[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5065636B2 - Method for producing optical semiconductor fine particles - Google Patents

Method for producing optical semiconductor fine particles Download PDF

Info

Publication number
JP5065636B2
JP5065636B2 JP2006219919A JP2006219919A JP5065636B2 JP 5065636 B2 JP5065636 B2 JP 5065636B2 JP 2006219919 A JP2006219919 A JP 2006219919A JP 2006219919 A JP2006219919 A JP 2006219919A JP 5065636 B2 JP5065636 B2 JP 5065636B2
Authority
JP
Japan
Prior art keywords
fine particles
semiconductor fine
film
optical semiconductor
porous silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006219919A
Other languages
Japanese (ja)
Other versions
JP2008043848A (en
Inventor
堅次 宮川
誠 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Waseda University
Original Assignee
Kansai Paint Co Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Waseda University filed Critical Kansai Paint Co Ltd
Priority to JP2006219919A priority Critical patent/JP5065636B2/en
Publication of JP2008043848A publication Critical patent/JP2008043848A/en
Application granted granted Critical
Publication of JP5065636B2 publication Critical patent/JP5065636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

本発明は、例えば、防汚、防曇、抗菌、空気浄化、水浄化などの用途に用いられる光触媒活性を有する光半導体微粒子の製造方法に関する。 The present invention relates to a method for producing photo-semiconductor fine particles having photocatalytic activity used for applications such as antifouling, anti-fogging, antibacterial, air purification, and water purification.

近年、酸化チタンなどの光触媒活性を有する光半導体は、防汚、防曇、抗菌、空気浄化、水浄化など多方面の用途で注目を集め、活発な製品開発が行われている。この光半導体にバンドギャップ以上のエネルギーを有する波長の光が当たると、正孔と電子が発生し、この電子と空気中の酸素が反応してO2 -(スーパーオキサイドイオン)が生成し、また正孔と水が反応してヒドロキシラジカルが発生する。これら活性種は強力な酸化力を有し、有機物を酸化分解する。 In recent years, optical semiconductors having photocatalytic activity, such as titanium oxide, have attracted attention in various applications such as antifouling, antifogging, antibacterial, air purification, and water purification, and active product development has been carried out. When light of a wavelength having energy greater than the band gap hits this optical semiconductor, holes and electrons are generated, and the electrons and oxygen in the air react to generate O 2 (superoxide ion). Holes and water react to generate hydroxy radicals. These active species have strong oxidizing power and oxidatively decompose organic substances.

例えば、光触媒活性を有する半導体微粒子(光触媒微粒子)を有機バインダー中に分散して組成物を調製し、これを基材上に塗布して用いる方法が知られている。この光触媒微粒子を含む塗膜は、空気中の悪臭や有毒VOC(Volatile Organic Compound)の分解による空気浄化、塗膜の汚れの分解による表面汚染防止、さらには抗菌や防カビなど、屋内および屋外における環境浄化に非常に有用である。しかしながら、長期的には、その塗膜中の光触媒微粒子周辺の有機物も分解されてしまうので、塗膜劣化の問題がある。したがって、有機バインダーが光触媒微粒子に直接接触しないよう工夫する必要がある。   For example, a method is known in which semiconductor particles having photocatalytic activity (photocatalyst particles) are dispersed in an organic binder to prepare a composition, which is applied onto a substrate. The coating film containing the photocatalyst fine particles can be used indoors and outdoors, such as air purification by decomposition of bad odor and toxic VOC (Volatile Organic Compound) in the air, prevention of surface contamination by decomposition of the coating film, and antibacterial and antifungal properties. Very useful for environmental purification. However, in the long term, organic matter around the photocatalyst fine particles in the coating film is also decomposed, and there is a problem of coating film deterioration. Therefore, it is necessary to devise so that the organic binder does not directly contact the photocatalyst fine particles.

特許文献1には、光触媒微粒子を多孔質リン酸カルシウム膜で被覆することが記載されている。また、特許文献2には、光触媒微粒子をシリカ粒子の中に含有させることが記載されている。これらの方法によれば、有機バインダーの劣化抑制効果はある程度得られる。ただし、その被覆により光触媒性能が低下することがあり、また長期屋外曝露における有機バインダーの耐候性にはまだ課題が残されている。   Patent Document 1 describes that photocatalyst fine particles are coated with a porous calcium phosphate film. Patent Document 2 describes that photocatalyst fine particles are contained in silica particles. According to these methods, the organic binder deterioration suppressing effect can be obtained to some extent. However, the photocatalytic performance may be deteriorated by the coating, and a problem still remains in the weather resistance of the organic binder in long-term outdoor exposure.

特許文献3には、光触媒微粒子をシリカ、アルミナなどの無機物やフッ素樹脂などの有機物からなる多孔性被覆部で被覆することが記載されている。具体的には、金属アルコキシドを用いたゾル−ゲル法により光触媒微粒子を被覆する際にポリエチレングリコールなどの親水性ポリマーを添加し、被覆膜形成後に焼成することでこの多孔質被覆部を形成している。しかしながら、この方法では多孔質膜の細孔直径を精密に制御することが難しく、比較的大きな径の細孔に有機バインダーが侵入し易く、その結果、有機バインダーの耐候性が低下する場合がある。
特開平10−244166号公報 特開平11−33100号公報 特開平11−197515号公報
Patent Document 3 describes that photocatalyst fine particles are coated with a porous coating portion made of an inorganic material such as silica or alumina, or an organic material such as a fluororesin. Specifically, when the photocatalyst fine particles are coated by a sol-gel method using a metal alkoxide, a hydrophilic polymer such as polyethylene glycol is added, and this porous coating is formed by baking after forming the coating film. ing. However, with this method, it is difficult to precisely control the pore diameter of the porous membrane, and the organic binder tends to enter into pores having a relatively large diameter, and as a result, the weather resistance of the organic binder may be reduced. .
Japanese Patent Laid-Open No. 10-244166 Japanese Patent Laid-Open No. 11-33100 JP-A-11-197515

本発明は、以上説明した課題を解決すべくなされたものである。すなわち、本発明の目的は、十分な光触媒性能を示し、かつ有機バインダーなどの媒体中に光半導体微粒子を分散した場合においてその媒体が劣化し難く、その結果、従来のものよりも耐候性が遥かに優れた塗膜等を形成できる光半導体微粒子の製造方法を提供することにある。 The present invention has been made to solve the above-described problems. That is, the object of the present invention is to show sufficient photocatalytic performance, and when the photo semiconductor fine particles are dispersed in a medium such as an organic binder, the medium is not easily deteriorated. As a result, the weather resistance is far higher than that of the conventional one. It is to provide a method of manufacturing an optical semiconductor fine particles capable of forming an excellent coating film or the like.

本発明者は鋭意検討を行った結果、光半導体微粒子を特定の多孔質シリカ膜により被覆することにより、十分な光触媒活性を維持しつつ、耐候性も優れた塗膜が得られることを見い出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a coating film having excellent weather resistance can be obtained while maintaining sufficient photocatalytic activity by coating the photo semiconductor fine particles with a specific porous silica film, The present invention has been completed.

発明は、0.5nm〜10nmの細孔直径を有する多孔質シリカ膜で被覆された光半導体微粒子を製造する為の方法であって、
少なくとも界面活性剤水溶液と、水溶性有機溶剤とを1〜10℃で混合して混合溶液を調製する工程と、
1〜10℃で、光半導体微粒子およびアルコキシシランを前記混合溶液に添加し、撹拌することにより、該光半導体微粒子の表面に膜を形成する工程と、
該膜で被覆された光半導体微粒子を焼成することにより、多孔質シリカ膜を形成する工程と
を含むことを特徴とする光半導体微粒子の製造方法である。
The present invention is a method for producing optical semiconductor fine particles coated with a porous silica film having a pore diameter of 0.5 nm to 10 nm,
Mixing at least a surfactant aqueous solution and a water-soluble organic solvent at 1 to 10 ° C. to prepare a mixed solution;
Adding a photo semiconductor fine particle and alkoxysilane to the mixed solution at 1 to 10 ° C. and stirring to form a film on the surface of the photo semiconductor fine particle; and
A step of forming a porous silica film by firing the photo-semiconductor fine particles coated with the film;
A method for producing optical semiconductor fine particles.

さらに本発明は、上記本発明の方法により製造された光半導体微粒子を有機バインダー中に分散する工程を含むコ−ティング用組成物の製造方法である。 Furthermore, this invention is a manufacturing method of the composition for coating including the process of disperse | distributing the optical semiconductor fine particle manufactured by the method of the said invention in an organic binder.

さらに本発明は、上記本発明の方法により製造されたコ−ティング用組成物を基材上に塗布し、熱または活性エネルギー線により乾燥、硬化する工程を含む被膜の製造方法である。 Furthermore, this invention is a manufacturing method of the film including the process of apply | coating the coating composition manufactured by the method of the said invention on a base material, and drying and hardening | curing with a heat | fever or an active energy ray.

本発明の方法により製造される多孔質シリカ膜で被覆された光半導体微粒子は、有機バインダーなどの媒体中に分散された場合でもその媒体が劣化し難い。その結果、従来のものよりも耐候性が遥かに優れた塗膜等を形成できる。また、本発明の方法により製造される多孔質シリカ膜で被覆された光半導体微粒子は、十分な光触媒性能を示す。したがって、光触媒活性を利用する用途、例えば、空気中の悪臭や有毒VOCの分解などによる空気浄化、家庭及び工業廃水のBOD(Biochemical Oxygen Demand)分解処理による水浄化、塗膜の汚れの分解による表面汚染防止、さらには抗菌や防カビなどを目的とする用途において非常に有用である。 The optical semiconductor fine particles coated with the porous silica film produced by the method of the present invention are unlikely to deteriorate even when dispersed in a medium such as an organic binder. As a result, it is possible to form a coating film having much better weather resistance than conventional ones. In addition, the photo-semiconductor fine particles coated with the porous silica film produced by the method of the present invention exhibit sufficient photocatalytic performance. Therefore, applications using photocatalytic activity, for example, air purification by decomposition of bad odors and toxic VOCs in the air, water purification by BOD (Biochemical Oxygen Demand) decomposition treatment of household and industrial wastewater, surface by decomposition of coating film dirt It is very useful in applications for the purpose of preventing contamination, as well as antibacterial and antifungal.

さらに、光半導体微粒子の製造方法は、そのような優れた光半導体微粒子を簡易且つ良好に製造できる方法である。   Furthermore, the manufacturing method of the optical semiconductor fine particles is a method capable of easily and satisfactorily manufacturing such excellent optical semiconductor fine particles.

<光半導体微粒子>
本発明における光半導体微粒子は、例えば、UVランプ、ブラックライト、蛍光灯、太陽光などの光により光触媒活性を示すものであればよく、その触媒活性成分の種類について特に制限はない。触媒活性成分の具体例としては、TiO2、ZnO、SrTiO3、CdS、GaP、InP、GaAs、BaTiO3、KNbO3、Fe23、Ta25、WO3、SnO2、Bi23、NiO、Cu2O、SiC、SiO2、MoS2、InPb、RuO2、CeO2、LaTaON2、MTaO2N(M:アルカリ土類金属)、Ta35、TaON、LaTiO2N、TiNx2-X、TiNxyz、およびMNbO2N(M:アルカリ土類金属)などのニオブ系の化合物が挙げられる。また、酸化チタン微粒子にナノスケールの金属超微粒子を担持した可視光に応答する材料を用いることもできる。これらの中でも、耐久性、コスト、光触媒活性の観点から、酸化チタン(TiO2)を主成分とする光半導体微粒子が好ましく、酸化チタン微粒子の中でも特にアナターゼ型酸化チタン微粒子が好ましい。
<Optical semiconductor fine particles>
The photo-semiconductor fine particles in the present invention are not particularly limited as long as they exhibit photocatalytic activity by light such as UV lamp, black light, fluorescent lamp, and sunlight, for example. Examples of catalytically active components, TiO 2, ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3, KNbO 3, Fe 2 O 3, Ta 2 O 5, WO 3, SnO 2, Bi 2 O 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2 , LaTaON 2 , MTaO 2 N (M: alkaline earth metal), Ta 3 N 5 , TaON, LaTiO 2 N, TiN x O 2-X, TiN x O y F z, and MNbO 2 N: include compounds niobium-based, such as (M alkaline earth metal). In addition, a material that responds to visible light in which nanoscale metal ultrafine particles are supported on titanium oxide fine particles can also be used. Among these, from the viewpoint of durability, cost, and photocatalytic activity, photo semiconductor fine particles mainly composed of titanium oxide (TiO 2 ) are preferable, and among the titanium oxide fine particles, anatase-type titanium oxide fine particles are particularly preferable.

光半導体の粒子径は、1nm〜300nmが好ましく、10nm〜100nmがより好ましい。粒子径が適度に大きければ、多孔質シリカ膜で被覆する際に溶剤で1次粒子に分散し易くなる。また、粒子径が適度に小さければ、表面積が大きくなり、光触媒活性が向上する。   The particle diameter of the optical semiconductor is preferably 1 nm to 300 nm, and more preferably 10 nm to 100 nm. If the particle diameter is moderately large, it becomes easy to disperse into primary particles with a solvent when coating with a porous silica film. Moreover, if a particle diameter is moderately small, a surface area will become large and photocatalytic activity will improve.

<多孔質シリカ膜>
本発明の光半導体微粒子は、特定の多孔質シリカ膜で被覆されたものである。この光半導体微粒子は、個々の微粒子が独立してその膜で被覆されているものであるから、例えばシリカ粒子の中に光触媒微粒子が含有されているものや、あるいは複数の微粒子の被覆部分が一体化して分離が困難な状態のものは含まれない。
<Porous silica membrane>
The optical semiconductor fine particles of the present invention are those coated with a specific porous silica film. These photo semiconductor fine particles are those in which individual fine particles are independently coated with the film. For example, silica fine particles containing photocatalyst fine particles, or a plurality of fine particle coated portions are integrated. It does not include those that are difficult to separate.

多孔質シリカ膜の細孔直径は、0.5nm〜10nmである。これが0.5nm未満であると、分解すべき有機物が細孔内へ侵入し難くなり、分解性能が不十分になる。また、これが10nmを超えると、有機バインダーの分子セグメントも侵入し易くなってしまうので、有機バインダーが劣化し、塗膜の耐候性が不十分になる。この細孔直径は、さらに0.5nm〜3nmであることが好ましい。このような細孔直径の揃ったシリカ膜は、後に詳述する製造方法により簡易かつ良好に製造することができる。   The pore diameter of the porous silica membrane is 0.5 nm to 10 nm. If this is less than 0.5 nm, it becomes difficult for the organic matter to be decomposed to enter the pores and the decomposition performance becomes insufficient. On the other hand, if it exceeds 10 nm, the molecular segment of the organic binder easily penetrates, so that the organic binder is deteriorated and the weather resistance of the coating film becomes insufficient. The pore diameter is preferably 0.5 nm to 3 nm. Such a silica film having a uniform pore diameter can be easily and satisfactorily manufactured by a manufacturing method described in detail later.

多孔質シリカ膜の細孔直径は、定容量法によるガス吸着法により測定した値である。細孔直径0.5〜1nmの場合はt−プロットによるマイクロポア解析により、また細孔直径1〜10nmの場合は、BJH法で解析することにより細孔径分布曲線を求め、そのピークを細孔直径とすることが出来る。   The pore diameter of the porous silica film is a value measured by a gas adsorption method using a constant volume method. When the pore diameter is 0.5 to 1 nm, the pore distribution curve is obtained by micropore analysis using a t-plot, and when the pore diameter is 1 to 10 nm, the BJH method is used to obtain the pore diameter distribution curve. It can be a diameter.

多孔質シリカ膜の厚さは、好ましくは1nm〜300nm、より好ましくは1nm〜100nm、特に好ましくは2nm〜100nmである。
多孔質シリカ膜をある程度厚くすれば、有機バインダーが膜を浸透して光半導体微粒子へ達することがなくなり、有機バインダーの劣化を避けることができる。また、適度に薄くすれば、分解すべき有機物が細孔を通って光半導体微粒子へ達し易くなるので、十分な分解性能が得られる。
The thickness of the porous silica film is preferably 1 nm to 300 nm, more preferably 1 nm to 100 nm, and particularly preferably 2 nm to 100 nm.
If the porous silica film is made thick to some extent, the organic binder does not penetrate the film and reach the optical semiconductor fine particles, and deterioration of the organic binder can be avoided. Further, if the thickness is appropriately reduced, the organic matter to be decomposed can easily reach the optical semiconductor fine particles through the pores, so that sufficient decomposition performance can be obtained.

<製造方法>
本発明の多孔質シリカ膜で被覆された光半導体微粒子の製造方法においては、特定の成分と、光半導体微粒子及びアルコキシシランを含む溶液を、特定温度で撹拌することにより光半導体微粒子の表面に膜を形成し、その膜で被覆された光半導体微粒子を焼成することにより多孔質シリカ膜を形成する。
<Manufacturing method>
In the method for producing optical semiconductor fine particles coated with the porous silica film of the present invention, a film containing a specific component, a solution containing the optical semiconductor fine particles and the alkoxysilane is stirred on the surface of the optical semiconductor fine particles at a specific temperature. A porous silica film is formed by firing the photo-semiconductor fine particles coated with the film.

具体的には、少なくとも界面活性剤水溶液と、水溶性有機溶剤とを1〜10℃で混合して混合溶液を調製する工程と、1〜10℃以下で、光半導体微粒子およびアルコキシシランをその混合溶液に添加し、撹拌することにより、光半導体微粒子の表面に膜を形成する工程と、その膜で被覆された光半導体微粒子を焼成することにより多孔質シリカ膜を形成する工程とを含む方法である。以下、この方法について説明する。 Specifically, a step of preparing a mixed solution by mixing at least a surfactant aqueous solution and a water-soluble organic solvent at 1 to 10 ° C. , and mixing the photo semiconductor fine particles and alkoxysilane at 1 to 10 ° C. or lower It was added to the solution by stirring, by a method comprising the steps of forming a film on the surface of the optical semiconductor fine particles, and forming a porous silica film by baking the optical semiconductor particles coated with the film There is . Hereinafter, this method will be described.

まず、少なくとも界面活性剤水溶液と、水溶性有機溶剤とを室温以下の特定温度で混合して混合溶液を調製する。   First, at least a surfactant aqueous solution and a water-soluble organic solvent are mixed at a specific temperature below room temperature to prepare a mixed solution.

界面活性剤水溶液には、通常は、陽イオン性界面活性剤を用いる。陽イオン性界面活性剤としては、特に、アルキルトリメチルアンモニウム塩等の4級アンモニウム塩が好ましい。水溶性有機溶剤としては、通常は、メタノール、エタノール等のアルコール溶剤を用いる。特に、メタノールが好ましい。さらに、pH調整剤(例えばアンモニア水、アミンの溶液等)も一緒に混合して、混合溶液のpHを調整することが好ましい。   In the surfactant aqueous solution, a cationic surfactant is usually used. As the cationic surfactant, a quaternary ammonium salt such as an alkyltrimethylammonium salt is particularly preferable. As the water-soluble organic solvent, alcohol solvents such as methanol and ethanol are usually used. In particular, methanol is preferable. Furthermore, it is preferable to adjust the pH of the mixed solution by mixing together a pH adjusting agent (for example, ammonia water, an amine solution, etc.).

次に、室温以下の特定温度で、光半導体微粒子およびアルコキシシランをその混合溶液に添加し、撹拌することにより、光半導体微粒子の表面に膜を形成する。この膜は、アルコキシシランに起因するシリカ成分を主成分として成るシリカ膜である。   Next, a film is formed on the surface of the optical semiconductor fine particles by adding the optical semiconductor fine particles and the alkoxysilane to the mixed solution at a specific temperature below room temperature and stirring them. This film is a silica film mainly composed of a silica component derived from alkoxysilane.

光半導体微粒子の具体例は、先に挙げた通りである。アルコキシシランとしては、例えば、テトラアルコキシシラン、フェニルトリアルコキシシラン等が挙げられる。特に、テトラアルコキシシランが好ましい。   Specific examples of the optical semiconductor fine particles are as described above. Examples of the alkoxysilane include tetraalkoxysilane and phenyltrialkoxysilane. In particular, tetraalkoxysilane is preferable.

この撹拌は、例えば、混合溶液に超音波を掛けて振動させることにより行うことができる。撹拌時間は特に制限されず、2〜6時間程度撹拌するとよい。   This stirring can be performed, for example, by applying ultrasonic waves to the mixed solution and vibrating it. The stirring time is not particularly limited, and stirring may be performed for about 2 to 6 hours.

以上の各工程において、溶液温度は1〜10℃にすることが必要である。この温度が高過ぎると被覆微粒子同士が凝集し易くなり、個々の微粒子が独立して膜で被複された光半導体微粒子を得難くなる。この温度は、特に好ましくは2℃〜5℃である。混合時間は各成分が均一に混合されるに十分な時間であればよく、特に制限はない。通常は、数時間〜24時間撹拌である。
In each of the above steps, the solution temperature needs to be 1 to 10 ° C. If this temperature is too high, the coated fine particles are likely to aggregate and it becomes difficult to obtain optical semiconductor fine particles in which individual fine particles are independently coated with a film. This temperature is preferably 2 ° C. to 5 ° C., especially. The mixing time is not particularly limited as long as it is sufficient to uniformly mix the components. Usually, stirring is performed for several hours to 24 hours.

次に、以上のようにして被膜を形成した光半導体微粒子を混合溶液中から取り出し、洗浄することが好ましい。具体的には、例えば光半導体微粒子を遠心分離により回収し、それをメタノール等の溶剤にて洗浄し、さらに遠心分離を数回繰り返すとよい。   Next, it is preferable to remove the optical semiconductor fine particles on which the film has been formed as described above from the mixed solution and wash it. Specifically, for example, the photo semiconductor fine particles may be collected by centrifugation, washed with a solvent such as methanol, and further centrifuged several times.

次に、その回収、洗浄した光半導体微粒子を焼成することにより、細孔直径の揃った多孔質シリカ膜を形成する。焼成温度は、300℃〜600℃程度が好ましく、焼成時間は、数時間から数十時間が好ましい。このような焼成により、膜中の界面活性剤が除去されて、いわゆるメソポーラスシリカ膜で被覆された光半導体微粒子が得られる。   Next, the recovered and washed photo-semiconductor fine particles are baked to form a porous silica film having a uniform pore diameter. The firing temperature is preferably about 300 ° C. to 600 ° C., and the firing time is preferably several hours to several tens of hours. By such firing, the surfactant in the film is removed, and the optical semiconductor fine particles coated with the so-called mesoporous silica film are obtained.

<コ−ティング用組成物>
本発明の多孔質シリカ膜で被覆された光半導体微粒子は、各種のバインダー中に分散してなるコ−ティング用組成物として非常に有用である。そのバインダーの種類は特に制限されず、従来よりこの用途において知られる各種の有機重合体、有機/無機複合有機重合体および無機重合体を広く用いることが出来る。特に有機バインダーの具体例としては、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、アミノ樹脂、繊維素樹脂、ポリ塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン樹脂、アミノ硬化性樹脂、イソシアネート硬化性樹脂、酸エポキシ硬化性樹脂、加水分解性シラン硬化性樹脂、水酸基エポキシ基硬化性樹脂、ヒドラジン硬化性樹脂等が挙げられる。
<Coating composition>
The photo semiconductor fine particles coated with the porous silica film of the present invention are very useful as a coating composition dispersed in various binders. The kind of the binder is not particularly limited, and various organic polymers, organic / inorganic composite organic polymers, and inorganic polymers that have been conventionally known in this application can be widely used. Specific examples of the organic binder include acrylic resin, fluororesin, polyester resin, alkyd resin, epoxy resin, phenol resin, polyurethane resin, amino resin, fiber resin, polyvinyl chloride resin, vinyl acetate resin, polyethylene resin, amino acid. Examples thereof include curable resins, isocyanate curable resins, acid epoxy curable resins, hydrolyzable silane curable resins, hydroxyl group epoxy group curable resins, and hydrazine curable resins.

本発明のコ−ティング用組成物は、例えば、その組成物を基材上に塗布し、熱または活性エネルギー線により乾燥、硬化して被膜を形成する用途に使用される。この被膜は光半導体微粒子に起因する光触媒性能を十分発現するので、光触媒活性を利用する用途に非常に有用である。しかも、有機バインダーが劣化し難いので、被膜の耐候性にも優れている。   The coating composition of the present invention is used, for example, in applications where the composition is applied onto a substrate, dried and cured with heat or active energy rays to form a coating. Since this coating sufficiently exhibits the photocatalytic performance caused by the photo semiconductor fine particles, it is very useful for applications utilizing photocatalytic activity. In addition, since the organic binder is not easily deteriorated, the weather resistance of the film is also excellent.

<実施例1>
セチルトリメチルアンモニウムクロリド(界面活性剤)0.211g、水7.7g、メタノール200ml、および、アンモニア水7.2gを、モル比1:1935:7505:180にて混合し、3℃にて1日撹拌した。次いで、酸化チタン微粒子(Degussa社製、商品名P−25)200mgを加え、さらにテトラエトキシシラン0.368ml(モルCTAC/Si比=0.4)加え、3℃でさらに3時間撹拌することによって、酸化チタン微粒子の表面に被膜を形成した。
<Example 1>
Cetyltrimethylammonium chloride (surfactant) 0.211 g, water 7.7 g, methanol 200 ml, and aqueous ammonia 7.2 g were mixed at a molar ratio of 1: 1935: 7505: 180 and treated at 3 ° C. for 1 day. Stir. Next, 200 mg of titanium oxide fine particles (Degussa, trade name P-25) was added, 0.368 ml of tetraethoxysilane (molar CTAC / Si ratio = 0.4) was added, and the mixture was further stirred at 3 ° C. for 3 hours. A film was formed on the surface of the titanium oxide fine particles.

次いで、その混合溶液を遠心分離(3500rpmで3分)することにより、膜で被覆された酸化チタン微粒子を回収した。さらに、回収した微粒子にメタノールを適量加えて撹拌し、再度遠心分離により分離する操作を3回繰り返して、微粒子を洗浄した。   Next, the mixed solution was centrifuged (3500 rpm for 3 minutes) to recover the titanium oxide fine particles coated with the membrane. Further, the operation of adding an appropriate amount of methanol to the collected fine particles, stirring, and separating again by centrifugation was repeated three times to wash the fine particles.

この洗浄後の微粒子を60℃で1日乾燥させた。さらに、空気雰囲気下で1時間当たり150℃の昇温スピードで加温し、その後350℃で10時間焼成を行うことにより、本発明の多孔質シリカ膜で被覆された酸化チタン微粒子を得た。   The washed fine particles were dried at 60 ° C. for 1 day. Furthermore, the titanium oxide fine particles covered with the porous silica film of the present invention were obtained by heating in an air atmosphere at a heating rate of 150 ° C. per hour and then performing firing at 350 ° C. for 10 hours.

得られた微粒子を定容式ガス吸着にて測定し、BJH法で解析(前処理:真空中で120℃、3時間乾燥)したところ、約2nmがピークの細孔直径を有する多孔質体であることが分かった。また、この微粒子は比表面積が180m2/gであった。この値は酸化チタン(P−25)の比表面積が40m2/gであることから、酸化チタンと多孔質シリカが複合されていることが分かった。 The obtained fine particles were measured by constant volume gas adsorption and analyzed by the BJH method (pretreatment: dried at 120 ° C. in vacuum for 3 hours). As a result, a porous body having a peak pore diameter of about 2 nm was obtained. I found out. The fine particles had a specific surface area of 180 m 2 / g. This value indicates that titanium oxide (P-25) has a specific surface area of 40 m 2 / g, so that titanium oxide and porous silica are composited.

図1は、このような工程にて得た酸化チタン微粒子の透過型電子顕微鏡写真である。ここに示されるように、個々の酸化チタン微粒子は約2.5nm厚の多孔質シリカ膜にて被覆されていた。以上のことから、本発明の多孔質シリカ膜で被覆された光半導体微粒子を製造できたことが確認された。   FIG. 1 is a transmission electron micrograph of titanium oxide fine particles obtained by such a process. As shown here, each titanium oxide fine particle was covered with a porous silica film having a thickness of about 2.5 nm. From the above, it was confirmed that the optical semiconductor fine particles coated with the porous silica film of the present invention could be produced.

<実施例2>
界面活性剤として、セチルトリメチルアンモニウムクロリドの代わりに、オクタデシルトリメチルアンモニウムブロミドを等モル用いたこと以外は、実施例1と同様にして酸化チタン微粒子を多孔質シリカ膜で被覆した。その結果、実施例1と同様な多孔質シリカ膜で被覆された光半導体微粒子が得られた。
<Example 2>
Titanium oxide fine particles were coated with a porous silica film in the same manner as in Example 1 except that an equimolar amount of octadecyltrimethylammonium bromide was used instead of cetyltrimethylammonium chloride as a surfactant. As a result, optical semiconductor fine particles coated with the same porous silica film as in Example 1 were obtained.

<実施例3>
各成分の配合量のうち、セチルトリメチルアンモニウムクロリドを0.422g、水を15.4g、テトラエトキシシランを0.736ml(モルCTAC/Si比=0.4)に変更したこと以外は、実施例1と同様にして酸化チタン微粒子を多孔質シリカ膜で被覆した。その結果、実施例1と同様な多孔質シリカ膜(ただし膜厚約5nm)で被覆された光半導体微粒子が得られた。
<Example 3>
In Examples, except for changing the amount of each component to 0.422 g of cetyltrimethylammonium chloride, 15.4 g of water, and 0.736 ml of tetraethoxysilane (molar CTAC / Si ratio = 0.4). In the same manner as in Example 1, titanium oxide fine particles were coated with a porous silica film. As a result, optical semiconductor fine particles coated with the same porous silica film as in Example 1 (however, the film thickness was about 5 nm) were obtained.

<実施例4>
界面活性剤として、セチルトリメチルアンモニウムクロリドの代わりに、ドデシルメチルアンモニウムクロリドを等モル用いたこと以外は、実施例1と同様にして酸化チタン微粒子を多孔質シリカ膜で被覆した。その結果、実施例1と同様な多孔質シリカ膜で被覆された光半導体微粒子が得られた。
<Example 4>
Titanium oxide fine particles were coated with a porous silica film in the same manner as in Example 1 except that an equimolar amount of dodecylmethylammonium chloride was used instead of cetyltrimethylammonium chloride as a surfactant. As a result, optical semiconductor fine particles coated with the same porous silica film as in Example 1 were obtained.

<比較例>
混合溶液の撹拌を室温(28℃)にて行ったこと以外は、実施例1と同様にして酸化チタン微粒子を多孔質シリカ膜で被覆した。得られた粉体を透過型電子顕微鏡で観察したところ、多孔質シリカが均一に被覆されていなかった。
<Comparative example>
Except that the mixed solution was stirred at room temperature (28 ° C.), titanium oxide fine particles were coated with a porous silica film in the same manner as in Example 1. When the obtained powder was observed with a transmission electron microscope, the porous silica was not uniformly coated.

<評価試験1>
実施例1で得た多孔質シリカ被覆酸化チタン微粒子の光触媒活性を調べる為に、以下の通り、ホルムアルデヒドの光触媒分解性を酸化チタン微粒子(P−25)と比較した。
<Evaluation test 1>
In order to examine the photocatalytic activity of the porous silica-coated titanium oxide fine particles obtained in Example 1, the photocatalytic decomposability of formaldehyde was compared with that of titanium oxide fine particles (P-25) as follows.

まず、多孔質シリカ被覆酸化チタン微粒子1.2g(酸化チタン約1.0g含有)を直径8cmガラスシャーレに広げ、5L容量のガスバック(テドラーバッグ)に入れて密閉した。その中へ1ppmホルムアルデヒドガスを導入し、室温、暗所において、ブラックライトで365nmでの露光強度が1mW/cm2となるよう照射し、1時間後のホルムアルデヒド濃度を測定した。また、被覆されていない酸化チタン微粒子(P−25)1.0gも同様にして試験を行い比較した。 First, 1.2 g of porous silica-coated titanium oxide fine particles (containing about 1.0 g of titanium oxide) were spread on a glass petri dish having a diameter of 8 cm and sealed in a 5 L capacity gas bag (Tedlar bag). 1 ppm formaldehyde gas was introduced into it, and it was irradiated with a black light at room temperature in the dark so that the exposure intensity at 365 nm was 1 mW / cm 2, and the formaldehyde concentration after 1 hour was measured. Further, 1.0 g of uncoated titanium oxide fine particles (P-25) were similarly tested and compared.

その結果、実施例1で得た多孔質シリカ被覆酸化チタン微粒子では、ホルムアルデヒド濃度が0.17ppm、被覆されていない酸化チタン微粒子では0.13ppmとなり、ほぼ同等の光触媒活性を示すことが確認できた。   As a result, it was confirmed that the porous silica-coated titanium oxide fine particles obtained in Example 1 had a formaldehyde concentration of 0.17 ppm, and the uncoated titanium oxide fine particles were 0.13 ppm, indicating almost the same photocatalytic activity. .

<評価試験2>
実施例1で得た多孔質シリカ被覆酸化チタン微粒子の耐候性を調べる為に、以下の通り、その耐候性について酸化チタン(P−25)と比較した。
<Evaluation Test 2>
In order to examine the weather resistance of the porous silica-coated titanium oxide fine particles obtained in Example 1, the weather resistance was compared with titanium oxide (P-25) as follows.

まず、多孔質シリカ被覆酸化チタン微粒子1.6gを、分散剤(商品名BYK−190)1%の水溶液8.1gに分散し、48%アクリルエマルション21.5gを加えてコーティング用組成物とした。このコーティング用組成物を、アルミ基板にアプリケータにて150μm厚塗布し、乾燥して被膜とした。また、被覆されていない酸化チタン微粒子(P−25)についても同様にしてコーティング用組成物を調製し、被膜を形成した。   First, 1.6 g of porous silica-coated titanium oxide fine particles were dispersed in 8.1 g of a 1% aqueous solution of a dispersant (trade name BYK-190), and 21.5 g of a 48% acrylic emulsion was added to form a coating composition. . This coating composition was applied to an aluminum substrate with a thickness of 150 μm by an applicator and dried to form a coating. In addition, a coating composition was prepared in the same manner for uncoated titanium oxide fine particles (P-25) to form a film.

次に、これら被膜に対してサンシャインウエザーメーター(水スプレイ12分/UV照射48分)により、20時間耐候試験を行った。その結果、試験後の塗膜の光沢保持率について、実施例1で得た多孔質シリカ被覆酸化チタン微粒子の場合は92%であるのに対し、被覆されていない酸化チタン微粒子の場合は80%であった。この結果から、本発明により耐候性の著しい向上が図られることが確認できた。   Next, these films were subjected to a 20-hour weather resistance test using a sunshine weather meter (water spray 12 minutes / UV irradiation 48 minutes). As a result, the gloss retention of the coating after the test was 92% in the case of the porous silica-coated titanium oxide fine particles obtained in Example 1, whereas it was 80% in the case of the uncoated titanium oxide fine particles. Met. From this result, it was confirmed that the weather resistance was significantly improved by the present invention.

本発明の多孔質シリカ被覆光半導体微粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of porous silica-coated optical semiconductor fine particles of the present invention.

Claims (5)

0.5nm〜10nmの細孔直径を有する多孔質シリカ膜で被覆された光半導体微粒子を製造する為の方法であって、
少なくとも界面活性剤水溶液と、水溶性有機溶剤とを1〜10℃で混合して混合溶液を調製する工程と、
1〜10℃で、光半導体微粒子およびアルコキシシランを前記混合溶液に添加し、撹拌することにより、該光半導体微粒子の表面に膜を形成する工程と、
該膜で被覆された光半導体微粒子を焼成することにより、多孔質シリカ膜を形成する工程と
を含むことを特徴とする光半導体微粒子の製造方法。
A method for producing optical semiconductor fine particles coated with a porous silica film having a pore diameter of 0.5 nm to 10 nm,
Mixing at least a surfactant aqueous solution and a water-soluble organic solvent at 1 to 10 ° C. to prepare a mixed solution;
Adding a photo semiconductor fine particle and alkoxysilane to the mixed solution at 1 to 10 ° C. and stirring to form a film on the surface of the photo semiconductor fine particle; and
A step of forming a porous silica film by firing the photo-semiconductor fine particles coated with the film;
The manufacturing method of the optical semiconductor fine particle characterized by including these.
多孔質シリカ膜の厚さが1nm〜300nmである請求項1記載の光半導体微粒子の製造方法2. The method for producing optical semiconductor fine particles according to claim 1, wherein the porous silica film has a thickness of 1 nm to 300 nm. 光半導体微粒子が酸化チタン微粒子である請求項1または2記載の光半導体微粒子の製造方法3. The method for producing photo semiconductor fine particles according to claim 1, wherein the photo semiconductor fine particles are titanium oxide fine particles. 請求項1〜3の何れか一項記載の方法により製造された光半導体微粒子を有機バインダー中に分散する工程を含むコ−ティング用組成物の製造方法 The manufacturing method of the composition for coating including the process of disperse | distributing the optical semiconductor fine particle manufactured by the method as described in any one of Claims 1-3 in an organic binder. 請求項記載の方法により製造されたコ−ティング用組成物を基材上に塗布し、熱または活性エネルギー線により乾燥、硬化する工程を含む被膜の製造方法A method for producing a coating film comprising the steps of: coating a coating composition produced by the method according to claim 4 on a substrate; and drying and curing with heat or active energy rays.
JP2006219919A 2006-08-11 2006-08-11 Method for producing optical semiconductor fine particles Expired - Fee Related JP5065636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219919A JP5065636B2 (en) 2006-08-11 2006-08-11 Method for producing optical semiconductor fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219919A JP5065636B2 (en) 2006-08-11 2006-08-11 Method for producing optical semiconductor fine particles

Publications (2)

Publication Number Publication Date
JP2008043848A JP2008043848A (en) 2008-02-28
JP5065636B2 true JP5065636B2 (en) 2012-11-07

Family

ID=39178096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219919A Expired - Fee Related JP5065636B2 (en) 2006-08-11 2006-08-11 Method for producing optical semiconductor fine particles

Country Status (1)

Country Link
JP (1) JP5065636B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087184B2 (en) * 2010-08-06 2012-11-28 Dic株式会社 One-pack type coating composition, photocatalyst used therefor, coating film thereof, and production method thereof
JP2013132632A (en) * 2011-12-27 2013-07-08 Toei Sangyo Kk Metal oxide catalyst carrier, and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615407B2 (en) * 1986-05-07 1994-03-02 株式会社資生堂 Optical semiconductor and its manufacturing method
JP2945926B2 (en) * 1996-04-17 1999-09-06 工業技術院長 Photocatalyst particles and method for producing the same
JPH11197515A (en) * 1998-01-07 1999-07-27 Sekisui Chem Co Ltd Functional material having photocatalytic activity
JPH11290692A (en) * 1998-04-06 1999-10-26 Agency Of Ind Science & Technol Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JP4531920B2 (en) * 2000-04-04 2010-08-25 岐阜県 Method for producing photocatalyst coated with porous ceramic coating

Also Published As

Publication number Publication date
JP2008043848A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
JP3454817B2 (en) Visible light responsive paints, coatings and articles
JP6053676B2 (en) Photocatalyst coating film and method for producing the same
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
WO1995015816A1 (en) Multi-functional material having photo-catalytic function and production method therefor
JP6352527B2 (en) Photocatalytic functional film and method for producing the same
CN100408184C (en) Photocatalytic material
JP6457077B2 (en) Visible light activated photocatalytic tile
WO2011040406A1 (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP6352526B2 (en) Photocatalytic functional film and method for producing the same
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP5065636B2 (en) Method for producing optical semiconductor fine particles
CN106964375B (en) Titanium oxide photocatalyst carrying iron compound
KR101677842B1 (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
JP2006089858A (en) Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same
JP6143168B2 (en) Photocatalyst coated body
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP2006136758A (en) Photocatalyst composition and photocatalyst member
KR20180055719A (en) Iron compound supported titanium oxide photocatalyst
JP2006136782A (en) Photocatalyst aluminum member
JP4148835B2 (en) Functional wood
JP2018039947A (en) Method for producing emulsion clear coating material
KR100715428B1 (en) Photocatalyst coating solution ? the manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees