[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5063274B2 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP5063274B2
JP5063274B2 JP2007245188A JP2007245188A JP5063274B2 JP 5063274 B2 JP5063274 B2 JP 5063274B2 JP 2007245188 A JP2007245188 A JP 2007245188A JP 2007245188 A JP2007245188 A JP 2007245188A JP 5063274 B2 JP5063274 B2 JP 5063274B2
Authority
JP
Japan
Prior art keywords
speed
motor
torque
vehicle
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007245188A
Other languages
Japanese (ja)
Other versions
JP2009077572A (en
Inventor
孝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007245188A priority Critical patent/JP5063274B2/en
Publication of JP2009077572A publication Critical patent/JP2009077572A/en
Application granted granted Critical
Publication of JP5063274B2 publication Critical patent/JP5063274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Description

本発明は鉄道車両用の電気車制御装置に関するものであり、特に空転制御に関する。 The present invention relates to an electric vehicle control device for a railway vehicle, and more particularly to idling control.

鉄道車両の推進制御装置として可変電圧可変周波数のインバータ装置で多相交流電動機を駆動する方式が一般化しつつある。鉄道車両では推進システムの如何に関わらず、いわゆる接線力の低下する現象によって空転や滑走が起き、一時的に推進力や制動力が得られないときがある。鉄道車両の推進制御装置はトルク制御系で構成するのが一般的であり、接線力が低下して空転状態になると車輪の回転速度および駆動源である電動機の回転速度が急激に上昇する。接線力は動輪とレールとの間に作用する推進力であり、通常の粘着状態では動輪の周速度と車両速度とは概略一致する。しかしレールと車輪の接触面に雨滴や雪等が介在し、粘着状態が保てなくなると、駆動源の電動機のトルクがレールに伝達されず、動輪周速度だけが上昇し、車両速度と動輪周速度に大きな差速度(すべり速度)が生じた、いわゆる空転状態となる。 As a propulsion control device for a railway vehicle, a method of driving a multiphase AC motor with an inverter device of variable voltage and variable frequency is becoming common. In railway vehicles, regardless of the propulsion system, there are cases where the so-called tangential force decreases, causing idling or gliding and temporarily preventing propulsion or braking. Generally, a propulsion control device for a railway vehicle is configured by a torque control system. When the tangential force is reduced and the vehicle is idling, the rotational speed of the wheels and the rotational speed of the electric motor as a drive source are rapidly increased. The tangential force is a propulsive force acting between the driving wheel and the rail, and in a normal adhesion state, the peripheral speed of the driving wheel and the vehicle speed substantially coincide with each other. However, if raindrops, snow, etc. intervene on the contact surface between the rail and the wheel, and the adhesive state cannot be maintained, the torque of the motor of the drive source is not transmitted to the rail, only the driving wheel peripheral speed increases, and the vehicle speed and the driving wheel peripheral This is a so-called idling state in which a large differential speed (sliding speed) occurs in the speed.

滑走の場合は車両速度に対して、動輪周速度だけが下降することであるが、以下の説明では簡素化のために空転側だけで記述する。
従来の交流電動機駆動システムでは、電動機の回転速度の変化率等から空転を空転開始直後に検知し、指令トルクを速やかに低減して電動機および車輪の回転速度が発散することを防止するのが通例である。
図2に従来の粘着制御方式を適用した電気車制御装置の一例をブロック図で示す。電動機21,22の回転速度は速度検出器31,32で検出し、速度演算部107で制御情報に変換し、空転検知部121でこれを時間微分して変化率信号とし、かつ空転検知レベルとして設定した値とを比較し、電動機回転速度の変化率が検知レベルを超えた時点で空転検知信号を出力する。空転検知信号は論理信号であり、粘着制御部120はこの空転検知信号を受けると指令トルクの引き下げ係数信号を所定の時系列で出力する。本例の指令トルクの引き下げ方法は前記引き下げ係数信号を本来の指令値100に係数乗算部110で乗算して指令値を操作する。図3は横軸に時間、縦軸を引き下げ係数とした引き下げ係数信号の一例である。
In the case of sliding, only the driving wheel peripheral speed decreases with respect to the vehicle speed, but in the following description, only the idle side is described for the sake of simplicity.
In conventional AC motor drive systems, it is common to detect idling immediately after the start of idling based on the rate of change in the rotational speed of the motor, etc., and quickly reduce the command torque to prevent the rotational speed of the motor and wheels from diverging. It is.
FIG. 2 is a block diagram showing an example of an electric vehicle control device to which a conventional adhesion control system is applied. The rotation speeds of the motors 21 and 22 are detected by the speed detectors 31 and 32, converted into control information by the speed calculation unit 107, and the idling detection unit 121 performs time differentiation to obtain a change rate signal, and the idling detection level. The set value is compared, and an idling detection signal is output when the rate of change of the motor rotation speed exceeds the detection level. The idling detection signal is a logic signal, and the adhesion control unit 120 outputs a command torque reduction coefficient signal in a predetermined time series when receiving the idling detection signal. In the command torque reduction method of this example, the command value is manipulated by multiplying the original command value 100 by the coefficient multiplier 110 with the reduction coefficient signal. FIG. 3 is an example of a reduction coefficient signal with time on the horizontal axis and the reduction coefficient on the vertical axis.

従来は前記、すべり速度とレールに伝達し得る接線力との関係は図4のようになると考えられていた。すなわちすべり速度が微少な領域で接線力は最大になり、それよりすべり速度が拡大すると、接線力は一方的に減少するとされていた。したがって従来の粘着制御では、すべり速度を極力小さくするような制御アルゴリズムが適用され、空転を検知した場合は速やかに指令トルクを引き下げていた。
特開平6−335106号公報
Conventionally, it has been considered that the relationship between the sliding speed and the tangential force that can be transmitted to the rail is as shown in FIG. That is, the tangential force is maximized in a region where the sliding speed is very small, and the tangential force is unilaterally reduced when the sliding speed is increased. Therefore, in the conventional adhesion control, a control algorithm for reducing the sliding speed as much as possible is applied, and when the idling is detected, the command torque is quickly reduced.
JP-A-6-335106

電動機の指令トルクは本来、車両を所定の加速度で運転するために設定されたものであるが、空転検知で指令トルクを引き下げるという上記粘着制御アルゴリズムによって、空転時には自ずと所定の加速度が得られない状態になる。 The command torque of the motor is originally set to drive the vehicle at a predetermined acceleration, but the predetermined acceleration cannot be obtained at the time of idling by the above-mentioned adhesion control algorithm that lowers the command torque by detecting the idling. become.

請求項1の発明によれば、交流電動機を駆動する電気車制御装置であって、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度を検知し、接線力が極大値を示す二つの前記差速度のうち、前記差速度が、大きい方の前記差速度(S0)以下の間は、トルク指令はそのままで通常のトルク制御を行い、大きい方の前記差速度(S0)を超えるときは、前記差速度の増大量に応じたトルク低減特性を付加したことを特徴とする。 According to the first aspect of the present invention, there is provided an electric vehicle control device for driving an AC electric motor , wherein the difference between the vehicle speed corresponding to the sliding speed of the wheel and the rail and the rotational speed of the electric motor is detected, and the tangential force has a maximum value. Of the two differential speeds shown, while the differential speed is less than or equal to the larger differential speed (S0), normal torque control is performed without changing the torque command, and the larger differential speed (S0) is set. When exceeding, a torque reduction characteristic corresponding to the increase amount of the differential speed is added.

発明によれば、交流電動機を駆動する請求項1記載の電気車制御装置であって、所定の前記差速度を前記差速度と前記車両速度の比率であるすべり率として制限目標値を設定することを特徴とする。
According to the present invention, the electric vehicle control device according to claim 1 for driving an AC motor, wherein the predetermined target speed is set as a slip ratio that is a ratio of the differential speed and the vehicle speed. It is characterized by that.

発明によれば、交流電動機を駆動する請求項1記載の電気車制御装置であって、
電動機回転速度が並列駆動する誘導電動機の平均値であることを特徴とする。

According to the present invention, the electric vehicle control device according to claim 1, which drives an AC motor,
The motor rotation speed is an average value of induction motors driven in parallel.

発明によれば、交流電動機を駆動する請求項1記載の電気車制御装置であって、
電動機回転速度が電動機電流と端子電圧指令または端子電圧検出値から演算して得
たことを特徴とする。
According to the present invention, the electric vehicle control device according to claim 1, which drives an AC motor,
The motor speed is obtained by calculating from the motor current and the terminal voltage command or terminal voltage detection value.

発明によれば、交流電動機を駆動する請求項1記載の電気車制御装置であって、
車両速度をT軸速度、またはATC装置 から得ることを特徴とする。
According to the present invention, the electric vehicle control device according to claim 1, which drives an AC motor,
The vehicle speed is obtained from a T-axis speed or an ATC device.

請求項7の発明によれば、交流電動機を駆動する請求項1記載の電気車制御装置であって、所定の前記差速度で制限目標値を設定する場合と所定の前記すべり率で制限目標値を設定する場合を車両速度領域で切換えてトルク制御をすることを特徴とする。 According to a seventh aspect of the present invention, in the electric vehicle control device according to the first aspect of the present invention, the alternating current motor is driven, and the limited target value is set when the limited target value is set at the predetermined differential speed and at the predetermined slip ratio. The torque control is performed by switching the case of setting in the vehicle speed region.

すなわち、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度
を検知し、この値が所定値以下の間は通常のトルク制御を行い、所定のトルク指令値
のままでは差速度の拡大が止まらない状態で、差速度の制限目標値との偏差に応じた
トルク低減特性を付加した粘着制御アルゴリズムを適用する。
That is, the difference speed between the vehicle speed corresponding to the sliding speed of the wheel and the rail and the motor rotation speed is detected, and normal torque control is performed while this value is less than or equal to a predetermined value. Adhesion control algorithm to which torque reduction characteristics are added according to the deviation of the differential speed from the target limit value is applied.

本発明は空転状態にあっても所定の車両加速度を得ることを可能にする電気車制御装
置を提供するものである。従来の粘着制御は図5の左側の接線力ピークを想定して、
すべり速度を極力小さくするように制御していた。本発明は図5右寄りの接線力を利
用可能にしたことで車両の加速度が確保でき、定時運行が可能になる。
The present invention provides an electric vehicle control device that makes it possible to obtain a predetermined vehicle acceleration even in an idling state. Conventional adhesion control assumes the tangential force peak on the left side of FIG.
The slip speed was controlled to be as small as possible. The present invention makes it possible to use the tangential force on the right side of FIG.

図1に本発明の粘着制御方式を適用した電気車制御装置をブロック図で示す。 FIG. 1 is a block diagram showing an electric vehicle control apparatus to which the adhesion control system of the present invention is applied.

図1は電気車制御装置1が交流電動機21,22を駆動するシステムの例である。インバータ制御部103は交流電動機のトルク分電流偏差と励磁分電流偏差とをそれぞれ極小になるように独立に制御する。各偏差は偏差演算部105および106で各指令値と実電流との偏差をそれぞれ演算したものである。トルク分電流指令と励磁分電流指令は電流指令発生部102の出力であり、トルク指令100と磁束指令101の指令入力から演算する。トルク指令100は電流指令発生部102に入力する手前で係数乗算部110を通過する。係数乗算部110は従来は、速やかな再粘着制御のためのトルク引下げを行う部位であったが、図1では、空転時のすべり速度の発散を防止するトルク指令操作部となる。
電流演算部104はインバータ制御部103から出力電圧の位相情報を得て、インバータ出力電流から実トルク分電流と実励磁分電流とにベクトル分解した各電流成分を出力する。すべり速度演算部109は車両速度4と動輪周速度との差速度を演算する。インバータ制御部103はトルク分電流偏差と励磁分電流偏差情報の他に、電動機の回転速度をインバータ出力周波数に換算した入力情報が必要である。
速度検出器31,32が電動機回転速度を検出し、速度演算部107は前記速度検出器31,32の出力信号の単位時間当りのパルス数等の検出量をインバータ出力周波数に換算する。電動機の回転速度の単位は通常[rad/sec]で表すがインバータ出力周波数に換算した場合の単位は[Hz]、後述するがこれを動輪周速度に換算する場合は[km/h]とする。速度演算部107の出力は様々に利用されるが、すべて比例関係にあり、各参照部でそれぞれの比例係数を乗じて用いるものとし、説明上はいずれも電動機実回転速度信号108とする。すべり速度信号は電動機回転速度信号108から求めた動輪周速度と車両速度4との差である。
本発明はすべり速度と接線力との関係が図5のようになる調査結果に基づくものである。従来方式との相違は、空転検知に当たる論理信号を作成しないことである。
空転発散防止部111はすべり速度信号が小さい間は、指令トルクを低減しないよう、出力の低減係数値を1.0とする。すべり速度が拡大して、より大きな接線力を期待できない領域に至った時点で、すべり速度に応じて空転発散防止部111は出力の低減係数値を1.0以下に下げ、接線力と電動機の出力トルクとのバランス状態を得て、すべり速度の発散を防止する。
すべり速度に応じた低減係数値とは 座標標記(すべり速度,低減係数値)に従えば、例えば図6に示すように、(S0,1.0)(S1,0.0)の2点を通る直線で表すような低減特性でよい。
FIG. 1 shows an example of a system in which the electric vehicle control device 1 drives the AC motors 21 and 22. The inverter control unit 103 independently controls the torque component current deviation and the excitation component current deviation of the AC motor to be minimized. Each deviation is obtained by calculating a deviation between each command value and the actual current by the deviation calculation units 105 and 106, respectively. The torque component current command and the excitation component current command are outputs of the current command generator 102, and are calculated from the command inputs of the torque command 100 and the magnetic flux command 101. The torque command 100 passes through the coefficient multiplier 110 before being input to the current command generator 102. The coefficient multiplying unit 110 has conventionally been a part for reducing the torque for quick re-adhesion control. However, in FIG. 1, the coefficient multiplying unit 110 is a torque command operating unit for preventing the divergence of the slip speed during idling.
The current calculation unit 104 obtains phase information of the output voltage from the inverter control unit 103, and outputs each current component obtained by vector decomposition from the inverter output current into an actual torque component current and an actual excitation component current. A sliding speed calculation unit 109 calculates a differential speed between the vehicle speed 4 and the driving wheel peripheral speed. In addition to the torque component current deviation and the excitation component current deviation information, the inverter control unit 103 needs input information obtained by converting the rotation speed of the motor into the inverter output frequency.
The speed detectors 31 and 32 detect the motor rotation speed, and the speed calculation unit 107 converts the detected amount such as the number of pulses per unit time of the output signals of the speed detectors 31 and 32 into the inverter output frequency. The unit of motor rotation speed is usually expressed in [rad / sec], but the unit when converted to the inverter output frequency is [Hz], and will be described below as [km / h] when converted to the peripheral speed of the driving wheel. . Although the output of the speed calculation unit 107 is used in various ways, they are all in a proportional relationship, and are used by multiplying the respective proportional coefficients by each reference unit. The slip speed signal is the difference between the moving wheel peripheral speed obtained from the motor rotation speed signal 108 and the vehicle speed 4.
The present invention is based on the result of investigation in which the relationship between the sliding speed and the tangential force is as shown in FIG. The difference from the conventional method is that a logic signal for detecting slipping is not created.
The idling prevention unit 111 sets the output reduction coefficient value to 1.0 so that the command torque is not reduced while the sliding speed signal is small. When the slip speed increases and reaches a region where a larger tangential force cannot be expected, the idling prevention unit 111 reduces the output reduction coefficient value to 1.0 or less according to the slip speed, and the tangential force and the motor output torque. The balance state is obtained, and the divergence of the sliding speed is prevented.
The reduction coefficient value corresponding to the sliding speed is represented by a straight line passing through two points (S0, 1.0) (S1, 0.0) as shown in FIG. 6, for example, according to the coordinate mark (sliding speed, reduction coefficient value). Such reduction characteristics are sufficient.

速度検出部107は図1では各電動機21,22のそれぞれの速度検出を行う構成を示す。従来の空転検知に当たる論理信号を必要としていた装置では、力行時に最小値、制動時は最大値あるいは力行と制動および(上り下り等の)進行方向に基づいて選択軸の切換えをしていたが、すべり速度の大きい状態を利用する場合は、速度の平均値を用いる方が推進力を確保し易い。
すなわち、並列駆動の一方の軸が空転して回転速度が上昇すると平均値も上昇し、インバータ出力周波数を上昇させる。平均値の上昇率は空転軸の上昇率より小さいため、空転軸のトルクは減少するが、非空転軸はインバータ出力周波数の上昇によってトルクが増大する。この空転軸と非空転軸の相反するトルクの過渡状態も、トルクの総和は片軸の空転前後でほとんど変化しないため、車両の推進力を維持する上では都合の良い状態となる。この状態でレールの継ぎ目を通過する際の瞬間的な回転速度ムラや片軸の微小空転で車両の加速性能を低下させることが防止できる。
全軸が空転した場合は、図5の接線力特性に則ったすべり速度で運転するために車両の加速性能を維持できる。
In FIG. 1, the speed detection unit 107 shows a configuration for detecting the speeds of the electric motors 21 and 22. In the conventional device that required a logic signal for detecting idling, the selected axis was switched based on the minimum value during power running, the maximum value during braking, or power running and braking and the traveling direction (such as going up and down). When using a state where the sliding speed is high, it is easier to secure the propulsive force by using the average speed value.
That is, when one of the parallel drive shafts idles and the rotational speed increases, the average value also increases, and the inverter output frequency is increased. Since the increase rate of the average value is smaller than the increase rate of the idle shaft, the torque of the idle shaft decreases, but the torque of the non-idle shaft increases as the inverter output frequency increases. The transient state of the contradictory torque between the idle shaft and the non-idle shaft is also convenient for maintaining the propulsive force of the vehicle because the total torque hardly changes before and after the idle rotation of one shaft. In this state, it is possible to prevent the acceleration performance of the vehicle from being deteriorated due to momentary rotational speed unevenness when passing through the rail joint or one-axis minute idling.
When all the shafts are idle, the acceleration performance of the vehicle can be maintained because the vehicle is driven at a sliding speed in accordance with the tangential force characteristics shown in FIG.

図7は速度センサを用いない電気車制御装置のブロック図である。図1の速度検出部31,32が省かれ、速度演算部107の入力をインバータ出力電流信号とインバータ出力電圧信号としている。電動機の回転速度は電圧・電流および電動機定数を用いて演算でき、さらに電動機を並列駆動する場合は、速度の演算結果は自ずと各電動機の平均値となる。したがって、速度センサを用いない電気車制御装置において本粘着制御方式を実現することは容易である。 FIG. 7 is a block diagram of an electric vehicle control apparatus that does not use a speed sensor. The speed detectors 31 and 32 in FIG. 1 are omitted, and the input of the speed calculator 107 is an inverter output current signal and an inverter output voltage signal. The rotation speed of the motor can be calculated using the voltage / current and the motor constant, and when the motors are driven in parallel, the calculation result of the speed is naturally an average value of each motor. Therefore, it is easy to realize this adhesion control method in an electric vehicle control device that does not use a speed sensor.

並列駆動する電動機の回転速度の平均値と車両速度の差がすべり速度である。車両速度は種々の方法で得られるが、編成内の車両システムの制御情報を利用する一方法としてATC装置の速度情報を外部に出力し、本発明であるところの電気車制御装置に取り込む方法が最もシンプルで信頼性の高いシステムを容易に構成できる。図8にATC用速度検出器とATC装置および制御信号伝送ラインの構成を示す。またT軸用速度検出器との位置関係も図8に示す。
通常、電気車制御装置以外で車両速度を検知する方法としては、車軸端に速度センサを装着する。かつ、選定する車軸も空転の影響を排除する目的でT軸(トレーラ車の軸)とし、滑走の影響を排除する目的でブレーキ力も他の軸より低減するなどの処置を講じる場合もある。ATC装置の速度情報を利用する具体的な手段としては、当該信号専用の艤装線を設けても、編成内に既設の車両制御情報伝送ラインに速度情報を追加してもよい。車両速度は元来数十mSのオーダーの変化は微小であるため、前記の伝送ラインに信号を付加することでも性能確保には十分である。
The difference between the average value of the rotational speeds of the motors driven in parallel and the vehicle speed is the sliding speed. The vehicle speed can be obtained by various methods. As one method of using the control information of the vehicle system in the train, there is a method of outputting the speed information of the ATC device to the outside and taking it into the electric vehicle control device according to the present invention. The simplest and most reliable system can be easily configured. FIG. 8 shows the configuration of the ATC speed detector, the ATC device, and the control signal transmission line. The positional relationship with the T-axis speed detector is also shown in FIG.
Usually, as a method of detecting the vehicle speed other than the electric vehicle control device, a speed sensor is attached to the end of the axle. In some cases, the selected axle is a T-axis (trailer axle) for the purpose of eliminating the effect of idling, and the brake force is also reduced from other axes for the purpose of eliminating the effect of sliding. As a specific means for using the speed information of the ATC device, a dedicated equipment line for the signal may be provided, or the speed information may be added to an existing vehicle control information transmission line in the train. Since the change in the order of several tens of mS is originally minute, the addition of a signal to the transmission line is sufficient to ensure the performance.

他の装置の信号に頼らず、制御装置の独立性が必要な場合は車両速度を電動機の回転速度から推定して求める。
前記のように電動機の回転速度を電圧・電流・電動機定数を用いて演算する方式は、従来の速度検出装置の出力周波数を計数する方式に比べ、データ更新周期を短くすることができる。これにより電動機の速度変化率の検知精度を高くすることができ、電動機の出力トルクを車輪および駆動系の慣性モーメント(設計的に既知である)を加速する成分と、レールに伝わって車両を加速する成分、すなわち接線力とに分離することが可能となる。図9に車両速度推定方法の実施例を示す。
車両用制御装置は停車状態からの起動も惰行状態からのトルク制御の投入も、ジャーク制御と称して、トルク指令を小さな値から徐々に増加させるのが一般的である。したがって投入直後は電動機の回転速度と車両速度とは一致していると見なせる。そしてジャーク制御でトルクが小さい期間内に電動機トルクと速度変化率から車両質量の推定を行う。ここで推定する車両質量は乗車率も勾配条件も含まれる。
加速度a=接線力f/推定質量m であり、車両速度vは加速度aを積分して得られる。
原理的にはこの車両質量の推定値と電動機の回転速度が急上昇した場合の接線力とから各制御装置単位で空転中の車両速度を推定することは可能であるが、粘着係数が極端に低下して編成全体に空転が拡大した最悪条件を考慮すると、車両質量は編成全体とし接線力も編成内のすべての制御装置の総和で扱う方が誤差が小さくなり望ましい。
編成内の制御装置の接線力の総和を得る方法の一例は、前記車両制御情報ラインに各制御装置の接線力情報を出力し、情報中央装置が総和を求めて各装置に対してこれを伝送すればよい。
別の実現手段として、例えば制御装置が編成内で2台であるなら、制御装置間で情報交換用の専用線を設け、互いに他方の接線力と自身の接線力の和を演算する方法でもよい。いずれにしろ、図10は接線力と車両質量を編成の総和として扱う場合の車両速度の推定方法の一例である。
When the independence of the control device is required without relying on signals from other devices, the vehicle speed is estimated from the rotational speed of the electric motor.
As described above, the method of calculating the rotation speed of the motor using the voltage, current, and motor constant can shorten the data update cycle compared to the method of counting the output frequency of the conventional speed detection device. This increases the detection accuracy of the speed change rate of the motor, accelerates the vehicle by transmitting the motor output torque to the wheels and the inertia of the drive system (known in design) and the rail. It is possible to separate the component into tangential force. FIG. 9 shows an embodiment of the vehicle speed estimation method.
In general, the vehicle control apparatus is called jerk control for both starting from a stopped state and turning on torque control from a coasting state, and gradually increases a torque command from a small value. Therefore, it can be considered that the rotational speed of the electric motor and the vehicle speed coincide with each other immediately after being turned on. Then, the mass of the vehicle is estimated from the motor torque and the speed change rate within a period in which the torque is small in the jerk control. The vehicle mass estimated here includes the boarding rate and the gradient condition.
Acceleration a = tangential force f / estimated mass m 2 The vehicle speed v is obtained by integrating the acceleration a.
In principle, it is possible to estimate the vehicle speed during idling for each control unit from the estimated value of the vehicle mass and the tangential force when the rotation speed of the motor suddenly increases, but the adhesion coefficient decreases extremely. In consideration of the worst condition that the idling has increased over the entire knitting, it is desirable that the vehicle mass is the entire knitting, and that the tangential force is handled by the sum of all the control devices in the knitting because the error is reduced.
An example of a method for obtaining the sum of the tangential forces of the control devices in the knitting is to output the tangential force information of each control device to the vehicle control information line, and the information central device determines the sum and transmits it to each device. do it.
As another realization means, for example, when there are two control devices in the knitting, a dedicated line for information exchange between the control devices may be provided, and the sum of the other tangential force and its own tangential force may be calculated. . In any case, FIG. 10 shows an example of a method for estimating the vehicle speed in the case where the tangential force and the vehicle mass are handled as the sum of the knitting.

車両速度と動輪周速度の差速度をすべり速度と称するが、すべり速度を車両速度で除した比率をすべり率という。図5に示すように接線力がピークを示すすべり速度は高速になるにしたがって大きくなる傾向にある。この傾向を制御に加味して、接線力をより有効に利用するには車両速度が高速になるにしたがって、すべり速度の発散防止のためのトルク低減特性のS0やS1の値を高速側に動かせばよい。すなわちすべり速度応じたトルク低減特性とは別にすべり率に応じたトルク低減特性を付加することで、高速域の加速特性を確保できる電気車制御装置が実現できる。 The difference speed between the vehicle speed and the peripheral speed of the driving wheel is referred to as a slip speed, and a ratio obtained by dividing the slip speed by the vehicle speed is referred to as a slip ratio. As shown in FIG. 5, the sliding speed at which the tangential force exhibits a peak tends to increase as the speed increases. Taking this tendency into account, in order to use the tangential force more effectively, the values of S0 and S1 of the torque reduction characteristics for preventing the divergence of the slip speed can be moved to the higher speed as the vehicle speed increases. That's fine. That is, by adding a torque reduction characteristic according to the slip rate in addition to the torque reduction characteristic according to the slip speed, an electric vehicle control device that can ensure acceleration characteristics in a high speed range can be realized.

上記の実施例で高速域のトルク低減特性をすべり率に応じた方法にすることを述べたが、低速域についてはすべり速度に応じた低減特性とする。したがって車両速度を参照して、所定の速度より低ければすべり速度による低減特性演算ブロック、所定の速度より高ければすべり率による低減特性演算ブロックを選択することで2つの制御方法を組み合わせることができる。以上の構成例を図11に示す。 In the above-described embodiment, the torque reduction characteristic in the high speed range is described as a method corresponding to the slip rate. Therefore, referring to the vehicle speed, the two control methods can be combined by selecting the reduction characteristic calculation block based on the slip speed if the speed is lower than the predetermined speed and the reduction characteristic calculation block based on the slip ratio if the speed is higher than the predetermined speed. An example of the above configuration is shown in FIG.

本願の交流電動機を駆動する電気車制御装置は、従来はレールと車輪のすべり状態を微小範囲に留めていたのに対して、雨滴等の付着で微小すべり状態では所定の接線力が確保できなくなっても、すべり範囲を拡大することで接線力を獲得するものであり、並列駆動を前提にする誘導電動機システムに対しても、個別制御が前提になる同期電動機システムに対しても実施可能である。 The electric vehicle control device for driving the AC motor of the present application has conventionally kept the sliding state of the rail and the wheel in a minute range, but it becomes impossible to secure a predetermined tangential force in the minute sliding state due to adhesion of raindrops or the like. However, the tangential force can be obtained by expanding the sliding range, and can be applied to induction motor systems that assume parallel drive as well as to synchronous motor systems that require individual control. .

本発明の実施例のブロック図Block diagram of an embodiment of the present invention 従来の制御方式のブロック図Block diagram of conventional control method 再粘着制御の係数パターンCohesive pattern for re-adhesion control すべり速度と接線力の関係例Example of relationship between sliding speed and tangential force すべり速度と接線力の関係例Example of relationship between sliding speed and tangential force トルク低減特性例Example of torque reduction characteristics 速度センサレス制御方式のブロック図Block diagram of speed sensorless control system 車両速度の取り込み例Example of capturing vehicle speed 車両速度演算の実施例Examples of vehicle speed calculation すべり率制御Slip rate control 低減特性演算ブロックの切換え機能を持つ制御例Control example with switching function of reduction characteristic calculation block

符号の説明Explanation of symbols

1 電気車制御装置
21 交流電動機
22 交流電動機
31 速度検出器
32 速度検出器
4 車両速度信号
100 トルク指令
101 磁束指令
102 電流指令発生部
103 インバータ制御部
104 電流演算部
105 トルク分電流偏差演算部
106 磁束分電流偏差演算部
107 速度演算部
108 電動機実回転速度信号
109 すべり速度演算部
110 係数乗算部
111 空転発散防止部
120 粘着制御部
121 空転検知部
122 信号選択器
123 切換信号
124 すべり率補正部
125 すべり率制御信号
126 速度領域判別部
130 速度センサレス電動機回転速度演算部
DESCRIPTION OF SYMBOLS 1 Electric vehicle control apparatus 21 AC motor 22 AC motor 31 Speed detector 32 Speed detector 4 Vehicle speed signal 100 Torque command 101 Magnetic flux command 102 Current command generation part 103 Inverter control part 104 Current calculation part 105 Torque component current deviation calculation part 106 Magnetic flux component current deviation calculation unit 107 Speed calculation unit 108 Electric motor actual rotation speed signal 109 Sliding speed calculation unit 110 Coefficient multiplication unit 111 Idling divergence prevention unit 120 Adhesion control unit 121 Idling detection unit 122 Signal selector 123 Switching signal 124 Slip rate correction unit 125 Slip Rate Control Signal 126 Speed Area Discriminating Unit 130 Speed Sensorless Motor Rotational Speed Calculation Unit

Claims (1)

交流電動機を駆動する電気車制御装置であって、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度を検知し、接線力が極大値を示す二つの前記差速度のうち、前記差速度が、大きい方の前記差速度(S0)以下の間は、トルク指令はそのままで通常のトルク制御を行い、大きい方の前記差速度(S0)を超えるとき、前記差速度の増大量に応じたトルク低減特性を付加したことを特徴とする電気車制御装置。 An electric vehicle control device for driving an AC motor, which detects a difference between a vehicle speed corresponding to a sliding speed of a wheel and a rail and a motor rotation speed, and the tangential force exhibits a maximum value, It said difference speed, between the differential velocity (S0) below the larger torque command performs normal torque control as is, when more than the differential velocity of the larger (S0) is increasing the differential velocity An electric vehicle controller characterized by adding torque reduction characteristics corresponding to a large amount.
JP2007245188A 2007-09-21 2007-09-21 Electric vehicle control device Expired - Fee Related JP5063274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245188A JP5063274B2 (en) 2007-09-21 2007-09-21 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245188A JP5063274B2 (en) 2007-09-21 2007-09-21 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2009077572A JP2009077572A (en) 2009-04-09
JP5063274B2 true JP5063274B2 (en) 2012-10-31

Family

ID=40612009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245188A Expired - Fee Related JP5063274B2 (en) 2007-09-21 2007-09-21 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP5063274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263745A (en) * 2009-05-11 2010-11-18 Toyo Electric Mfg Co Ltd Device for control of induction machine
JP5673938B2 (en) * 2011-01-18 2015-02-18 国立大学法人長岡技術科学大学 Electric vehicle control device
ITUB20159358A1 (en) * 2015-12-22 2017-06-22 Faiveley Transport Italia Spa Procedure for checking and recovering the adherence of the wheels of a controlled axle of a railway vehicle.
JP6841670B2 (en) * 2017-01-19 2021-03-10 東洋電機製造株式会社 Re-adhesion control device for electric cars

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336610A (en) * 1992-06-04 1993-12-17 Fuji Electric Co Ltd Readhesion controller for electric vehicle

Also Published As

Publication number Publication date
JP2009077572A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
KR101165554B1 (en) Controller for electric vehicle
JP4187058B1 (en) Electric vehicle wheel diameter measuring device
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
CN103303158B (en) The control setup of electric car
JP6540716B2 (en) Vehicle control apparatus and vehicle control method
JP5063274B2 (en) Electric vehicle control device
AU749036B2 (en) Controller of electric rolling stock
JP6589492B2 (en) Inverter control device
JP2002153088A (en) Method of inertia computation and drive device for motor
JP2001028804A (en) Motor controller for vehicle
JP5643271B2 (en) Method for detecting occurrence of idling and motor control device
JP2008148445A (en) Drive control device for railway vehicle
JP2009100603A (en) Electric vehicle controller
JP2000221207A (en) Apparatus for detecting travel speed
JP4818244B2 (en) Electric motor control device and re-adhesion control method
JP4969411B2 (en) Electric vehicle control device
JP5828452B2 (en) Electric vehicle control device
JP6730057B2 (en) Electric vehicle control device
JP2016092954A (en) Electric vehicle control apparatus and power conversion control apparatus
EP4380039A1 (en) Electric motor drive device, and electric motor drive method
JP2003274508A (en) Vehicle
JP6990112B2 (en) Re-adhesion control method and motor control device
JP6111779B2 (en) Control device for each wheel independent drive cart
RU2433055C2 (en) Electrically driven control device for railway car
JPH0454801A (en) Controller for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees