[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5061981B2 - Optical pulse tester and optical power stabilization method for optical pulse tester - Google Patents

Optical pulse tester and optical power stabilization method for optical pulse tester Download PDF

Info

Publication number
JP5061981B2
JP5061981B2 JP2008071275A JP2008071275A JP5061981B2 JP 5061981 B2 JP5061981 B2 JP 5061981B2 JP 2008071275 A JP2008071275 A JP 2008071275A JP 2008071275 A JP2008071275 A JP 2008071275A JP 5061981 B2 JP5061981 B2 JP 5061981B2
Authority
JP
Japan
Prior art keywords
optical
light receiving
receiving element
optical power
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071275A
Other languages
Japanese (ja)
Other versions
JP2009229082A (en
Inventor
憲典 松本
伸明 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008071275A priority Critical patent/JP5061981B2/en
Publication of JP2009229082A publication Critical patent/JP2009229082A/en
Application granted granted Critical
Publication of JP5061981B2 publication Critical patent/JP5061981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)

Description

本発明は、レーザ素子が被測定光ファイバに光パルスを出射し、この光パルスの戻り光を受光素子が受光し、この受光素子からの出力によって被測定光ファイバの測定を行なう光パルス試験器および光パルス試験器の光パワー安定化方法に関し、詳しくは、使用環境や経時変化によらず、光パルスの出力パワーの安定化を図る光パルス試験器および光パルス試験器の光パワー安定化方法に関するものである。   The present invention relates to an optical pulse tester in which a laser element emits an optical pulse to an optical fiber to be measured, a light receiving element receives a return light of the optical pulse, and measures the optical fiber to be measured by an output from the light receiving element. In particular, the optical power stabilization method of the optical pulse tester is intended to stabilize the output power of the optical pulse regardless of the use environment and the change over time, and the optical power stabilization method of the optical pulse tester. It is about.

光信号によってデータ通信等を行なう光通信システムでは、光信号を伝送する光ファイバを監視することが重要になっている。そして、光ファイバの敷設、保守等において光パルス試験器(以下、OTDR(Optical Time Domain Reflectometer)と略す)が用いられる。   In an optical communication system that performs data communication using an optical signal, it is important to monitor an optical fiber that transmits the optical signal. An optical pulse tester (hereinafter abbreviated as OTDR (Optical Time Domain Reflectometer)) is used for laying and maintaining optical fibers.

OTDRは、OTDRの入出射ポート(被測定対象の光ファイバが接続される光コネクタ端)から被測定光ファイバに対して繰り返し光パルスを出射し、被測定光ファイバからの反射光および後方散乱光のレベルおよび受光時間を測定することで、被測定光ファイバの断線、損失等の状態を測定する。   The OTDR repeatedly emits light pulses to the optical fiber to be measured from the input / output port of the OTDR (the optical connector end to which the optical fiber to be measured is connected), and the reflected light and the backscattered light from the optical fiber to be measured. By measuring the level and the light receiving time, the state of the optical fiber to be measured such as disconnection or loss is measured.

図4は、従来のOTDRの構成を示した図である(例えば、特許文献1、特許文献2参照)。図4において、被測定光ファイバF1は、被測定対象の光ファイバである。OTDR100は、被測定光ファイバF1が接続される入出射ポートの光コネクタCNを有し、この光コネクタCNから光パルスを被測定光ファイバF1に出射し、この光パルスの戻り光(反射光または後方散乱光)が光コネクタCNを介して入射される。   FIG. 4 is a diagram showing a configuration of a conventional OTDR (see, for example, Patent Document 1 and Patent Document 2). In FIG. 4, a measured optical fiber F1 is an optical fiber to be measured. The OTDR 100 has an input / output port optical connector CN to which the optical fiber to be measured F1 is connected. The optical pulse is emitted from the optical connector CN to the optical fiber to be measured F1, and the return light (reflected light or Backscattered light) is incident through the optical connector CN.

また、OTDR100は、駆動信号生成部1、レーザ素子駆動部2、レーザ素子3、方向性結合器4、受光部5、増幅部6、AD変換部7、信号処理部8、表示部9を有する。   The OTDR 100 includes a drive signal generator 1, a laser element driver 2, a laser element 3, a directional coupler 4, a light receiver 5, an amplifier 6, an AD converter 7, a signal processor 8, and a display 9. .

駆動信号生成部1は、レーザ素子3を駆動させるための駆動信号を生成する。レーザ素子駆動部2は、生成部1からの駆動信号に基づいてレーザ素子3を駆動させる。レーザ素子3は、駆動部2によって駆動され、光パルスを方向性結合器4に出射する。   The drive signal generation unit 1 generates a drive signal for driving the laser element 3. The laser element drive unit 2 drives the laser element 3 based on the drive signal from the generation unit 1. The laser element 3 is driven by the driving unit 2 and emits an optical pulse to the directional coupler 4.

方向性結合器4は、レーザ素子3からの光パルスを光コネクタCNに出射し、被測定光ファイバF1からの戻り光を受光部5に出射する。   The directional coupler 4 emits the light pulse from the laser element 3 to the optical connector CN, and emits the return light from the measured optical fiber F1 to the light receiving unit 5.

受光部5は、受光素子(例えば、アバランシェ・フォトダイオード(以下、APDと略す)5aを有し、方向性結合器4からの光をAPD5aで受光し、受光した光の光パワーに対応した電気信号を出力する。増幅部6は、受光部5からの電気信号を増幅して出力する。AD変換部7は、増幅部6からのアナログの電気信号をデジタルに変換して出力する。   The light-receiving unit 5 includes a light-receiving element (for example, an avalanche photodiode (hereinafter abbreviated as APD) 5a, receives light from the directional coupler 4 by the APD 5a, and performs an electrical operation corresponding to the optical power of the received light. The amplification unit 6 amplifies and outputs the electrical signal from the light receiving unit 5. The AD conversion unit 7 converts the analog electrical signal from the amplification unit 6 into a digital signal and outputs the digital signal.

信号処理部8は、駆動信号生成部1、駆動部2を介してレーザ素子3の光パルスの出力のタイミングを制御し、AD変換部7から電気信号が入力される。表示部9は、信号処理部8の処理結果を表示する。   The signal processing unit 8 controls the output timing of the optical pulse of the laser element 3 via the drive signal generation unit 1 and the drive unit 2, and an electric signal is input from the AD conversion unit 7. The display unit 9 displays the processing result of the signal processing unit 8.

このような装置の動作を説明する。
駆動信号生成部1が、信号処理部8からの指示に従って駆動信号を生成し、所定のタイミングで駆動部2にレーザ素子3を駆動させて光パルスを出射させる。
The operation of such an apparatus will be described.
The drive signal generation unit 1 generates a drive signal according to an instruction from the signal processing unit 8, and causes the drive unit 2 to drive the laser element 3 at a predetermined timing to emit an optical pulse.

そして、レーザ素子3から出射された光パルスが、方向性結合器4、光コネクタCNを経て、被測定光ファイバF1に入射する。被測定光ファイバF1内部では、レイリー散乱が発生し、その一部は光パルスの進行方向とは逆方向に進み後方散乱光としてOTDR100に戻ってくる。また、被測定光ファイバF1の接続点で発生するフレネル反射光もOTDR100に戻ってくる。   Then, the light pulse emitted from the laser element 3 enters the measured optical fiber F1 through the directional coupler 4 and the optical connector CN. Rayleigh scattering occurs inside the optical fiber F1 to be measured, and a part of it travels in the direction opposite to the traveling direction of the light pulse and returns to the OTDR 100 as backscattered light. Further, the Fresnel reflected light generated at the connection point of the measured optical fiber F1 also returns to the OTDR 100.

そして、被測定光ファイバF1からの戻り光が、光コネクタCN、方向性結合器4を経て受光部5に入射する。さらに、受光部5が、受光した入射光の光パワーに応じた大きさの電気信号に変換し、増幅部6に出力する。   Then, the return light from the measured optical fiber F1 enters the light receiving unit 5 through the optical connector CN and the directional coupler 4. Further, the light receiving unit 5 converts the received light into an electric signal having a magnitude corresponding to the optical power of the incident light and outputs the electric signal to the amplifying unit 6.

そして、増幅部6が、受光部5からの微弱な電気信号を、後段のAD変換部7の入力電圧範囲にまで増幅し、AD変換部7に出力する。さらに、AD変換部7が、所定のサンプリング周波数でアナログの電気信号をデジタルデータに変換して信号処理部8に出力する。   Then, the amplifying unit 6 amplifies the weak electric signal from the light receiving unit 5 to the input voltage range of the subsequent AD conversion unit 7 and outputs the amplified signal to the AD conversion unit 7. Further, the AD conversion unit 7 converts an analog electric signal into digital data at a predetermined sampling frequency and outputs the digital data to the signal processing unit 8.

そして、信号処理部8が、光パルスを出射させてから受光部5で受光するまでの時間から被測定光ファイバF1の距離測定、戻り光の光パワー測定を行ない、横軸を距離、縦軸を戻り光の光パワーとした測定結果を表示部9に表示する。さらに、信号処理部8が、距離と光パワーとの測定結果から、破断点、損失等の損失特性障害点を算出し、表示部9に表示する。   The signal processing unit 8 measures the distance of the measured optical fiber F1 and the optical power of the return light from the time from when the light pulse is emitted until it is received by the light receiving unit 5, the horizontal axis is the distance, and the vertical axis Is displayed on the display unit 9 as a result of measuring the optical power of the return light. Further, the signal processing unit 8 calculates a loss characteristic failure point such as a break point and a loss from the measurement result of the distance and the optical power, and displays it on the display unit 9.

また、戻り光の光パワーは非常に微弱なため、光パルスを繰り返し被測定光ファイバF1に出力し、複数回(例えば、数百〜数千回)の測定値を平均化することでノイズ低減を図っている。ここで、1回分の測定結果を得るには、光パルスを1回出射して受光するのではなく、複数回出射してこれらの測定値を平均化する必要がある。   Further, since the optical power of the return light is very weak, the optical pulse is repeatedly output to the optical fiber F1 to be measured, and the noise is reduced by averaging the measurement values a plurality of times (for example, several hundred to several thousand times). I am trying. Here, in order to obtain a measurement result for one time, it is necessary to average the measured values by emitting a plurality of times instead of emitting the light pulse once and receiving it.

特開平8−271753号公報JP-A-8-271753 特開平11−284573号公報Japanese Patent Laid-Open No. 11-284573

レーザ素子3が出力する光パルスの光パワーは、安定した大きさで出力する必要がある。すなわち、光パワーが安定しない場合、測定可能範囲(ダイナミックレンジ)が変化ししてしまうという問題があった。   The optical power of the optical pulse output from the laser element 3 needs to be output with a stable magnitude. That is, when the optical power is not stable, there is a problem that the measurable range (dynamic range) changes.

また、1回の測定中に各光パルスの光パワーが安定しない場合、ノイズ低減の効果も得られず、測定結果の波形(距離と光パワーの特性)にノイズが残ってしまうという問題があった。   In addition, if the optical power of each optical pulse is not stable during a single measurement, the effect of noise reduction cannot be obtained, and noise remains in the waveform of the measurement result (distance and optical power characteristics). It was.

さらに、同一の被測定光ファイバに対して同一の測定条件で連続測定をした場合、被測定光ファイバF1の損失特性に変化がないにもかかわらず、n回目の測定と(n+1)回目の測定で、表示画面上の波形(距離と光パワーの特性)が上下に変化してしまうという問題があった。   Further, when the same measurement optical fiber is continuously measured under the same measurement conditions, the nth measurement and the (n + 1) th measurement are performed even though the loss characteristic of the measurement optical fiber F1 is not changed. Therefore, there is a problem that the waveform (distance and optical power characteristics) on the display screen changes up and down.

すなわち、光ファイバの敷設、保守等のような短時間の測定においては、レーザ素子3の光パワーの絶対的な精度ももちろん必要だが、1回分の測定中における各光パルス間の光パワーの相対的な安定性、n回目と(n+1)回目との測定間における光パワーの相対的な安定性も非常に重要である。   That is, in the short-time measurement such as laying and maintenance of the optical fiber, the absolute accuracy of the optical power of the laser element 3 is of course required, but the relative optical power between the optical pulses during one measurement is measured. The relative stability of the optical power between the nth and (n + 1) th measurements is also very important.

一方、OTDR100は、被測定光ファイバF1の測定距離、距離分解能等の測定対象の状態に応じ、レーザ素子3の光パルス幅を数[ns]〜数十[μs]に可変している。そのため、測定中の戻り光の受光パワー、例えば、波高値をフィードバック制御することが困難であり、OTDR100の製造工場での出荷調整時(または校正時)にあらかじめ光パワーの大きさを設定し、この設定値でオープンループ制御していた。   On the other hand, the OTDR 100 varies the optical pulse width of the laser element 3 from several [ns] to several tens [μs] in accordance with the measurement target state such as the measurement distance and distance resolution of the measured optical fiber F1. For this reason, it is difficult to feedback control the received light power of the return light being measured, for example, the peak value, and the optical power is set in advance at the time of shipping adjustment (or calibration) at the manufacturing factory of the OTDR 100. Open loop control was performed with this set value.

しかしながら、工場調整時と大きく異なる環境下(例えば、調整時の基準温度と大きく異なる温度下)で使用された場合や、経時変化によって光パルスの光パワーが大きく変化し、測定中の光パワーの安定性が損なわれてしまう。すなわち、光パルス間の光パワーの相対的な安定性が悪くなるという問題があった。   However, when used in an environment that is significantly different from the factory adjustment (for example, at a temperature that is significantly different from the reference temperature at the time of adjustment), or the optical power of the optical pulse changes significantly with time, the optical power being measured Stability is lost. That is, there is a problem that the relative stability of the optical power between the optical pulses is deteriorated.

また、ペルチェ素子等を用いてレーザ素子3を温度調整する手段もあるが、温度調整機能を実現する構成は一般的に高価であり、消費電力も非常に大きくなる。そのた、光ファイバの敷設、保守等に用いられる携帯型(バッテリ駆動)の光パルス試験器には不向きであった。   There is also means for adjusting the temperature of the laser element 3 using a Peltier element or the like. However, the configuration for realizing the temperature adjustment function is generally expensive and consumes very much power. In addition, it is not suitable for a portable (battery-driven) optical pulse tester used for laying and maintaining optical fibers.

そこで本発明の目的は、使用環境や経時変化によらず、光パルスの出力パワーの安定化を図る光パルス試験器および光パルス試験器の光パワー安定化方法を実現することにある。   SUMMARY OF THE INVENTION An object of the present invention is to realize an optical pulse tester and an optical power stabilization method for an optical pulse tester that can stabilize the output power of an optical pulse regardless of the usage environment and changes over time.

請求項1記載の発明は、
レーザ素子が被測定光ファイバに光パルスを出射し、この光パルスの戻り光を受光素子が受光し、この受光素子からの出力によって前記被測定光ファイバの測定を行なう光パルス試験器において、
前記レーザ素子と前記被測定光ファイバとの間に設けられる内蔵光ファイバと、
所望の周期で前記受光素子の増倍度を設定する受光素子設定手段と、
この受光素子設定手段によって設定された増倍度における前記内蔵光ファイバの戻り光の光パワーを保持する比較値保持手段と、
この比較値保持手段の光パワーと前記受光素子設定手段の増倍度で新たに求めた光パワーとを比較し、前記レーザ素子が出射する光パルスの光パワーを変更させるレーザ素子設定手段と
を設けたことを特徴とするものである。
請求項2記載の発明は、請求項1記載の発明において、
比較値保持手段は、電源がオンされてから前記被測定光ファイバの測定が開始されるまでの間または被測定光ファイバの測定条件が変更されてから測定が開始されるまでの間に取得された前記内蔵光ファイバの戻り光の光パワーを保持することを特徴とするものである。
請求項3記載の発明は、請求項1または2記載の発明において、
受光素子設定手段は、前記受光素子の増倍度を1に設定することを特徴とするものである。
請求項4記載の発明は、請求項1または2記載の発明において、
前記受光素子の温度を検出する温度検出手段と、
前記受光素子の温度特性を記憶する記憶手段と
を設け、前記レーザ素子設定手段は、前記温度検出手段の温度と前記記憶手段の温度特性とによって前記内蔵光ファイバの戻り光の光パワーを補正することを特徴とするものである。
請求項5記載の発明は、
レーザ素子が被測定光ファイバに光パルスを出射し、この光パルスの戻り光を受光素子が受光し、この受光素子からの出力によって前記被測定光ファイバの測定を行なう光パルス試験器の光パワー安定化方法において、
受光素子設定手段が、前記受光素子を所定の増倍度に設定するステップと、
この所定の増倍度においてレーザ素子設定手段が、前記レーザ素子と前記被測定光ファイバとの間に設けられる内蔵光ファイバからの戻り光の光パワーをメモリに保持させるステップと、
所望の周期ごとに前記受光素子設定手段が、前記受光素子を再度所定の増倍度に設定するステップと、
この所定の増倍度においてレーザ素子設定手段が、前記内蔵光ファイバからの戻り光の光パワーと前記メモリの光パワーとを比較して、前記レーザ素子が出射する光パルスの光パワーを変更させるステップと
を有することを特徴とするものである。
The invention described in claim 1
In the optical pulse tester in which the laser element emits an optical pulse to the optical fiber to be measured, the light receiving element receives the return light of the optical pulse, and measures the optical fiber to be measured by the output from the light receiving element.
A built-in optical fiber provided between the laser element and the optical fiber to be measured;
A light receiving element setting means for setting a multiplication factor of the light receiving element at a desired cycle;
Comparison value holding means for holding the optical power of the return light of the built-in optical fiber at the degree of multiplication set by the light receiving element setting means,
A laser element setting means for comparing the optical power of the comparison value holding means with the optical power newly obtained by the multiplication factor of the light receiving element setting means, and for changing the optical power of the optical pulse emitted from the laser element; It is characterized by providing.
The invention according to claim 2 is the invention according to claim 1,
The comparison value holding means is acquired from when the power is turned on until the measurement of the measured optical fiber is started, or after the measurement condition of the measured optical fiber is changed and before the measurement is started. Further, the optical power of the return light of the built-in optical fiber is maintained.
The invention according to claim 3 is the invention according to claim 1 or 2,
The light receiving element setting means sets the multiplication factor of the light receiving element to 1.
The invention according to claim 4 is the invention according to claim 1 or 2,
Temperature detecting means for detecting the temperature of the light receiving element;
Storage means for storing the temperature characteristics of the light receiving element, and the laser element setting means corrects the optical power of the return light of the built-in optical fiber according to the temperature of the temperature detection means and the temperature characteristics of the storage means. It is characterized by this.
The invention according to claim 5
The optical power of an optical pulse tester in which the laser element emits an optical pulse to the optical fiber to be measured, the light receiving element receives the return light of the optical pulse, and measures the optical fiber to be measured by the output from the light receiving element. In the stabilization method,
A light receiving element setting means for setting the light receiving element to a predetermined multiplication factor;
A step of causing the laser element setting means to hold the optical power of the return light from the built-in optical fiber provided between the laser element and the optical fiber to be measured in the memory at the predetermined multiplication factor;
For each desired period, the light receiving element setting means sets the light receiving element again to a predetermined multiplication factor;
At this predetermined multiplication factor, the laser element setting means changes the optical power of the optical pulse emitted by the laser element by comparing the optical power of the return light from the built-in optical fiber with the optical power of the memory. And a step.

本発明によれば、以下の効果がある。
受光素子の増倍度が同一にされた状態でレーザ素子設定手段が、内蔵光ファイバからの光パワーを求め、この光パワーと比較値保持手段の光パワーとに基づいてレーザ素子の光パルスの光パワーを調整する。これにより、出荷調整時や校正時と異なる環境下での使用やレーザ素子に経時変化が生じていたとしても、光パワーの相対的な安定性を図ることができる。従って、使用環境や経時変化によらず、光パルスの出力パワーの安定化が図れ、被測定光ファイバを精度よく測定することができる。
The present invention has the following effects.
The laser element setting means obtains the optical power from the built-in optical fiber in a state where the multiplication factor of the light receiving element is the same, and based on this optical power and the optical power of the comparison value holding means, the optical pulse of the laser element is determined. Adjust the optical power. As a result, the relative stability of the optical power can be achieved even when used in an environment different from that at the time of shipment adjustment or at the time of calibration or even if the laser element has changed over time. Therefore, the output power of the optical pulse can be stabilized regardless of the use environment and changes with time, and the optical fiber to be measured can be accurately measured.

以下図面を用いて本発明の実施の形態を説明する。
図1は、本発明の一実施例を示した構成図である。ここで、図4と同一のものには同一符号を付し、説明を省略する。図1において、信号処理部8の代わりに信号処理部10が設けられる。また、方向性結合器4と光コネクタCNの間に内蔵光ファイバ20が設けられる。さらに、比較用の光パワーの値(以下、比較値と呼ぶ)を保持するメモリ30が新たに設けられる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. Here, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 1, a signal processing unit 10 is provided instead of the signal processing unit 8. A built-in optical fiber 20 is provided between the directional coupler 4 and the optical connector CN. Furthermore, a memory 30 for holding a comparison optical power value (hereinafter referred to as a comparison value) is newly provided.

信号処理部10は、APD設定手段11、レーザ素子設定手段12を有し、駆動信号生成部1に信号を出力し、AD変換部7からデジタルデータが入力され、デジタルデータに基づく測定結果、解析結果等を表示部9に表示する。また、信号処理部10は、受光部5の受光素子5aの増倍度、増幅部6の増幅度を変更する。さらに、信号処理部10は、メモリ30の比較値の読み書きを行なう。   The signal processing unit 10 includes an APD setting unit 11 and a laser element setting unit 12, outputs a signal to the drive signal generation unit 1, receives digital data from the AD conversion unit 7, and performs measurement results and analysis based on the digital data. The result and the like are displayed on the display unit 9. In addition, the signal processing unit 10 changes the multiplication factor of the light receiving element 5 a of the light receiving unit 5 and the amplification factor of the amplifying unit 6. Further, the signal processing unit 10 reads and writes the comparison value in the memory 30.

内蔵光ファイバ20は、いわゆるダミーファイバと呼ばれるものであり、方向性結合器4内の反射とOTDR100の入出射ポートの光コネクタCNの反射を分離するために内蔵されることが多い。なお、内蔵光ファイバ20の伝送損失特性、ファイバ長等は全て既知である。   The built-in optical fiber 20 is a so-called dummy fiber, and is often built in to separate the reflection in the directional coupler 4 and the reflection of the optical connector CN at the input / output port of the OTDR 100. The transmission loss characteristics, fiber length, etc. of the built-in optical fiber 20 are all known.

APD設定手段11は、特許請求の範囲の受光素子設定手段に相当し、受光部5の受光素子であるAPD5aの増倍度、増幅部6の増幅度を設定する。レーザ素子設定手段12は、APD設定手段11が設定した増倍度において、AD変換部7からのデジタルデータでダミーファイバ20の後方散乱光の光パワーを求めると共に、メモリ30の比較値を参照して駆動信号生成部1にフィードバック情報を出力する。   The APD setting means 11 corresponds to the light receiving element setting means in the claims, and sets the multiplication factor of the APD 5 a that is the light receiving element of the light receiving unit 5 and the amplification factor of the amplifying unit 6. The laser element setting unit 12 obtains the optical power of the backscattered light of the dummy fiber 20 from the digital data from the AD converter 7 at the multiplication factor set by the APD setting unit 11 and refers to the comparison value in the memory 30. Feedback information is output to the drive signal generator 1.

メモリ30は、特許請求の範囲の比較値保持手段に相当し、レーザ素子設定手段12が求めた比較値を保持する。   The memory 30 corresponds to the comparison value holding means in the claims, and holds the comparison value obtained by the laser element setting means 12.

このような装置の動作を説明する。
まず、通常の測定状態、すなわち、被測定光ファイバF1の測定から説明する。
ユーザからの測定条件に基づいて、信号処理部10のAPD設定手段11が、受光部5のAPD5aの増倍度、増幅部6の増幅度を設定し、信号処理部10が、駆動信号生成部1に光パルスのパルス幅、光パワー等の設定を行なう。
The operation of such an apparatus will be described.
First, the normal measurement state, that is, measurement of the measured optical fiber F1 will be described.
Based on the measurement conditions from the user, the APD setting means 11 of the signal processing unit 10 sets the multiplication factor of the APD 5a of the light receiving unit 5 and the amplification factor of the amplification unit 6, and the signal processing unit 10 sets the drive signal generation unit. 1 sets the pulse width, optical power, etc. of the optical pulse.

そして、駆動信号生成部1が、信号処理部10からの指示(タイミング信号)に従って駆動信号(電気のパルス信号)を生成し、駆動信号として駆動部2に出力する。そして、所定のタイミングで駆動部2が、駆動信号に基づいて駆動電流をレーザ素子3に出力して駆動させ、光パルスを出射させる。   Then, the drive signal generation unit 1 generates a drive signal (electric pulse signal) in accordance with an instruction (timing signal) from the signal processing unit 10 and outputs the drive signal to the drive unit 2 as a drive signal. Then, at a predetermined timing, the drive unit 2 outputs a drive current to the laser element 3 based on the drive signal and drives it to emit a light pulse.

そして、レーザ素子3から出射された光パルスが、方向性結合器4、ダミーファイバ20、光コネクタCNを経て、被測定光ファイバF1に入射する。被測定光ファイバF1内部では、レイリー散乱が発生し、その一部は光パルスの進行方向とは逆方向に進み後方散乱光としてOTDR100に戻ってくる。また、被測定光ファイバF1の接続点で発生するフレネル反射光もOTDR100に戻ってくる。   Then, the light pulse emitted from the laser element 3 enters the measured optical fiber F1 through the directional coupler 4, the dummy fiber 20, and the optical connector CN. Rayleigh scattering occurs inside the optical fiber F1 to be measured, and a part of it travels in the direction opposite to the traveling direction of the light pulse and returns to the OTDR 100 as backscattered light. Further, the Fresnel reflected light generated at the connection point of the measured optical fiber F1 also returns to the OTDR 100.

そして、被測定光ファイバF1からの戻り光が、光コネクタCN、ダミーファイバ20、方向性結合器4を経て受光部5に入射する。なお、ダミーファイバ20からの戻り光も受光部5に入射している。   Then, the return light from the measured optical fiber F 1 enters the light receiving unit 5 through the optical connector CN, the dummy fiber 20, and the directional coupler 4. Note that return light from the dummy fiber 20 is also incident on the light receiving unit 5.

そして、受光部5が、APD5aで戻り光を受光し、受光した戻り光の光パワーに応じた大きさの電気信号に変換し、増幅部6に出力する。   Then, the light receiving unit 5 receives the return light by the APD 5 a, converts it into an electric signal having a magnitude corresponding to the optical power of the received return light, and outputs it to the amplification unit 6.

さらに、増幅部6が、受光部5からの微弱な電気信号を、後段のAD変換部7の入力電圧範囲にまで増幅し、AD変換部7に出力する。さらに、AD変換部7が、所定のサンプリング周波数でアナログの電気信号をデジタルデータに変換して信号処理部10に出力する。   Further, the amplifying unit 6 amplifies the weak electric signal from the light receiving unit 5 to the input voltage range of the AD conversion unit 7 at the subsequent stage and outputs the amplified signal to the AD conversion unit 7. Further, the AD conversion unit 7 converts an analog electric signal into digital data at a predetermined sampling frequency and outputs the digital data to the signal processing unit 10.

そして、信号処理部10の光パワー演算手段(図示せず)が、光パルスを出射させてから受光部5で受光するまでの時間から被測定光ファイバF1の距離測定、戻り光の光パワー測定を行なう。さらに、信号処理部10が、横軸を距離、縦軸を戻り光の光パワーとした測定結果を表示部9に表示する。さらに、信号処理部10が、距離と光パワーとの測定結果から、破断点、損失等の損失特性障害点を算出し、表示部9に表示する。   Then, the optical power calculation means (not shown) of the signal processing unit 10 measures the distance of the optical fiber F1 to be measured and measures the optical power of the return light from the time from when the optical pulse is emitted until it is received by the light receiving unit 5. To do. Furthermore, the signal processing unit 10 displays the measurement result on the display unit 9 with the horizontal axis representing the distance and the vertical axis representing the optical power of the return light. Further, the signal processing unit 10 calculates loss characteristic failure points such as break points and losses from the measurement results of the distance and the optical power, and displays them on the display unit 9.

また、図1に示す装置では、ダミーファイバ20が内蔵されているので、信号処理部10は、ダミーファイバ20の部分を除去した波形を表示部9に表示するとよい。   In addition, since the dummy fiber 20 is built in the apparatus shown in FIG. 1, the signal processing unit 10 may display a waveform obtained by removing the dummy fiber 20 on the display unit 9.

また、戻り光の光パワーは非常に微弱なため、光パルスを繰り返し被測定光ファイバF1に出力し、複数回(例えば、数百〜数千回)の測定値を平均化することでノイズ低減を図っている。ここで、1回分の測定とは、光パルスを1回出射して受光した測定結果を得ることでなく、複数回の測定値を、同一距離の測定値同士で平均化し、距離と光パワーの測定結果を得るまでの測定をいう。   Further, since the optical power of the return light is very weak, the optical pulse is repeatedly output to the optical fiber F1 to be measured, and the noise is reduced by averaging the measurement values a plurality of times (for example, several hundred to several thousand times). I am trying. Here, the measurement for one time means not to obtain the measurement result of receiving and receiving the light pulse once, but to average the measurement values of a plurality of times between the measurement values of the same distance, and to calculate the distance and the optical power. This refers to measurement until a measurement result is obtained.

ここで、図2は、OTDR100における距離と戻り光の光パワーの波形を示した図である。横軸は距離であり、縦軸は戻り光の光パワーである。図2では、ダミーファイバ20からの戻り光も図示しているが、上述のように、表示部9に表示する波形としては、ダミーファイバ20の部分を除去し、入出射ポートの光コネクタCNを基準(距離=0[m])として表示するとよい。   Here, FIG. 2 is a diagram showing the distance and the optical power waveform of the return light in the OTDR 100. The horizontal axis is the distance, and the vertical axis is the optical power of the return light. In FIG. 2, the return light from the dummy fiber 20 is also illustrated. However, as described above, the waveform displayed on the display unit 9 is such that the dummy fiber 20 is removed and the optical connector CN of the input / output port is connected. It may be displayed as a reference (distance = 0 [m]).

続いて、光パワーを安定化させる動作を説明する。
大きく分けると二つの動作がある。一つ目は、光パワーの相対比較用に、比較用の基準となる光パワーの測定を行なう動作と、測定中に所定の周期でレーザ素子3の光パワーを調整して安定化させる動作である。
Next, an operation for stabilizing the optical power will be described.
There are two major actions. The first is an operation for measuring the optical power as a reference for comparison for relative comparison of optical power, and an operation for adjusting and stabilizing the optical power of the laser element 3 at a predetermined period during the measurement. is there.

ここで、図3は、OTDR100の通常測定および安定化用の測定を行なうパターンの一実施例を示している。横軸は時間である。なお、図3中の縦棒は、通常の測定用に光パルスが出射されていることを示している。通常、1回の測定で数百〜数千の光パルスが出射されるが、図中では簡略化している。   Here, FIG. 3 shows an example of a pattern for performing normal measurement and measurement for stabilization of the OTDR 100. The horizontal axis is time. Note that the vertical bars in FIG. 3 indicate that light pulses are emitted for normal measurement. Usually, several hundred to several thousand light pulses are emitted in one measurement, but are simplified in the figure.

比較用の光パワーを測定して比較値を取得するタイミングとしては、OTDR100の電源がONされて、1回目の測定が実行される前(図3の時刻t0)や、測定条件が変更された場合の測定前等(図3の時刻t6)に行なわれる。一方、レーザ素子3の光パワーの調整は、所定の周期Δtで行なわれ、n回目の測定中に繰返し出射される光パルスの合間(図3の時刻t1、t2、t4、t5、t7、t8)や、n回目と(n+1)回目の測定の合間(図3の時刻t3)に行なわれる。。   The timing for measuring the optical power for comparison and obtaining the comparison value is that the OTDR 100 is turned on and before the first measurement is performed (time t0 in FIG. 3) or the measurement conditions are changed. This is performed before the measurement or the like (time t6 in FIG. 3). On the other hand, the optical power of the laser element 3 is adjusted at a predetermined period Δt, and the interval between optical pulses repeatedly emitted during the n-th measurement (time t1, t2, t4, t5, t7, t8 in FIG. 3). ) Or between the n-th and (n + 1) -th measurements (time t3 in FIG. 3). .

光パルスの光パワーを相対的に安定化させる動作について、具体的に説明する。
測定開始の直前(時刻t0、t6)や、比較値を取得してから所定の周期Δt(例えば、数秒〜数分)ごと(時刻t1〜t5、t7〜t8)に信号処理部10のAPD設定手段11が、受光部5のAPD5aの増倍度を1に設定する。また、増幅部6の増幅度をあらかじめ調整用として定めておいた大きさに設定する。そして、APD設定手段11が、レーザ素子設定手段12、光パワー演算手段(図示せず)に対し、APD5aの増倍度を光パワー安定化用の増倍度に設定した旨を通知、すなわち通常の測定状態でなく、光パワー調整用の状態であることを通知する。
An operation for relatively stabilizing the optical power of the optical pulse will be specifically described.
APD setting of the signal processing unit 10 immediately before the start of measurement (time t0, t6) or every predetermined period Δt (for example, several seconds to several minutes) after obtaining the comparison value (time t1 to t5, t7 to t8) The means 11 sets the multiplication factor of the APD 5a of the light receiving unit 5 to 1. Further, the amplification degree of the amplifying unit 6 is set to a predetermined size for adjustment. Then, the APD setting means 11 notifies the laser element setting means 12 and the optical power calculation means (not shown) that the multiplication factor of the APD 5a is set to the multiplication factor for stabilizing the optical power, that is, normal It is notified that it is in the state for optical power adjustment instead of the measurement state.

ここで、APD5aの増倍度を1にするのは、APD5aは増倍度を1にした場合、環境下の影響を受けずに安定した特性、すなわち、温度特性がほとんどない安定した特性(光電変換の変換効率・受光感度、光電変換の直線性等)を示すからである。これは、APD5aに限らず、その他のフォトダイオードでも同様のことである。   Here, the multiplication factor of the APD 5a is set to 1. When the multiplication factor is 1, the APD 5a has a stable characteristic without being affected by the environment, that is, a stable characteristic with almost no temperature characteristic (photoelectric property). This is because it shows the conversion efficiency / light receiving sensitivity of conversion, linearity of photoelectric conversion, and the like. The same applies to other photodiodes as well as the APD 5a.

具体的には、APD5aへのバイアス電圧の大きさを変えることによって、APD5aの増倍度を調整する。増倍度Mは、例えば、M=1〜40(M=1が最小の増倍度)の範囲で変更可能であり、通常の測定状態では、増倍度M=30程度に設定されることが多い。   Specifically, the degree of multiplication of the APD 5a is adjusted by changing the magnitude of the bias voltage to the APD 5a. The multiplication factor M can be changed, for example, in a range of M = 1 to 40 (M = 1 is the smallest multiplication factor), and in a normal measurement state, the multiplication factor M is set to about 30. There are many.

そして、通常の測定と同様に、信号処理部10がタイミング信号を出力して、駆動信号生成部1が、駆動部2を介してレーザ素子3に光パルスを出射させる。光パルスのパルス幅、光パワーは、測定条件と同一でもよく、調整用にあらかじめ定めた設定値でもよい。   Then, as in normal measurement, the signal processing unit 10 outputs a timing signal, and the drive signal generation unit 1 causes the laser element 3 to emit light pulses via the drive unit 2. The pulse width and optical power of the optical pulse may be the same as the measurement conditions, or may be set values predetermined for adjustment.

さらに、レーザ素子3から出射された光パルスが、方向性結合器4を経て、ダミーファイバ20に入射する。そして、ダミーファイバ20からの戻り光が、方向性結合器4を経て受光部5に入射する。さらに、受光部5のAPD5aが戻り光を受光し、受光部5が、戻り光の光パワーに応じた大きさの電気信号に変換し、増幅部6に出力する。   Further, the light pulse emitted from the laser element 3 enters the dummy fiber 20 through the directional coupler 4. Then, the return light from the dummy fiber 20 enters the light receiving unit 5 through the directional coupler 4. Further, the APD 5 a of the light receiving unit 5 receives the return light, and the light receiving unit 5 converts the signal into an electric signal having a magnitude corresponding to the optical power of the return light, and outputs it to the amplification unit 6.

そして、増幅部6が、受光部5からの微弱な電気信号を所定の増幅度で増幅し、AD変換部7に出力する。さらに、AD変換部7が、所定のサンプリング周波数でアナログの電気信号をデジタルデータに変換して信号処理部10に出力する。   Then, the amplifying unit 6 amplifies a weak electric signal from the light receiving unit 5 with a predetermined amplification degree and outputs the amplified signal to the AD converting unit 7. Further, the AD conversion unit 7 converts an analog electric signal into digital data at a predetermined sampling frequency and outputs the digital data to the signal processing unit 10.

そして、信号処理部10の光パワー演算手段(図示せず)が、光パルスを出射させてから受光部5で受光するまでの時間から、ダミーファイバ20の部分で生じた戻り光の光パワーを求める。ダミーファイバ20の部分とは、ダミーファイバ20の所定の位置(例えば、長さ方向の中間付近であり、図2の”P1”の位置)のことである。さらに、信号処理部10の光パワー演算手段(図示せず)が、ダミーファイバ20の部分で生じた戻り光(後方散乱光等)の光パワーを求める。   Then, the optical power of the return light generated in the dummy fiber 20 is calculated from the time from when the optical power calculation means (not shown) of the signal processing unit 10 emits the optical pulse until it is received by the light receiving unit 5. Ask. The portion of the dummy fiber 20 refers to a predetermined position of the dummy fiber 20 (for example, a position near the middle in the length direction and the position of “P1” in FIG. 2). Furthermore, the optical power calculation means (not shown) of the signal processing unit 10 obtains the optical power of the return light (backscattered light or the like) generated in the dummy fiber 20 portion.

そして、時刻t0、t6における測定の場合、レーザ素子設定手段12が、光パワー演算手段(図示せず)の求めた光パワーを、比較用の光パワー(比較値)としてメモリ30に格納する。   In the case of measurement at times t0 and t6, the laser element setting unit 12 stores the optical power obtained by the optical power calculation unit (not shown) in the memory 30 as a comparison optical power (comparison value).

一方、時刻t1〜t5、t7〜t8の場合、レーザ素子設定手段12が、メモリ30から比較値を読み出し、光パワー演算手段(図示せず)の求めた光パワーと比較値と比較し、光パワーの差分を求める。もちろん、時刻t1〜t5で求めた光パワーは、時刻t0で求めた比較値で比較し、時刻t7〜t8で求めた光パワーは、時刻t6で求めた比較値で比較する。   On the other hand, at times t1 to t5 and t7 to t8, the laser element setting unit 12 reads the comparison value from the memory 30 and compares it with the optical power obtained by the optical power calculation unit (not shown) and the comparison value. Find the power difference. Of course, the optical power obtained at time t1 to t5 is compared with the comparison value obtained at time t0, and the optical power obtained at time t7 to t8 is compared with the comparison value obtained at time t6.

そして、レーザ素子設定手段12が、駆動信号生成部1に差分をなくすような駆動信号を生成させる。これによって、駆動信号生成部1が、次の光パルス(通常の測定における光パルス)の光パワーを差分情報に基づいて増減させる。   Then, the laser element setting unit 12 causes the drive signal generation unit 1 to generate a drive signal that eliminates the difference. Thereby, the drive signal generation unit 1 increases or decreases the optical power of the next optical pulse (optical pulse in normal measurement) based on the difference information.

そして、光パワーの安定化の調整終了後(メモリ30への比較値の格納後、または光パワーと比較値を比較してレーザ素子3の光パルスの光パワーの変更指示後)、APD設定手段11が、受光部5のAPD5aの増倍度、増幅部6の増幅度を、通常の測定状態、すなわち増倍度、増幅度を変更前の測定条件に戻し、通常の測定を再開する。   Then, after the adjustment of the stabilization of the optical power is completed (after the comparison value is stored in the memory 30 or after the instruction to change the optical power of the optical pulse of the laser element 3 by comparing the optical power with the comparison value), the APD setting means 11 returns the multiplication factor of the APD 5a of the light receiving unit 5 and the amplification factor of the amplification unit 6 to the normal measurement state, that is, the multiplication factor and the amplification factor to the measurement conditions before the change, and resumes normal measurement.

このように、レーザ素子設定手段12が、所定の周期でダミーファイバ20からの後方散乱光の光パワーを求め、同一増倍度の比較値と光パワーとを比較して差分を求める。そして、レーザ素子設定手段12が、求めた差分でレーザ素子3の光パルスの光パワーを調整するので、出荷調整時や校正時と異なる環境下での使用やレーザ素子3に経時変化が生じていたとしても、光パワーの相対的な安定性を図ることができる。これにより、使用環境や経時変化によらず、光パルスの出力パワーの安定化が図れ、被測定光ファイバを精度よく測定することができる。   As described above, the laser element setting unit 12 obtains the optical power of the backscattered light from the dummy fiber 20 at a predetermined period, and compares the comparison value of the same multiplication factor with the optical power to obtain the difference. Since the laser element setting means 12 adjusts the optical power of the optical pulse of the laser element 3 by the obtained difference, the laser element 3 is used in an environment different from that at the time of shipment adjustment or calibration, and the laser element 3 has changed over time. Even so, the relative stability of the optical power can be achieved. As a result, the output power of the optical pulse can be stabilized regardless of the usage environment and changes over time, and the optical fiber to be measured can be accurately measured.

また、APD設定手段11が、所定の周期ΔtでAPD5aの増倍度を1にし、この増倍度1におけるAPD5aの出力によって光パワーを調整を行なうので、APD5aの温度特性をほとんど受けない。   Further, since the APD setting means 11 sets the multiplication degree of the APD 5a to 1 at a predetermined period Δt and adjusts the optical power by the output of the APD 5a at the multiplication degree 1, the APD 5a hardly receives the temperature characteristics of the APD 5a.

そして、ペルチェ素子等を用いてレーザ素子3を温度調整する必要も無いので、装置の小型化(軽量化)、低消費電力、低コストとすることができ、特に携帯型(バッテリ駆動)の光パルス試験器に有用である。   Further, since there is no need to adjust the temperature of the laser element 3 using a Peltier element or the like, the apparatus can be reduced in size (weight reduction), reduced in power consumption, and reduced in cost, particularly in portable (battery driven) light. Useful for pulse testers.

なお、本発明はこれに限定されるものではなく、以下に示すようなものでもよい。
(1)受光素子としてAPD5aを用いる構成を示したが、どのような受光素子(例えば、Ge,InGaAs等)を用いてもよい。
The present invention is not limited to this, and may be as shown below.
(1) Although the configuration using the APD 5a as the light receiving element is shown, any light receiving element (for example, Ge, InGaAs, etc.) may be used.

(2)APD素子設定手段12が、APD5aの増倍度を1にし、この増倍度においてレーザ素子設定手段12が、比較値の取得およびダミーファイバ20の戻り光の光パワーと比較値との比較を行なう構成を示したが、APD素子設定手段12が、APD5aの増倍度を通常の測定状態と同じ増倍度(または所望の増倍度)に設定してもよい。 (2) The APD element setting means 12 sets the multiplication factor of the APD 5a to 1, and at this multiplication factor, the laser element setting means 12 obtains the comparison value and sets the optical power of the return light of the dummy fiber 20 and the comparison value. Although the configuration for comparison is shown, the APD element setting means 12 may set the multiplication factor of the APD 5a to the same multiplication factor (or a desired multiplication factor) as in the normal measurement state.

ただし、増倍度を1よりも大きくする場合、各増倍度におけるAPD5aの受光感度等の温度特性をあらかじめ実測(または計算)して求め、記憶手段に格納する。また、受光素子APD5aの温度を検出する温度検出手段を設ける。そして、光パワーの安定化を図る場合、レーザ素子設定手段12が、温度検出手段の温度と記憶手段の温度特性とによって、受光素子5aが受光した光パワーを補正して比較値を取得するとよい。さらに、所定の周期Δtで取得した光パワーに対しても、温度検出手段の温度と記憶手段の温度特性とで補正し、補正した光パワーと比較値(補正済み)とで比較を行なうとよい。   However, when the multiplication degree is larger than 1, the temperature characteristics such as the light receiving sensitivity of the APD 5a at each multiplication degree are obtained by actual measurement (or calculation) in advance and stored in the storage means. In addition, a temperature detecting means for detecting the temperature of the light receiving element APD5a is provided. When stabilizing the optical power, the laser element setting unit 12 may correct the optical power received by the light receiving element 5a according to the temperature of the temperature detecting unit and the temperature characteristic of the storage unit to obtain a comparison value. . Further, the optical power acquired at the predetermined period Δt may be corrected by the temperature of the temperature detecting unit and the temperature characteristic of the storage unit, and compared with the corrected optical power and the comparison value (corrected). .

(3)APD素子設定手段12が、同じ周期ΔtでAPD5aの増幅度を1にする構成を示したが、増倍度を1にする間隔は等間隔でなくともよい。 (3) The configuration in which the APD element setting unit 12 sets the amplification degree of the APD 5a to 1 in the same period Δt is shown, but the intervals at which the multiplication degree is set to 1 may not be equal.

(4)メモリ30に、比較値を保持させる構成を示したが、この比較値を時系列順に保持させ、レーザ素子設定手段12が、レーザ素子3の劣化の有無を判断してもよい。 (4) Although the configuration in which the comparison value is held in the memory 30 is shown, the comparison value may be held in chronological order, and the laser element setting unit 12 may determine whether the laser element 3 has deteriorated.

本発明の一実施例を示した構成図である。It is the block diagram which showed one Example of this invention. 距離と戻り光の光パワーとの関係の一例を示した図である。It is the figure which showed an example of the relationship between distance and the optical power of return light. 通常の測定および光パワー安定化用の測定を行なうパターンの一実施例を示した図である。It is the figure which showed one Example of the pattern which performs a normal measurement and the measurement for optical power stabilization. 従来の光パルス試験器の構成を示した図である。It is the figure which showed the structure of the conventional optical pulse tester.

符号の説明Explanation of symbols

1 レーザ素子
5a APD(受光素子)
11 APD設定手段(受光素子設定手段)
12 レーザ素子設定手段
20 ダミーファイバ(内蔵光ファイバ)
30 メモリ(比較値保持手段)
F1 被測定光ファイバ
1 Laser element 5a APD (light receiving element)
11 APD setting means (light receiving element setting means)
12 Laser element setting means 20 Dummy fiber (Built-in optical fiber)
30 memory (comparison value holding means)
F1 Optical fiber to be measured

Claims (5)

レーザ素子が被測定光ファイバに光パルスを出射し、この光パルスの戻り光を受光素子が受光し、この受光素子からの出力によって前記被測定光ファイバの測定を行なう光パルス試験器において、
前記レーザ素子と前記被測定光ファイバとの間に設けられる内蔵光ファイバと、
所望の周期で前記受光素子の増倍度を設定する受光素子設定手段と、
この受光素子設定手段によって設定された増倍度における前記内蔵光ファイバの戻り光の光パワーを保持する比較値保持手段と、
この比較値保持手段の光パワーと前記受光素子設定手段の増倍度で新たに求めた光パワーとを比較し、前記レーザ素子が出射する光パルスの光パワーを変更させるレーザ素子設定手段と
を設けたことを特徴とする光パルス試験器。
In the optical pulse tester in which the laser element emits an optical pulse to the optical fiber to be measured, the light receiving element receives the return light of the optical pulse, and measures the optical fiber to be measured by the output from the light receiving element.
A built-in optical fiber provided between the laser element and the optical fiber to be measured;
A light receiving element setting means for setting a multiplication factor of the light receiving element at a desired cycle;
Comparison value holding means for holding the optical power of the return light of the built-in optical fiber at the degree of multiplication set by the light receiving element setting means,
A laser element setting means for comparing the optical power of the comparison value holding means with the optical power newly obtained by the multiplication factor of the light receiving element setting means, and for changing the optical power of the optical pulse emitted from the laser element; An optical pulse tester provided.
比較値保持手段は、電源がオンされてから前記被測定光ファイバの測定が開始されるまでの間または被測定光ファイバの測定条件が変更されてから測定が開始されるまでの間に取得された前記内蔵光ファイバの戻り光の光パワーを保持することを特徴とする請求項1記載の光パルス試験器。   The comparison value holding means is acquired from when the power is turned on until the measurement of the measured optical fiber is started, or after the measurement condition of the measured optical fiber is changed and before the measurement is started. 2. The optical pulse tester according to claim 1, wherein the optical power of the return light of the built-in optical fiber is maintained. 受光素子設定手段は、前記受光素子の増倍度を1に設定することを特徴とする請求項1または2記載の光パルス試験器。   3. The optical pulse tester according to claim 1, wherein the light receiving element setting means sets a multiplication factor of the light receiving element to 1. 前記受光素子の温度を検出する温度検出手段と、
前記受光素子の温度特性を記憶する記憶手段と
を設け、前記レーザ素子設定手段は、前記温度検出手段の温度と前記記憶手段の温度特性とによって前記内蔵光ファイバの戻り光の光パワーを補正することを特徴とする請求項1または2記載の光パルス試験器。
Temperature detecting means for detecting the temperature of the light receiving element;
Storage means for storing the temperature characteristics of the light receiving element, and the laser element setting means corrects the optical power of the return light of the built-in optical fiber according to the temperature of the temperature detection means and the temperature characteristics of the storage means. The optical pulse tester according to claim 1 or 2, wherein
レーザ素子が被測定光ファイバに光パルスを出射し、この光パルスの戻り光を受光素子が受光し、この受光素子からの出力によって前記被測定光ファイバの測定を行なう光パルス試験器の光パワー安定化方法において、
受光素子設定手段が、前記受光素子を所定の増倍度に設定するステップと、
この所定の増倍度においてレーザ素子設定手段が、前記レーザ素子と前記被測定光ファイバとの間に設けられる内蔵光ファイバからの戻り光の光パワーをメモリに保持させるステップと、
所望の周期ごとに前記受光素子設定手段が、前記受光素子を再度所定の増倍度に設定するステップと、
この所定の増倍度においてレーザ素子設定手段が、前記内蔵光ファイバからの戻り光の光パワーと前記メモリの光パワーとを比較して、前記レーザ素子が出射する光パルスの光パワーを変更させるステップと
を有することを特徴とする光パルス試験器の光パワー安定化方法。
The optical power of an optical pulse tester in which the laser element emits an optical pulse to the optical fiber to be measured, the light receiving element receives the return light of the optical pulse, and measures the optical fiber to be measured by the output from the light receiving element. In the stabilization method,
A light receiving element setting means for setting the light receiving element to a predetermined multiplication factor;
A step of causing the laser element setting means to hold the optical power of the return light from the built-in optical fiber provided between the laser element and the optical fiber to be measured in the memory at the predetermined multiplication factor;
For each desired period, the light receiving element setting means sets the light receiving element again to a predetermined multiplication factor;
At this predetermined multiplication factor, the laser element setting means compares the optical power of the return light from the built-in optical fiber with the optical power of the memory, and changes the optical power of the optical pulse emitted from the laser element. An optical power stabilization method for an optical pulse tester.
JP2008071275A 2008-03-19 2008-03-19 Optical pulse tester and optical power stabilization method for optical pulse tester Active JP5061981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071275A JP5061981B2 (en) 2008-03-19 2008-03-19 Optical pulse tester and optical power stabilization method for optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071275A JP5061981B2 (en) 2008-03-19 2008-03-19 Optical pulse tester and optical power stabilization method for optical pulse tester

Publications (2)

Publication Number Publication Date
JP2009229082A JP2009229082A (en) 2009-10-08
JP5061981B2 true JP5061981B2 (en) 2012-10-31

Family

ID=41244674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071275A Active JP5061981B2 (en) 2008-03-19 2008-03-19 Optical pulse tester and optical power stabilization method for optical pulse tester

Country Status (1)

Country Link
JP (1) JP5061981B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118601B2 (en) * 2008-10-24 2013-01-16 アンリツ株式会社 Optical pulse tester
JP5672729B2 (en) 2010-03-15 2015-02-18 富士通株式会社 Optical transmission device, laser module, laser module failure detection method, and laser module failure detection program
JP5443517B2 (en) * 2012-01-06 2014-03-19 アンリツ株式会社 Light measuring device and method of using the light measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities
JPH1151808A (en) * 1997-07-30 1999-02-26 Ando Electric Co Ltd Measuring apparatus

Also Published As

Publication number Publication date
JP2009229082A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US9322721B2 (en) Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
JP6206348B2 (en) Optical fiber temperature distribution measuring device
US7744275B2 (en) Optical fiber temperature sensing device
JP4876735B2 (en) Optical pulse tester
JP2012027001A (en) Optical fiber temperature distribution measuring apparatus
US9952104B2 (en) Optical fiber temperature distribution measuring device
JP5061981B2 (en) Optical pulse tester and optical power stabilization method for optical pulse tester
CN102738694A (en) Method for realizing laser frequency stabilization by utilizing Fabry-Perot (F-P) interferometer
JP2009156718A (en) Optical pulse testing device
CN113203886A (en) Method for controlling gain and sensitivity of electro-optical probe
JP4334678B2 (en) Distance measuring device
JP2008286697A (en) Distributed optical fiber sensor
JP5515199B2 (en) Optical pulse test apparatus and adjustment method thereof
JP2011007618A (en) Light pulse test apparatus
JP5432885B2 (en) Optical pulse tester having automatic adjustment function of APD or method thereof
JP2008020229A (en) Light pulse tester
US20220326005A1 (en) Distributed Vibration Measuring Device and Method
JP5627848B2 (en) Optical pulse tester and optical pulse test method
JP3065833B2 (en) Temperature distribution detector
JP2009281813A (en) Optical fiber measuring device
JP5470891B2 (en) measuring device
JPH02309220A (en) Optical fiber-type distributed temperature measuring apparatus
JP5678452B2 (en) Laser gas analyzer
JP4037840B2 (en) Optical pulse tester
JPH0194236A (en) Light pulse tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3