[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5061817B2 - 光変調装置 - Google Patents

光変調装置 Download PDF

Info

Publication number
JP5061817B2
JP5061817B2 JP2007247784A JP2007247784A JP5061817B2 JP 5061817 B2 JP5061817 B2 JP 5061817B2 JP 2007247784 A JP2007247784 A JP 2007247784A JP 2007247784 A JP2007247784 A JP 2007247784A JP 5061817 B2 JP5061817 B2 JP 5061817B2
Authority
JP
Japan
Prior art keywords
light
modulation
phase difference
frequency
mach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007247784A
Other languages
English (en)
Other versions
JP2009080189A (ja
Inventor
猛 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2007247784A priority Critical patent/JP5061817B2/ja
Priority to PCT/JP2008/067309 priority patent/WO2009041509A1/ja
Publication of JP2009080189A publication Critical patent/JP2009080189A/ja
Application granted granted Critical
Publication of JP5061817B2 publication Critical patent/JP5061817B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は光変調装置に係り、特に強度変調のオンとオフの高い消光比を実現した光変調装置に関する。
光に信号を載せて光ファイバで伝送する光通信システムにおいて、光源から出射されたレーザ光を強度変調して光信号を生成する光強度変調器が利用されている。光強度変調器は、例えばニオブ酸リチウム(LiNbO;以下LNと略す)などの電気光学結晶の基板上に、マッハツェンダー型の光導波路と変調電極およびバイアス電極等を形成したものである。
マッハツェンダー型の光導波路は、入力された光を分岐する分岐部と、分岐された光を伝搬させる2つのアームと、アームを伝搬した光を再度合流させる合波部からなる導波路構成を有している。この合波部において、合流する2つの光が同位相である場合には光波が互いに強め合って出力されるオン状態となり、逆位相である場合には光波は互いに打ち消し合って出力光が無くなるオフ状態となる。オン状態の出力光強度とオフ状態の出力光強度の比は、消光比と呼ばれ、光強度変調器の性能を表す重要な指標である。そして、消光比が高い、すなわちオン状態とオフ状態の出力光強度の差が大きいほど、一般に変調深さが深くなり、高品質な光伝送を行うことが可能である。
ここで、最も理想的にはオフ状態における出力がゼロでありこの時消光比は無限大となるが、この状況を作り出すためには、合流する2つの光の強度が正確に一致している必要がある。しかし、通常は光導波路の製造誤差等により、分岐部の分岐の割合が等しくなかったり、2つのアームで伝搬損失が異なっていたりするため、合流した光は強度が非対称となっている。この場合、位相を逆位相としても2つの光は完全には打ち消し合わず、消光比が劣化してしまう。
合波部での光強度を対称とし消光比を向上させる方法として、例えば分岐パワーの大きい方のアームにエキシマレーザを照射し、導波路に欠陥を与えて損失を増やすことでもう一方のアームを通過した光と強度をバランスさせるという手法が考えられる。しかしこの手法では、欠陥による損失に波長依存性があり、消光比も波長に依存してしまうので問題がある。
ところで、メインマッハツェンダー光導波路の2つのアームにそれぞれサブマッハツェンダー光導波路を設け、各サブマッハツェンダー光導波路でRF変調を行って周波数の上下にサイドバンド光(上側および下側側波帯)を発生させ、メインマッハツェンダー光導波路でデータ信号に対応して位相を選択することでサイドバンド光を上側と下側で切り替えて周波数変調された信号光として出力する、光FSK(Frequency Shift Keying)変調器が開発されている(例えば特許文献1参照)。そして近年、サブマッハツェンダー光導波路を光量調整部として利用し、上記の光FSK変調器を上述した光強度変調器として動作させることで、高い消光比を実現した光強度変調器が提案されている(例えば非特許文献1参照)。
特開2005−134897号公報 日隈他、光FSK変調器を応用した高消光比変調器の波長特性、「2005年電子情報通信学会ソサイエティ大会予稿集」、2005年9月、C−3−2
しかしながら、非特許文献1において示された光強度変調器では、サブマッハツェンダー光導波路の光量調整を行う際、単純に当該光強度変調器の出力光強度をモニタする。この場合、メインマッハツェンダー光導波路への変調を同時に行うと、モニタした光強度に基づく光量調整が不可能となってしまう。そのため、光量調整は、変調を行わない状態で(すなわち、光強度変調器の実稼働に先立って事前に)行う必要があり、例えば環境変化などに応じるためリアルタイムで高い消光比を実現し維持することができないという問題があった。
また、出力光強度ではなく光スペクトルをモニタするようにすればリアルタイムでの光量調整も可能であるが、この場合は人間がスペクトルを目視により確認しながら行う必要があり、自動化をすることが困難であった。
このような背景から、出願人は変調を行いながら高い消光比を実現可能な光変調装置に関する発明を特願2006−116630として出願済みである。しかし、光変調装置において更なる高消光比を少ない部品点数で実現することが、光通信システム等で求められるようになってきた。
本発明は上記の点に鑑みてなされたものであり、その目的は、変調信号による変調を行いながらであっても極めて高い消光比を安定して実現することができるとともに、その部品点数も少なく構成可能な光変調装置を提供することにある。
本発明は上記の課題を解決するためになされたものであり、周波数fの光が入力されるメインマッハツェンダー光導波路の2つのアームにそれぞれ第1および第2のサブマッハツェンダー光導波路が設けられ、第1の位相差調整手段によって少なくとも一方のサブマッハツェンダー光導波路の両アームを通過する光に位相差を与えて該サブマッハツェンダー光導波路の出力光強度を調整し、さらに第2の位相差調整手段によってメインマッハツェンダー光導波路の両アームを通過する光にバイアスの位相差を付与するとともに変調手段によって該光を変調周波数fで変調して、メインマッハツェンダー光導波路から周波数f+1=f+fおよびf−1=f−fの成分を持つ光を出力する光変調器と、この光変調器の出力光を2つに分岐する分岐手段と、分岐された一方の光から周波数f成分を取り出すとともに周波数f+1およびf−1成分からなる光を伝送路へ出力する分離手段と、前記取り出された周波数f成分からなる光のパワーを測定する第1の光検出手段と、周波数f、f+1、およびf−1の各成分を有する前記分岐されたもう一方の光のパワーを測定する第2の光検出手段と、を備え、前記光変調器は、前記変調手段により変調周波数fで変調を行った際に前記第1の光検出手段の受光パワーが最小且つ前記第2の光検出手段の受光パワーが最大となるように、前記第1および第2の位相差調整手段が制御されていることを特徴とする光変調装置である。
この発明によれば、変調により周波数成分f、f+1、およびf−1を有する出力光が光変調器から出力されて、この出力光から周波数f成分のみのパワーと全成分を含んだパワーがそれぞれ測定され、これら2つの受光パワーに基づいて光変調器の各位相差調整手段を制御しているので、変調を行いながら安定的に消光比の最適化を実行することが可能である。そして、各位相差調整手段の制御は、周波数f成分が最小となるように制御されていることから、2つのサブマッハツェンダー光導波路の出力光強度は高い精度で等しくなっている。すなわち、光変調器からの出力光は高い消光比が実現されている。その上で、消光比が高いこの出力光をさらに分離手段に入力して、周波数f+1およびf−1成分を分離してこれを伝送路へ出力するようにしたので、極めて高い消光比を持った信号光を伝送路へ出力することができる。それとともに、上記分離手段は第1の光検出手段で測定すべき周波数成分の光を得るための手段と兼用する構成となっているため、部品点数も増加することがなく、光変調装置のコスト上昇を抑えることが可能である。また、位相差調整手段により信号成分(周波数f+1およびf−1)のパワーが最大となるように制御されているため、光変調器の出力効率の最大化が図られている。
また、本発明は、上記の光変調装置において、前記第1の位相差調整手段は、光強度の強い方のサブマッハツェンダー光導波路に対して両アームを通過する光の位相差をずらして光強度を減衰させ、2つのサブマッハツェンダー光導波路の出力光強度が等しくなるように制御されることを特徴とする。
この発明によれば、2つのサブマッハツェンダー光導波路の出力光強度が等しくなるように設定されるので、高い消光比を実現することができる。また、光強度の強い方の光強度を減衰させているため、光の損失を最小限に抑えて光変調器の出力を最大にすることができる。
また、本発明は、上記の光変調装置において、前記第2の位相差調整手段は、メインマッハツェンダー光導波路の両アームを通過する光の位相差がπとなるように制御されることを特徴とする。
この発明によれば、光強度が非対称になっている2つのサブマッハツェンダー光導波路の出力光に対し、その光強度を揃えて周波数f成分を最小にする制御が可能になる。これにより、高い消光比が実現できる。
また、本発明は、上記の光変調装置において、前記光変調器において、前記第1および第2の光検出手段の受光パワーがともに最大となる状態に設定される第1のステップと、前記第1の光検出器の受光パワーが最小となるよう前記第2の位相差調整手段が制御される第2のステップと、前記第1の光検出器の受光パワーがさらに小さくなるよう前記第1の位相差調整手段が制御される第3のステップと、が順次実行されることを特徴とする。
この発明によれば、各位相差調整手段に対する制御において、制御結果が発散することなく高い消光比を得るための制御を行うことができる。また、上記ステップに従い自動化制御を行うことも可能である。
また、本発明は、上記の光変調装置において、前記各マッハツェンダー光導波路は電気光学効果を有する基板上に形成された光導波路によって構成され、前記各位相差調整手段および変調手段はこの光導波路に電界を印加するための電極によって構成されていることを特徴とする。
この発明によれば、光変調器を半導体プロセスによって製造される光導波路素子として構成でき、光変調装置の小型化と量産性を達成できる。
また、本発明は、周波数fの光が入力されるメインマッハツェンダー光導波路の2つのアームにそれぞれ第1および第2のサブマッハツェンダー光導波路が設けられ、第1の位相差調整手段によって少なくとも一方のサブマッハツェンダー光導波路の両アームを通過する光に位相差を与えて該サブマッハツェンダー光導波路の出力光強度を調整し、さらに第2の位相差調整手段によってメインマッハツェンダー光導波路の両アームを通過する光にバイアスの位相差を付与するとともに変調手段によって該光を変調周波数fで変調して、メインマッハツェンダー光導波路から周波数f+1=f+fおよびf−1=f−fの成分を持つ光を出力する光変調器と、この光変調器の出力光を周波数f成分からなる光と周波数f+1およびf−1成分からなる光の2つに分離する分離手段と、前記分離された周波数f成分からなる光のパワーを測定する第3の光検出手段と、前記分離された周波数f+1およびf−1成分からなる光のパワーを測定する第4の光検出手段と、前記分離された周波数f+1およびf−1成分からなる光を伝送路へ出力する分岐手段と、を備え、前記光変調器は、前記変調手段により変調周波数fで変調を行った際に前記第3の光検出手段の受光パワーが最小且つ前記第4の光検出手段の受光パワーが最大となるように、前記第1および第2の位相差調整手段が制御されていることを特徴とする光変調装置である。
この発明によれば、変調により周波数成分f、f+1、およびf−1を有する出力光が光変調器から出力されて、この出力光から周波数f成分の光と周波数f+1およびf−1成分からなる光が分離されてそれぞれのパワーが測定され、これら2つの受光パワーに基づいて光変調器の各位相差調整手段を制御しているので、変調を行いながら安定的に消光比の最適化を実行することが可能である。そして、各位相差調整手段の制御は、周波数f成分が最小となるように制御されていることから、2つのサブマッハツェンダー光導波路の出力光強度は高い精度で等しくなっている。すなわち、光変調器からの出力光は高い消光比が実現されている。その上、上記各成分の分離を行う分離手段に消光比が高いこの出力光が入力され、分離された周波数f+1およびf−1成分を伝送路へ出力するようにしたので、極めて高い消光比を持った信号光を伝送路へ出力することができる。それとともに、上記分離手段は第3の光検出手段で測定すべき周波数成分の光を得るための手段と兼用する構成となっているため、部品点数も増加することがなく、光変調装置のコスト上昇を抑えることが可能である。また、位相差調整手段により信号成分(周波数f+1およびf−1)のパワーが最大となるように制御されているため、光変調器の出力効率の最大化が図られている。
本発明によれば、変調信号による変調を行いながらであっても高い消光比を安定して実現することができる。これにより、高品質な光通信システムを構築できる。また、高い消光比を実現するための構成が簡易である。
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
≪第1の実施形態≫
図1は、本発明の第1の実施形態による光変調装置1の機能ブロック図である。
同図において、光変調器10には図示しない光源から出射された周波数fのレーザ光が入力される。光変調器10は、所定の構造の光導波路と電極を有しLN基板を用いて形成された光導波路素子(詳細は図2において説明(後述)する)であり、入力光を周波数fの変調信号で変調して周波数成分f、f+1、およびf−1を有する出力光を出力する。ここで、
+1=f+f
−1=f−f
とする。なお、周波数fで変調を行った時、高次成分f+2fやf+3fも発生するが、ここでは説明を簡単にするためこれらは無視するものとする。
上記の出力光は、分岐手段11および分離手段12を通って本光変調装置1からメイン出力として出力され、伝送路(光ファイバ)へ送られる。
分岐手段11へ入力された光は、2つに分岐されて分離手段12と第2光検出手段14bへ出力される。分岐手段11は、ファイバ型の光カプラであり、例えばその分岐比を−10dB(分離手段への出力光:第2光検出手段への出力光=10:1)とする。
分離手段12は、入力される光の周波数成分(f、f+1、f−1)のうち、f成分だけを第1光検出手段14aへ出力するとともに、f+1およびf−1成分だけをメイン出力として伝送路へ出力する。
図3は、分離手段12の具体的な構成例を示した図である。この分離手段12は、光サーキュレータ121とファイバグレーティング(Fiber Bragg Grating;FBG)122を接続した構成を有している。
分離手段12に入力された光は、光サーキュレータ121を通ってファイバグレーティング122側へ送られる(光サーキュレータ121は、図中円弧状の矢印で示した方向にのみ光を出力する光素子である)。ファイバグレーティング122は所定のピッチを有する回折格子が形成された光素子であり、このピッチに対応する波長(周波数)の光のみを反射し、それ以外の波長の光を透過する。ここでは、周波数f成分だけを選択的に反射するファイバグレーティング122が使用されているものとする。ファイバグレーティング122で反射された周波数fの光は、再び光サーキュレータ121を通って第1光検出手段14aへ出力され、一方、ファイバグレーティング122を透過する周波数f+1およびf−1の光は、伝送路の側へ出力される。
なお、本分離手段12では光サーキュレータ121とファイバグレーティング122を一つずつ用いる構成としたが、光サーキュレータ121とファイバグレーティング122の組を二段あるいは多段直列に接続した構成としてもよい。このような多段構成とすることでフィルタされる光の周波数選択性を高め、後述する制御の精度を向上させることができる。なお、多段構成とする場合には、伝送路への出力端とならないファイバグレーティング122の後部を無反射終端処理しておくことが望ましい。これは、ファイバグレーティング122を透過した周波数f+1とf−1の成分が、その先の経路中で反射して戻り、第1光検出手段14aへの出力光に混入することを防止するためである。
また、一般にファイバグレーティング122の波長選択特性は温度依存性を持つため、分離手段12を恒温槽に入れるなどして温度管理することが望ましい。
図1に戻り、分離手段12から出力された周波数f成分の光は第1光検出手段14aに入力され、そのパワーP1が測定される。また、分岐手段11から分岐されたもう一方の光は第2光検出手段14bに入力され、周波数f、f+1、およびf−1の全成分を含んだパワーP2が測定される。なお、各光検出手段に入力される光のスペクトルは図4に示す状態になっており、受光パワーP1、P2は、図中の縦実線で示されたスペクトル成分のパワーに相当している。
ここで、第1および第2光検出手段14a、14bは、受光した光のパワー(強度)を検出するフォトダイオード(PD)により構成する。それぞれの受光パワーP1、P2は各光検出手段から制御手段17に伝えられる。
制御手段17は、受光パワーP1およびP2を基にして光変調器10の変調動作を制御する。この制御は、後述するように、3つの各マッハツェンダー光導波路(MZ−A、MZ−B、MZ−C)に設けられた電極に対して個別に行われる。なお、制御手段17はパーソナルコンピュータやその他一般的な制御装置によって構成するものとする。
また、MZ−Cには、制御手段17からの制御信号のほか、周波数fの変調信号も入力される。この変調信号は、変調信号生成部15において生成され、RFドライバ16によって所定の振幅の電圧に変換された信号である。
次に、図2を参照して光変調器10について説明する。図2は、光変調器10の構成図である。
同図において、光変調器10は、メインマッハツェンダー光導波路(MZ−C)101と、MZ−C101の各アームに設けられた第1サブマッハツェンダー光導波路(MZ−A)102、第2サブマッハツェンダー光導波路(MZ−B)103からなる光導波路を有している。さらに、MZ−A102およびMZ−B103には、当該マッハツェンダー部の各アームを通過する光の位相差を調整するためのDC電極(第1の位相差調整手段)106a、106bが設けられ、MZ−C101には、当該マッハツェンダー部の両アームを通過する光にバイアスの位相差を与えるDC電極(第2の位相差調整手段)104、およびその光を周波数fで変調するための変調電極(変調手段)105が設けられている。
なお、図示されていないが、光変調器10は、上記各要素が電気光学効果を有する結晶であるLN基板上に形成されたものであり、各電極から印加された電界によって光導波路の屈折率が変化することで、光導波路を通過する光に位相変化が与えられるようになっている。
ここで、MZ−A102とMZ−B103部のDC電極106a、106bにおいて入力電圧を変化させると、当該サブマッハツェンダー光導波路の各アームを通過する光の位相差を調整することができる。その結果、当該サブマッハツェンダー光導波路から出力される光の強度を変化させられる。
また、MZ−C101部のDC電極104において入力電圧を変化させると、メインマッハツェンダー光導波路の両アームを通過する光(MZ−A102、MZ−B103から出力される光)の位相差を調整することができる。その結果、メインマッハツェンダー光導波路における変調(変調電極105による変調)の変調動作点を変化させられる。
例えば、DC電極104で位相差πを付与した場合、非変調時の光変調器10の出力は、各サブマッハツェンダー光導波路の出力が逆位相で干渉することにより、ゼロとなる。この状態で、変調電極105により周波数fの変調を行うと、周波数f+1およびf−1にサイドバンドが発生し、変調信号光として出力される。但し、各サブマッハツェンダー光導波路の出力光強度が非対称となっているときは、非変調時の出力はゼロとならず、また変調時にも周波数f成分が残留して出力されることになる(図4(a)の状態)。
そこで本光変調装置1では、第1および第2光変調手段14a、14bによって測定された光のパワーP1とP2を用いて、MZ−A102、MZ−B103、MZ−C101の各DC電極106a、106b、および104により付与する位相差を制御する。この制御において、第1光変調手段14aの受光パワーP1を最小、且つ第2光変調手段14bの受光パワーP2を最大とするように、各DC電極106a、106b、および104を調整する。
その具体的手順は次の通りである。
まず、3つのDC電極106a、106b、および104を調整して、受光パワーP1とP2がともに最大値をとる状態に設定する(第1ステップ)。この時、MZ−A102とMZ−B103では、それぞれのアームにおける位相差がゼロとなり、各々のサブマッハツェンダー光導波路の出力光強度が最大(但し非対称)になっている。また、MZ−C101においても2つのアームの位相差(各サブマッハツェンダー光導波路の出力光の位相差)はゼロとなっている。
次いで、上記の状態でMZ−C101のDC電極104を調整して、受光パワーP1が最小となる状態に設定する(第2ステップ)。この時、MZ−C101では各サブマッハツェンダー光導波路の出力光の位相差がπとなり、各々の光が逆位相で干渉することによって、光変調器10の出力光における周波数f成分の強度が最小になっている。但し、各サブマッハツェンダー光導波路の出力光強度が非対称のままであるため、周波数f成分は残留しておりゼロ(真の最小値)にはなっていない。
そして、MZ−A102のDC電極106aおよびMZ−B103のDC電極106bを僅かずつ調整して、受光パワーP1が小さくなる方向に変化する方のDC電極(DC電極106aとする)を選択する。そしてさらに、選択されたDC電極106aを調整することによって、受光パワーP1が真の最小値をとる状態に設定する(第3ステップ)。この時、出力光強度が大きいMZ−A102からの出力光の強度が、DC電極106aによる位相差調整によって減衰させられて、MZ−B103の出力光強度に揃うようになる。その結果、周波数f成分がゼロとなって光変調器10からは周波数f+1およびf−1の成分だけが出力されることとなり、変調信号fの変調におけるオンオフの高い消光比が実現する。
なお、上記の第1〜第3ステップによる制御を行った後、例えば環境温度の変化等によって、各マッハツェンダー光導波路の出力光の位相状態が経時的に変動してしまうことが起こり得る。この変動分を補正するため、第2および第3ステップの制御を常時、あるいは一定時間毎に繰り返し実行するようにすることで、さらに高精度な光変調を実現することができる。
このように、本実施形態によれば、変調信号fで変調を行った際に光変調器10から出力される周波数f、f+1、およびf−1の各成分を持つ光をモニタし、第2光検出手段14bで全成分のパワーP2を測定するとともに第1光検出手段14aで分離手段12により切り出された周波数f成分のパワーP1を測定して、これら受光パワーP1およびP2に基づき、光変調器10の各マッハツェンダー光導波路MZ−A、MZ−B、MZ−CそれぞれのDC電極により付与する位相差を制御している。制御は、受光パワーP1を最小、受光パワーP2を最大とするように行う。これにより、変調を行いながら消光比を最適化するための位相差制御が可能となり、本光変調装置1が実際に光通信システムで稼動している間であっても、リアルタイムで安定して高い消光比を得ることができる。
さらに、この消光比の高い光変調器10からの出力光を分離手段12に入力することにより周波数f+1およびf−1成分を分離し、分離した周波数f+1およびf−1成分を伝送路へ出力するようにしたので、極めて高い消光比を持った信号光を伝送路へ出力することができる。また、分離手段12は第1光検出手段14aで測定すべき周波数成分の光を得るための手段と兼用する構成となっているため、部品点数も増加することがなく、光変調装置のコスト上昇を抑えることが可能である。
≪第2の実施形態≫
上記の実施形態では、周波数f成分のパワーP1と全成分のパワーP2とを用いて制御を行うようにしていたが、この全成分のパワーP2の代わりに、周波数f+1およびf−1成分からなる光のパワーP3を用いて制御を行うことも可能である。
そこで、本発明の第2の実施形態による光変調装置2は、図5に示す構成を備えている。
図5において、光変調器10からの出力光は、分離手段12および分岐手段11を順に通って本光変調装置2からメイン出力として出力され、伝送路へ送られる。分離手段12に入力された光変調器10からの光は、周波数f成分からなる光と周波数f+1およびf−1成分からなる光の2つに分離される。前者の光は、第3光検出手段14cによりそのパワーP1’が測定され、後者の光は、分岐手段11を介して第4光検出手段14dへ入力され、そのパワーP3が測定される。なお、本実施形態では各光検出手段に入力される光のスペクトルは図6に示す状態となっている。
光変調装置2の制御手段17は、受光パワーP1’およびP3を基にして光変調器10の変調動作を制御する。この制御において、第3光変調手段14cの受光パワーP1’を最小、且つ第4光変調手段14dの受光パワーP3を最大とするように、各DC電極106a、106b、および104を調整する。第1の実施形態の場合と異なる点は、制御に用いる受光パワーがP1とP2からP1’とP3に置き換わった点だけであり、制御の具体的手順については前述したとおりである。
このように、本実施形態によれば、変調信号fで変調を行った際に光変調器10から出力される周波数f、f+1、およびf−1の各成分を持つ光をモニタし、第4光検出手段14dで周波数f+1、およびf−1のパワーP3を測定するとともに第3光検出手段14cで周波数f成分のパワーP1’を測定して、これら受光パワーP1’およびP3に基づき、変調を行いながら消光比を最適化するための位相差制御が可能である。
さらに、光変調器10からの消光比の高い出力光が分離手段12へ入力され、周波数f+1およびf−1成分が分離されて伝送路への出力光となるので、極めて高い消光比を持った信号光を伝送路へ出力することができる。また、分離手段12は第3光検出手段14cで測定すべき周波数成分の光を得るための手段と兼用する構成となっているため、部品点数も増加することがなく、光変調装置のコスト上昇を抑えることが可能である。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
例えば、上記の光変調器10は変調信号生成部15で生成した単一の変調周波数fによる変調を行っていたが、伝送するデータ信号からなる変調信号を変調信号生成部15で生成し、このデータ信号による変調を行う場合にも、同様の制御で高い消光比を実現することができる。
また、分離手段12は、周知の技術に基づく光フィルタ機能を有した部品であればその具体的な構成は限定されない。例えば、多層膜による干渉を利用した誘電体多層膜フィルタなどを適用することもできる。また、その他通常用いられる波長選択性のある光学素子を利用して、周波数f成分を反射(または透過)させ、周波数f+1およびf−1成分を透過(または反射)させて反射した成分を光サーキュレータで取り出すようにしてもよい。
また、自動制御を行わない場合には、制御手段17の動作を人間が手動で実行するようにしてもよい。
また、光変調器10に入力されるレーザ光の光源として、例えば、波長精度<±1GHz、光出力パワー精度<±0.1dBで安定化制御されたDFBレーザを利用することにより、良好な結果を得ることができる。
本発明の第1の実施形態による光変調装置の機能ブロック図である。 光変調器の構成図である。 分離手段の内部構成図である。 図1の光検出手段に入力される光のスペクトルを示した図である。 本発明の第2の実施形態による光変調装置の機能ブロック図である。 図5の光検出手段に入力される光のスペクトルを示した図である。
符号の説明
1、2…光変調装置 10…光変調器 11…分岐手段 12…分離手段 14a…第1光検出手段 14b…第2光検出手段 14c…第3光検出手段 14d…第4光検出手段 15…変調信号生成部 16…RFドライバ 17…制御手段 101…メインマッハツェンダー光導波路 102…第1サブマッハツェンダー光導波路 103…第2サブマッハツェンダー光導波路 104…DC電極 105…変調電極 106a、106b…DC電極 121…光サーキュレータ 122…ファイバグレーティング

Claims (6)

  1. 周波数fの光が入力されるメインマッハツェンダー光導波路の2つのアームにそれぞれ第1および第2のサブマッハツェンダー光導波路が設けられ、第1の位相差調整手段によって少なくとも一方のサブマッハツェンダー光導波路の両アームを通過する光に位相差を与えて該サブマッハツェンダー光導波路の出力光強度を調整し、さらに第2の位相差調整手段によってメインマッハツェンダー光導波路の両アームを通過する光にバイアスの位相差を付与するとともに変調手段によって該光を変調周波数fで変調して、メインマッハツェンダー光導波路から周波数f+1=f+fおよびf−1=f−fの成分を持つ光を出力する光変調器と、
    この光変調器の出力光を2つに分岐する分岐手段と、
    分岐された一方の光から周波数f成分を取り出すとともに周波数f+1およびf−1成分からなる光を伝送路へ出力する分離手段と、
    前記取り出された周波数f成分からなる光のパワーを測定する第1の光検出手段と、
    周波数f、f+1、およびf−1の各成分を有する前記分岐されたもう一方の光のパワーを測定する第2の光検出手段と、
    を備え、
    前記光変調器は、前記変調手段により変調周波数fで変調を行った際に前記第1の光検出手段の受光パワーが最小且つ前記第2の光検出手段の受光パワーが最大となるように、前記第1および第2の位相差調整手段が制御されている
    ことを特徴とする光変調装置。
  2. 前記第1の位相差調整手段は、光強度の強い方のサブマッハツェンダー光導波路に対して両アームを通過する光の位相差をずらして光強度を減衰させ、2つのサブマッハツェンダー光導波路の出力光強度が等しくなるように制御される
    ことを特徴とする請求項1に記載の光変調装置。
  3. 前記第2の位相差調整手段は、メインマッハツェンダー光導波路の両アームを通過する光の位相差がπとなるように制御される
    ことを特徴とする請求項1または請求項2に記載の光変調装置。
  4. 前記光変調器において、
    前記第1および第2の光検出手段の受光パワーがともに最大となる状態に設定される第1のステップと、
    前記第1の光検出器の受光パワーが最小となるよう前記第2の位相差調整手段が制御される第2のステップと、
    前記第1の光検出器の受光パワーがさらに小さくなるよう前記第1の位相差調整手段が制御される第3のステップと、
    が順次実行される
    ことを特徴とする請求項1から請求項3のいずれかの項に記載の光変調装置。
  5. 前記各マッハツェンダー光導波路は電気光学効果を有する基板上に形成された光導波路によって構成され、
    前記各位相差調整手段および変調手段はこの光導波路に電界を印加するための電極によって構成されている
    ことを特徴とする請求項1から請求項4のいずれかの項に記載の光変調装置。
  6. 周波数fの光が入力されるメインマッハツェンダー光導波路の2つのアームにそれぞれ第1および第2のサブマッハツェンダー光導波路が設けられ、第1の位相差調整手段によって少なくとも一方のサブマッハツェンダー光導波路の両アームを通過する光に位相差を与えて該サブマッハツェンダー光導波路の出力光強度を調整し、さらに第2の位相差調整手段によってメインマッハツェンダー光導波路の両アームを通過する光にバイアスの位相差を付与するとともに変調手段によって該光を変調周波数fで変調して、メインマッハツェンダー光導波路から周波数f+1=f+fおよびf−1=f−fの成分を持つ光を出力する光変調器と、
    この光変調器の出力光を周波数f成分からなる光と周波数f+1およびf−1成分からなる光の2つに分離する分離手段と、
    前記分離された周波数f成分からなる光のパワーを測定する第3の光検出手段と、
    前記分離された周波数f+1およびf−1成分からなる光のパワーを測定する第4の光検出手段と、
    前記分離された周波数f+1およびf−1成分からなる光を伝送路へ出力する分岐手段と、
    を備え、
    前記光変調器は、前記変調手段により変調周波数fで変調を行った際に前記第3の光検出手段の受光パワーが最小且つ前記第4の光検出手段の受光パワーが最大となるように、前記第1および第2の位相差調整手段が制御されている
    ことを特徴とする光変調装置。
JP2007247784A 2007-09-25 2007-09-25 光変調装置 Active JP5061817B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007247784A JP5061817B2 (ja) 2007-09-25 2007-09-25 光変調装置
PCT/JP2008/067309 WO2009041509A1 (ja) 2007-09-25 2008-09-25 光変調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247784A JP5061817B2 (ja) 2007-09-25 2007-09-25 光変調装置

Publications (2)

Publication Number Publication Date
JP2009080189A JP2009080189A (ja) 2009-04-16
JP5061817B2 true JP5061817B2 (ja) 2012-10-31

Family

ID=40511392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247784A Active JP5061817B2 (ja) 2007-09-25 2007-09-25 光変調装置

Country Status (2)

Country Link
JP (1) JP5061817B2 (ja)
WO (1) WO2009041509A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120341B2 (ja) * 2009-06-15 2013-01-16 富士通オプティカルコンポーネンツ株式会社 光デバイス
KR101958867B1 (ko) 2011-09-30 2019-03-15 스미토모 오사카 세멘토 가부시키가이샤 캐리어 억압 광발생 장치
CN104471466A (zh) 2012-07-26 2015-03-25 富士通光器件株式会社 光调制器以及光发送器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646048B2 (ja) * 2001-03-02 2011-03-09 日本電気株式会社 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
JP4083657B2 (ja) * 2003-03-28 2008-04-30 住友大阪セメント株式会社 光変調器のバイアス制御方法及びその装置
JP4184131B2 (ja) * 2003-03-31 2008-11-19 三菱電機株式会社 光ssb変調装置
JP4527993B2 (ja) * 2004-01-28 2010-08-18 日本放送協会 光変調装置及び光変調方法
JP3867148B2 (ja) * 2004-03-16 2007-01-10 独立行政法人情報通信研究機構 光ssb変調器又は光fsk変調器のバイアス調整方法
JP4494347B2 (ja) * 2006-02-15 2010-06-30 住友大阪セメント株式会社 光変調装置
JP4879637B2 (ja) * 2006-04-20 2012-02-22 住友大阪セメント株式会社 光変調装置

Also Published As

Publication number Publication date
WO2009041509A1 (ja) 2009-04-02
JP2009080189A (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
EP2880764B1 (en) Method and system for the monolithic integration of circuits for monitoring and control of rf signals
EP2148457A2 (en) Optical transmitter
JP6048410B2 (ja) キャリア抑圧光発生装置
JP6047899B2 (ja) 光変調器
AU2016275577B2 (en) Microwave photonic notch filter
JP2017026988A (ja) 光モジュール、及びこれを用いた光送信機
JP2009506381A (ja) テラヘルツ波及びその他の高周波信号を発生、変調するための光学装置
JP4879637B2 (ja) 光変調装置
JP4494347B2 (ja) 光変調装置
Guo et al. Versatile silicon microwave photonic spectral shaper
JP5061817B2 (ja) 光変調装置
JP6446803B2 (ja) 光送受信器
US20100046879A1 (en) Optical Modulator
US20050047453A1 (en) Multi-wavelength light source apparatus
CN114337824A (zh) 一种偏振不敏感的微波光子链路系统与实现方法
Capmany Microwave photonic filters
JP2006292871A (ja) 進行波型電極用の駆動回路、それを用いた光変調システム、光情報通信システム及び進行波型電極用の駆動方法
JP4544542B2 (ja) 光素子
CN117271951A (zh) 一种基于单个微盘谐振器的全光二阶常微分方程求解器
JP2018205646A (ja) 2光波の位相調整装置
JPH11225109A (ja) 光伝送装置及び光信号送出方法
JP2005236744A (ja) 短光パルス発生器
JP2012008103A (ja) 光ストレス発生装置及び光ストレス発生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3