[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5051900B2 - Semiconductor laser welding equipment - Google Patents

Semiconductor laser welding equipment Download PDF

Info

Publication number
JP5051900B2
JP5051900B2 JP2008010400A JP2008010400A JP5051900B2 JP 5051900 B2 JP5051900 B2 JP 5051900B2 JP 2008010400 A JP2008010400 A JP 2008010400A JP 2008010400 A JP2008010400 A JP 2008010400A JP 5051900 B2 JP5051900 B2 JP 5051900B2
Authority
JP
Japan
Prior art keywords
laser
laser output
transmittance
light
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008010400A
Other languages
Japanese (ja)
Other versions
JP2009166115A (en
Inventor
孝英 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2008010400A priority Critical patent/JP5051900B2/en
Publication of JP2009166115A publication Critical patent/JP2009166115A/en
Application granted granted Critical
Publication of JP5051900B2 publication Critical patent/JP5051900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、レーザ光に対して透過性の材料と吸収性の材料とを密着させ、この密着部にレーザ光を照射して密着部を溶着させる半導体レーザ溶着装置に係り、特にレーザ出力プロファイルの設定に関するものである。   The present invention relates to a semiconductor laser welding apparatus in which a material that is transparent to laser light and an absorptive material are brought into close contact with each other, and laser light is irradiated onto the contact portion to weld the close contact portion. It is about setting.

樹脂材料を溶着して結合する手段として、レーザ光を透過性の樹脂材料と、レーザ光を吸収して発熱する樹脂材料とを接触して保持し、YAGレーザ等のレーザ光を透過性の樹脂材料を介して吸収性の樹脂材料の一部に照射して、吸収性の樹脂材料の照射部分にレーザ光の光エネルギを吸収させることによって発熱、溶融させると共に、その熱の一部を照射部分に接触している透過性の樹脂材料の一部にも与えてその部分の温度を上昇させて溶融、融合させた後に、融合部分を冷却、固化させることにより、これらの樹脂材料を結合する溶着方法が知られている。   As a means for welding and bonding resin materials, a resin material that transmits laser light and a resin material that absorbs laser light and generates heat are held in contact with each other, and a resin that transmits laser light such as a YAG laser. A part of the absorbent resin material is irradiated through the material, and the irradiated part of the absorbent resin material absorbs the light energy of the laser beam to generate heat and melt, and a part of the heat is irradiated. This is also applied to a part of the permeable resin material that is in contact with the melt, and the temperature of the part is raised to melt and fuse, and then the fused part is cooled and solidified to bond these resin materials. The method is known.

このレーザ溶着方法はレーザ光の出力を適切に制御することが必要であり、外部からのアナログ信号入力部を備え、ここから入力されるアナログ信号に基づいてレーザ光を制御を可能としたレーザ溶着装置が知られている。このようなレーザ溶着装置を用いてレーザ光の透過率を測定しながらリアルタイムにレーザ光を制御するレーザ溶着装置とレーザ溶着方法に関する発明が公開されている(例えば、特許文献1)。   This laser welding method requires appropriate control of the output of the laser beam, and is equipped with an external analog signal input unit, which enables laser beam control based on the analog signal input therefrom. The device is known. An invention relating to a laser welding apparatus and a laser welding method for controlling laser light in real time while measuring the transmittance of the laser light using such a laser welding apparatus is disclosed (for example, Patent Document 1).

図4はこの従来のレーザ溶着装置と溶着方法を説明する図である。
図4において、1はレーザ光源、2はレーザ光源1からのレーザ光を収束する光学系、3は光学系2を通過したレーザ光、4は被加工材料であるレーザ光3を概ね透過させる樹脂材料からなる透過材、5はそれに接触していてレーザ光3を吸収する不透明な樹脂材料からなる吸収材である。
FIG. 4 is a view for explaining this conventional laser welding apparatus and welding method.
In FIG. 4, 1 is a laser light source, 2 is an optical system for converging the laser light from the laser light source 1, 3 is a laser light that has passed through the optical system 2, and 4 is a resin that substantially transmits the laser light 3 that is a material to be processed. A transmitting material 5 made of a material is an absorbing material made of an opaque resin material that is in contact with the transmitting material and absorbs the laser beam 3.

6はレーザ光源1に作用してその出力をリアルタイムに増減制御することができるような、マイクロコンピュータを含む演算装置、7は必要に応じて設けられるレーザ光を伝達する光ファイバケーブル、8は透過材4と同じ材料からなり、被加工材料から必要な距離だけ離れた位置に支持されている透過材4と同形の別体のモデル(以下、透過材4aという。)に近接して、この透過材4aを透過する光の量を計測する検出器、9は透過材4aに対して検出器8の反対側に設けられた測定用の光源、10は光源9から射出される光線11を集束させて透過材4aを介して検出器8へ入射させるレンズ等からなる光学系である。   Reference numeral 6 denotes an arithmetic unit including a microcomputer that can control the output of the laser light source 1 in real time, 7 is an optical fiber cable that transmits laser light provided as needed, and 8 is a transmission This transmission is made close to a separate model (hereinafter referred to as a transmission material 4a) which is made of the same material as the material 4 and is supported at a position away from the work material by a necessary distance. A detector for measuring the amount of light transmitted through the material 4a, 9 is a measuring light source provided on the opposite side of the detector 8 with respect to the transmitting material 4a, and 10 is for focusing the light beam 11 emitted from the light source 9. And an optical system composed of a lens or the like that enters the detector 8 through the transmission material 4a.

次にこのようなレーザ溶着装置の動作について説明する。
レーザ溶着を実行する前に予め測定用の光源9から光線11を透過材4aに照射して、透過材4aを透過した光線11の量を検出器8によって測定し、その信号を演算装置6へ入力することにより透過材4aの透過率(結局透過材4の透過率)を算出する。その後にレーザ溶着を実行するが、まず、演算装置6により、測定結果として算出された透過率の大きさに応じた出力をレーザ光源1に設定し、そのレーザ光源1から光学系2を介して、設定された強さのレーザ光3を透過材4及び吸収材5からなる被加工材料へ照射する。図5は測定された透過率の一例を示す図、図6は図5の透過率に対応したレーザ光出力を示す図である。
Next, the operation of such a laser welding apparatus will be described.
Before the laser welding is performed, the light beam 11 from the measurement light source 9 is irradiated onto the transmission material 4a in advance, the amount of the light beam 11 transmitted through the transmission material 4a is measured by the detector 8, and the signal is sent to the arithmetic unit 6. By inputting, the transmittance of the transmissive material 4a (after all, the transmittance of the transmissive material 4) is calculated. Thereafter, laser welding is performed. First, an output corresponding to the magnitude of the transmittance calculated as a measurement result is set in the laser light source 1 by the arithmetic unit 6, and the laser light source 1 is passed through the optical system 2. Then, the laser beam 3 having the set intensity is irradiated to the workpiece material including the transmitting material 4 and the absorbing material 5. FIG. 5 is a diagram showing an example of the measured transmittance, and FIG. 6 is a diagram showing a laser beam output corresponding to the transmittance of FIG.

これによって、溶着部分へ照射されるレーザ光3の強さがその時に溶着される透過材4の透過率に即応した大きさに変化する。即ち、透過率が高い時はレーザ光3の強さを比較的に弱くする一方、透過率が低い時はレーザ光3の強さを強くして、過不足のない大きさのエネルギーが溶着部分の吸収材5の表面へ与えられるので、吸収材5の表面において適正な大きさの発熱が得られて、発熱量不足による溶着不良とか、反対に過度の発熱量によって吸収材5の過大な面積及び深さに溶融部分が生じることによるトラブルを防止して、高品質のレーザ溶着を行うことができる。   As a result, the intensity of the laser beam 3 applied to the welded portion changes to a magnitude that immediately corresponds to the transmittance of the transmitting material 4 that is welded at that time. That is, when the transmittance is high, the intensity of the laser beam 3 is made relatively weak, while when the transmittance is low, the intensity of the laser beam 3 is increased so that the energy of the amount not excessive or insufficient is welded. Since the heat is applied to the surface of the absorbent material 5, an appropriate amount of heat is generated on the surface of the absorbent material 5. In addition, it is possible to prevent a trouble caused by a melted portion in the depth and perform high-quality laser welding.

演算装置6の動作について詳しく説明する。
演算装置6において、検出器8によって検出された透過率からレーザ光源1の出力を算出するために、透過材4の透過率とレーザ光源1の出力との関係を透過率xとレーザ出力Wとの関係を示すマップとか、関数式W=f(x)のような形で定義して、演算装置6内のメモリに設定しておく。そして透過材4aの透過率を測定して、得られた値をこの定義に当てはめることにより、レーザ光源1の出力の最適値を算出する。一般的なレーザ溶着装置はアナログ電圧式の入力システムを有するから、レーザ光源1は外部から指令値として入力された電圧に対応する大きさのレーザ出力を発生する。従って、指令値の電圧波形を変更することでレーザ光源1の出力を変化させることができる。出力変化のパターンについては、溶着順序を示すラインに沿って透過材4の全周にわたる透過率の変化を測定した結果に基づいて多段波形制御を行うことも可能である。
特開2004−243629号公報
The operation of the arithmetic device 6 will be described in detail.
In the arithmetic unit 6, in order to calculate the output of the laser light source 1 from the transmittance detected by the detector 8, the relationship between the transmittance of the transmissive material 4 and the output of the laser light source 1 is expressed by the transmittance x and the laser output W. Are defined in a form such as a functional expression W = f (x) and set in a memory in the arithmetic unit 6. Then, the transmittance of the transmissive material 4a is measured, and the obtained value is applied to this definition to calculate the optimum value of the output of the laser light source 1. Since a general laser welding apparatus has an analog voltage type input system, the laser light source 1 generates a laser output having a magnitude corresponding to a voltage input as a command value from the outside. Therefore, the output of the laser light source 1 can be changed by changing the voltage waveform of the command value. Regarding the output change pattern, it is also possible to perform multi-stage waveform control based on the result of measuring the change in transmittance over the entire circumference of the transmission material 4 along the line indicating the welding order.
JP 2004-243629 A

以上のように、透過材の全周にわたって透過率を測定し、それに基づいてレーザ出力の強弱制御を行うことは、被加工物に透過率が一様ではない透過材を用いた場合のレーザ溶着でも安定した品質の溶着が可能であるという点で有用である。
そして、より基本的な方法として、実際に溶着を行う透過材4の溶着部分の全てを予めトレースして、透過率の面内分布を連続的に測定し、この透過率データをメモリに蓄積した後に、透過率データに従ってレーザ溶着を実行することも可能である。通常の溶着工程のように、同じ形状の多数の被加工材料を繰り返して溶着する場合には、最初に被加工材料の透過材4について溶着部分全周の透過率を1回だけ測定することにより、同じロットの加工中は演算装置6によってレーザ光源1の出力制御を同じパターンで繰り返すだけでよいから、この方法が最も効率的である。
As described above, the transmittance is measured over the entire circumference of the transmission material, and the intensity of the laser output is controlled based on the measurement. Laser welding in the case where a transmission material with non-uniform transmittance is used for the workpiece However, it is useful in that stable quality welding is possible.
Then, as a more basic method, all the welded portions of the permeable material 4 to be actually welded are traced in advance, the in-plane distribution of transmittance is continuously measured, and this transmittance data is stored in the memory. It is also possible to perform laser welding later according to the transmittance data. When a large number of work materials having the same shape are repeatedly welded as in a normal welding process, first, the transmittance of the permeation material 4 of the work material is measured only once for the entire circumference of the welded portion. Since the output control of the laser light source 1 only needs to be repeated in the same pattern by the arithmetic unit 6 during the processing of the same lot, this method is the most efficient.

しかしながら、このようにメモリに蓄積した場合でも、このデータは溶着部分全周の透過率であるから、同じロットの透過材の透過率を測定しないというだけで、演算装置6では前述のように、演算装置6内のメモリに設定された透過材4の透過率とレーザ光源1の出力との関係を透過率xとレーザ出力Wとの関係から透過率に対応するレーザ光源1の出力の最適値を算出する必要があるという点では同じであるから、この点においては効率的ではないという欠点があった。
また、被加工材料の透過材4の形状が複雑で厚さが一様でないとか、材料内部の結晶の分布が均等ではなくて、透過率が被加工材料の各部分毎に変化しているために、透過材4の透過率の分布をメモリに記憶して定型的に出力制御をすることができない場合もあり、このような場合には、タクトタイムや制御性に優れたシステムを使用して、時時刻刻と変化する透過材4の各部分の透過率を個別に測定し、その測定結果に応じてレーザ光源1の出力がリアルタイムに変化するように制御しなければならないという欠点があった。
However, even when the data is stored in the memory in this way, since this data is the transmittance of the entire circumference of the welded portion, the arithmetic device 6 does not measure the transmittance of the permeation material of the same lot. The relationship between the transmittance of the transmission material 4 set in the memory in the arithmetic unit 6 and the output of the laser light source 1 is the optimum value of the output of the laser light source 1 corresponding to the transmittance from the relationship between the transmittance x and the laser output W. Since it is the same in that it is necessary to calculate, there is a disadvantage that it is not efficient in this respect.
In addition, the shape of the transmission material 4 of the workpiece material is complicated and the thickness is not uniform, or the distribution of crystals inside the material is not uniform, and the transmittance changes for each part of the workpiece material. In addition, there is a case where the distribution of the transmittance of the transmission material 4 cannot be stored in the memory and the output control cannot be routinely performed. In such a case, a system having excellent tact time and controllability is used. The transmittance of each part of the transmissive material 4 that changes with time is measured individually, and the output of the laser light source 1 must be controlled to change in real time according to the measurement result. .

本発明は、上記課題を解決するためになされたもので、透過材の透過率のメモリへの蓄積と透過率とレーザ出力との関係のメモリへの蓄積を別々に行うことなく、レーザ溶着工程において時時刻刻と変化する透過率に応じて適合するレーザ出力との関係(以下、レーザ出力プロファイルともいう)をメモリに蓄積することで、使い勝手がよいレーザ溶着装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The laser welding process is performed without separately storing the transmittance of the transmission material in the memory and the storage of the relationship between the transmittance and the laser output in the memory. The purpose of the present invention is to provide a laser welding apparatus that is easy to use by storing in a memory the relationship (hereinafter also referred to as a laser output profile) between the laser output suitable for the time and the changing transmittance in the memory. .

請求項1に係る発明になる半導体レーザ溶着装置は、レーザ出力を決定するアナログ信号入力部を備え、光透過性の材料と光吸収性の材料を密着して重ね合わせ、光透過性の材料側からレーザ光を照射して両材料を溶着する半導体レーザ溶着装置であって、前記光透過性の材料の溶着部に沿って光透過率を測定する透過率測定手段と、この透過率測定手段から得られた光透過率を所定の手順によりアナログ信号に変換するアナログ信号変換手段と、このアナログ信号変換手段からのアナログ信号を受けて溶着工程のレーザ出力プロファイルを記憶する記憶手段とを備えることを特徴とする。   The semiconductor laser welding apparatus according to the first aspect of the present invention includes an analog signal input unit that determines a laser output, and a light-transmitting material and a light-absorbing material are closely adhered to each other to overlap the light-transmitting material side. A semiconductor laser welding apparatus that welds both materials by irradiating laser light from the transmittance measuring means for measuring the light transmittance along the welded portion of the light transmissive material, and the transmittance measuring means An analog signal converting means for converting the obtained light transmittance into an analog signal by a predetermined procedure, and a storage means for receiving the analog signal from the analog signal converting means and storing the laser output profile of the welding process. Features.

請求項2に係る発明になる半導体レーザ溶着装置は、前記透過率測定手段に替えてレーザ溶着工程中の溶着部の温度を計測する温度計測手段を備えることを特徴とするものである。   A semiconductor laser welding apparatus according to a second aspect of the present invention is characterized by comprising temperature measuring means for measuring the temperature of the welded part during the laser welding process in place of the transmittance measuring means.

請求項3に係る発明になる半導体レーザ溶着装置は、請求項1または2に係る発明になるレーザ溶着装置に、レーザ出力プロファイルを表示する表示手段と、レーザ出力プロファイルを変化させる操作手段と、この操作手段からの操作に基づき変化させたレーザ出力プロファイルに変更する変更手段とを備えることを特徴とするものである。   According to a third aspect of the present invention, there is provided a semiconductor laser welding apparatus comprising: a display means for displaying a laser output profile; an operation means for changing the laser output profile; And changing means for changing to a laser output profile changed based on an operation from the operating means.

請求項1に係る発明によれば、1レーザ溶着工程におけるレーザ出力プロファイルを透過材の透過率に応じて設定できるので、繰り返し行われる被加工物のレーザ溶着作業に好適なレーザ溶着装置を提供することができる。   According to the first aspect of the present invention, since the laser output profile in one laser welding process can be set according to the transmittance of the transmission material, there is provided a laser welding apparatus suitable for repeated laser welding work of workpieces. be able to.

請求項2に係る発明によれば、1レーザ溶着工程におけるレーザ出力プロファイルをレーザ溶着工程中の被加工材料の温度に応じて設定できるので、被加工材料の溶融特性に合わせたレーザ溶着作業が可能となるので信頼性の高いレーザ溶着作業に好適なレーザ溶着装置を提供することができる。   According to the second aspect of the present invention, the laser output profile in one laser welding process can be set according to the temperature of the material to be processed in the laser welding process, so that laser welding can be performed in accordance with the melting characteristics of the material to be processed. Therefore, it is possible to provide a laser welding apparatus suitable for highly reliable laser welding work.

請求項3に係る発明によれば、レーザ出力プロファイルの良否を確認するために設定されたレーザ出力プロファイルでレーザ溶着作業を実行し、溶着具合を確認しながら、レーザ出力プロファイルを修正できるので使い勝手のよいレーザ溶着装置を提供することができる。   According to the third aspect of the present invention, the laser output operation is performed with the laser output profile set to confirm the quality of the laser output profile, and the laser output profile can be corrected while confirming the welding condition. A good laser welding apparatus can be provided.

本発明の最良の形態は外部からのアナログ信号に応じてレーザ出力を制御する機能を備えたレーザ溶着装置に外部からのアナログ信号とレーザ出力間の相関関係のテーブルと1レーザ溶着工程における外部からのアナログ信号に対応したレーザ出力プロファイルを記憶する記憶部を備えることで実現できる。次に本発明の実施例を3例挙げて、本発明について具体的に説明する。   The best mode of the present invention provides a laser welding apparatus having a function of controlling laser output in accordance with an analog signal from the outside, a table of correlation between the analog signal from the outside and the laser output, and an external in one laser welding process. This can be realized by providing a storage unit for storing a laser output profile corresponding to the analog signal. Next, the present invention will be specifically described with reference to three examples of the present invention.

図1は、本発明になる半導体レーザ溶着装置の1実施例の要部ブロック図である。
なお、レーザ溶着装置の全体は図4に示す従来例と同様の構成を採用する。
図1において、60は従来例の演算装置6に対応するレーザ溶着電源、80は従来例の光検出器8に対応する透過率検出器である。
透過率検出器80は透過率測定手段である測定用の光源9から光線11を透過材4aに照射して透過材4aの透過光を受けて透過率を測定する透過率測定部81とアナログ信号変換手段である透過率測定部81からの透過率からレーザ溶着電源60が要求するアナログ信号(例えば、0〜10Vのアナログ電圧信号)を生成するアナログ信号生成部82とからなる。
FIG. 1 is a block diagram of a main part of one embodiment of a semiconductor laser welding apparatus according to the present invention.
The entire laser welding apparatus adopts the same configuration as the conventional example shown in FIG.
In FIG. 1, 60 is a laser welding power source corresponding to the arithmetic unit 6 of the conventional example, and 80 is a transmittance detector corresponding to the photodetector 8 of the conventional example.
The transmittance detector 80 irradiates the transmitting material 4a with the light beam 11 from the measuring light source 9 which is a transmittance measuring means, receives the transmitted light of the transmitting material 4a, and measures the transmittance, and an analog signal. An analog signal generating unit 82 that generates an analog signal (for example, an analog voltage signal of 0 to 10 V) required by the laser welding power source 60 from the transmittance from the transmittance measuring unit 81 serving as a conversion means.

61はレーザ溶着電源60全体を制御するが、この実施例では特に外部からのアナログ信号を受けてこのアナログ信号に応じたレーザ出力が得られるような制御を行うCPU、62は外部に設けられた透過率検出器80からの透過材4aの透過率に応じて生成されたレーザ出力設定信号として用いられるアナログ信号を受けて、A/D変換してデジタル透過率データとしてCPU61が読み込み可能とする外部設定信号入力部、63は外部設定信号入力部62からのデジタル透過率データと透過率に応じて予め決定されるレーザ出力データをテーブル形式で格納する透過率/レーザ出力対応テーブルである。   61 controls the entire laser welding power source 60. In this embodiment, in particular, a CPU that performs control to receive an analog signal from the outside and obtain a laser output corresponding to the analog signal, 62 is provided outside. An external signal that can be read by the CPU 61 as digital transmittance data after receiving an analog signal used as a laser output setting signal generated according to the transmittance of the transmission material 4a from the transmittance detector 80 and performing A / D conversion. A setting signal input unit 63 is a transmittance / laser output correspondence table that stores digital transmittance data from the external setting signal input unit 62 and laser output data determined in advance according to the transmittance in a table format.

64はCPU61により外部設定信号入力部62から1レーザ溶着工程の透過率データが読み込まれ、透過率/レーザ出力対応テーブル64から透過率データに対応するレーザ出力を読み出し、1レーザ溶着工程におけるレーザ出力プロファイルを格納するレーザ出力プロファイルテーブル、65は選択されたレーザ出力プロファイルをレーザ出力プロファイルテーブル64から読み出してレーザ出力プロファイルとして設定するレーザ出力プロファイル設定部、66はレーザ出力プロファイル設定部65からのレーザ出力プロファイルを受けてこのレーザ出力プロファイルに従ったレーザ出力が得られるように制御するレーザ出力制御部である。CPU61、外部設定信号入力部62、透過率/レーザ出力対応テーブル63、およびレーザ出力プロファイルテーブル64とでレーザ出力プロファイルを記憶する記憶手段を構成する。   The CPU 61 reads the transmittance data of one laser welding process from the external setting signal input unit 62 by the CPU 61, reads the laser output corresponding to the transmittance data from the transmittance / laser output correspondence table 64, and outputs the laser output in the one laser welding process. A laser output profile table for storing a profile, 65 is a laser output profile setting unit for reading out the selected laser output profile from the laser output profile table 64 and setting it as a laser output profile, and 66 is a laser output from the laser output profile setting unit 65 It is a laser output control unit that receives a profile and controls so that a laser output according to the laser output profile is obtained. The CPU 61, the external setting signal input unit 62, the transmittance / laser output correspondence table 63, and the laser output profile table 64 constitute storage means for storing the laser output profile.

67は操作手段である各種操作キー(具体的には後述する。)からなるレーザ溶着電源60の操作部、68は表示手段であるレーザ出力プロファイル等を表示する表示部、69はCPU61と外部設定信号入力部62等とをつなぐアドレスおよびデータバスである。なお、このレーザ出力プロファイルテーブル64には1つのレーザ溶着工程分のレーザ出力プロファイルだけではなく、複数の工程分のプロファイルデータを記憶させることができる。CPU61、操作部67、および表示部68とで変更手段を構成する。   Reference numeral 67 denotes an operation unit of a laser welding power source 60 including various operation keys (specifically described later) as operation means, 68 denotes a display unit which displays a laser output profile and the like as display means, and 69 denotes an external setting with the CPU 61. An address and data bus connecting the signal input unit 62 and the like. The laser output profile table 64 can store not only a laser output profile for one laser welding process but also profile data for a plurality of processes. The CPU 61, the operation unit 67, and the display unit 68 constitute a changing unit.

レーザ出力制御部66からはレーザ光源1へ制御パラメータとして駆動電流が供給され、レーザ光源の出力が決定される。そして、この駆動電流を電流検出素子で検出し、フィードバックしてレーザ出力プロファイルに追随するような公知の方法が用いられる。
次にこのようなレーザ溶着装置の動作について説明する。
A drive current is supplied as a control parameter from the laser output controller 66 to the laser light source 1, and the output of the laser light source is determined. Then, a known method is used in which the drive current is detected by a current detection element and fed back to follow the laser output profile.
Next, the operation of such a laser welding apparatus will be described.

[透過率/レーザ出力対応テーブルの作成]
最初にレーザ溶着電源60の透過率/レーザ出力対応テーブル63を完成させる。レーザ光は透過材4の透過率によって吸収材5に到達するレーザ光量が変動する。また、吸収材5で吸収されるレーザ光による発熱による吸収材5の溶融、それに伴う透過材4への伝熱溶融による吸収材5と透過材4との溶着はレーザ光を照射している時間により変動する。これらの関係は予め実験的に求めておくか、経験的に得られている関係を流用して、実行しようとするレーザ溶着工程にしたがって操作部67から透過率/レーザ出力対応テーブル63を作成する。このように、透過材4の透過率とレーザ光の照射時間を同時に勘案して前記テーブル作成するのが大変なときは透過率とレーザ出力、照射時間とレーザ出力の対応テーブルをそれぞれ別個に設け、レーザ出力プロファイル生成の時点で両テーブルから適宜必要なデータを読み出すようにすることもできる。
[Creation of transmittance / laser output correspondence table]
First, the transmittance / laser output correspondence table 63 of the laser welding power source 60 is completed. The amount of laser light reaching the absorbing material 5 varies depending on the transmittance of the transmitting material 4. Further, melting of the absorbing material 5 due to heat generated by the laser beam absorbed by the absorbing material 5 and the welding of the absorbing material 5 and the transmitting material 4 due to heat transfer melting to the transmitting material 4 accompanying with the melting time are the time during which the laser beam is irradiated. Varies depending on These relationships are obtained in advance experimentally, or the relationships obtained empirically are used to create the transmittance / laser output correspondence table 63 from the operation unit 67 according to the laser welding process to be executed. . As described above, when it is difficult to prepare the table by simultaneously considering the transmittance of the transmission material 4 and the irradiation time of the laser beam, a correspondence table for the transmittance and the laser output, and the irradiation time and the laser output is provided separately. It is also possible to read out necessary data from both tables at the time of generating the laser output profile.

このように、透過材4の透過率のレーザ溶着工程における変動はレーザ出力プロファイルの設定に用いられるので、この透過率/レーザ出力対応テーブルは外部からの透過材4の透過率の変動に基づくアナログ信号と密接な関係があり、透過率/レーザ出力対応テーブルの作成とアナログ信号の生成は一体のものとして考えなければならない。   As described above, since the variation of the transmittance of the transmission material 4 in the laser welding process is used for setting the laser output profile, this transmittance / laser output correspondence table is an analog based on the variation of the transmittance of the transmission material 4 from the outside. There is a close relationship with the signal, and the creation of the transmittance / laser output correspondence table and the generation of the analog signal must be considered as one.

[レーザ出力プロファイルの設定]
次にレーザ出力プロファイルの設定を行う。
まず、透過材4の透過率を求め、それをもとにレーザ溶着電源60が要求する信号の生成について説明する。
レーザ溶着装置全体を用いて、レーザ溶着工程通りに透過率測定用の光線を透過材4に照射して、この透過光を透過光検出器80で受けて、レーザ溶着工程の時間毎の透過率を透過率測定部81で測定する。図5はこうして測定された透過率の1例で透過率を縦軸に、レーザ溶着工程の進行時間を横軸にとって示したものである。この透過率がアナログ信号生成部82に送られ、ここでレーザ溶着電源60の外部設定信号入力部62が要求する信号(例えば、0〜10Vの電圧信号)が生成され、レーザ溶着電源60に送られる。
[Laser output profile settings]
Next, the laser output profile is set.
First, the transmittance of the transmissive material 4 is determined, and generation of a signal required by the laser welding power source 60 will be described based on the transmittance.
The entire laser welding apparatus is used to irradiate the transmission material 4 with a light beam for transmittance measurement according to the laser welding process, and the transmitted light is received by the transmitted light detector 80, so that the transmittance for each time of the laser welding process is obtained. Is measured by the transmittance measuring unit 81. FIG. 5 shows an example of the transmittance measured in this way, with the transmittance on the vertical axis and the progress time of the laser welding process on the horizontal axis. This transmittance is sent to the analog signal generation unit 82, where a signal required by the external setting signal input unit 62 of the laser welding power source 60 (for example, a voltage signal of 0 to 10 V) is generated and sent to the laser welding power source 60. It is done.

こうして送られてくるアナログ信号はレーザ溶着電源60の外部設定信号入力部62に入力され、ここでA/D変換されて所定の時間毎にCPU61に読み込まれ、CPU61はこのデータをもとに透過率/レーザ出力対応テーブル63からレーザ出力データを読み出し、前記所定の時間単位でレーザ溶着工程におけるレーザ出力プロファイルを生成し、レーザ出力プロファイルテーブル64に格納する。   The analog signal sent in this way is input to the external setting signal input unit 62 of the laser welding power source 60, where it is A / D converted and read into the CPU 61 every predetermined time, and the CPU 61 transmits data based on this data. Laser output data is read from the rate / laser output correspondence table 63, a laser output profile in the laser welding process is generated in the predetermined time unit, and stored in the laser output profile table 64.

[溶着作業]
次にレーザ溶着作業時の動作について説明する
まず、公知の搬送、位置合わせ手段を用いて被加工材料である吸収材5を所定の載置台に載置し、その上に透過材4を重ねる。
そして、レーザ溶着電源60の制御のもとにレーザ光源1からレーザ光を照射しながら、照射位置を移動させる。この照射位置の移動も公知の手段により行う。
[Welding work]
Next, the operation at the time of laser welding work will be described. First, the absorbent material 5 as the work material is placed on a predetermined placement table using a known conveyance and alignment means, and the transmission material 4 is stacked thereon.
Then, the irradiation position is moved while irradiating the laser beam from the laser light source 1 under the control of the laser welding power source 60. This irradiation position is also moved by a known means.

このときのレーザ光の出力は、前述のようにして設定したレーザ出力プロファイルによって制御される必要があるので、操作部67のレーザ出力プロファイル指定キーを操作してCPU61の制御の下レーザ出力プロファイルテーブル64から指定されたレーザ出力プロファイルが読み出され、レーザ出力プロファイル設定部65に設定される。
このレーザ出力プロファイルがレーザ出力制御部66に送られ、ここでレーザ出力プロファイルに合わせてレーザ光源の駆動電流が生成されレーザ光源を駆動する。この駆動電流は公知のフィードバック制御によりレーザ出力プロファイルに基づいたレーザ出力が得られ、所望のレーザ出力が得られ、適切なレーザ溶着が実行される。
Since the laser light output at this time needs to be controlled by the laser output profile set as described above, the laser output profile table under the control of the CPU 61 is operated by operating the laser output profile designation key of the operation unit 67. The designated laser output profile is read from 64 and set in the laser output profile setting unit 65.
This laser output profile is sent to the laser output control unit 66, where a drive current of the laser light source is generated in accordance with the laser output profile to drive the laser light source. As for this drive current, a laser output based on a laser output profile is obtained by known feedback control, a desired laser output is obtained, and appropriate laser welding is performed.

実施例1は透過材の透過率の変動に着目してレーザ溶着を行うものであるが、レーザ溶着においてはレーザ溶着工程における溶着部の温度が溶着品質の良し悪しを決定する要因となるので、この温度に基づいてレーザ出力プロファイルを定めることが重要となる。
そこで、本実施例においては透過率に替えて温度を検出する。
次に、この相違点を中心に本実施例を説明する。
In Example 1, laser welding is performed by paying attention to fluctuations in the transmittance of the transmission material, but in laser welding, the temperature of the welded portion in the laser welding process is a factor that determines whether the welding quality is good or bad. It is important to determine the laser output profile based on this temperature.
Therefore, in this embodiment, the temperature is detected instead of the transmittance.
Next, the present embodiment will be described focusing on this difference.

温度検出器としては前述の特許文献1にもあるように非接触で対象部位の温度を計測できる放射型温度計を用いる。
このように本実施例は実施例との本質的な差異が検出パラメータにあることから、図1のブロック図を流用し、本実施例に合わせて変更しながら説明する。なお、各機器と各ブロックは実施例1との相違を明確にするために対応する符号の末尾に「a」を付け加える。なお、この末尾の符号を付して区別していても実質的に同じものについては説明を省略する。
As the temperature detector, a radiation type thermometer capable of measuring the temperature of the target part in a non-contact manner as described in Patent Document 1 is used.
As described above, the present embodiment has an essential difference from the embodiment in the detection parameter. Therefore, the block diagram of FIG. 1 will be used and will be described in accordance with the present embodiment. Each device and each block adds “a” to the end of the corresponding code in order to clarify the difference from the first embodiment. In addition, even if it attaches | subjects and distinguishes by the code | symbol of this tail, description is abbreviate | omitted about the substantially same thing.

図1において、60aはレーザ溶着電源、80aは温度検出器である。
温度検出器80は温度計測手段であるレーザ溶着中のレーザ照射部位がその温度に応じて放射する赤外線エネルギを検出して温度を測定する温度測定部81aと温度測定部81aからの温度データからレーザ溶着電源60aが要求するアナログ信号(例えば、0〜10Vのアナログ電圧信号)を生成するアナログ信号生成部82aとからなる。
In FIG. 1, 60a is a laser welding power source, and 80a is a temperature detector.
The temperature detector 80 detects the infrared energy radiated according to the temperature of the laser irradiation part during laser welding, which is a temperature measurement means, and measures the temperature by measuring the temperature from the temperature data from the temperature measurement unit 81a and the temperature measurement unit 81a. An analog signal generator 82a that generates an analog signal (for example, an analog voltage signal of 0 to 10 V) required by the welding power source 60a.

61aはCPU、62aは外部に設けられた温度検出器80からのレーザ照射部位の温度に応じて生成されたレーザ出力設定信号として用いられるアナログ信号を受けて、A/D変換してデジタル温度データとしてCPU61aが読み込み可能とする外部設定信号入力部、63aは外部設定信号入力部62aからのデジタル温度データと温度に応じて予め決定されるレーザ出力データをテーブル形式で格納する温度/レーザ出力対応テーブルである。   61a is a CPU, 62a is an analog signal used as a laser output setting signal generated according to the temperature of the laser irradiation part from the temperature detector 80 provided outside, and is A / D converted to digital temperature data. An external setting signal input unit that can be read by the CPU 61a, and a temperature / laser output correspondence table 63a that stores digital temperature data from the external setting signal input unit 62a and laser output data determined in advance according to the temperature in a table format. It is.

64aはCPU61aにより外部設定信号62aから1レーザ溶着工程の温度データが読み込まれ、温度/レーザ出力対応テーブル63aから温度データに対応するレーザ出力を読み出し、1レーザ溶着工程におけるレーザ出力プロファイルとして格納するレーザ出力プロファイルテーブル、65aはレーザ出力プロファイル設定部、66aはレーザ出力制御部である。   In 64a, the CPU 61a reads the temperature data of one laser welding process from the external setting signal 62a, reads the laser output corresponding to the temperature data from the temperature / laser output correspondence table 63a, and stores it as a laser output profile in the one laser welding process. An output profile table, 65a is a laser output profile setting unit, and 66a is a laser output control unit.

[温度/レーザ出力対応テーブルの作成]
最初にレーザ溶着電源60aの温度/レーザ出力対応テーブルを完成させる。被加工材料である透過材4と吸収材5との組合わせによって適切な溶融温度が定まる。この溶融温度になるように制御するのは実施例1に示すような要因があり、実施例1の場合と同様に、温度とレーザ出力との関係は予め実験的に求めておくか、経験的に得られている関係を流用して、実行しようとするレーザ溶着工程にしたがって操作部67aから温度/レーザ出力対応テーブルを作成する。
[Creation of temperature / laser output correspondence table]
First, the temperature / laser output correspondence table of the laser welding power source 60a is completed. An appropriate melting temperature is determined by the combination of the permeable material 4 and the absorbent material 5 which are work materials. The reason why the melting temperature is controlled is due to the factors shown in the first embodiment. As in the first embodiment, the relationship between the temperature and the laser output is experimentally obtained in advance or empirically. The temperature / laser output correspondence table is created from the operation unit 67a in accordance with the laser welding process to be performed by using the relationship obtained in the above.

[レーザ出力プロファイルの設定]
次にレーザ出力プロファイルの設定を行う。
まず、実際のレーザ溶着工程における各レーザ照射部位の温度を計測し、それをもとにレーザ溶着電源60aが要求する信号の生成について説明する。
レーザ溶着工程通りに図示しない透過率測定用の光線を透過材4に照射して、このときの各レーザ光の照射部位ごとに放出される赤外線エネルギを温度検出器80aで受けて、レーザ溶着工程の時間毎の温度を温度測定部81aで測定する。この温度がアナログ信号生成部82aに送られ、ここでレーザ溶着電源60aの外部設定信号入力部62aが要求する信号が生成され、レーザ溶着電源60aに送られる。
[Laser output profile settings]
Next, the laser output profile is set.
First, the generation of signals required by the laser welding power source 60a will be described based on the measurement of the temperature of each laser irradiation site in the actual laser welding process.
As shown in the laser welding process, the transmission material 4 is irradiated with a light beam for transmittance measurement (not shown), and the infrared energy emitted for each irradiated portion of the laser light at this time is received by the temperature detector 80a. Is measured by the temperature measuring unit 81a. This temperature is sent to the analog signal generator 82a, where a signal required by the external setting signal input unit 62a of the laser welding power source 60a is generated and sent to the laser welding power source 60a.

こうして送られてくるアナログ信号はレーザ溶着電源60aの外部設定信号入力部62aに入力され、ここでA/D変換されてデジタル温度データとなり、所定の時間毎にCPU61aに読み込まれ、CPU61aはこの温度データをもとに温度/レーザ出力対応テーブル63aからレーザ出力データを読み出し、レーザ出力プロファイルテーブル64aに前記所定の時間単位でレーザ溶着工程におけるレーザ出力プロファイルを格納する。   The analog signal thus sent is input to the external setting signal input unit 62a of the laser welding power source 60a, where it is A / D converted into digital temperature data and read into the CPU 61a every predetermined time. Based on the data, the laser output data is read from the temperature / laser output correspondence table 63a, and the laser output profile in the laser welding process is stored in the laser output profile table 64a in the predetermined time unit.

[溶着作業]
レーザ溶着作業は実施例1と同様にする。
[Welding work]
The laser welding operation is the same as that in the first embodiment.

実施例1と実施例2とは共に外部信号に基づいてレーザ出力プロファイルを作成し、このレーザ出力プロファイルデータにしたがってレーザ光源の駆動電流を制御してレーザ出力を定めるものである。   In both the first and second embodiments, a laser output profile is created based on an external signal, and the laser output is determined by controlling the drive current of the laser light source in accordance with the laser output profile data.

このようにしてレーザ溶着作業を実行した場合でも実際にはレーザ出力プロファイルを少し修正したい場合が出てくるときがある。この場合に実施例1または実施例2のレーザ出力プロファイル作成を繰り返したとしてもほとんどの場合レーザ出力プロファイルは変化しない。
このようなとき、レーザ溶着操作員は経験的に実際にはどのようにレーザプロファイルを変化させればより適切なレーザ溶着ができるか知っていることがあることから、マニュアルでレーザ出力プロファイルの変更を可能とするのがこの実施例である。
次にこのマニュアルによるレーザ出力プロファイルの変更について説明する。
Even when the laser welding operation is executed in this way, there may be a case where it is actually desired to slightly modify the laser output profile. In this case, even if the laser output profile creation in the first or second embodiment is repeated, the laser output profile does not change in most cases.
In such a case, the laser welding operator may know from experience how the laser profile can be changed to achieve a more appropriate laser welding. It is this embodiment that makes this possible.
Next, the laser output profile change according to this manual will be described.

図3は変更前のレーザ出力プロファイルと変更後のレーザ出力プロファイルを示す図である。実線で示された(a1)が変更前のレーザ出力プロファイル、一部点線で示された(a2)が変更後のレーザ出力プロファイルである。なお、(b)と(c)とは縦横のカーソルでレーザ出力プロファイルのうち変更する時間の変更前のレーザ出力(d)と変更後のレーザ出力(e)を指示するためのものである。   FIG. 3 is a diagram showing a laser output profile before the change and a laser output profile after the change. (A1) indicated by a solid line is the laser output profile before the change, and (a2) indicated by a partly dotted line is the laser output profile after the change. Note that (b) and (c) are used to indicate the laser output (d) before the change of the time to be changed and the laser output (e) after the change in the laser output profile with the vertical and horizontal cursors.

操作員はレーザ出力プロファイルを変更したいときは、操作部67(67a)の設定変更キーを操作してレーザ溶着電源60(60a)をレーザ出力プロファイル変更モードとし、レーザ出力プロファイル指定キーを操作して、変更したいレーザ出力プロファイルを指定する。この操作はCPU61(61a)に読み込まれ、CPU61(61a)は該当するレーザ出力プロファイルとカーソルを表示部68(68a)に表示する。   To change the laser output profile, the operator operates the setting change key of the operation unit 67 (67a) to set the laser welding power source 60 (60a) to the laser output profile change mode, and operates the laser output profile designation key. Specify the laser output profile you want to change. This operation is read by the CPU 61 (61a), and the CPU 61 (61a) displays the corresponding laser output profile and cursor on the display unit 68 (68a).

次に操作員は操作部67(67a)のカーソル移動キー(図示せず。)を操作して、表示されているレーザ出力プロファイルの変更したい時間のレーザ出力に移動させる。この変更したい時間のレーザ出力は縦横のカーソルの交点となるようにしてあるので、先ず変更前のレーザ出力(d)に合うようにカーソル(b)、(c)を移動させ、ここで前記確定キーを操作して変更したいレーザ出力として確定する。   Next, the operator operates a cursor movement key (not shown) of the operation unit 67 (67a) to move the displayed laser output profile to the laser output at the time to be changed. Since the laser output for the time to be changed is at the intersection of the vertical and horizontal cursors, the cursors (b) and (c) are first moved to match the laser output (d) before the change, and the confirmation is made here. Use the keys to confirm the laser output you want to change.

次に、操作員はこの時間のレーザ出力(d)をレーザ出力(e)に変更したいとすると、表示部68(68a)の表示を見ながらカーソル(c)を図3の下側方向へ移動させる移動キー(図示せず)を操作し、所望のレーザ出力(e)に到達したときに移動キーの操作を停止する。そして、ここで前記確定キーを操作して変更後のレーザ出力(e)を確定する。
このカーソル(c)の動きはCPU61(61a)で操作部67(67a)の操作を読み込み、CPU61(61a)の制御のもとに実行される。
Next, if the operator wishes to change the laser output (d) at this time to the laser output (e), the cursor (c) is moved downward in FIG. 3 while viewing the display on the display unit 68 (68a). The movement key (not shown) to be operated is operated, and when the desired laser output (e) is reached, the operation of the movement key is stopped. Then, the changed laser output (e) is confirmed by operating the confirmation key.
The movement of the cursor (c) is executed under the control of the CPU 61 (61a) by reading the operation of the operation unit 67 (67a) by the CPU 61 (61a).

このようにして、変更後のレーザ出力(e)が確定すると、CPU61(61a)は、この時間t8前後の時間t7のレーザ出力(f)と時間t8のレーザ出力(g)とをもとにレーザ出力プロファイルを変更する。
つまり、時間t7のレーザ出力(f)と時間t8のレーザ出力(e)と、時間t8のレーザ出力(e)と時間t9のレーザ出力(g)とをそれぞれ直線で結び、時間t7と時間t8との間のレーザ出力と時間t8と時間t9との間のレーザ出力はそれぞれ線形補間により求める。こうして求められた変更後のレーザ出力プロファイルが点線で示す(a2)である。
When the laser output (e) after the change is determined in this way, the CPU 61 (61a), based on the laser output (f) at time t7 around this time t8 and the laser output (g) at time t8. Change the laser output profile.
That is, the laser output (f) at time t7, the laser output (e) at time t8, the laser output (e) at time t8, and the laser output (g) at time t9 are connected by straight lines, respectively, and the time t7 and the time t8 are connected. And the laser output between time t8 and time t9 are obtained by linear interpolation, respectively. The changed laser output profile obtained in this way is indicated by a dotted line (a2).

このようにして得られた変更後のレーザ出力プロファイルはレーザ出力プロファイルテーブル63(63a)に書き換えられる形で格納されると共に、レーザ出力プロファイル設定部65(65a)に設定され、前述のようにレーザ光源1を制御してレーザ溶着作業が実行される。   The changed laser output profile obtained in this way is stored in a form that can be rewritten in the laser output profile table 63 (63a), and is set in the laser output profile setting unit 65 (65a). The laser welding operation is executed by controlling the light source 1.

本発明になる半導体レーザ溶着装置の要部ブロック図である。It is a principal part block diagram of the semiconductor laser welding apparatus which becomes this invention. 透過率に対応したレーザ出力プロファイルの1例である。It is an example of the laser output profile corresponding to the transmittance | permeability. 変更前のレーザ出力プロファイルと変更後のレーザ出力プロファイルを示す図である。It is a figure which shows the laser output profile before a change, and the laser output profile after a change. 従来のレーザ溶着装置と溶着方法を説明する図である。It is a figure explaining the conventional laser welding apparatus and the welding method. 図4のレーザ溶着装置で測定された透過率の一例を示す図である。It is a figure which shows an example of the transmittance | permeability measured with the laser welding apparatus of FIG. 図4のレーザ溶着装置で測定された透過率に対応したレーザ出力プロファイルの1例である。It is an example of the laser output profile corresponding to the transmittance | permeability measured with the laser welding apparatus of FIG.

符号の説明Explanation of symbols

60 レーザ溶着電源
61 CPU
62 外部設定信号入力部
63 透過率/レーザ出力対応テーブル
64 レーザ出力プロファイルテーブル
65 レーザ出力プロファイル設定部
66 レーザ出力制御部
67 操作部
68 表示部
80 透過率検出器
81 透過率測定部
82 アナログ信号生成部
60 Laser welding power supply 61 CPU
62 External setting signal input unit 63 Transmissivity / laser output correspondence table 64 Laser output profile table 65 Laser output profile setting unit 66 Laser output control unit 67 Operation unit 68 Display unit 80 Transmittance detector 81 Transmittance measurement unit 82 Analog signal generation Part

Claims (3)

レーザ出力を決定するアナログ信号入力部を備え、光透過性の材料と光吸収性の材料を密着して重ね合わせ、光透過性の材料側からレーザ光を照射して両材料を溶着する半導体レーザ溶着装置であって、
前記光透過性の材料の溶着部に沿って光透過率を測定する透過率測定手段と、
この透過率測定手段から得られた光透過率を所定の手順によりアナログ信号に変換するアナログ信号変換手段と、
このアナログ信号変換手段からのアナログ信号を受けて溶着工程のレーザ出力プロファイルを記憶する記憶手段と
を備えることを特徴とする半導体レーザ溶着装置。
A semiconductor laser with an analog signal input that determines laser output, a light-transmitting material and a light-absorbing material in close contact, and a laser beam irradiated from the light-transmitting material side to weld both materials A welding device,
A transmittance measuring means for measuring the light transmittance along the welded portion of the light transmissive material;
An analog signal converting means for converting the light transmittance obtained from the transmittance measuring means into an analog signal according to a predetermined procedure;
A semiconductor laser welding apparatus comprising: storage means for receiving an analog signal from the analog signal conversion means and storing a laser output profile of a welding process.
前記透過率測定手段に替えてレーザ溶着工程中の溶着部の温度を計測する温度計測手段を備えることを特徴とする請求項1記載の半導体レーザ溶着装置。   2. The semiconductor laser welding apparatus according to claim 1, further comprising temperature measuring means for measuring the temperature of the welded part in the laser welding process instead of the transmittance measuring means. 光透過性の材料と光吸収性の材料を密着して重ね合わせ、光透過性の材料側からレーザ光を照射して両材料を溶着する半導体レーザ溶着装置であって、
レーザ出力プロファイルを表示する表示手段と、
レーザ出力プロファイルを変化させる操作手段と、
この操作手段の操作に基づき変化させたレーザ出力プロファイルに変更する変更手段と、
を備えることを特徴とする請求項1または2記載の半導体レーザ溶着装置。
A semiconductor laser welding apparatus in which a light-transmitting material and a light-absorbing material are adhered and overlapped, and laser light is irradiated from the light-transmitting material side to weld both materials,
Display means for displaying a laser output profile;
Operating means for changing the laser output profile;
Changing means for changing to a laser output profile changed based on the operation of the operating means;
The semiconductor laser welding apparatus according to claim 1, further comprising:
JP2008010400A 2008-01-21 2008-01-21 Semiconductor laser welding equipment Expired - Fee Related JP5051900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010400A JP5051900B2 (en) 2008-01-21 2008-01-21 Semiconductor laser welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010400A JP5051900B2 (en) 2008-01-21 2008-01-21 Semiconductor laser welding equipment

Publications (2)

Publication Number Publication Date
JP2009166115A JP2009166115A (en) 2009-07-30
JP5051900B2 true JP5051900B2 (en) 2012-10-17

Family

ID=40967908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010400A Expired - Fee Related JP5051900B2 (en) 2008-01-21 2008-01-21 Semiconductor laser welding equipment

Country Status (1)

Country Link
JP (1) JP5051900B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503175B2 (en) * 2014-10-14 2019-04-17 株式会社アマダホールディングス Semiconductor laser oscillator and laser processing machine
DE102017109809B4 (en) 2016-05-13 2024-01-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing a semiconductor chip
DE102017108949B4 (en) 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Semiconductor chip
DE102017109812A1 (en) * 2016-05-13 2017-11-16 Osram Opto Semiconductors Gmbh Light-emitting semiconductor chip and method for producing a light-emitting semiconductor chip
DE102016216844B4 (en) * 2016-09-06 2021-06-17 Evosys Laser GmbH Process for laser beam plastic welding and device
JP2021005805A (en) * 2019-06-26 2021-01-14 パナソニックIpマネジメント株式会社 Photoelectric sensor, method of measuring resin transmittance in laser resin welding, laser resin welding method, laser processing equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256090B2 (en) * 1994-08-11 2002-02-12 松下電器産業株式会社 Laser heating tool, laser heating apparatus and method
JPH10263859A (en) * 1997-03-19 1998-10-06 Miyachi Technos Corp Laser monitoring device and laser device
JP3837626B2 (en) * 1998-10-29 2006-10-25 ミヤチテクノス株式会社 Laser processing equipment
JP4020099B2 (en) * 2004-05-20 2007-12-12 株式会社デンソー Laser processing method
JP4610238B2 (en) * 2004-06-21 2011-01-12 ダイセルポリマー株式会社 Bonding method of resin moldings
JP4577103B2 (en) * 2005-06-10 2010-11-10 株式会社デンソー Laser welding quality determination method and apparatus
JP4724527B2 (en) * 2005-10-19 2011-07-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacturing method of resin molded product using laser welding method
JP2007246716A (en) * 2006-03-16 2007-09-27 Mitsubishi Engineering Plastics Corp Polyester resin composition for laser beam welding and molded article using the same
JP2009061459A (en) * 2007-09-04 2009-03-26 Fine Device:Kk Method and apparatus for laser joining

Also Published As

Publication number Publication date
JP2009166115A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5051900B2 (en) Semiconductor laser welding equipment
JP3925169B2 (en) Method and apparatus for simultaneous simultaneous melting of materials by laser light
CN101990478B (en) Process control apparatus and laser processing apparatus
JP4577103B2 (en) Laser welding quality determination method and apparatus
JP4825051B2 (en) Laser processing apparatus and laser processing method
JP5205290B2 (en) Gas shield arc welding equipment
JP4617324B2 (en) Laser weld formation method
JP5461070B2 (en) Abnormality detection method for laser welding system
JP5096614B2 (en) Laser processing apparatus, laser processing data setting apparatus, laser processing data setting method, laser processing data setting program, computer-readable recording medium, and recorded apparatus
JP2010046699A (en) Method for adjusting laser head torch, laser head torch, and welding robot
JPH08224679A (en) Laser welding method and device therefor
KR20190048101A (en) Welding guide system for monitoring
JP2022018992A (en) Production apparatus for brazing structure, production method therefor, controller, control method and program
KR20120110513A (en) Self tracking laser welding apparatus
CN214212591U (en) Laser welding device
JP2005138126A (en) Welding system
JP2005246913A (en) Laser welding method for resin material
KR20160019176A (en) Laser welding machine having a temperature control function
JP2009018326A (en) Apparatus for laser spot welding
JP4642790B2 (en) Laser weld formation method
JP2016043409A (en) Laser welding apparatus and welding method thereof
CN108515264A (en) A method of for improving ultra-narrow gap laser welding efficiency
JP2004243629A (en) Laser welding method and laser welding apparatus
KR102019853B1 (en) Welding temperature control system reflecting emissivity of base material of laser welding machine and control method thereof
JPS59212184A (en) Control method of co2 laser welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5051900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees