potential fluctuation amount can be increased as compared with the conventional case, and the ON signal can be generated by the comparison circuit 29.

図6や図7に示すように磁石30が磁気抵抗効果素子20に対して+Y方向及び−Y方向に位置した場合、磁石30から磁気抵抗効果素子20に向けて+Y方向あるいは−Y方向の水平磁場成分の影響もあるため、水平磁場成分H6,H7は、図4や図5に示す水平磁場成分H4,H5に比べて+Y方向や−Y方向に近づきやすくなる。このため差動増幅器28より得られる差動電位(絶対値)は、図4や図5のように磁石30が磁気抵抗効果素子20に対して+X方向及び−X方向に位置するときよりも小さくなりやすく、図3のように、領域BにおけるY方向への検知範囲はX方向の検知範囲よりも短くなりやすいものの、本実施形態では、従来、不可能であった磁気抵抗効果素子20から見たY方向への検知範囲を確実に確保でき、従来に比べて磁気抵抗効果素子20の周囲領域の全域を検知範囲に定めることが可能となっている。   As shown in FIG. 6 and FIG. 7, when the magnet 30 is positioned in the + Y direction and the −Y direction with respect to the magnetoresistive effect element 20, the horizontal direction in the + Y direction or the −Y direction from the magnet 30 toward the magnetoresistive effect element 20. Because of the influence of the magnetic field component, the horizontal magnetic field components H6 and H7 are more likely to approach the + Y direction and the -Y direction than the horizontal magnetic field components H4 and H5 shown in FIGS. Therefore, the differential potential (absolute value) obtained from the differential amplifier 28 is smaller than when the magnet 30 is positioned in the + X direction and the −X direction with respect to the magnetoresistive effect element 20 as shown in FIGS. As shown in FIG. 3, the detection range in the Y direction in the region B tends to be shorter than the detection range in the X direction. In addition, the detection range in the Y direction can be reliably ensured, and the entire area around the magnetoresistive effect element 20 can be determined as the detection range as compared with the conventional case.

また、本実施形態では、前記第1の磁性体13及び第2の磁性体14の各対向面13a1,14a1を互いに図示Y方向にずらして配置している。例えば、各対向面13a1,14a1が互いに図示Y方向にずれておらずX方向に一致していると、磁石30から生じた外部磁界が第1の磁性体13及び第2の磁性体14のどちらにも優先的に進入しやすくなり、前記対向面13a1,14a1間で導かれる水平磁場成分が非常に小さくなってしまうと考えられる。本実施形態のように、第1の磁性体13及び第2の磁性体14の対向面13a1,14a1をY方向にずらすことで、図6のように、磁石30の中心が磁気抵抗効果素子20よりも+Y方向に位置する場合には、第2の磁性体14に優先的に外部磁界が導かれ、図7のように、磁石30の中心が磁気抵抗効果素子20よりも−Y方向に位置する場合には、第1の磁性体13に優先的に外部磁界が導かれる結果、前記対向面13a1,14a1間に水平磁場成分H6,H7が適切に生じる。   In the present embodiment, the opposing surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 are shifted from each other in the Y direction in the drawing. For example, if the opposing surfaces 13a1 and 14a1 are not shifted from each other in the Y direction in the drawing and coincide with the X direction, the external magnetic field generated from the magnet 30 is either the first magnetic body 13 or the second magnetic body 14. It is considered that the horizontal magnetic field component guided between the facing surfaces 13a1 and 14a1 becomes very small. As in the present embodiment, by shifting the facing surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 in the Y direction, the center of the magnet 30 is positioned at the magnetoresistive effect element 20 as shown in FIG. 2, the external magnetic field is preferentially guided to the second magnetic body 14, and the center of the magnet 30 is positioned in the −Y direction with respect to the magnetoresistive effect element 20 as shown in FIG. 7. In this case, as a result of the external magnetic field being preferentially guided to the first magnetic body 13, horizontal magnetic field components H6 and H7 are appropriately generated between the facing surfaces 13a1 and 14a1.

あるいは、図6に示すように、前記磁石30が磁気抵抗効果素子20の近傍に位置するとき、第1の磁性体13及び第2の磁性体14の対向面13a1,14a1付近のY方向に向く側面は、前記磁石30からの−Y方向への水平磁場成分の影響を受けて、S極及びN極に着磁されやすいと考えられる。このとき、前記第1の磁性体13及び第2の磁性体14の各対向面13a1,14a1を互いに図示Y方向にずらして配置することで、図6に示す第2の磁性体14のN極面と、第1の磁性体13のS極面とがX方向にて近づき、第2の磁性体14から第1の磁性体13に向けて磁束が効率的に導かれやすくなるものと考えられる。よって磁気抵抗効果素子20に進入する水平磁場成分H6,H7の磁束密度を上げることができ、磁石30が磁気抵抗効果素子20に対して+Y方向及び−Y方向に位置したときでも効果的に磁気抵抗効果素子30の検知を行うことができる。   Alternatively, as shown in FIG. 6, when the magnet 30 is positioned in the vicinity of the magnetoresistive effect element 20, the magnet 30 faces in the Y direction near the opposed surfaces 13 a 1 and 14 a 1 of the first magnetic body 13 and the second magnetic body 14. The side surface is considered to be easily magnetized to the S pole and the N pole under the influence of the horizontal magnetic field component in the −Y direction from the magnet 30. At this time, the opposing surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 are arranged so as to be shifted from each other in the Y direction in the drawing, so that the N pole of the second magnetic body 14 shown in FIG. It is considered that the surface and the S pole surface of the first magnetic body 13 approach each other in the X direction, and the magnetic flux is easily guided efficiently from the second magnetic body 14 toward the first magnetic body 13. . Therefore, the magnetic flux density of the horizontal magnetic field components H6 and H7 entering the magnetoresistive effect element 20 can be increased, and even when the magnet 30 is positioned in the + Y direction and the −Y direction with respect to the magnetoresistive effect element 20, the magnetism is effectively magnetized. The resistance effect element 30 can be detected.

また、本実施形態では、前記第1の磁性体13及び第2の磁性体14には、磁気抵抗効果素子20の方向へ向けて延びるX方向延出部13b,14bと、互いに離れる方向に延びるY方向延出部13c,14cとが設けられているため、磁気抵抗効果素子20の方向に飛び出したX方向延出部13b、14bより、水平磁場成分H6,H7を適切に磁気抵抗効果素子20に進入させることができ、また磁石30が磁気抵抗効果素子20から離れても、どちらかのY方向延出部13c,14cが磁気抵抗効果素子20よりも磁石30に近い位置にあるため、前記Y方向延出部13c,14cにて適切に集磁効果を上げることができ、Y方向への検知範囲をより効果的に大きくできる。   In the present embodiment, the first magnetic body 13 and the second magnetic body 14 extend in the direction away from the X-direction extending portions 13b and 14b extending in the direction of the magnetoresistive effect element 20. Since the Y-direction extending portions 13c and 14c are provided, the horizontal magnetic field components H6 and H7 are appropriately generated from the X-direction extending portions 13b and 14b protruding in the direction of the magnetoresistive effect element 20. Even if the magnet 30 is separated from the magnetoresistive effect element 20, the Y-direction extending portions 13c and 14c are located closer to the magnet 30 than the magnetoresistive effect element 20, so that The magnetic flux collection effect can be appropriately increased by the Y direction extending portions 13c and 14c, and the detection range in the Y direction can be effectively increased.

続いて図8は、磁石30が磁気抵抗効果素子20の真上に位置したときの状態を示す。図8に示すように、前記第1の磁性体13及び前記第2の磁性体14のZ方向延出部13a,14aの上面13a2,14a2はS極に、下面13a3,14a3はN極に着磁される。本実施形態では、前記第1の磁性体13と前記第2の磁性体14の対向面13a1,14a1が図示Z方向にずれて配置されている。このため、前記第1の磁性体13の下面13a3のN極面と、前記第2の磁性体14の上面14a2のS極面とをX方向にて近づけることができ、第1の磁性体13のN極面から第2の磁性体14のS極面に向けて−X方向に近い方向の水平磁場成分H8を導くことができ、前記水平磁場成分H8を、前記第1の磁性体13と第2の磁性体14の間に位置する磁気抵抗効果素子20に進入させることができる。   Next, FIG. 8 shows a state when the magnet 30 is positioned directly above the magnetoresistive effect element 20. As shown in FIG. 8, the upper surfaces 13a2, 14a2 of the Z-direction extending portions 13a, 14a of the first magnetic body 13 and the second magnetic body 14 are attached to the S pole, and the lower faces 13a3, 14a3 are attached to the N pole. Magnetized. In the present embodiment, the opposed surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 are arranged so as to be shifted in the Z direction shown in the drawing. For this reason, the N pole surface of the lower surface 13a3 of the first magnetic body 13 and the S pole surface of the upper surface 14a2 of the second magnetic body 14 can be brought closer to each other in the X direction. The horizontal magnetic field component H8 in a direction close to the −X direction can be guided from the N pole face of the second magnetic body 14 toward the S pole face of the second magnetic body 14, and the horizontal magnetic field component H8 can be guided to the first magnetic body 13 and the horizontal magnetic field component H8. The magnetoresistive effect element 20 positioned between the second magnetic bodies 14 can be made to enter.

この結果、磁気抵抗効果素子20の電気抵抗値は大きくなり、したがって、磁石30が磁気抵抗効果素子20の真上に位置したときでも、図10に示す出力取出し部22,23の電位を中点電位から大きく変動させることができ、比較回路29にてオン信号を生成することができる。   As a result, the electric resistance value of the magnetoresistive effect element 20 becomes large. Therefore, even when the magnet 30 is positioned immediately above the magnetoresistive effect element 20, the potentials of the output extraction portions 22 and 23 shown in FIG. The potential can be greatly varied from the potential, and an ON signal can be generated by the comparison circuit 29.

また本実施形態では、前記第1の磁性体13及び第2の磁性体14は、X方向に略平行で磁気抵抗効果素子20から互いに離れる方向に延出するとともにZ方向にずれて配置されたX方向延出部13b,14bと、各X方向延出部13b,14bからZ方向と略平行な方向であって磁気抵抗効果素子20に近づく方向に延出するZ方向延出部13a,14aとを有し、前記Z方向延出部13a,14aの磁気抵抗効果素子20を介して内側を向く面が前記対向面13a1,14a1である。これにより、より適切に、集磁効果を高めることができ、また磁気抵抗効果素子20に、効率的に水平磁場成分H8を進入させることができ、前記磁石30が前記磁気抵抗効果素子20の真上(あるいは真下)に位置してもより効果的に、磁石30の検知が可能となる。   In the present embodiment, the first magnetic body 13 and the second magnetic body 14 are arranged substantially parallel to the X direction and extending away from the magnetoresistive effect element 20 and shifted in the Z direction. X-direction extension portions 13b and 14b, and Z-direction extension portions 13a and 14a extending from the X-direction extension portions 13b and 14b in a direction substantially parallel to the Z direction and approaching the magnetoresistive element 20 The surfaces facing the inside through the magnetoresistive effect element 20 of the Z-direction extending portions 13a and 14a are the facing surfaces 13a1 and 14a1. As a result, the magnetic flux collection effect can be improved more appropriately, the horizontal magnetic field component H8 can be efficiently allowed to enter the magnetoresistive effect element 20, and the magnet 30 can be connected to the true element of the magnetoresistive effect element 20. Even if it is located above (or directly below), the magnet 30 can be detected more effectively.

なおX方向とY方向との間の領域に磁石30がある場合も当然に、磁気抵抗効果素子20には+X方向あるいは−X方向に近づく水平磁場成分が進入するため磁気抵抗効果素子20の電気抵抗値が中間値よりも適切に大きくあるいは小さくなり、オン信号を生成でき、磁石30があることを検知することができる。   Of course, when the magnet 30 is in the region between the X direction and the Y direction, the horizontal magnetic field component approaching the + X direction or the −X direction enters the magnetoresistive effect element 20. The resistance value is appropriately larger or smaller than the intermediate value, an on signal can be generated, and the presence of the magnet 30 can be detected.

以上により従来、死角領域となっていた磁気抵抗効果素子20の真上あるいは真下領域、及び磁気抵抗効果素子20から見て+Y方向領域及び−Y方向領域を全て検知可能な領域にできる。したがって、従来に比べてX−Y平面上に位置する磁石30の検知範囲を広げることが可能である。   As described above, the region immediately above or directly below the magnetoresistive effect element 20 that has been the blind spot region, and the + Y direction region and the −Y direction region as viewed from the magnetoresistive effect element 20 can all be made detectable regions. Therefore, it is possible to expand the detection range of the magnet 30 located on the XY plane as compared with the conventional case.

しかも本実施形態では磁石30からの外部磁界を捉えるためのセンサ部には、基本的に1個の磁気抵抗効果素子20を用いれば足り、また複数の磁気抵抗効果素子を用いる場合でも図10のように一つのブリッジ回路を組むだけで済む。図10の回路構成は、従来と同様の双極対応型の磁気センサの回路構成であるため、複雑化することなく簡単な回路構成を用いて、検知範囲を広げることが可能である。   Moreover, in the present embodiment, it is basically sufficient to use one magnetoresistive element 20 for the sensor unit for capturing the external magnetic field from the magnet 30, and even when a plurality of magnetoresistive elements are used, as shown in FIG. Thus, it is only necessary to construct one bridge circuit. Since the circuit configuration of FIG. 10 is the same as that of the conventional bipolar magnetic sensor, the detection range can be expanded using a simple circuit configuration without complication.

上記した実施形態では、前記第1の磁性体13及び第2の磁性体14の対向面13a1,14a1が互いにY方向及びZ方向にずれて配置されていたが、前記第1の磁性体13及び第2の磁性体14の対向面13a1,14a1が互いにY方向にのみずれた形態、前記第1の磁性体13及び第2の磁性体14の対向面13a1,14a1が互いにZ方向にのみずれた形態であってもよい。   In the above-described embodiment, the opposing surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 are arranged so as to be shifted from each other in the Y direction and the Z direction. The opposite surfaces 13a1 and 14a1 of the second magnetic body 14 are displaced only in the Y direction, and the opposed surfaces 13a1 and 14a1 of the first magnetic body 13 and the second magnetic body 14 are displaced only in the Z direction. Form may be sufficient.

また例えば図6に示すように平面視にて、第1の磁性体13の対向面13a1と第2の磁性体14の対向面14a1は、X方向に重ならないようにY方向にずらして配置されても、X方向に一部重なるようにY方向にずらして配置されてもどちらでもよい。X方向に重ならないように、前記第1の磁性体13と前記第2の磁性体14とをY方向にずらしすぎると(例えば、第1の磁性体13の+Y方向に向く側面13dを、第2の磁性体14の−Y方向に向く側面14dよりも−Y方向にずらしすぎると)、特に、図6,図7に示す水平磁場成分H6,H7がよりY方向に近づき、磁石30が磁気抵抗効果素子20のY方向に位置したときの検知を適切に行えなくなるため、あまりずらしすぎるのは好ましくない。図6では、前記第1の磁性体13の+Y方向に向く側面13dと、第2の磁性体14の−Y方向に向く側面14dとが図示X方向に一致しているが、この側面13d,14d間のずらし量は、−1.0〜0.0mm(正値は対向面13a1,14a1どうしがY方向にて一部重なるずらし方向を示し、負値は対向面13a1,14a1どうしがY方向にて重ならず離れていくずらし方向を示す)であることが好ましい。   Further, for example, as shown in FIG. 6, the opposed surface 13 a 1 of the first magnetic body 13 and the opposed surface 14 a 1 of the second magnetic body 14 are shifted in the Y direction so as not to overlap in the X direction in plan view. Alternatively, it may be arranged so as to be shifted in the Y direction so as to partially overlap in the X direction. If the first magnetic body 13 and the second magnetic body 14 are shifted too much in the Y direction so as not to overlap in the X direction (for example, the side surface 13d of the first magnetic body 13 facing the + Y direction is 2), the horizontal magnetic field components H6 and H7 shown in FIGS. 6 and 7 are closer to the Y direction, and the magnet 30 is magnetized. Since the detection when the resistance effect element 20 is positioned in the Y direction cannot be performed properly, it is not preferable that the resistance effect element 20 is shifted too much. In FIG. 6, the side surface 13 d facing the + Y direction of the first magnetic body 13 and the side surface 14 d facing the −Y direction of the second magnetic body 14 coincide with the X direction shown in the figure. The shift amount between 14d is -1.0 to 0.0 mm (a positive value indicates a shift direction in which the opposing surfaces 13a1 and 14a1 partially overlap in the Y direction, and a negative value indicates that the opposing surfaces 13a1 and 14a1 are in the Y direction) It is preferable that the shift direction is separated without overlapping.

この実施形態では、前記磁気抵抗効果素子20の中心20aを回転中心として、前記第1の磁性体13及び第2の磁性体14とが点対称に配置されている。これにより前記磁石30が磁気抵抗効果素子20に対して+Y方向に位置したときの+Y方向への検知範囲長さと、−Y方向に位置したときの−Y方向への検知範囲長さを同じ大きさにすることができる。   In this embodiment, the first magnetic body 13 and the second magnetic body 14 are arranged point-symmetrically with the center 20a of the magnetoresistive element 20 as the rotation center. Accordingly, the detection range length in the + Y direction when the magnet 30 is positioned in the + Y direction with respect to the magnetoresistive effect element 20 is the same as the detection range length in the -Y direction when the magnet 30 is positioned in the -Y direction. Can be

次に、例えば図2に示すように側面図にて、第1の磁性体13の対向面13a1と第2の磁性体14の対向面14a1は、X方向に重ならないようにZ方向にずらして配置されても、X方向に一部重なるようにZ方向にずらして配置されてもどちらでもよい。X方向に重ならないように、前記第1の磁性体13と前記第2の磁性体14とをZ方向にずらしすぎると(例えば、前記第1の磁性体13のZ方向延出部13aの下面13a3を、前記第2の磁性体14のZ方向延出部14aの上面14a2よりも上方へずらしすぎると)、あるいは、各対向面13a1,14a1のX方向への重なり領域を大きくしすぎると、前記磁気抵抗効果素子20に進入する水平磁場成分H8が小さくなってしまい好ましくない。図2では、前記第1の磁性体13のZ方向延出部13aの下面13a3と、前記第2の磁性体14のZ方向延出部14aの上面14a2とがX方向にて一致しているが、この上下面13a2,14a2間のずらし量は、−0.5〜0.5mm(正値は対向面13a1,14a1どうしがX方向にて一部重なるずらし方向を示し、負値は対向面13a1,14a1どうしがX方向にて重ならず離れていくずらし方向を示す)であることが好ましい。   Next, for example, as shown in FIG. 2, in the side view, the facing surface 13a1 of the first magnetic body 13 and the facing surface 14a1 of the second magnetic body 14 are shifted in the Z direction so as not to overlap in the X direction. Even if it arrange | positions, it may be arrange | positioned by shifting in a Z direction so that it may partially overlap in a X direction. If the first magnetic body 13 and the second magnetic body 14 are shifted too much in the Z direction so as not to overlap in the X direction (for example, the lower surface of the Z-direction extending portion 13a of the first magnetic body 13). 13a3 is excessively shifted upward from the upper surface 14a2 of the Z-direction extending portion 14a of the second magnetic body 14), or if the overlapping regions in the X direction of the opposing surfaces 13a1 and 14a1 are too large, The horizontal magnetic field component H8 that enters the magnetoresistive element 20 becomes small, which is not preferable. In FIG. 2, the lower surface 13a3 of the Z-direction extension 13a of the first magnetic body 13 and the upper surface 14a2 of the Z-direction extension 14a of the second magnetic body 14 coincide with each other in the X direction. However, the shift amount between the upper and lower surfaces 13a2 and 14a2 is -0.5 to 0.5 mm (a positive value indicates a shift direction in which the opposing surfaces 13a1 and 14a1 partially overlap in the X direction, and a negative value indicates the opposing surface. It is preferable that 13a1 and 14a1 indicate a shifting direction in which they do not overlap in the X direction.

図8に示すように、磁気抵抗効果素子20は、第1の磁性体13にはX方向にて重ならず、一方、第2の磁性体14にはX方向にて重なる位置に設けられているが、前記磁気抵抗効果素子20をもう少し上方向に配置してもよい。ただし図8の形態では、第1の磁性体13のZ方向延出部13aの下面13a3及び、第2の磁性体14のZ方向延出部14aの上面14a2が夫々磁極面となり、第1の磁性体13のZ方向延出部13aの下面13a4から、第2の磁性体14のZ方向延出部14aの上面14a2に向けて水平磁場成分H8が導かれやすいので、磁気抵抗効果素子20を第1の磁性体13のZ方向延出部13aの下面13a3及び、第2の磁性体14のZ方向延出部14aの上面14a2の近傍に配置することが好ましい。また、図8のように、磁気抵抗効果素子20を第1の磁性体13のZ方向延出部13aの下面13a3以下の位置、あるいは、磁気抵抗効果素子20第2の磁性体14のZ方向延出部14aの上面14a2以上の位置に配置することで、適切に水平磁場成分H8を磁気抵抗効果素子20に進入させやすくできる。   As shown in FIG. 8, the magnetoresistive effect element 20 is provided at a position where it does not overlap the first magnetic body 13 in the X direction, while it overlaps the second magnetic body 14 in the X direction. However, the magnetoresistive effect element 20 may be arranged slightly upward. However, in the form of FIG. 8, the lower surface 13a3 of the Z-direction extension 13a of the first magnetic body 13 and the upper surface 14a2 of the Z-direction extension 14a of the second magnetic body 14 are magnetic pole surfaces, respectively. Since the horizontal magnetic field component H8 is easily guided from the lower surface 13a4 of the Z-direction extension portion 13a of the magnetic body 13 toward the upper surface 14a2 of the Z-direction extension portion 14a of the second magnetic body 14, the magnetoresistive effect element 20 is The first magnetic body 13 is preferably disposed in the vicinity of the lower surface 13a3 of the Z-direction extension 13a and the upper surface 14a2 of the Z-direction extension 14a of the second magnetic body 14. Further, as shown in FIG. 8, the magnetoresistive effect element 20 is positioned below the lower surface 13 a 3 of the Z-direction extending portion 13 a of the first magnetic body 13, or the Z-direction of the second magnetic body 14 of the magnetoresistive effect element 20. The horizontal magnetic field component H8 can be made to easily enter the magnetoresistive effect element 20 by disposing it at the position above the upper surface 14a2 of the extending portion 14a.

また第1の磁性体13及び第2の磁性体14は、例えば、平板形状であってもよいが、図1に示すようにZ方向延出部13a,14a、X方向延出部13b,14b及びY方向延出部13c,14cを備える形態であることが、集磁効果の向上や、磁気検出素子20に効率的に水平磁場成分を進入させることができ、X−Y平面上に位置する磁石30の検知範囲を適切に広げることができる点で好適である。   Further, the first magnetic body 13 and the second magnetic body 14 may be, for example, in a flat plate shape, but as shown in FIG. 1, the Z-direction extension portions 13a and 14a and the X-direction extension portions 13b and 14b are used. In addition, the configuration including the Y-direction extending portions 13c and 14c can improve the magnetic flux collection effect and can efficiently cause the horizontal magnetic field component to enter the magnetic detection element 20, and is located on the XY plane. This is preferable in that the detection range of the magnet 30 can be appropriately expanded.

図11は、他の実施形態における磁気検出装置の回路構成図である。図11に示す磁気検出装置100は、センサ部101と集積回路(IC)102とを有して構成される。   FIG. 11 is a circuit configuration diagram of a magnetic detection device according to another embodiment. A magnetic detection device 100 shown in FIG. 11 includes a sensor unit 101 and an integrated circuit (IC) 102.

前記センサ部101には、第1磁気抵抗効果素子103と固定抵抗素子104とが第1出力取り出し部(接続部)105を介して直列接続された第1直列回路106、及び、第2磁気抵抗効果素子107と固定抵抗素子108とが第2出力取り出し部(接続部)109を介して直列接続された第2直列回路110が設けられる。   The sensor unit 101 includes a first series circuit 106 in which a first magnetoresistance effect element 103 and a fixed resistance element 104 are connected in series via a first output extraction unit (connection unit) 105, and a second magnetoresistance A second series circuit 110 in which the effect element 107 and the fixed resistance element 108 are connected in series via a second output extraction unit (connection unit) 109 is provided.

前記集積回路102には、固定抵抗素子111と固定抵抗素子112が第3出力取り出し部113を介して直列接続された第3直列回路114が設けられる。   The integrated circuit 102 is provided with a third series circuit 114 in which a fixed resistance element 111 and a fixed resistance element 112 are connected in series via a third output extraction unit 113.

前記第3直列回路114は、共通回路として前記第1直列回路106及び前記第2直列回路110と夫々ブリッジ回路を構成している。   The third series circuit 114 forms a bridge circuit with the first series circuit 106 and the second series circuit 110 as a common circuit.

図11に示すように前記集積回路102には入力端子(電源)119、グランド端子120及び2つの外部出力端子121,122が設けられている。   As shown in FIG. 11, the integrated circuit 102 is provided with an input terminal (power source) 119, a ground terminal 120, and two external output terminals 121 and 122.

図11に示すように集積回路102内には、1つの差動増幅器(差動出力部)125が設けられ、前記差動増幅器125の+入力部、−入力部のどちらかに、前記第3直列回路114の第3出力取り出し部113が接続されている。   As shown in FIG. 11, one differential amplifier (differential output unit) 125 is provided in the integrated circuit 102, and either the + input unit or the −input unit of the differential amplifier 125 is connected to the third input unit. A third output extraction unit 113 of the series circuit 114 is connected.

前記第1直列回路106の第1出力取り出し部105及び第2直列回路110の第2出力取り出し部109は夫々第1スイッチ回路126の入力部に接続され、前記第1スイッチ回路126の出力部は前記差動増幅器35の−入力部、+入力部のどちらか(前記第3出力取り出し部113が接続されていない側の入力部)に接続されている。   The first output extraction unit 105 of the first series circuit 106 and the second output extraction unit 109 of the second series circuit 110 are respectively connected to the input unit of the first switch circuit 126, and the output unit of the first switch circuit 126 is The differential amplifier 35 is connected to either the −input portion or the + input portion (the input portion on the side where the third output extraction portion 113 is not connected).

図11に示すように、前記差動増幅器125の出力部はシュミットトリガー型のコンパレータ128に接続され、さらに前記コンパレータ128の出力部は第2スイッチ回路(第2接続切換部)129の入力部に接続され、さらに前記第2スイッチ回路129の出力部側は2つのラッチ回路及びFET回路を経て第1外部出力端子121及び第2外部出力端子122に夫々接続される。   As shown in FIG. 11, the output section of the differential amplifier 125 is connected to a Schmitt trigger type comparator 128, and the output section of the comparator 128 is connected to the input section of a second switch circuit (second connection switching section) 129. Further, the output side of the second switch circuit 129 is connected to the first external output terminal 121 and the second external output terminal 122 through two latch circuits and an FET circuit, respectively.

さらに図11に示すように、前記集積回路102内には第3スイッチ回路130が設けられている。前記第3スイッチ回路130の出力部は、前記グランド端子120に接続され、前記第3スイッチ回路130の入力部には、第1直列回路106及び第2直列回路110の一端部が接続されている。   Further, as shown in FIG. 11, a third switch circuit 130 is provided in the integrated circuit 102. The output portion of the third switch circuit 130 is connected to the ground terminal 120, and one end portions of the first series circuit 106 and the second series circuit 110 are connected to the input portion of the third switch circuit 130. .

さらに図11に示すように、前記集積回路102内には、インターバルスイッチ回路131及びクロック回路133が設けられている。前記インターバルスイッチ回路131のスイッチがオフされると集積回路102内への通電が停止するようになっている。前記インターバルスイッチ回路131のスイッチのオン・オフは、前記クロック回路133からのクロック信号に連動しており、前記インターバルスイッチ回路131は通電状態を間欠的に行う節電機能を有している。   Further, as shown in FIG. 11, an interval switch circuit 131 and a clock circuit 133 are provided in the integrated circuit 102. When the switch of the interval switch circuit 131 is turned off, the power supply to the integrated circuit 102 is stopped. The on / off of the switch of the interval switch circuit 131 is interlocked with the clock signal from the clock circuit 133, and the interval switch circuit 131 has a power saving function of intermittently energizing.

前記クロック回路133からのクロック信号は、第1スイッチ回路126、第2スイッチ回路129、及び第3スイッチ回路130にも出力される。   The clock signal from the clock circuit 133 is also output to the first switch circuit 126, the second switch circuit 129, and the third switch circuit 130.

前記第1磁気抵抗効果素子103は例えば+X方向の外部磁界の強度変化に基づいて磁気抵抗効果を発揮する磁気抵抗効果素子であり、一方、前記第2磁気抵抗効果素子107は、−X方向の外部磁界の磁界強度変化に基づいて磁気抵抗効果を発揮する磁気抵抗効果素子である。   The first magnetoresistive effect element 103 is a magnetoresistive effect element that exhibits a magnetoresistive effect based on, for example, a change in the intensity of an external magnetic field in the + X direction, while the second magnetoresistive effect element 107 is in the −X direction. It is a magnetoresistive element that exhibits a magnetoresistive effect based on a change in magnetic field strength of an external magnetic field.

図12,図13で説明するように、+X方向への外部磁界が作用すると、第1磁気抵抗効果素子103の抵抗値は変動するが、第2磁気抵抗効果素子107の抵抗値は変動しない(すなわち固定抵抗として作用する)。   As illustrated in FIGS. 12 and 13, when an external magnetic field in the + X direction acts, the resistance value of the first magnetoresistance effect element 103 varies, but the resistance value of the second magnetoresistance effect element 107 does not vary ( That is, it acts as a fixed resistor).

一方、図12,図13で説明するように、−X方向への外部磁界が作用すると、第2磁気抵抗効果素子107の抵抗値は変動するが、第1磁気抵抗効果素子103の抵抗値は変動しない(すなわち固定抵抗として作用する)。   On the other hand, as will be described with reference to FIGS. 12 and 13, when an external magnetic field in the −X direction acts, the resistance value of the second magnetoresistive element 107 varies, but the resistance value of the first magnetoresistive element 103 is Does not fluctuate (ie act as a fixed resistance).

例えば、第1磁気抵抗効果素子103及び第2磁気抵抗効果素子107の固定磁性層の磁化方向(PIN方向)は共に−X方向である。   For example, the magnetization directions (PIN directions) of the pinned magnetic layers of the first magnetoresistive element 103 and the second magnetoresistive element 107 are both in the −X direction.

一方、フリー磁性層の磁化方向は、無磁場状態(外部磁界が作用していない状態)において第1磁気抵抗効果素子103と第2磁気抵抗効果素子107とで異なっている。前記第1磁気抵抗効果素子103のフリー磁性層の磁化方向は無磁場状態で、−X方向であり、第2磁気抵抗効果素子107のフリー磁性層の磁化方向は無磁場状態で+X方向である。   On the other hand, the magnetization direction of the free magnetic layer differs between the first magnetoresistive effect element 103 and the second magnetoresistive effect element 107 in a no magnetic field state (a state in which no external magnetic field acts). The magnetization direction of the free magnetic layer of the first magnetoresistive effect element 103 is the -X direction in the absence of a magnetic field, and the magnetization direction of the free magnetic layer of the second magnetoresistance effect element 107 is the + X direction in the absence of a magnetic field. .

図12は第1磁気抵抗効果素子103のヒステリシス特性を示すR−H曲線である。図12のように、第1磁気抵抗効果素子103には+X方向の外部磁界の磁界強度変化に対して、曲線HR1と曲線HR2で囲まれたヒステリシスループHRが形成される。前記第1磁気抵抗効果素子103の最大抵抗値と最低抵抗値の中間値であって、前記ヒステリシスループHRの広がり幅の中心値がヒステリシスループHRの「中点」である。そして前記ヒステリシスループHRの中点から外部磁界H=0(Oe)のラインまでの磁界の強さで第1の層間結合磁界Hin1の大きさが決定される。図3に示すように第1磁気抵抗効果素子103では、前記第1の層間結合磁界Hin1が+X方向の磁界方向へシフトしている。   FIG. 12 is an RH curve showing the hysteresis characteristics of the first magnetoresistive element 103. As shown in FIG. 12, the first magnetoresistance effect element 103 is formed with a hysteresis loop HR surrounded by the curves HR1 and HR2 with respect to the change in the magnetic field strength of the external magnetic field in the + X direction. The intermediate value of the maximum resistance value and the minimum resistance value of the first magnetoresistive effect element 103, and the center value of the spread width of the hysteresis loop HR is the “midpoint” of the hysteresis loop HR. The magnitude of the first interlayer coupling magnetic field Hin1 is determined by the strength of the magnetic field from the midpoint of the hysteresis loop HR to the line of the external magnetic field H = 0 (Oe). As shown in FIG. 3, in the first magnetoresistance effect element 103, the first interlayer coupling magnetic field Hin1 is shifted in the magnetic field direction in the + X direction.

図13は第2磁気抵抗効果素子107のヒステリシス特性を示すR−H曲線である。図13に示すように、第2磁気抵抗効果素子107には−X方向の外部磁界の磁界強度変化に対して、曲線HR3と曲線HR4で囲まれたヒステリシスループHRが形成される。前記第2磁気抵抗効果素子107の最大抵抗値と最低抵抗値の中間値であって、前記ヒステリシスループHRの広がり幅の中心値がヒステリシスループHRの「中点」である。そして前記ヒステリシスループHRの中点から外部磁界H=0(Oe)のラインまでの磁界の強さで第2の層間結合磁界Hin2の大きさが決定される。図13に示すように第2磁気抵抗効果素子107では、前記第2の層間結合磁界Hin2が−X方向の磁界方向へシフトしている。   FIG. 13 is an RH curve showing the hysteresis characteristic of the second magnetoresistance effect element 107. As shown in FIG. 13, the second magnetoresistance effect element 107 is formed with a hysteresis loop HR surrounded by the curves HR3 and HR4 with respect to the change in the magnetic field strength of the external magnetic field in the −X direction. The intermediate value of the maximum resistance value and the minimum resistance value of the second magnetoresistance effect element 107, and the center value of the spread width of the hysteresis loop HR is the “midpoint” of the hysteresis loop HR. The magnitude of the second interlayer coupling magnetic field Hin2 is determined by the strength of the magnetic field from the midpoint of the hysteresis loop HR to the line of the external magnetic field H = 0 (Oe). As shown in FIG. 13, in the second magnetoresistive effect element 107, the second interlayer coupling magnetic field Hin2 is shifted in the magnetic field direction in the -X direction.

図4、図7、図8の場合では、主に第2磁気抵抗効果素子107の電気抵抗値が大きく変動し、少なくとも、第1スイッチ回路126、第2スイッチ回路129及び第3スイッチ回路130が図1の状態から切り換えられる(スイッチングされる)と、第2外部出力端子122からオン信号が出力される。一方、図5、図6の場合では、主に第1磁気抵抗効果素子103の電気抵抗値が大きく変動し、少なくとも、第1スイッチ回路126、第2スイッチ回路129及び第3スイッチ回路130が図1の状態のとき、第1外部出力端子121からオン信号が出力される。本実施形態では、第1外部出力端子121及び、第2外部出力端子122のどちらからと特に区別することなくオン信号を得ることで、磁石30が図3の領域B内に存在することを検知できる。   4, 7, and 8, the electrical resistance value of the second magnetoresistive element 107 largely fluctuates largely, and at least the first switch circuit 126, the second switch circuit 129, and the third switch circuit 130 When switched from the state of FIG. 1 (switched), an ON signal is output from the second external output terminal 122. On the other hand, in the case of FIG. 5 and FIG. 6, the electrical resistance value of the first magnetoresistive element 103 largely fluctuates greatly, and at least the first switch circuit 126, the second switch circuit 129, and the third switch circuit 130 are illustrated. In the state 1, an ON signal is output from the first external output terminal 121. In the present embodiment, it is detected that the magnet 30 is present in the region B in FIG. 3 by obtaining an ON signal without being particularly distinguished from either the first external output terminal 121 or the second external output terminal 122. it can.

本実施形態の磁気検出装置10は、例えば、人が磁石30を図3に示す領域B内に置いたか否かを測定するために使用されるものである。また、磁石30は磁気検出装置10内に組み込まれる構成要素であってもよく、磁石30が移動側でなく固定側で、図1に示す磁気センサ12、第1の磁性体13、及び第2の磁性体14を備えた基板11が移動側であってもよい。   The magnetic detection device 10 of the present embodiment is used for measuring, for example, whether or not a person has placed the magnet 30 in the region B shown in FIG. Further, the magnet 30 may be a component incorporated in the magnetic detection device 10, and the magnet 30 is not the moving side but the fixed side, and the magnetic sensor 12, the first magnetic body 13, and the second shown in FIG. The substrate 11 having the magnetic body 14 may be on the moving side.

本実施形態における磁気検出装置の斜視図、The perspective view of the magnetic detection apparatus in this embodiment, 磁気検出装置を図1の矢印方向から見た側面図、The side view which looked at the magnetic detection apparatus from the arrow direction of FIG. 本実施形態における磁石の検知範囲を説明するための平面図、The top view for demonstrating the detection range of the magnet in this embodiment, 磁石が磁気抵抗効果素子に対して+X方向に位置したときの平面図、A plan view when the magnet is positioned in the + X direction with respect to the magnetoresistive element, 磁石が磁気抵抗効果素子に対して−X方向に位置したときの平面図、A plan view when the magnet is positioned in the −X direction with respect to the magnetoresistive element, 磁石が磁気抵抗効果素子に対して+Y方向に位置したときの平面図、A plan view when the magnet is positioned in the + Y direction with respect to the magnetoresistive element, 磁石が磁気抵抗効果素子に対して−Y方向に位置したときの平面図、The top view when a magnet is located in -Y direction with respect to a magnetoresistive effect element, 磁石が磁気抵抗効果素子の真上に位置したときの側面図、Side view when the magnet is located directly above the magnetoresistive element, 本実施形態における磁気抵抗効果素子の積層構造を示す断面図、Sectional drawing which shows the laminated structure of the magnetoresistive effect element in this embodiment, 本実施形態における磁気検出装置の回路構成図、The circuit block diagram of the magnetic detection apparatus in this embodiment, 他の実施形態における磁気検出装置の回路構成図、The circuit block diagram of the magnetic detection apparatus in other embodiment, 第1磁気抵抗効果素子のR−H曲線、RH curve of the first magnetoresistive element, 第2磁気抵抗効果素子のR−H曲線、RH curve of the second magnetoresistive element, 従来における磁石の検知範囲を示す平面図、A plan view showing a conventional magnet detection range, 磁石が従来における磁気検出装置を構成する磁気抵抗効果素子に対して+X方向に位置したときの側面図、A side view when the magnet is positioned in the + X direction with respect to the magnetoresistive effect element constituting the conventional magnetic detection device, 磁石が従来における磁気検出装置を構成する磁気抵抗効果素子に対して+Y方向に位置したときの正面図、The front view when a magnet is located in + Y direction with respect to the magnetoresistive effect element which comprises the conventional magnetic detection apparatus, 磁石が従来における磁気検出装置を構成する磁気抵抗効果素子の真上に位置したときの側面図、A side view when the magnet is positioned directly above the magnetoresistive effect element constituting the conventional magnetic detection device,

符号の説明Explanation of symbols

10、100 磁気検出装置
11 基板
12 磁気センサ
13 第1の磁性体
13a、14a Z方向延出部
13a1、14a1 対向面
13b、14b X方向延出部
13c、14c Y方向延出部
14 第2の磁性体
20 磁気抵抗効果素子
22、23、105、109、113 出力取出し部
24、121、122 外部出力端子
25、104、108、111、112 固定抵抗素子
26、119 入力端子
27、120 グランド端子
28、125 差動増幅器
29 比較回路
30 磁石
30a (磁石の)上面
30b (磁石の)下面
61 反強磁性層
62 固定磁性層
63 非磁性層
64 フリー磁性層
65 保護層
101 センサ部
102 集積回路
103 第1磁気抵抗効果素子
107 第2磁気抵抗効果素子
126 第1スイッチ回路
129 第2スイッチ回路
130 第3スイッチ回路
133 クロック回路
H4〜H8 水平磁場成分
Hin1、Hin2 層間結合磁界
PIN 固定磁性層の磁化方向
10, 100 Magnetic detection device 11 Substrate 12 Magnetic sensor 13 First magnetic body 13a, 14a Z-direction extension portion 13a1, 14a1 Opposing surface 13b, 14b X-direction extension portion 13c, 14c Y-direction extension portion 14 Second Magnetic body 20 Magnetoresistive effect element 22, 23, 105, 109, 113 Output extraction unit 24, 121, 122 External output terminal 25, 104, 108, 111, 112 Fixed resistance element 26, 119 Input terminal 27, 120 Ground terminal 28 , 125 differential amplifier 29 comparison circuit 30 magnet 30a (magnet) upper surface 30b (magnet) lower surface 61 antiferromagnetic layer 62 pinned magnetic layer 63 nonmagnetic layer 64 free magnetic layer 65 protective layer 101 sensor unit 102 integrated circuit 103 first 1 magnetoresistive effect element 107 second magnetoresistive effect element 126 first switch circuit 129 second switch circuit 13 0 third switch circuit 133 clock circuit H4 to H8 horizontal magnetic field components Hin1 and Hin2 interlayer coupling magnetic field PIN magnetization direction of pinned magnetic layer

Claims (5)

下面及び上面が着磁面の磁石に対し異なる高さ位置に配置され、前記磁石からの外部磁界を受けて電気抵抗値が変動する磁気抵抗効果素子を備え、
前記磁気抵抗効果素子は、少なくとも、高さ方向(Z方向)に固定磁性層、フリー磁性層、及び、前記固定磁性層とフリー磁性層との間に介在する非磁性層を積層した構造を備え、
前記固定磁性層の磁化方向は、前記Z方向に直交するX方向の一方向に固定されており、前記磁気抵抗効果素子のX方向の両側に間隔を空けて第1の磁性体と、第2の磁性体とが設けられており、
前記第1の磁性体及び第2の磁性体のX方向に向く対向面は、前記X方向及びZ方向に直交するY方向に互いにずれて配置されていることを特徴とする磁気検出装置。
The lower surface and the upper surface are arranged at different height positions with respect to the magnet of the magnetized surface, and include a magnetoresistive effect element that varies in electric resistance value by receiving an external magnetic field from the magnet,
The magnetoresistive effect element has a structure in which at least a pinned magnetic layer, a free magnetic layer, and a nonmagnetic layer interposed between the pinned magnetic layer and the free magnetic layer are stacked in the height direction (Z direction). ,
The magnetization direction of the fixed magnetic layer is fixed in one direction of the X direction orthogonal to the Z direction, and the first magnetic body and the second magnetic material are spaced apart from each other in the X direction of the magnetoresistive element. And a magnetic body,
The opposing surfaces of the first magnetic body and the second magnetic body facing in the X direction are arranged to be shifted from each other in the Y direction perpendicular to the X direction and the Z direction.
前記第1の磁性体及び第2の磁性体には、X方向と略平行な方向であって互いに磁気抵抗効果素子から離れる方向に延びるX方向延出部と、前記X方向延出部の対向面側と反対側からY方向へ略平行な方向であって互いに離れる方向に延びるY方向延出部とを備える請求項1記載の磁気検出装置。  The first magnetic body and the second magnetic body include an X-direction extending portion extending in a direction substantially parallel to the X direction and away from the magnetoresistive effect element, and an opposite of the X-direction extending portion. The magnetic detection device according to claim 1, further comprising a Y-direction extending portion extending in a direction substantially parallel to the Y direction from the opposite side of the surface side and away from each other. 前記第1の磁性体及び第2の磁性体の対向面は、Z方向にずれて配置されている請求項1又は2に記載の磁気検出装置。  3. The magnetic detection device according to claim 1, wherein opposing surfaces of the first magnetic body and the second magnetic body are arranged to be shifted in the Z direction. 下面及び上面が着磁面の磁石に対し異なる高さ位置に配置され、前記磁石からの外部磁界を受けて電気抵抗値が変動する磁気抵抗効果素子を備え、
前記磁気抵抗効果素子は、少なくとも、高さ方向(Z方向)に固定磁性層、フリー磁性層、及び、前記固定磁性層とフリー磁性層との間に介在する非磁性層を積層した構造を備え、
前記固定磁性層の磁化方向は、前記X方向の一方向に固定されており、前記磁気抵抗効果素子のX方向の両側に間隔を空けて第1の磁性体と、第2の磁性体とが設けられており、
前記第1の磁性体及び第2の磁性体のX方向を向く対向面は、前記Z方向に互いにずれて配置されていることを特徴とする磁気検出装置。
The lower surface and the upper surface are arranged at different height positions with respect to the magnet of the magnetized surface, and include a magnetoresistive effect element that varies in electric resistance value by receiving an external magnetic field from the magnet,
The magnetoresistive effect element has a structure in which at least a pinned magnetic layer, a free magnetic layer, and a nonmagnetic layer interposed between the pinned magnetic layer and the free magnetic layer are stacked in the height direction (Z direction). ,
The magnetization direction of the pinned magnetic layer is fixed in one direction of the X direction, and the first magnetic body and the second magnetic body are spaced apart on both sides of the magnetoresistive element in the X direction. Provided,
The opposing surfaces of the first magnetic body and the second magnetic body facing in the X direction are arranged to be shifted from each other in the Z direction.
前記第1の磁性体及び第2の磁性体には、X方向に略平行で磁気抵抗効果素子から互いに離れる方向に延出するとともにZ方向にずれて配置されたX方向延出部と、各X方向延出部からZ方向と略平行な方向であって磁気抵抗効果素子に近づく方向に延出するZ方向延出部とを有し、前記Z方向延出部のX方向を向く一方の面が前記対向面である請求項3又は4に記載の磁気検出装置。  Each of the first magnetic body and the second magnetic body extends in a direction substantially parallel to the X direction and away from the magnetoresistive effect element, and is disposed in an offset direction in the Z direction. A Z-direction extension portion extending in a direction substantially parallel to the Z direction from the X-direction extension portion and approaching the magnetoresistive element, and one of the Z-direction extension portions facing the X direction The magnetic detection device according to claim 3, wherein a surface is the facing surface.
JP2009536984A 2007-10-11 2008-10-03 Magnetic detector Active JP5066576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009536984A JP5066576B2 (en) 2007-10-11 2008-10-03 Magnetic detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007265354 2007-10-11
JP2007265354 2007-10-11
JP2009536984A JP5066576B2 (en) 2007-10-11 2008-10-03 Magnetic detector
PCT/JP2008/068017 WO2009048018A1 (en) 2007-10-11 2008-10-03 Magnetic detector

Publications (2)

Publication Number Publication Date
JPWO2009048018A1 JPWO2009048018A1 (en) 2011-02-17
JP5066576B2 true JP5066576B2 (en) 2012-11-07

Family

ID=40549163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009536984A Active JP5066576B2 (en) 2007-10-11 2008-10-03 Magnetic detector

Country Status (2)

Country Link
JP (1) JP5066576B2 (en)
WO (1) WO2009048018A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170509A1 (en) * 2014-05-09 2015-11-12 愛知製鋼株式会社 Magnetic detection device and method for producing same
US9599681B2 (en) 2012-02-07 2017-03-21 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
JP5601820B2 (en) * 2009-11-11 2014-10-08 センサテック株式会社 Magnetic detector and manufacturing method thereof
WO2011089978A1 (en) * 2010-01-20 2011-07-28 アルプス電気株式会社 Magnetic sensor
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
JP5453198B2 (en) * 2010-08-11 2014-03-26 アルプス電気株式会社 Magnetic sensor
JP5341865B2 (en) * 2010-11-22 2013-11-13 アルプス電気株式会社 Magnetic sensor
WO2012096132A1 (en) * 2011-01-13 2012-07-19 アルプス電気株式会社 Magnetic sensor
TWI409488B (en) * 2011-09-29 2013-09-21 Voltafield Technology Corp Magnatoresistive sensing component and magnatoresistive sensing device
JP5802565B2 (en) * 2012-01-18 2015-10-28 アルプス電気株式会社 Magnetic sensor
JP6199548B2 (en) * 2012-02-07 2017-09-20 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof
GB2508375A (en) * 2012-11-29 2014-06-04 Ibm A position sensor comprising a magnetoresistive element
WO2014156108A1 (en) * 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof
TWI541526B (en) * 2014-04-28 2016-07-11 宇能電科技股份有限公司 Magnatoresistive component and magnatoresistive device
JP6503802B2 (en) * 2015-03-12 2019-04-24 Tdk株式会社 Magnetic sensor
DE112016006539T5 (en) * 2016-03-03 2018-11-15 Tdk Corporation MAGNETIC SENSOR
JP2018072026A (en) * 2016-10-25 2018-05-10 Tdk株式会社 Magnetic field detection device
JP6438930B2 (en) 2016-12-06 2018-12-19 Tdk株式会社 Magnetic field detector
JP2020118469A (en) * 2019-01-18 2020-08-06 艾礼富▲電▼子(深▲セン▼)有限公司Aleph Electronics(Shenzhen)Co.,Ltd Magnetic field detecting device using hall element or hall ic and proximity sensor using magnetic field detecting device
GB202004314D0 (en) * 2020-03-25 2020-05-06 Direct Thrust Designs Ltd Means for reducing virus self infection
JP2020177024A (en) * 2020-06-30 2020-10-29 Tdk株式会社 Magnetic field detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156661A (en) * 2004-11-29 2006-06-15 Alps Electric Co Ltd Thin film magnetoresistive element, its manufacturing method, and magnetic sensor using the same
JP2006276983A (en) * 2005-03-28 2006-10-12 Yamaha Corp Magnetic sensor for pointing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156661A (en) * 2004-11-29 2006-06-15 Alps Electric Co Ltd Thin film magnetoresistive element, its manufacturing method, and magnetic sensor using the same
JP2006276983A (en) * 2005-03-28 2006-10-12 Yamaha Corp Magnetic sensor for pointing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599681B2 (en) 2012-02-07 2017-03-21 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same
WO2015170509A1 (en) * 2014-05-09 2015-11-12 愛知製鋼株式会社 Magnetic detection device and method for producing same
JPWO2015170509A1 (en) * 2014-05-09 2017-04-20 愛知製鋼株式会社 Magnetic detection device and manufacturing method thereof
US10048329B2 (en) 2014-05-09 2018-08-14 Aichi Steel Corporation Magnetic detection device and method of manufacturing same

Also Published As

Publication number Publication date
WO2009048018A1 (en) 2009-04-16
JPWO2009048018A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5066576B2 (en) Magnetic detector
US9644994B2 (en) Magnetic sensor
US9530957B2 (en) Magnetic sensor
US6900713B2 (en) Magnetic switch capable of instantaneous switching of an output signal and magnetic sensor
US10908233B2 (en) Magnetic detection device and method for manufacturing the same
US20120217961A1 (en) Magnetic sensor
JP6305181B2 (en) Magnetic sensor
JP5174911B2 (en) Magnetic sensor and magnetic sensor module
CN106489063B (en) MLU-based accelerometer using magnetic tunnel junction
JP5149964B2 (en) Magnetic sensor and magnetic sensor module
JP2012507735A (en) GMR biosensor with alignment magnetic field
JP2009300150A (en) Magnetic sensor and magnetic sensor module
KR20090045406A (en) Magnetic detector
JPWO2008105228A1 (en) Magnetic sensor module and piston position detection device
JP4790448B2 (en) Magnetoresistive element and method for forming the same
KR101021257B1 (en) Bipolar magnetism detecting apparatus
JP2014089088A (en) Magnetoresistive effect element
JP2004077374A (en) Arranging structure of magnetic sensor
US10877109B2 (en) Magnetic field detection device
JP4833691B2 (en) Magnetic sensor and manufacturing method thereof
JP5453198B2 (en) Magnetic sensor
JP5006339B2 (en) Magnetic detector
JP6007479B2 (en) Current sensor
JP2013142569A (en) Current sensor
JP2011174810A (en) Magnetism detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350