JP5052174B2 - Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus - Google Patents
Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus Download PDFInfo
- Publication number
- JP5052174B2 JP5052174B2 JP2007079938A JP2007079938A JP5052174B2 JP 5052174 B2 JP5052174 B2 JP 5052174B2 JP 2007079938 A JP2007079938 A JP 2007079938A JP 2007079938 A JP2007079938 A JP 2007079938A JP 5052174 B2 JP5052174 B2 JP 5052174B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- group
- based semiconductor
- zone
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4488—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、HVPE(Halide Vapor Phase Epitaxy)法による酸化亜鉛系半導体の製造方法及び酸化亜鉛系半導体の製造装置に関する。 The present invention relates to a method for manufacturing a zinc oxide based semiconductor by an HVPE (Halide Vapor Phase Epitaxy) method and an apparatus for manufacturing a zinc oxide based semiconductor.
酸化亜鉛系半導体は、バンドギャップが3.3eVの直接遷移型半導体であるとともに、ホールと電子とが固体内で結合した励起子の束縛エネルギーが60meVと大きく、室温でも安定に存在するために、安価で環境負荷の小さい青色領域から紫外領域までの発光デバイスとして期待されている。酸化亜鉛系半導体は、発光デバイス以外にも受光素子、圧電素子、透明電極などの応用にも期待されている。このため、量産性に優れた高品質の酸化亜鉛系半導体の製造方法や製造装置の要望が高まっている。 A zinc oxide-based semiconductor is a direct transition type semiconductor with a band gap of 3.3 eV, and the binding energy of excitons in which holes and electrons are combined in a solid is as large as 60 meV, which is stable even at room temperature. It is expected as a light emitting device from the blue region to the ultraviolet region that is inexpensive and has a low environmental impact. In addition to light emitting devices, zinc oxide based semiconductors are also expected for applications such as light receiving elements, piezoelectric elements, and transparent electrodes. For this reason, the request of the manufacturing method and manufacturing apparatus of the high quality zinc oxide type semiconductor excellent in mass productivity is increasing.
高品質の酸化亜鉛系半導体を製造する方法としては、以下の方法が知られている。例えば、分子線エピタキシー法(以下、MBE法)では、亜鉛とラジカル化(プラズマ化)された酸素とを分子線として供給し、成長基板上で反応させて高品質の酸化亜鉛系半導体を成長させている。また、パルスレーザー堆積法(以下、PLD法)では、酸化亜鉛系半導体の焼結体や結晶にレーザーを照射して蒸発した酸化亜鉛系半導体を成長基板上に堆積させることによって高品質の酸化亜鉛系半導体を成長させている。 The following methods are known as methods for producing high-quality zinc oxide-based semiconductors. For example, in the molecular beam epitaxy method (hereinafter referred to as MBE method), zinc and radicalized (plasmaized) oxygen are supplied as molecular beams and reacted on a growth substrate to grow a high-quality zinc oxide-based semiconductor. ing. In the pulsed laser deposition method (hereinafter referred to as PLD method), high-quality zinc oxide is deposited on a growth substrate by depositing a zinc oxide-based semiconductor evaporated by irradiating a sintered body or crystal of the zinc oxide-based semiconductor with a laser. Growing semiconductors.
しかしながら、上述したMBE法及びPLD法により酸化亜鉛系半導体を成長させる場合には、ビーム状の材料を成長基板上に成長させるには、高真空中で成長を行う必要があるため、工業的に量産することは困難であるといった問題がある。 However, when growing a zinc oxide based semiconductor by the MBE method and the PLD method described above, it is necessary to perform growth in a high vacuum in order to grow a beam-like material on a growth substrate. There is a problem that it is difficult to mass-produce.
そこで、高真空を必要としない酸化亜鉛系半導体の製造方法として、III−V族半導体の結晶成長に広く用いられている有機金属気相堆積法(以下、MOCVD法)により酸化亜鉛系半導体を成長させる方法が知られている。MOCVD法では、亜鉛を含む有機金属材料を成長基板上で亜鉛と炭化水素基に分解させた後、酸化亜鉛系半導体を成長させている。 Therefore, as a method for producing a zinc oxide semiconductor that does not require high vacuum, a zinc oxide semiconductor is grown by metal organic vapor deposition (hereinafter referred to as MOCVD), which is widely used for crystal growth of III-V semiconductors. The method of making it known is known. In the MOCVD method, an organic metal material containing zinc is decomposed on a growth substrate into zinc and a hydrocarbon group, and then a zinc oxide based semiconductor is grown.
しかしながら、上述したMOCVD法では、II族元素である亜鉛の蒸気圧がIII族元素に比べて非常に高いため、高品質の成長が可能な高温下では成長基板に亜鉛が到達しても成長基板から離脱しやすい。このため、成長基板上で酸化亜鉛系半導体の成長に寄与できる亜鉛の割合が小さいので、亜鉛を含む材料の効率が低いといった問題がある。また、亜鉛を含む有機金属材料を分解させた際に生じる炭化水素基によって酸化亜鉛系半導体中に炭素が混入するため、炭素を含まない酸化亜鉛系半導体の成長が難しいといった問題がある。 However, in the MOCVD method described above, since the vapor pressure of zinc, which is a group II element, is very high compared to group III elements, even if zinc reaches the growth substrate at a high temperature capable of high quality growth, the growth substrate Easy to leave. For this reason, since the ratio of zinc that can contribute to the growth of the zinc oxide based semiconductor on the growth substrate is small, there is a problem that the efficiency of the material containing zinc is low. Further, since carbon is mixed into the zinc oxide-based semiconductor due to hydrocarbon groups generated when the organometallic material containing zinc is decomposed, there is a problem that it is difficult to grow a zinc oxide-based semiconductor not containing carbon.
そこで、炭素を含む材料を必要としない酸化亜鉛系半導体の工業的な製造方法として、II族材料としてハロゲン化II族金属を用いたハライド(またはハイドライド)気相成長方法(以下、HVPE法)により酸化亜鉛系半導体を成長させる方法が提案されている。尚、HVPE法は、III族材料にハロゲン化物(塩化物)を用い、V族材料に水素化物を用いることによって、窒化ガリウム基板などを工業的に製造するIII−V族半導体の製造方法として知られている。このHVPE法では、化学反応によって酸化亜鉛系半導体を成長させる成長ゾーンに石英管を適用し、成長基板及びその周辺のみならず石英管をも高温とするホットウォール方式が一般的に用いられる。 Therefore, as an industrial manufacturing method of a zinc oxide semiconductor that does not require a carbon-containing material, a halide (or hydride) vapor phase growth method (hereinafter referred to as HVPE method) using a halogenated group II metal as a group II material is used. A method for growing a zinc oxide-based semiconductor has been proposed. The HVPE method is known as a III-V group semiconductor manufacturing method for industrially manufacturing a gallium nitride substrate or the like by using a halide (chloride) as a group III material and a hydride as a group V material. It has been. In this HVPE method, a hot wall system is generally used in which a quartz tube is applied to a growth zone in which a zinc oxide based semiconductor is grown by a chemical reaction, and not only the growth substrate and its periphery but also the quartz tube is heated to a high temperature.
ここで、酸化亜鉛系半導体をHVPE法で成長させた場合、MBE法やMOCVD法よりも平衡状態に近い条件で成長させることができるので、酸化亜鉛系半導体の成長に寄与する亜鉛の比率を向上させることができる。 Here, when a zinc oxide based semiconductor is grown by the HVPE method, it can be grown under conditions closer to the equilibrium state than the MBE method or MOCVD method, so the ratio of zinc contributing to the growth of the zinc oxide based semiconductor is improved. Can be made.
酸化亜鉛系半導体を気相成長(VPE)法で成長させる場合、材料として亜鉛の金属単体と酸素を含む酸素材料(例えば、酸素)とを用いることが1つの方法として知られている。しかしながら、この化学反応の平衡定数はIII−V族半導体の平衡定数に比べて大きく、また、前述のように高温成長のためには蒸気圧の高い亜鉛の供給分圧を高く設定する必要があるため、反応を制御することが困難であるといった問題がある。そこで、酸化亜鉛系半導体をVPE法で成長させる場合の別の方法として、亜鉛の塩化物と酸素材料とを用いた方法が特許文献1に開示されている。この特許文献1における酸化亜鉛系半導体の製造方法では、塩化亜鉛の粉末を反応管内に設置し、加熱することにより蒸気になった塩化亜鉛をキャリアガスにより輸送して酸素と反応させて酸化亜鉛系半導体を成長させている。
しかしながら、上述した特許文献1の酸化亜鉛系半導体の製造方法では、塩化亜鉛を亜鉛材料として用いているが、塩化亜鉛は潮解性があるとともに、容易に入手できる塩化亜鉛の純度は約99.9%程度と低く、純度の高い塩化亜鉛は高価であるため、高品質の酸化亜鉛系半導体を容易に製造できないといった課題がある。 However, in the above-described method for producing a zinc oxide semiconductor of Patent Document 1, zinc chloride is used as a zinc material. Zinc chloride has deliquescence and the purity of easily available zinc chloride is about 99.9. Since zinc chloride having a low purity of about% and high purity is expensive, there is a problem that a high-quality zinc oxide-based semiconductor cannot be easily manufactured.
本発明は、上述した課題を解決するために創案されたものであり、高品質の酸化亜鉛系半導体を容易に製造できる酸化亜鉛系半導体の製造方法及びその製造装置を提供することを目的としている。 The present invention was created to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a zinc oxide-based semiconductor and an apparatus for manufacturing the same that can easily manufacture a high-quality zinc oxide-based semiconductor. .
上記目的を達成するために、請求項1に記載の発明は、原料ゾーンで亜鉛の金属単体を含むII族金属材料とハロゲンガスとを反応させてハロゲン化II族金属を生成する第1の工程と、酸素を含む酸素材料を成長ゾーンに供給する第2の工程と、前記ハロゲン化II族金属を前記原料ゾーンから前記成長ゾーンに輸送する第3の工程と、前記ハロゲン化II族金属と前記酸素材料とを前記成長ゾーンで反応させて成長基板上に酸化亜鉛系半導体を成長させる第4の工程とを備えたことを特徴とする酸化亜鉛系半導体の製造方法である。 To achieve the above object, the invention according to claim 1 is a first step of generating a group II metal halide by reacting a group II metal material containing a metal element of zinc and a halogen gas in a raw material zone. A second step of supplying an oxygen material containing oxygen to the growth zone; a third step of transporting the Group II metal halide from the source zone to the growth zone; the Group II metal halide and the And a fourth step of growing a zinc oxide based semiconductor on a growth substrate by reacting an oxygen material in the growth zone.
また、請求項2に記載の発明は、水素の供給分圧をハロゲン化II族金属の供給分圧以下に設定することを特徴とする請求項1に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 2 is the method for producing a zinc oxide based semiconductor according to claim 1, wherein the supply partial pressure of hydrogen is set to be equal to or lower than the supply partial pressure of the group II metal halide. .
また、請求項3に記載の発明は、水素の供給分圧をハロゲン化II族金属の供給分圧の1/10以下に設定することを特徴とする請求項1に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 3 is characterized in that the supply partial pressure of hydrogen is set to 1/10 or less of the supply partial pressure of the group II metal halide. It is a manufacturing method.
また、請求項4に記載の発明は、前記第4の工程は、500℃以上の温度で行われることを特徴とする請求項1〜3のいずれか1項に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 4 is the production of a zinc oxide based semiconductor according to any one of claims 1 to 3, wherein the fourth step is performed at a temperature of 500 ° C or higher. Is the method.
また、請求項5に記載の発明は、前記第1の工程は、前記第4の工程よりも低い温度で行われることを特徴とする請求項1〜4のいずれか1項に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 5 is the zinc oxide according to any one of claims 1 to 4, wherein the first step is performed at a temperature lower than that of the fourth step. This is a method for manufacturing a semiconductor.
また、請求項6に記載の発明は、前記II族金属材料は、マグネシウムの金属単体を含むことを特徴とする請求項1〜5のいずれか1項に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 6 is the method for producing a zinc oxide-based semiconductor according to any one of claims 1 to 5, wherein the group II metal material contains a single metal of magnesium. is there.
また、請求項7に記載の発明は、前記酸素材料は、水であることを特徴とする請求項1〜6のいずれか1項に記載の酸化亜鉛系半導体の製造方法である。 The invention according to claim 7 is the method for producing a zinc oxide based semiconductor according to any one of claims 1 to 6, wherein the oxygen material is water.
また、請求項8に記載の発明は、前記ハロゲンガスは、塩素ガスまたは臭素ガスであることを特徴とする請求項1〜7のいずれか1項に記載の酸化亜鉛系半導体の製造方法である。
The invention according to
また、請求項9に記載の発明は、亜鉛の金属単体を含む第1のII族金属材料が保持される第1原料ゾーンと、前記第1原料ゾーンにハロゲンガスを供給するハロゲンガス供給手段と、酸素を含む酸素材料を供給する酸素材料供給手段と、前記ハロゲンガス及び前記II族金属材料から生成されたハロゲン化II族金属と前記酸素材料とを反応させるための成長ゾーンとを備えたことを特徴とする酸化亜鉛系半導体の製造装置である。 The invention according to claim 9 is a first raw material zone in which a first group II metal material containing a single metal of zinc is held, and a halogen gas supply means for supplying a halogen gas to the first raw material zone. An oxygen material supply means for supplying an oxygen-containing oxygen material; and a growth zone for reacting the halogen gas and a group II metal generated from the group II metal material with the oxygen material. Is a manufacturing apparatus for a zinc oxide based semiconductor.
また、請求項10に記載の発明は、亜鉛以外のII族金属単体を含む第2のII族金属材料が保持される第2原料ゾーンを備えたことを特徴とする請求項9に記載の酸化亜鉛系半導体の製造装置である。
The invention according to
本発明によれば、純度の高いものを入手することが困難である塩化亜鉛ではなく、純度の高いものを容易に入手可能な亜鉛の金属単体をII族金属材料として採用しているので、高品質の酸化亜鉛系半導体を容易に製造することができる。 According to the present invention, since a zinc simple substance that can be easily obtained with high purity is used as the Group II metal material instead of zinc chloride, which is difficult to obtain high purity, A quality zinc oxide based semiconductor can be easily manufactured.
(第1実施形態)
以下、図面を参照して本発明を酸化亜鉛半導体の製造方法及びその製造装置に適用した第1実施形態について説明する。図1は、本発明による酸化亜鉛半導体の製造装置の全体図を示す。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is applied to a method of manufacturing a zinc oxide semiconductor and an apparatus for manufacturing the same will be described with reference to the drawings. FIG. 1 is an overall view of a zinc oxide semiconductor manufacturing apparatus according to the present invention.
まず、図1を参照して、HVPE法による酸化亜鉛半導体の製造装置について説明する。 First, with reference to FIG. 1, the manufacturing apparatus of the zinc oxide semiconductor by HVPE method is demonstrated.
図1に示すように、第1実施形態による酸化亜鉛半導体の製造装置1は、塩素ガス供給手段2と、キャリアガス供給手段3と、原料ゾーン4と、加熱手段5と、水供給手段6と、キャリアガス供給手段7と、成長ゾーン8と、加熱手段9と、基板保持手段10と、水素供給手段11とを備えている。
As shown in FIG. 1, the zinc oxide semiconductor manufacturing apparatus 1 according to the first embodiment includes a chlorine gas supply means 2, a carrier gas supply means 3, a raw material zone 4, a heating means 5, and a water supply means 6. The carrier gas supply means 7, the
原料ゾーン4は、亜鉛の金属単体からなるII族金属材料15を保持するためのものである。また、原料ゾーン4は、塩素ガス供給手段2から供給される塩素ガスと亜鉛とを反応させて塩化亜鉛ガスを生成するゾーンである。 The raw material zone 4 is for holding a group II metal material 15 made of zinc metal alone. The raw material zone 4 is a zone in which the chlorine gas supplied from the chlorine gas supply means 2 and zinc are reacted to generate zinc chloride gas.
成長ゾーン8は、供給管により繋がれた原料ゾーン4から供給される塩化亜鉛ガスと、酸素材料として水供給手段6から供給される水(水蒸気)とを反応させて、基板保持手段10に保持された成長基板16上に酸化亜鉛半導体を成長させるゾーンである。尚、成長ゾーン8には、後述する駆動力を調整するための水素が水素供給手段11から供給される。ここで水素供給手段11から供給される水素は、塩素ガスと容易に反応するため、塩素ガスとは異なる供給経路で成長ゾーン8に供給される。
In the
尚、原料ゾーン4、成長ゾーン8及び各ガス供給手段と成長ゾーン8とを繋ぐ各供給管は、石英により構成されている。
The raw material zone 4, the
加熱手段5は、原料ゾーン4及び水の供給路を加熱するためのものである。加熱手段9は、成長ゾーン8を加熱するためのものである。これらの加熱手段5、9によって、製造装置1はホットウォール方式を実現している。
The heating means 5 is for heating the raw material zone 4 and the water supply path. The heating means 9 is for heating the
キャリアガス供給手段3、7から供給される窒素ガスは、原料ゾーン4で生成される塩化亜鉛ガス及び水供給手段6から供給される水を成長ゾーン8へと輸送するためのものである。
The nitrogen gas supplied from the carrier gas supply means 3 and 7 is for transporting the zinc chloride gas generated in the raw material zone 4 and the water supplied from the water supply means 6 to the
次に、上述した製造装置による酸化亜鉛半導体の製造方法について説明する。 Next, the manufacturing method of the zinc oxide semiconductor by the manufacturing apparatus mentioned above is demonstrated.
まず、塩素ガス供給手段2及びキャリアガス供給手段3からそれぞれ塩素ガス及び窒素ガスが、原料ゾーン4に輸送される。そして、原料ゾーン4では、保持されている亜鉛の金属単体からなるII族金属材料15と供給された塩素ガスとによって、以下の反応式(1)による反応が起こり、塩化亜鉛ガスが生成される。
Zn(s,l)+Cl2(g) ⇔ ZnCl2(g) ・・・(1)
ここで、原料ゾーン4に保持される亜鉛の金属単体は、純度の高いものが好ましく、例えば、99.99999%以上のものがよい。尚、反応式における(s)、(l)、(g)はそれぞれ、固体、液体、気体を示す。
First, chlorine gas and nitrogen gas are transported to the raw material zone 4 from the chlorine gas supply means 2 and the carrier gas supply means 3, respectively. In the raw material zone 4, the reaction according to the following reaction formula (1) occurs by the group II metal material 15 made of the zinc simple metal and the supplied chlorine gas, and zinc chloride gas is generated. .
Zn (s, l) + Cl 2 (g) ⇔ ZnCl 2 (g) (1)
Here, the zinc simple substance held in the raw material zone 4 is preferably highly pure, for example, 99.99999% or more. In the reaction formula, (s), (l), and (g) represent solid, liquid, and gas, respectively.
原料ゾーン4は、反応式(1)における反応をほとんど右辺へと進行させて、塩化亜鉛ガスの流量を塩素ガスの供給量によって制御できるよう、亜鉛の金属単体からなるII族金属材料15の表面積を大きくした構造及び適切な温度となっている。尚、このような適切な温度としては約300℃〜約450℃が望ましい。また、原料ゾーン4の温度は、金属の中でも非常に蒸気圧の高い、亜鉛ガスが成長ゾーン8へと輸送されることを抑制するために、約500℃以下に設定されている。そして、上述の反応式(1)によって生成された塩化亜鉛ガスは、キャリアガス供給手段3から供給される窒素ガスによって成長ゾーン8に輸送される。
The raw material zone 4 allows the reaction in the reaction formula (1) to proceed almost to the right side, and the surface area of the group II metal material 15 made of zinc metal alone so that the flow rate of the zinc chloride gas can be controlled by the supply amount of the chlorine gas. The structure is increased and the temperature is appropriate. In addition, about 300 degreeC-about 450 degreeC is desirable as such suitable temperature. In addition, the temperature of the raw material zone 4 is set to about 500 ° C. or less in order to suppress the transport of zinc gas having a very high vapor pressure among the metals to the
また、他の経路を介して、キャリアガス供給手段7から供給される窒素ガスにより、水供給手段6から供給される水(水蒸気)が、酸素材料として成長ゾーン8に輸送される。
Further, the water (water vapor) supplied from the water supply means 6 is transported to the
そして、成長ゾーン8では、輸送された塩化亜鉛ガスと水とによって、以下に示す反応式(2)の反応が右辺に進行することにより、酸化亜鉛半導体の薄膜が成長基板16上に成長するとともに、水素供給手段11から供給される水素によって以下に示す反応式(3)の反応が起こる。尚、水素の供給分圧は、塩化亜鉛ガスの供給分圧以下、または、塩化亜鉛ガスの供給分圧の1/10以下に設定されている。
ZnCl2(g)+H2O(g) ⇔ ZnO(s)+2HCl(g)・・・(2)
ZnCl2(g)+H2(g) ⇔ Zn(g)+2HCl(g) ・・・(3)
ここで、成長ゾーン8の温度は、塩化亜鉛ガスが成長ゾーン8までの途中の経路で析出しないように、原料ゾーン4の温度よりも高温に設定される。具体的には、成長ゾーン8の温度は約500℃〜約1100℃程度に設定される。
In the
ZnCl 2 (g) + H 2 O (g) ⇔ZnO (s) + 2HCl (g) (2)
ZnCl 2 (g) + H 2 (g) Zn Zn (g) + 2HCl (g) (3)
Here, the temperature of the
尚、詳しくは後述するが、本願発明者は、高温(例えば、約1000℃以上)でも水素の供給分圧を制御することによって、反応式(2)の反応を右辺へと進行させることが可能であることを熱力学的な解析によって確認している。 Although the details will be described later, the inventor of the present application can advance the reaction of the reaction formula (2) to the right side by controlling the supply partial pressure of hydrogen even at a high temperature (for example, about 1000 ° C. or higher). This is confirmed by thermodynamic analysis.
(水素の供給分圧と駆動力との関係)
次に、反応式(2)及び(3)の平衡定数、各元素の保存条件から反応式(2)の駆動力を求め、駆動力と水素の供給分圧との関係について熱力学的な観点から理論的に説明する。
(Relationship between hydrogen supply partial pressure and driving force)
Next, the driving force of the reaction formula (2) is obtained from the equilibrium constants of the reaction formulas (2) and (3) and the storage conditions of each element, and a thermodynamic viewpoint regarding the relationship between the driving force and the supply partial pressure of hydrogen. From the theoretical explanation.
尚、以下の数式の中において、P*は、各ガス*の平衡分圧を示す。平衡分圧とは、成長基板上に形成された酸化亜鉛系半導体近傍における平衡状態での分圧のことである。また、P0 *は、各ガス*が供給される際の供給分圧を示す。 In the following formulas, P * indicates the equilibrium partial pressure of each gas *. The equilibrium partial pressure is a partial pressure in an equilibrium state in the vicinity of the zinc oxide based semiconductor formed on the growth substrate. P 0 * indicates a supply partial pressure when each gas * is supplied.
まず、反応式(2)の平衡定数K1は、以下の「数1」によって定義される。
また、反応式(3)の平衡定数K2は、以下の「数2」によって定義される。
また、塩素の保存条件は、以下の「数3」のようになる。
また、水素の保存条件は、以下の「数4」のようになる。
また、酸化亜鉛半導体の析出に関する系の束縛条件は、以下の「数5」のようになる。
また、本実施形態における系の圧力の束縛条件は、以下の「数6」のようになる。左辺は全圧を示し、大気圧の場合は、この全圧が760torrとなる。
これらの「数1」〜「数6」を連立させ、これらの方程式から6つのガス種の平衡分圧と温度の関係を求める。そして、以下に示す、「数7」に水の平衡分圧PH2Oを代入して各成長温度での駆動力Dを求める。
この結果を図2に示す。図2において、縦軸は規格化成長駆動力、横軸は成長温度[℃]を示す。ここでいう、規格化成長駆動力とは、成長ゾーンの温度が500℃の際の駆動力を「1」として規格化した。また、4本の曲線は、添え字が示すように、水素の供給分圧P0 H2がそれぞれ100torr、10torr、1torr、0.1torrに設定した場合の駆動力Dである。尚、塩化亜鉛ガスの供給分圧P0 ZnCl2を1torr、水の供給分圧P0 H2Oを10torrとして設定した。 The result is shown in FIG. In FIG. 2, the vertical axis represents the normalized growth driving force, and the horizontal axis represents the growth temperature [° C.]. The standardized growth driving force referred to here is standardized by setting the driving force when the temperature of the growth zone is 500 ° C. to “1”. The four curves represent the driving force D when the hydrogen supply partial pressure P 0 H2 is set to 100 torr, 10 torr, 1 torr, and 0.1 torr, as indicated by the subscript. The supply partial pressure P 0 ZnCl 2 of zinc chloride gas was set to 1 torr, and the supply partial pressure P 0 H 2 O of water was set to 10 torr.
図2に示すように、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2の1/10である0.1torrにした場合、成長温度を1000℃以上に設定しても駆動力Dが0.5以上となり、酸化亜鉛半導体を少ない原料供給でも成長可能なことがわかる。尚、図2より明らかなように、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2の1/10以下にした場合でも、1000℃以上の成長温度で駆動力Dが正の数になり、酸化亜鉛半導体を成長可能なことは推測できる。 As shown in FIG. 2, when the hydrogen supply partial pressure P 0 H2 is set to 0.1 torr, which is 1/10 of the zinc chloride gas supply partial pressure P 0 ZnCl 2 , the growth temperature is set to 1000 ° C. or higher. It can be seen that the driving force D is 0.5 or more, and the zinc oxide semiconductor can be grown even with a small amount of raw material. As is clear from FIG. 2, even when the hydrogen supply partial pressure P 0 H2 is set to 1/10 or less of the zinc chloride gas supply partial pressure P 0 ZnCl 2 , the driving force D is at a growth temperature of 1000 ° C. or more. It becomes a positive number and it can be estimated that a zinc oxide semiconductor can be grown.
また、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2と同じ1torrにした場合、成長温度を800℃以上に設定しても駆動力Dが正となり、酸化亜鉛半導体を成長させることができることがわかる。尚、上述の水素の供給分圧P0 H2が0.1torrの場合の理論結果と合わせると、水素の供給分圧P0 H2が1torr(塩化亜鉛ガスの供給分圧P0 ZnCl2)以下の場合には、800℃以上の成長温度で酸化亜鉛半導体を成長可能なことが推測できる。更に、成長温度が900℃近傍において、水素の供給分圧P0 H2を制御することで駆動力Dを制御することが可能になり、高温で高品質の酸化亜鉛半導体の成長速度を制御することが容易にできることがわかる。 Further, when the hydrogen supply partial pressure P 0 H2 is set to 1 torr which is the same as the zinc chloride gas supply partial pressure P 0 ZnCl 2 , the driving force D becomes positive even if the growth temperature is set to 800 ° C. or higher, and the zinc oxide semiconductor It can be seen that it can grow. When the hydrogen supply partial pressure P 0 H2 is 0.1 torr, the hydrogen supply partial pressure P 0 H2 is 1 torr (zinc chloride gas supply partial pressure P 0 ZnCl 2 ) or less. It can be estimated that a zinc oxide semiconductor can be grown at a growth temperature of 800 ° C. or higher. Furthermore, when the growth temperature is around 900 ° C., the driving force D can be controlled by controlling the hydrogen supply partial pressure P 0 H 2, and the growth rate of a high-quality zinc oxide semiconductor can be controlled at a high temperature. It can be seen that this can be done easily.
上述したように、第1実施形態では、純度の高いものを入手することが困難である塩化亜鉛ではなく、純度の高いものを容易に入手可能な亜鉛の金属単体をII族金属材料15として採用しているので、高品質の酸化亜鉛半導体を容易に製造することができる。 As described above, in the first embodiment, zinc simple metal that can be easily obtained with high purity is used as the group II metal material 15 instead of zinc chloride, which is difficult to obtain with high purity. Therefore, a high quality zinc oxide semiconductor can be easily manufactured.
また、第1実施形態では、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2の1/10以下に設定することによって1000℃以上の成長温度でも酸化亜鉛半導体を成長させることができるので、より高品質な酸化亜鉛半導体を成長させることができる。 In the first embodiment, a zinc oxide semiconductor is grown even at a growth temperature of 1000 ° C. or higher by setting the hydrogen supply partial pressure P 0 H2 to 1/10 or less of the zinc chloride gas supply partial pressure P 0 ZnCl 2 . Therefore, a higher quality zinc oxide semiconductor can be grown.
また、第1実施形態では、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2と同じ供給分圧またはそれ以下にすることによって、約800℃以上でも酸化亜鉛半導体を成長させることができる。また、水素の供給分圧P0 H2を塩化亜鉛ガスの供給分圧P0 ZnCl2と同じ供給分圧にし、且つ、成長温度を900℃近傍まで上げることにより、駆動力Dを小さくして、成長速度を小さくすることができるので、酸化亜鉛半導体の膜厚の制御を容易にすることができる。 In the first embodiment, a zinc oxide semiconductor is grown even at about 800 ° C. or higher by setting the hydrogen supply partial pressure P 0 H2 to the same supply partial pressure as the zinc chloride gas supply partial pressure P 0 ZnCl 2 or less. Can be made. Further, the hydrogen supply partial pressure P 0 H2 is set to the same supply partial pressure as the zinc chloride gas supply partial pressure P 0 ZnCl 2 , and the growth temperature is increased to about 900 ° C., so that the driving force D is reduced and the growth is continued. Since the speed can be reduced, the film thickness of the zinc oxide semiconductor can be easily controlled.
また、原料ゾーン4の設定温度を成長ゾーン8の成長温度よりも低くすることによって、原料ゾーン4で生成された塩化亜鉛ガスが成長ゾーン8まで輸送されるまでの間に析出することを抑制できる。
Further, by making the set temperature of the raw material zone 4 lower than the growth temperature of the
また、酸素材料として酸素単体ではなく水を採用することによって、成長ゾーン8において塩素ガスではなく塩酸ガスが生成されるので、熱力学的により安定した状態で反応式(2)を右辺に進行させることができる。
Further, by adopting water instead of simple oxygen as the oxygen material, hydrochloric acid gas is generated in the
(第2実施形態)
次に、本発明をMgZnO半導体(酸化亜鉛系半導体)の製造方法及びその製造装置に適用した第2実施形態について説明する。図3は、第2実施形態によるMgZnO半導体の製造装置を示す図である。尚、第1実施形態と同じ構成には同じ符号を付けて説明を省略する。
(Second Embodiment)
Next, a second embodiment in which the present invention is applied to an MgZnO semiconductor (zinc oxide-based semiconductor) manufacturing method and manufacturing apparatus will be described. FIG. 3 is a view showing an apparatus for manufacturing an MgZnO semiconductor according to the second embodiment. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and description is abbreviate | omitted.
図3に示すように、MgZnO半導体(酸化亜鉛系半導体)の製造装置1Aは、塩素ガス供給手段12と、キャリアガス供給手段13と、マグネシウムの金属単体を含むII族金属材料25が保持された原料ゾーン14とを更に備えている。
As shown in FIG. 3, the MgZnO semiconductor (zinc oxide semiconductor) manufacturing apparatus 1 </ b> A holds chlorine gas supply means 12, carrier gas supply means 13, and a group II
MgZnO半導体の製造装置1Aを用いたMgZnO半導体の製造方法では、キャリアガスとともに塩素ガスを原料ゾーン14に輸送し、原料ゾーン14で塩化マグネシウムガスを生成する。そして、キャリアガス供給手段13から供給される窒素ガスにより塩化マグネシウムガスを成長ゾーン8に輸送して、成長ゾーン8で塩化亜鉛ガス、塩化マグネシウムガス及び水を反応させることにより、MgZnO半導体を成長基板16上に成長させることができる。
In the MgZnO semiconductor manufacturing method using the MgZnO semiconductor manufacturing apparatus 1 </ b> A, chlorine gas is transported to the raw material zone 14 together with the carrier gas, and magnesium chloride gas is generated in the raw material zone 14. Then, the magnesium chloride gas is transported to the
以上、実施形態を用いて本発明を詳細に説明したが、本発明は本明細書中に説明した実施形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載及び特許請求の範囲の記載と均等の範囲により決定されるものである。以下、上記実施形態を一部変更した変更形態について説明する。 As mentioned above, although this invention was demonstrated in detail using embodiment, this invention is not limited to embodiment described in this specification. The scope of the present invention is determined by the description of the claims and the scope equivalent to the description of the claims. Hereinafter, modified embodiments in which the above-described embodiment is partially modified will be described.
例えば、上述の実施形態では、マグネシウムの金属単体を亜鉛以外のII族金属材料として採用したが、マグネシウムの他にII族金属材料としてカドミニウムを採用してもよい。 For example, in the above-described embodiment, the magnesium metal element is employed as the group II metal material other than zinc, but cadmium may be employed as the group II metal material in addition to magnesium.
また、上述の実施形態では、酸素材料として水を採用したが、水の代わりに酸素ガスを酸素材料として採用してもよい。 In the above-described embodiment, water is used as the oxygen material, but oxygen gas may be used as the oxygen material instead of water.
また、上述の実施形態では、ハロゲンガスとして塩素ガスを採用したが、塩素ガスの代わりに臭素ガスを採用してもよい。 Moreover, in the above-mentioned embodiment, although chlorine gas was employ | adopted as halogen gas, you may employ | adopt bromine gas instead of chlorine gas.
また、上述の第2実施形態では、2種類のII族金属材料を用いたが、II族金属材料の種類は2種類に限定するものでなく、3種類以上のII族金属材料を用いてもよい。 In the second embodiment described above, two types of Group II metal materials are used. However, the type of Group II metal materials is not limited to two types, and three or more Group II metal materials may be used. Good.
1 塩化亜鉛半導体の製造装置
1A 塩化亜鉛系半導体の製造装置
2 塩素ガス供給手段
3 キャリアガス供給手段
4 原料ゾーン
5 加熱手段
6 水供給手段
7 キャリアガス供給手段
8 成長ゾーン
9 加熱手段
10 基板保持手段
11 水素供給手段
12 塩素ガス供給手段
13 キャリアガス供給手段
14 原料ゾーン
15 II族金属材料
16 成長基板
25 II族金属材料
DESCRIPTION OF SYMBOLS 1 Zinc chloride semiconductor manufacturing apparatus 1A Zinc chloride type semiconductor manufacturing apparatus 2 Chlorine gas supply means 3 Carrier gas supply means 4 Raw material zone 5 Heating means 6 Water supply means 7 Carrier gas supply means 8 Growth zone 9 Heating means 10 Substrate holding means 11 Hydrogen supply means 12 Chlorine gas supply means 13 Carrier gas supply means 14 Raw material zone 15 Group
Claims (10)
酸素を含む酸素材料を成長ゾーンに供給する第2の工程と、
前記ハロゲン化II族金属を前記原料ゾーンから前記成長ゾーンに輸送する第3の工程と、
前記ハロゲン化II族金属と前記酸素材料とを前記成長ゾーンで反応させて成長基板上に酸化亜鉛系半導体を成長させる第4の工程とを備えたことを特徴とする酸化亜鉛系半導体の製造方法。 A first step of generating a group II metal halide by reacting a group II metal material including a metal element of zinc with a halogen gas in the raw material zone;
A second step of supplying an oxygen material containing oxygen to the growth zone;
A third step of transporting the Group II metal halide from the source zone to the growth zone;
A method for producing a zinc oxide-based semiconductor comprising: a fourth step of growing a zinc oxide-based semiconductor on a growth substrate by reacting the group II metal halide and the oxygen material in the growth zone. .
前記第1原料ゾーンにハロゲンガスを供給するハロゲンガス供給手段と、
酸素を含む酸素材料を供給する酸素材料供給手段と、
前記ハロゲンガス及び前記II族金属材料から生成されたハロゲン化II族金属と前記酸素材料とを反応させるための成長ゾーンとを備えたことを特徴とする酸化亜鉛系半導体の製造装置。 A first raw material zone in which a first Group II metal material containing a metal element of zinc is held;
Halogen gas supply means for supplying halogen gas to the first raw material zone;
Oxygen material supply means for supplying oxygen material containing oxygen;
An apparatus for producing a zinc oxide based semiconductor, comprising: a growth zone for reacting a halogenated group II metal generated from the halogen gas and the group II metal material with the oxygen material.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079938A JP5052174B2 (en) | 2007-03-26 | 2007-03-26 | Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus |
PCT/JP2008/055237 WO2008117742A1 (en) | 2007-03-26 | 2008-03-21 | Zinc oxide semiconductor manufacturing method and zinc oxide semiconductor manufacturing apparatus |
TW97110591A TW200849341A (en) | 2007-03-26 | 2008-03-25 | Zinc oxide semiconductor manufacturing method and zinc oxide semiconductor manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079938A JP5052174B2 (en) | 2007-03-26 | 2007-03-26 | Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008243987A JP2008243987A (en) | 2008-10-09 |
JP5052174B2 true JP5052174B2 (en) | 2012-10-17 |
Family
ID=39788477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007079938A Active JP5052174B2 (en) | 2007-03-26 | 2007-03-26 | Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5052174B2 (en) |
TW (1) | TW200849341A (en) |
WO (1) | WO2008117742A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8822263B2 (en) | 2008-06-30 | 2014-09-02 | National University Corporation Tokyo University Of Agriculture And Technology | Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device |
JP2010157574A (en) * | 2008-12-26 | 2010-07-15 | Tokyo Univ Of Agriculture & Technology | Zinc oxide-based semiconductor, and method and device for manufacturing same |
EP2641996A1 (en) | 2012-03-23 | 2013-09-25 | Stanley Electric Co., Ltd. | Method for growing magnesium-zinc-oxide-based crystal |
JP2012236761A (en) * | 2012-07-06 | 2012-12-06 | Tokyo Univ Of Agriculture & Technology | Homoepitaxial crystal growth apparatus and semiconductor device |
JP5943345B2 (en) * | 2012-07-27 | 2016-07-05 | 東京エレクトロン株式会社 | ZnO film manufacturing apparatus and method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05294768A (en) * | 1992-04-18 | 1993-11-09 | Taiyo Yuden Co Ltd | Method for etching transparent conductive film |
JP3215798B2 (en) * | 1996-06-26 | 2001-10-09 | 住友電気工業株式会社 | Method for growing II-VI compound semiconductor crystal |
JP2001270799A (en) * | 2000-03-27 | 2001-10-02 | Toyo Ink Mfg Co Ltd | Zinc oxide thin film and method for producing the same |
JP2003243695A (en) * | 2002-02-21 | 2003-08-29 | Sony Corp | Light emitting element, its fabricating method and display |
JP2004075428A (en) * | 2002-08-13 | 2004-03-11 | Sumitomo Electric Ind Ltd | Process for growing group ii-vi compound semiconductor crystal |
JP4000296B2 (en) * | 2002-12-20 | 2007-10-31 | 株式会社フィズケミックス | Metal compound film production apparatus and metal compound film production method |
JP2007016119A (en) * | 2005-07-07 | 2007-01-25 | Tokyo Univ Of Agriculture & Technology | Method for producing zinc oxide phosphor and its utilization |
-
2007
- 2007-03-26 JP JP2007079938A patent/JP5052174B2/en active Active
-
2008
- 2008-03-21 WO PCT/JP2008/055237 patent/WO2008117742A1/en active Application Filing
- 2008-03-25 TW TW97110591A patent/TW200849341A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2008117742A1 (en) | 2008-10-02 |
TW200849341A (en) | 2008-12-16 |
JP2008243987A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102544300B1 (en) | Methods of forming silicon germanium tin films and structures and devices including the films | |
WO2003085711A1 (en) | VAPOR PHASE GROWTH METHOD FOR Al-CONTAINING III-V GROUP COMPOUND SEMICONDUCTOR, AND METHOD AND DEVICE FOR PRODUCING Al-CONTAINING III-V GROUP COMPOUND SEMICONDUCTOR | |
CA2678488C (en) | Method of producing a group iii nitride crystal | |
JP5787324B2 (en) | Method for producing gallium trichloride gas and method for producing nitride semiconductor crystal | |
WO2015053341A1 (en) | Method for producing group iii nitride crystal, group iii nitride crystal, semiconductor device and apparatus for producing group iii nitride crystal | |
JP5052174B2 (en) | Zinc oxide based semiconductor manufacturing method and zinc oxide based semiconductor manufacturing apparatus | |
KR101591833B1 (en) | Method for manufacturing doped metal chalcogenide film and the film manufactured by the same | |
JP5392708B2 (en) | Heteroepitaxial growth method | |
JP5229792B2 (en) | Method for producing group III element nitride crystal and group III element nitride crystal obtained thereby | |
JP2004137142A (en) | Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device | |
JP2005223243A (en) | Manufacturing method and hydlide vapor phase epitaxy equipment of group iii nitride semiconducting crystal | |
US20120104557A1 (en) | Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template | |
US20160138182A1 (en) | Methods for forming mixed metal oxide epitaxial films | |
CN110714190B (en) | Group III nitride substrate and method for producing group III nitride crystal | |
JP4699420B2 (en) | Method for manufacturing nitride film | |
JP4812035B2 (en) | Growth method of gallium nitride by CVD and HVPE | |
JP2010157574A (en) | Zinc oxide-based semiconductor, and method and device for manufacturing same | |
JP4265073B2 (en) | Method for producing FeSi2 | |
JP5177523B2 (en) | Homoepitaxial growth method | |
WO2021161613A1 (en) | Vapor-phase epitaxy device and production method for gallium nitride | |
JP4768773B2 (en) | Thin film forming apparatus and thin film forming method | |
JP2024500584A (en) | Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystals | |
JP4784112B2 (en) | Method for growing ZnO-based compound crystal | |
WO2021198805A1 (en) | Epitaxial processing of single-crystalline films on amorphous substrates | |
GB2599135A (en) | Method of forming graphene on a silicon substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120724 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |